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1. Introduction 

Underground structures are divided into two major categories, fully buried structures and 
partially buried structures regardless of the shape of the structure. Underground cylindrical 
structures like pipes, shafts, tunnels, tanks, etc. are used for services such as water supply, 
sewage, drainage, etc. Most structures have now become targets of terrorist attack in recent 
years. Examples are 1995 Paris subway in France, 2004 Moscow subway is Russia (Dix, 2004; 
Huabei, 2009), 1995 Alfred Murrah Federal Building in Oklahoma City. The main sources of 
blast are: terrorist attacks, war, accidental explosion from military formations, etc. The 
constituents of blast comprises of: 1) rock media, 2) soils, 3) structure, 4) thin-layer elements 
surrounding the structure; blast loads, and 5) procedure for the analysis of interaction and 
responses of these constituents. In order to synchronize the interaction and responses of these 
variables, relevant data is required which could be obtained from field tests, laboratory tests, 
theoretical studies, work done in related fields and extension of work done in related fields 
(Ngo et al., 2007; Greg, 2008; Bibiana & Ricardo, 2008; Olarewaju at al. 2010a).  
There are lots of methods available to determine the responses of underground structures to 
blast loads. These are: i) the analytical methods, and ii) the numerical methods using 
numerical tools (Ngo et al., 2007; Peter & Andrew, 2009). The problem of analytical method 
is that the solution allows only a small elastic response or limited plastic response and does 
not allow for large deflection and may lead to unstable responses. To overcome these 
problems, the finite element analysis paves the way towards a more rational blast resistance 
design. Though the drawback is the time and expertise required in pre- and post-processing 
for a given structural system. In structural design, the methods of structural analysis and 
design are broadly divided into three categories, namely, theoretical methods which can be 
used to carry out analysis and the use of design codes, by testing the full size structure or a 
scaled model using experimental methods, and by making use of model studies (Ganesan, 
2000). There are different types of static and dynamic loads acting on underground pipes. In 
the case of static loads, there surcharge load on the ground surface due various engineering 
activities. In the case of dynamic loads, these are cyclic load, earthquake, blast, etc. Blast 
being one of the dynamic load acting on underground pipes either from surface blast, 
underground blast, open trench blast or internal explosion is a short discontinuous event.  

2. Background study 

Under blast loading, though typically adopted constitutive relations of soils are elastic, 
elasto-plastic, or visco-plastic, the initial response is the most important (Huabei, 2009). It 
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involves some plastic deformation that takes place within the vicinity of the explosion and 
as a result of this one could model the soil as an elasto-plastic material. Beyond this region, 
the soil can be taken as an elastic material at certain distance from the explosion. Visco-
elastic soils exhibit elastic behavior upon loading followed by a slow and continuous 
increase of strain at a decreasing rate (Duhee et al., 2009). In this study, the soil and pipes are 
considered as linear elastic, homogeneous, isotropic materials (Boh et al., 2007; Greg, 2008). 
For such materials, Kameswara (1998) has shown that only two elastic constants are needed 
to study the mechanics/behavior. These can be the usual elastic constants (the Young’s 
modulus, E and Poisson’s ratio,荒) or the Lame’s constants (λ and µ).  
When explosion occurs, surface waves and body waves are generated. Consequent upon these 
are the isotropic component and deviatory component of the stress pulse (Robert, 2002). 
Transient stress pulse due to isotropic components causes compression and dilation of soil or 
rock with particle motion which is known as compression or P-waves. The deviatory 
component causes shearing of stress with particle velocity perpendicular in the direction to the 
wave propagation and these are known as shear or S-waves. On the surface of the ground, the 
particles adopt ellipse motion known as Rayleigh waves or R-waves (Kameswara Rao, 1998; 
Robert 2002). Energy impulse from explosion decreases for two reasons: (i) due to geometric 
effect, and (ii) due to energy dissipation as a result of work done in plastically deforming the 
soil matrix (Dimitiri & Jerosen, 1999; Huabei, 2009; Omang et al., 2009).  
The categories of blast in this study that are applicable to underground pipes are; (i) 
underground blast, (ii) blast in open trench, (iii) internal explosion inside the pipes as well 
as (iv) surface blast (Olarewaju et al. 2010b). Blasts can create sufficient tremors to damage 
substructures over a wide area (Eric Talmadge and Shino Yuasa, 2011). With regards to the 
severity of destruction of explosion as a result of blast, it has been reported by James (2008) 
that typical residence structure will collapse by an overpressure of 35 kPa while a blast wave 
of 83 kPa will convert most large office buildings into rubbles. Accordingly, blast could be 
thought of as an artificial earthquake. Consequently, there is need to study the relationships 
and consequences of blasts in underground structures specifically in pipes. This is with a 
view to designing protective underground structures specifically pipes to resist the effects of 
blast and to suggest possible mitigation measures.  
A lot of works have been done on dynamic soil-structure interaction majorly for linear, 
homogeneous, and semi-infinite half space soil media. This is contained in Olarewaju et al. 
(2010a). In this work, observations were limited to displacements at the crown and spring-
line of pipe buried in a soil layer. Effect of slip between the soil and pipe was not 
considered. Huabei (2009) recently obtained the responses of subway structures under blast 
loading using the Abaqus finite element numerical software. This study is limited to the 
determination of the responses of empty underground pipes under blast loads. The material 
properties are limited to linear, elastic, homogeneous and isotropic materials. It is assumed 
that blast takes place far away from the vicinity of the underground pipes.   

3. Blast load characteristics and determination 

Explosive has to detonate in order to produce explosive effect. The term detonation as 
explained in the Unified Facilities Criteria (2008) refers to a very rapid and stable chemical 
reaction that proceeds through the explosive material at a speed termed the detonation 
velocity. This velocity ranges from 6705.6 m/s to 8534.4 m/s for high explosives. The 
detonation waves rapidly convert the explosive into a very hot, dense, high-pressure gas. 
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The volume of the gas of this explosive material generates strong blast waves in air. The 
pressures behind the detonation front range from 18619 MPa to 33785 MPa. Only about one-
third of the total energy generated in most high explosives is released in the detonation 
process. The remaining two-thirds of the energy is released in air more slowly during 
explosions as the detonation products mix with air and burn.  
According to the same source, the blast effects of an explosion are in the form of shock 
waves composed of high-intensity shocks which expand outward from the surface of the 
explosive into the surrounding air. As the shock wave expand, they decay in strength, 
lengthen in duration, and decrease in velocity (Longinow & Mniszewski, 1996; Remennikov, 
2003; Unified Facilities Criteria, 2008). According to the Unified Facilities Criteria (2008), 
blast loads on structures can be categorized into two main headings; i) unconfined 
explosions (i. e. free air burst, air burst and surface), ii) confined explosions (i. e. fully 
vented, partially confined and fully confined).  
According to the same source, the violent release of energy from a detonation converts the 
explosive material into a very high pressure gas at very high temperatures. This is followed 
by pressure front associated with the high pressure gas which propagates radially into the 
surrounding atmosphere as a strong shock wave, driven and supported by the hot gases. 
The shock front, term the blast wave is characterized by an almost instantaneous rise from 
atmospheric pressure to a peak incident pressure Pso. Over pressure, Pso is the rise in blast 
pressure above the atmospheric pressure. This pressure increases or the shock front travels 
radially from the point of explosion with a diminishing shock velocity U which is always in 
excess of the sonic velocity of the medium. The shock front arrives at a given location at time 
tA (ms). After the rise to the peak value of over pressure Pso, the incident pressure decays to 
the atmospheric value in time to (ms - millisecond) which is the positive duration (Olarewaju 
et al. 2011n). 
 

 

Fig. 1. Pressure Time Variation (Unified Facilities Criteria, 2008; Olarewaju et al.2011 and 2011n)  
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The negative phase with duration t0- (ms) is usually longer than the positive phase. It is 
characterized by a negative pressure (usually below atmospheric pressure) having a 
maximum value of negative overpressure Pso- as well as reversal of the particle flow. The 
negative phase is usually less important in design than the positive phase because it is 
very small and is usually ignored. The incident pulse density (i. e., specific impulse) 
associated with the blast wave is the integrated area under the pressure-time curve and is 
denoted by is for the positive phase and by is- for the negative phase as illustrated in Fig. 
1. An additional parameter of the blast wave, the wave length, is sometimes required in 
the analysis of structures. The positive wave length LW+ is the length at a given distance 
from the detonation which, at a particular instance of time, is experiencing positive 
pressure (Longinow & Mniszewski, 1996; Remennikov, 2003; Unified Facilities Criteria, 
2008). Unified Facilities Criteria (2008) allows for an increase of 20%.  
In case of underground blast, most of the energy is spent in fracturing, heating, melting, 
and vaporizing the surrounding soils and rocks (Johnson & Sammis, 2001) with only a 
very small amount being converted to seismic energy. The fraction of the small amount of 
total energy that goes into seismic energy is a measure of the seismic efficiency of 
underground explosions. There are three methods available for predicting blast loads on 
structures. These are: empirical, semi-empirical and numerical methods. Details could be 
found in Peter and Andrew (2009), Olarewaju (2010), Olarewaju et al. (2010i), (2010j) and 
(2011p).  
 
 
 
 

 
 
 
 
 

Fig. 2. Peak Reflected Pressure and Peak Side-On Overpressure for Surface Blast (Olarewaju 
et al. 2010c, 2010e, 2010i) 

www.intechopen.com



 
Response of Underground Pipes to Blast Loads 511 

 

Fig. 3. Loading Wave Velocity for Sand and Saturated Clay for Underground Blast 

(Olarewaju, et al. 2010c, 2010e, 1020f, 2010i)  

Mitigation techniques are meant to reduce the impact of blast and seismic related issues on 
underground structures. These techniques include: soil stabilization using mechanical and/or 
additive, grout, ground improvement using i) prefabricated vertical drains, placing soil 
surcharge and maintaining it for the required time, vacuum consolidation, stone column; ii) 
chemical modification (with deep soil mixing, jet grouting, etc); iii) densification (using vibro 
compaction dynamic compaction, compaction grouting, etc), reinforcement (using stone 
columns, geo-synthetic reinforcement) (Olarewaju, 2004a; 2008b; Raju, 2010; Kameswara, 1998; 
Olarewaju et al. 2011). Tire-chip backfill has also been used by Towhata & Sim (2010) to reduce 
the bending stress and moment caused by displacement of underground pipes. If the thickness 
of the tire-chip backfilling is increased, it can resist larger displacement caused by blast and 
thereby reduces the bending stress and the moment caused by large displacements. Similarly, 
trenchless technique can also be used to rehabilitate damaged underground pipes due to blast, 
aging, etc. (Randall, 1999) especially in congested and built-up areas. 

4. Methodology 

The existing model studied by Ronanki (1997) was validated using the Abaqus numerical 
package and the results are compared well. From the results, the crown displacement at H/D=1 
is 1.31 times that of crown displacement at H/D=2. The maximum horizontal sprig-line 
response in terms of pressure, displacement, maximum principal strain and mises for H/D=1 is 
1.24 times that of maximum horizontal spring-line response for H/D=2. This is in line with the 
submissions of Roanaki (1997) that “Embedment depth has significant effect on both the crown 
and spring-line response (deflection). With increase of depth of embedment of pipes, the 
response (deflection) decreases. The maximum crown response for H/D=1 is about 1.3 times 
that of the maximum crown response (deflection) of H/D=2. In case of spring-line response 
(deflection), the maximum horizontal spring-line deflection for H/D=1 is about 1.2 times that of 
maximum horizontal spring-line deflection of H/D=2”.These results is also in agreement with 
those reported by Ramakrishan (1979) though no numerical data are presented.  
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(a) 
 

(b) 

Fig. 4. (a) Cross-section of underground pipe (Olarewaju et al. 2011n); (b) Finite element 
model of underground pipe using Abaqus 
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Material 
Density, ρ 
(kg/m3) 

Young’s Modulus, 
E (kPa) 

Poisson’s 
Ratio, υ 

Loose sand 
Dense sand 

Undrained Clay 
Intervening medium 

Steel pipe 
Concrete pipe 

1800 
1840 
2060 
1800 
7950 
2500 

18500 
51500 
6000 

18500 
200 x 106 
20 x 106 

0.3 
0.375 
0.5 
0.3 
0.2 

0.175 

Table 1. Material properties for the study 

The ground media considered in this study are loose sand, dense sand and undrained clay. 
The geotechnical properties shown in Table 1 as revealed by several researchers (Das, 1994; 
FLAC, 2000; Coduto, 2001; Duncan, 2001; Unified Facilities Criteria, 2008; Kameswara, 1998; 
etc) were used to study the response of underground pipes due to blast loads. Since the two 
elastic constants are enough to study the mechanics of an elastic body, the material 
properties used are the modulus of elasticity, E, Poisson’s ratio and density of soil and pipe 
materials. The largest possible value of Poisson’s ratio is 0.5 and is normally attained during 
plastic flow and this signifies constancy of volume (Chen, 1995). Huabei (2009) pointed out 
that undrained behavior is relevant for saturated soft soils especially clay that is subjected to 
rapid blast loading since the movement of pore water is negligible under such circumstance.  
For 10kg, 20kg, 30kg, 40kg, 50kg, 100kg and 250kg explosives, Unified Facilities Criteria 
(2008) was used to predict positive phase of blast loads at various stand-off point for surface 
blast and results are presented in Figs 2. Analytical method was used to predict the blast 
load for underground blast at various stand-off points and results presented in Figs. 3. 
According to Huabei (2009), it is not likely for terrorists to use very large amount of 
explosive in an attack targeting underground pipes. Soil model in the problem definition 
shown in Figs. 4 (a, b) of 100m by 100m by 100m depth consist of buried pipe 100m long and 
1m diameter buried at various embedment ratios were study for the various categories of 
blast applicable to underground pipes. Parametric studies were carried out for various 
blasts. Blast load duration was verified and it was observed that, for response to take place 
in underground pipe, most especially pipes buried in loose sand, duration of blast should be 
greater than 0.02s (Olarewaju, et al 2011n). 

5. Method of analysis 

Abaqus package was used to solve the equations of motion of the system:  

 [m] [戟岑 ] + [c] [戟岌 ] + [k] [U] = [P]  (1) 

with the initial conditions: 

 U (t = 0) = Uo   and 戟岌  (t = 0) = 戟岌 o = vo  (2) 

where m, c, and k are the global mass, damping and stiffness matrices of the pipes system 
and t is the time. U and P are displacement and load vectors while dot indicate their time 
derivatives. The time duration for the numerical solution (Abaqus Analysis User’s Manual, 

2009) was divided into intervals of time t = h, where h is the time increment. Finite 
difference in Abaqus/Explicit was used to calculate the response (Abaqus Analysis User’s 
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Manual, 2009). Stability limit is the largest time increment that can be taken without the 
method generating large rapid growing errors (Abaqus Analysis User’s Manual, 2009; 
Abaqus/Explicit: Advanced Topics, 2009). The difficulty is that the accuracy of the 
sensitivities can depend on the number of elements. This dependency is not seen with either 
analytical sensitivity analysis or with the overall finite difference method (explicit). 
Sensitivity analysis is not required in Finite difference of Abaqus/Explicit because. 
According to Abaqus Analysis User’s Manual (2009), the default value of perturbation has 
been proved to provide the required accuracy in Abaqus /Standard.  
Boundary condition of the model was defined with respect to global Cartesian axes in order 
to account for the infinite soil medium (Geoetchnical Modeling and Analysis with Abaqus, 
2009; Ramakrishan, 1979; Ronanki, 1997). Contrary to our usual engineering intuition, 
introducing damping to the solution reduces the stable time increment. However, a small 
amount of numerical damping is introduced in the form of bulk viscosity to control high 
frequency oscillations (Abaqus Analysis User’s Manual, 2009; Geoetchnical Modeling and 
Analysis with Abaqus, 2009). Estimation of blast load parameters could be done by 
empirical method, semi-empirical methods and numerical methods. The method to be 
adopted depends on the numerical tool available for the study of response of underground 
structures to blast loads. In this study, empirical method using Unified Facilities Criteria 
(2008) was used. The blast load parameters to be determined using this method depend on 
the available numerical tool. According to Unified facilities Criteria (2008), pressure is the 
governing factor in design and the study of the response of underground structures. Load 
due to surface blast was represented by pressure load with short duration (in millisecond, 
ms) while load due to underground blast was represented by loading wave velocity with 
short load duration (in millisecond, ms).  

6. Results and discussion 

6.1 Response of underground pipes to surface blast 
The blast load was represented by pressure load (Figures 1 and 2) whose centre coincide 
with the centre of the explosive. The pressure load reduces to zero at 0.025s. At low pressure 
load due surface blast, there was no response observed on underground pipe. Due to 
surface blast, it was observed that crown, invert and spring-line displacement reduces as 
embedment ratios increases in loose sand, dense sand and undrained clay. This is shown 
shown in Figs. 5. Crown, invert and spring-line pressures, stresses and strains increase at 
embedment ratios of 2 and 3 after which it reduces as the embedment ratios increases.  
For steel pipe at H/D = 1, crown and invert displacement in loose sand is the highest and 
least in undrained clay. This is in agreement with the findings of Huabei (2009), that 
increasing the burial depth enhances the confinement of underground pipe, hence reduces 
the maximum lining stress under internal blast loading (Huabei, 2009). The results indicate 
that it is necessary to evaluate the blast-resistance of underground structures with small 
burial depth. Materials yield easily and more at lower depth of burial (Huabei, 2009).  
With small burial depth, due to low confinement from ground, displacement, pressure, 
stress and strain could be significantly large and underground structures like pipes could be 
severely damaged even with moderate surface blast, underground blast and open trench 
blast (Olarewaju et al 2010c). According to James (2009), the effect of varying the depth of 
burial of structures below the ground level is an important phenomenon to study. The depth 
of soil cover above the increases the over burden stresses on it, which can help in stabilizing 
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it with respect to its response to an externally applied impulsive action. This can help in 
reduction of the vibrations which occur in response to an explosive blast action.  
 
 
 
 

 
(a) Crown displacement (steel pipe) (b) Crown Displacement (concrete pipe) 

 
 
 

 
(c) Spring-line displacement (d) Invert displacement 

Fig. 5. Displacement in underground pipes due to surface blast 
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6.2 Response of underground pipes to underground blast 
The blast load was represented by loading wave velocity (Figures 1 and 3) which reduces to 
zero at 0.025s. For a given loading wave velocity, crown, invert and spring-line 
displacements in pipes is almost constant at all the embedment ratios considered 
irrespective of the material properties. This is higher compared to that obtained in open 
trench blast. This is because, as the peak particle velocity due to underground blast travels 
within the soil medium, it transmits the load bodily to the buried pipes along the direction 
of travel. As a result of this, displacement is bound to be higher compared to open trench 
blast where the wave energy only impeaches on the side of the trench.  
Reduction in pressure, stress and strain is noticeable at embedded ratios of 3 to 5. This is in 
agreement with the submission of Ronanki (1997) on the effect of seismic/loading wave 
velocity that, the spring-line horizontal displacement remains almost constant with increasing 
mode shape number. The vertical crown displacement increases with mode shape number up 
to a value 15, beyond that the displacement tends to be constant (Ronanki, 1997). Finally, 
crown, invert and spring-line pressures, stresses and strains in pipes showed wide variation as 
the embedment ratio increases in all the soil media considered. Though there is reduction in all 
these parameters as the embedment ratio increases (Olarewaju et al. 2010f). 

6.3 Response of underground pipes to open trench blast 
The blast load was represented by pressure load (Figures 1 and 2) which reduces to zero at 

0.025s. Displacement (Figs. 6) in pipes due to open trench blast is lower compared to that 

obtained in underground blast. In addition, virtually all the parameters observed i. e. 

displacement, pressure, stress and strain at the crown, invert and spring-line of pipes 

reduces at embedment ratios of 3 beyond which no significant changes occurred. Finally, 

crown, invert and spring-line displacements, pressures, stresses and strains reduce as the 

embedment ratio increases with a sharp increase at embedment ratio of 2 in all the ground 

media considered (Olarewaju et al. 2010e). Increasing the burial depth of underground pipe 

enhances the confinement on the underground pipe, hence reduces the maximum 

displacement, pressure, stress and strain under blast loading (Huabei, 2009).  Details could 

be found in Olarewaju et al  (2010b) 

6.4 Response of underground pipes to internal explosion 
The blast load was represented by pressure load (Figures 1 and 2) whose centre coincide with 

the centre of the explosive. The pressure load reduces to zero at 0.025s. The result shows that 

as the diameter of pipes increases, blast load parameters generated inside the pipe increases. 

As the thickness of pipes reduces, time history as a result of internal explosion increases in the 

same proportion. In addition to this, depth of burial of pipes showed no significant changes in 

the time history of external work and energies generated due to internal explosion (Olarewaju 

et al 2010d and 2010l). Furthermore, stress components on the ground surface reduced as the 

depth of embedment of pipes increases. Equivalent earthquake parameters on the surface of 

the ground due to 50kg TNT explosion in pipe are higher than that recorded in San Fernando 

earthquake of 1971 (Robert, 2002). Finally, pressure changes from negative to positive within 

the soil medium due to dilations and compressions caused by the transient stress pulse of 

compression wave while velocity, displacement and stresses reduce as it approaches the 

ground surface. This reduction is more in loose sand than undrained clay due to arching effect 

(Craig, 1994). Details could be found in Olarewaju et al. (2010d). 
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(a) Crown displacement (b) Spring-line displacement 
 
 
 
 
 

 
 

(c) Spring-line strain (d) Invert strain 

Fig. 6. Displacement and Strain in pipes in open trench blast 
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7. Parametric studies 

7.1 Effects of coefficient of friction 
Due to surface blast, displacement at the crown reduces at coefficient of friction of 0.2 to 0.4 
and above in dense sand. The reverse is the case in loose sand where displacement increases 
as the coefficient of friction increases. Invert displacement reduces as the coefficient of 
friction increases. Spring-line displacement increases as the coefficient of friction increases. 
Due to the dynamic nature of surface blast loads, there is wide variation in the results; there 
is reduction in the values of crown, invert and spring-line pressures, stresses and strains for 
coefficient of friction of 0.2 to 0.4. This is also noticeable for the increased values of peak 
reflected pressure. Liang-Chaun (1978) pointed out that in cases when test data are not 
available, the following friction coefficient can be used:  Silt = 0.3; Sand = 0.4; Gavel = 0.5m 
and added that the above coefficients are the lower bond values equivalent to the sliding 
friction. The static and dynamic coefficient of friction can be as much as 70% higher. 

7.2 Effects of young’s modulus of soil  
Effects of liquefaction as observed in the varying Young’s modulus for soil for surface blast 
and underground blast is similar to the varying Young’s modulus for intervening medium. 
Varying the Young’s modulus, E of soil, displacement became higher at E of 1 x 106 Pa. 
Between Young’s modulus, E of 10000 Pa and 3000000 Pa, pressure, stress and strain get to 
the peak value with maximum value at E of 1000000 Pa. Crown has the maximum values of 
stress and strain while invert has the maximum pressure. With the value of Young’s 
modulus, E soil ranging from 0 Pa to 10000 Pa, displacement, pressure, stress and strain 
(Figs 7) reduce with no substantial increase. This is in agreement with the submission of 
Susana & Rafael (2006). From the result of the work by Huabei (2009), it showed that as 
Young’s modulus of soil is increasing, mises stress is reducing. For the constant value of 
stress with increasing value of Young’s modulus, E of soil, it shows that the soil has yielded.  

7.3 Effects of young’s modulus of pipes 
Displacement is high at the crown but low at the invert and spring-line of pipes having low 
value of Young’s modulus. At higher Young’s modulus, the displacement at the crown, 
invert and spring-line became the same. Pressure and stress is low at low Young’s modulus 
but increases as the Young’s modulus increases. Large strain is observed between the values 
of 100Pa and 10000Pa beyond which the value of strain reduces. Low stiffness pipes are pvc 
pipes, clay pipes, etc while high stiffness pipes are steel pipes, reinforced concrete pipes, etc. 
It is evident that as the Young’s modulus E of pipes increases, strain reduced due to 
increased stiffness but the pressure and stress increases from E of 1 x107 Pa. This shows that 
pipes of lower value of E have lower displacement, pressure, stress and strain induced in 
them due to surface blast compared to pipes with higher stiffness like steel and reinforced 
concrete pipes.  
The result presented by Frans (2001) clearly shows that the low stiffness pipes suffer less 
from subsidence than the one with the higher stiffness. At the same time a higher deflection 
is observed when using low stiffness pipes. This proves that rigid pipes transfer load, and 
flexible pipes deform and the load is transferred by the soil. When the bed is firm, hardly 
any subsidence takes place hence the stiffness of the pipe has no effect either. However, 
when the bed is loose or soft, subsidence becomes a real issue and also the effect of pipe 
stiffness is significant.  
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(a) Displacement (d) Pressure 
 
 
 
 

 
 

(a) Stress (d) Strain 

Fig. 7. Displacement, Pressure, Stress and Strain in buried pipes for varying Young’s 
modulus of soil for surface blast 
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7.4 Effects of young’s modulus of pipes 
Displacement is high at the crown but low at the invert and spring-line of pipes having low 
value of Young’s modulus. At higher Young’s modulus, the displacement at the crown, invert 
and spring-line became the same. Pressure and stress is low at low Young’s modulus but 
increases as the Young’s modulus increases. Large strain is observed between the values of 
100Pa and 10000Pa beyond which the value of strain reduces. Low stiffness pipes are pvc 
pipes, clay pipes, etc while high stiffness pipes are steel pipes, reinforced concrete pipes, etc. It 
is evident that as the Young’s modulus E of pipes increases, strain reduced due to increased 
stiffness but the pressure and stress increases from E of 1 x107 Pa. This shows that pipes of 
lower value of E have lower displacement, pressure, stress and strain induced in them due to 
surface blast compared to pipes with higher stiffness like steel and reinforced concrete pipes.  
The result presented by Frans (2001) clearly shows that the low stiffness pipes suffer less 
from subsidence than the one with the higher stiffness. At the same time a higher deflection 
is observed when using low stiffness pipes. This proves that rigid pipes transfer load, and 
flexible pipes deform and the load is transferred by the soil. When the bed is firm, hardly 
any subsidence takes place hence the stiffness of the pipe has no effect either. However, 
when the bed is loose or soft, subsidence becomes a real issue and also the effect of pipe 
stiffness is significant.  

7.5 Effects of pipe thickness 
The result indicates that steel and concrete pipes show similar characteristics and 
behavior in thickness. In other words, as the thickness of pipes increases, displacement, 
pressure, stress and strain reduces. At low pipe thickness, displacement, stress and strain 
in steel and concrete pipes buried in undrained clay, is low at the invert but remain 
constant at the crown, invert and spring-line as the thickness increases. According to 
James (2009), the size and thickness of the structure under consideration is a major factor 
which can potentially influence the stresses generated on it. The reason could be 
attributed to the fact that smaller size structure has lower mass, making it easier to 
displace under blast loadings.  
Higher displacements in the structure can result in larger strain deformations, causing the 
corresponding stresses to be lower due to energy dissipation in deforming the structure. 
According to Zhengwen (1997), rigid structures experience higher pressure and less 
displacement during the first half-wave of response, when compared with more flexible 
counterparts. In that case, underground pipes with smaller thickness are considered as 
flexible while those with increased thickness are considered as rigid structures. 

8. Conclusions 

Blast is a short discontinuous event whose duration is very small compared to earthquake. 
Considering the various constituent of blast, ground pipes and intervening media can be 
modeled. It must be remembered that soil exists as semi-infinite medium. Numerical tool to 
be used must incorporate the notion of infinite in the formulation. To account for the infinity 
of soil medium, in this study, in the absence of infinite element, Global Cartesian axis in 
Abaqus software was used. In other words, it shows that soil is a continuous media. To 
account for material damping, small numerical damping in the form of bulk viscosity was 
introduced. Blast and/or blast parameters can be represented or modeled using software (i. 
e. BLASTXW, SPLIT-X, BLAPAN, SPIDS, etc) or by using Eulerian numerical techniques 
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developed using finite volume and finite difference solver (i. e. SHAMRC, ANSYS, 
AUTODYN 2D AND 3D, etc) (Olarewaju et al., 2010i).  
To represent blast load parameters, it can to be determined by empirical method using 
available code like Technical Manual 1990, Unified Facilities Criteria 2008, etc (Unified 
Facilities Criteria 2008 supersede other available technical manual). In this study, blast load 
parameters were estimated using empirical method, (i. e. Unified facilities Criteria (2008)) 
and represented in the model. Other blast load parameters applicable to the design and 
study of response underground pipes to blast loads that can be estimated by empirical 
method are: peak reflected pressure, side-on overpressure, specific impulse, horizontal and 
vertical acceleration, horizontal and vertical displacement, shock front velocity, horizontal 
and vertical velocity, duration, arrival time, etc (Olarewaju et al. 2010a; 2010i). To capture 
the short duration of blast load, time integration technique in Abaqus/Explicit was used in 
this study.  
Conclusively, this study has shown the various responses of underground pipes due to 
various blasts scenarios. Results of parametric studies were also presented and discussed. 
Finally, possible mitigation measures were also suggested. Consequently, the parameters 
thus obtained will help in designing underground pipes to resist effects of various blast 
loads.  
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