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1. Introduction 

Kobe earthquake in Japan (Ms6.9) happened in 1995 Jan 17 at five o’clock in the morning, 
depth of the seismic focus was 20km, the seismic characteristic was shallow vertical focus 
earthquake, peak acceleration was 813gal, predominant period was 0.3~0.5s, The main 
sediments of the region under 20~30 meters were sandy silt, and Generally to moderately 
weathered rock. 18 thousand buildings were been damaged and 1.2 thousand buildings 
were collapsed, half timber houses which built before 1980’were destroyed seriously, at the 
same time middle-storey reinforced-concrete (RC) buildings which were 7~8 layer buildings 
damaged also seriously, the mainly damage showing was integral overthrow of buildings, 
in addition columns between third to forth layer of RC buildings were squashed in the 
earthquake, and were collapsed in the middle of structures. 
Tohoku Earthquake (Ms9.0) in Japan occurred on March,11 2011, it is regarded as the most 
devastating killer earthquake after the 1923 great kanto earthquake in Japan, in which 
almost 30000 people were killed or missed in the earthquake and the subsequent monster 
tsunami. The maximum height of the tsunami is reported to have been almost 40 m. The 
recorded maximum peak ground acceleration was 2933 gal and large long-period wave 
components were recorded in Tokyo during the 2011 off the Pacific coast of Tohoku 
Earthquake. It is remarkable in this earthquake that the number of collapsed or damaged 
buildings and houses remains unclear because most of the damage resulted from the 
tsunami (Takewaki,2011). 
Northridge earthquake(Ms 6.7) happened in 1994 Jan 17 at five o’clock in the morning, this 
is terrible earthquake with tremendous horizontal and vertical acceleration evenly to reach 
1.0g, 2500 houses were been collapsed and 4000 houses were been damaged seriously by 
powerful natural energy, the main characteristic of buildings’ damage was shear failure of  
columns in old second to third layer timberwork apartment blocks, and RC frames were 
damaged very small include several 40 layer high-rise RC buildings. 
Taiwan Chichi earthquake (Ms7.6) happened in 1999 Sep 21 at one o’clock in the morning, 
depth of the seismic focus was 8km, and the earthquake was powerful shallow focus 
earthquake, damaged data of 8733 buildings were collected post earthquake, one to three 
layer RC buildings were damaged seriously, or about 52.5 percent, among which old RC 
buildings built before 1982 based insufficient seismic design and outdated seismic code 
were destroyed deeply, and occupied about 59.4 percent. Small high-rise shear-wall RC 
buildings were damaged tiny, and which occupied 6.4 percent. 
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China Wenchuan earthquake(Ms8.0) happened in 2008 May 12 at two o’clock in the 

afternoon, in the seismic region are three main geological fault zones, and the Wenchuan 

earthquake  occurred in Longmenshan (LMS) geological fault zone, total length of LMS is 

530 kilometer(km), width of which is 40~50km, presenting northeast-southwest running, 

and leaning to northwest about 30～70 angles, LMS divided into two parts by Jiangyou(JY) 

city in Sichuan province, northeast part of which is geological fault zone during Early 

Pleistocene-middle Middle Pleistocene, southwest part of which is fault zone during 

Holocene, the earthquake was happened in southwest part, depth of the seismic focus was 

14km, and fracture length was 240km, the process of fracture consisted of several 

continuous events, every event was a earthquake which magnitude was Ms7.2 to Ms7.6, all 

type of buildings were damaged overlying in the continuous vibration, the peak acceleration 

recorded was 957.8gal, waves diffused all directions in three-dimensional, at the same time 

vibration along northeast of fracture zone was more powerfully, and continued for about 

100 seconds, spreading to 16 provinces of China, specialists from State Seismological Bureau 

of China surveyed 500 thousand square kilometer, and in where 2419 square kilometer 

earthquake intensity reached 11 scale, far surpass design intensity in the region where is 7 

scale. 

In the Wenchuan earthquake, 5.46 million buildings were collapsed, number of serous 

damaged buildings were 5.93 million, amount to total damaged buildings exceeded 15 

million, old brick masonry structures built 70s~80s damaged most seriously, in the next 

place low-rise RC buildings destroyed also severely, which were integral overthrow of 

base layer columns yielded because of wrong site, low material strength and fault layout. 

With Indian plate moving to north continuously and squeezing Asian plate, in the near 

future there is still high risk of major earthquake happen again in western China region, so  

how to evaluate reliability and vulnerability of the lifeline systems for future earthquake in 

the area and search reasonable design practice of seismic strengthening of these buildings is 

urgent mission. 

2. Summarize methods of structural seismic vulnerability analysis 

Damage from earthquake is comprehensive, there are different ways for various damage of 

engineering, seismic technician classify the vulnerability assessment as four sorts: empirical, 

judgmental, experimental and analytical according to whether the damage data used in their 

generation derives mainly from observed post-earthquake surveys, expert opinion, 

analytical simulations or combinations of these respectively. 

As described below, the seismic vulnerability assessment of buildings at large geographical 

scales has been first carried out in the early 70’s, through the employment of empirical 

methods initially developed and calibrated as a function of macro-seismic intensities. This 

came as a result of the fact that, at the time, hazard maps were, in their vast majority, 

defined in terms of these discrete damage scales (earlier attempts to correlate intensity to 

physical quantities, such as PGA, led to unacceptably large scatter). Therefore these 

empirical approaches constituted the only reasonable and possible approaches that could be 

initially employed in seismic risk analyses at a large scale. 

(Whitman, 1973) first proposed the use of damage probability matrices for the probabilistic 
prediction of damage to buildings from earthquakes. The concept of a DPM is that a given 
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structural typology will have the same probability of being in a given damage state for a 
given earthquake intensity. The format of the DPM was suggested by (Whitman, 1973), 
where example proportions of buildings with a given level of structural and non-structural 
damage are provided as a function of intensity (note that the damage ratio represents the 
ratio of cost of repair to cost of replacement). (Whitman, 1973)  compiled DPMs for various 
structural typologies according to the damaged sustained in over 1600 buildings after the 
1971 San Fernando earthquake. 
One of the first European versions of a damage probability matrix was produced by 

(Braga et al., 1982), which was based on the damage data of Italian buildings after the 

1980 Irpinia earthquake, and this introduced the binomial distribution to describe the 

damage distributions of any class for different seismic intensities. The binomial 

distribution has the advantage of needing one parameter only which ranges between 0 

and 1. On the other hand it has the disadvantage of having both mean and standard 

deviation depending on this unique parameter. The buildings were separated into three 

vulnerability classes (A, B and C) and a DPM based on the MSK scale was evaluated for 

each class. This type of method has also been termed ‘direct’ (Corsanego & Petrini, 1990) 

because there is a direct relationship between the building typology and observed 

damage. The use of DPMs is still popular in Italy and proposals have recently been made 

to update the original DPMs of Braga. (Di Pasquale, 2005) have changed the DPMs from 

the MSK scale to the MCS (Mercalli-Cancani-Sieberg) scale because the Italian seismic 

catalogue is mainly based on this intensity, and the number of buildings has been 

replaced by the number of dwellings so that the matrices could be used in conjunction 

with the 1991 Italian National Statistical Office (ISTAT) data. (Dolce,2003) have also 

adapted the original matrices as part of the ENSeRVES (European Network on Seismic 

Risk, Vulnerability and Earthquake Scenarios) project for the town of Potenza, Italy. An 

additional vulnerability class D has been included, (Grüntal, 1998) using the EMS98 scale 

to account for the buildings that have been constructed since 1980. These buildings should 

have a lower vulnerability as they have either been retrofitted or designed to comply with 

recent seismic codes. 

Judgmental method was based structural damage data can be considered the greatest 

cause of life and monetary loss in the majority of seismic events, vulnerability curves were 

been received under-predict the damage observed in buildings after earthquake, for 

example: Miyakoshi et al. [6] used damage data observed in RC buildings after the Kobe 

earthquake (Japan, 1995) in constructing damage parameter equation, (Yamazaki & 

Murao, 2000) also made up of empirical vulnerability curve though analyzing damage 

data observed in buildings after the Kobe earthquake, (Orsini et al.,1999) used the 

Parameterless Scale of Intensity (PSI) ground-motion parameter to derive vulnerability 

curves for apartment units in Italy. Both studies subsequently converted the PSI to PGA 

using empirical correlation functions, such that the input and the response were not 

defined using the same parameter. 

The use of observed damage data to predict the future effects of earthquakes also has the 

advantage that when the damage probability matrices are applied to regions with similar 

characteristics, a realistic indication of the expected damage should result and many 

uncertainties are inherently accounted for. However, there are various disadvantages 

associated with the continued use of empirical methods:  
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1. A macro-seismic intensity scale is defined by considering the observed damage of the 
building stock and thus in a loss model both the ground motion input and the 
vulnerability are based on the observed damage due to earthquakes. 

2. The derivation of empirical vulnerability functions requires the collection of post-
earthquake building damage statistics at sites with similar ground conditions for a wide 
range of ground motions: this will often mean that the statistics from multiple 
earthquake events need to be combined. In addition, large magnitude earthquakes 
occur relatively infrequently near densely populated areas and so the data available 
tends to be clustered around the low damage/ground motion end of the matrix thus 
limiting the statistical validity of the high damage/ground motion end of the matrix.  

3. The use of empirical vulnerability definitions in evaluating retrofit options or in 
accounting for construction changes (that take place after the earthquakes on which 
those are based) cannot be explicitly modeled; however simplifications are possible, 
such as upgrading the building stock to a lower vulnerability class.  

4. Seismic hazard maps are now defined in terms of PGA (or spectral ordinates) and thus 
PGA needs to be related to intensity; however, the uncertainty in this equation is 
frequently ignored. When the vulnerability is to be defined directly in terms of PGA, 
where recordings of the level of the ground shaking at the site of damage are not 
available, it might be necessary to predict the ground shaking at the site using a ground 
motion prediction equation; however, again the uncertainty in this equation needs to be 
accounted for in some way, especially the component related to spatial variability.  

5. When PGA is used in the derivation of empirically-defined vulnerability, the 
relationship between the frequency content of the ground motions and the period of 
vibration of the buildings is not taken into account. 

Laboratory testing represents the third alternative tool for vulnerability assessment. The main 

advantage of this method is the freedom in selecting model to suite the application. However, 

this method is hampered by the limitations of scale, laboratory and equipments capacities. 

Another factor affecting the reliability of this tool is the effect of loading type and routine on 

the response. Furthermore, the deficiency in modeling soil-structure interactions represents 

one of the main disadvantages of using the laboratory testing as a seismic vulnerability 

assessment tool. Pseudo dynamic testing has been used in several studies. However, the slow 

rate of testing represents a main obstacle in using this type of testing for vulnerability 

assessment where large sets of data points are required to make a comprehensive assessment. 

Recently sub-structuring and distributed testing have been used in different studies. 

The last tool is analysis vulnerability method. The method has received much attention from 

researchers in recent years. Many researchers of countries such as (M.A.Erberik, 2004), 

(Rossetto. T, 2005), (S. Kircil,2006), (Jun Ji,2007) and (Barbara Borzi,2008) have studied seismic 

characteristic and vulnerability of many kinds of structures like reinforced concrete buildings, 

masonry buildings, bridges, museums and dams. Analysis offers two main advantages: the 

ease of controlling the level of refinement and feasibility of parametric studies. However, 

results of recent studies emphasized several issues that need to be resolved in order to enhance 

the use of analysis in realistic vulnerability assessment, including influence level between 

different models, ground vibration importing selecting, comprehensive structures analysis and 

computing consume. So analysis method is selected based all four tools characteristic, and the 

analysis tool will be used in classic RC buildings of western region in China in connecting 

fielding damage data observed after Wenchuan earthquake (2008) in China. 
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3. Response spectrum fitting stochastic artificial waves 

Probability response spectrum is an elastic response spectrum, which is enough as external 
load for most sample and general layout buildings of seismic design, but which is not suitable 
for comprehensive and lifeline structures, so nonlinear dynamic analysis is very necessary and 
importable to the lifeline structures. In fact, actual earthquake recorded waves are not easy for 
attainable in engineering research, and why is the reason how to use spectrum density and 
design response spectrum for fitting artificial stochastic seismic waves. 

3.1 Analysis procedure 
Artificial seismic waves analysis methods could be divided into engineering simulation method 
and seismology simulation method. Earthquake focus also be divided into many element focus 
in seismology simulation method, and which element focus excite site vibration in using 
theoretical or experimental ways, that in the end gathering site vibration by total element focus 
and to move forward to construct site seismic function. Engineering simulation method is made 
up appropriate seismic function in accordance with seismic Fourier frequency spectrum, energy 
spectrum density and response spectrum, engineering method has been accepted by 
engineering technician because of well academic foundation. So engineering simulation method 
is been selected in Matlab7.0 programming and simulate and fit artificial seismic stochastic 
waves according with design response spectrum. Five steps are following: 
1. initial setting artificial seismic waves; 
2. compute response spectrum of artificial seismic waves; 
3. compare initial response spectrum with target response spectrum and compute both 

ratio; 
4. regulate artificial seismic waves on the base of response ratio; 
5. repeat step 2 and degree of fitting satisfy demand. 

3.2 Artificial seismic waves simulation 
There are three methods for artificial waves: tri-angle series method, stochastic impulse 
method and natural regression method, the third ways raised in 1970s, but the first method 
is accepted widely. 

We suppose that an zero mean value  ( ( ) 0 )E x t   steady state diffuse scattering wave shape 

time history is ( )x t , which may be showed by Fourier analysis, as shown in Eq.(1): 

 ( ) exp[ ( )]k k k
k

x t A i t    (1) 

Where k k   , 2
dT

  , dT  is seismic time history, ( )k kA A   is Fourier amplitude 

spectrum value, k  is phase angle, so we can decided kA , k  according with vibration 

characteristic value, in other word, we can create steady vibration time history based above 

function. In which k  is created by random phase way and random range from 0 to 2 , 

certainly it my also take from real earthquake recorded waves. Frequency of vibration could 

shown by spectrum density function ( )
Xg

S  , and ( )S   has relation with ( )kA  , 

2 2[ ( ) ] ( ) k
k

E x t S d A 



  , mean 

2

( )
2
k

k

A
S    , mean also 

1

2[2 ( ) ]k kA S    . 
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In the mean time (Kaul, 1978) computed relation energy spectrum density function with 
response spectrum on the base of diffuse scattering theory shown as Eq. (2): 

 

2( , )
( )

(1 )

a k
k

k
k d

S
S

T
In

In p

  





 
  
 
   

 (2) 

Where aS  is accelerate response spectrum,   is system damping ratio and initial setting as 

5%, p  is surpass probability and setting as 10%, dT  is time history 30 seconds, initial steady 

artificial seismic time history are shown by programmed with Matlab 7.0 in Fig.1: 
 

 

Fig. 1. Initial steady artificial vibration time history 

Real earthquake wave is not an sample steady vibration, in consideration of initial vibration 

phase, main vibration phase and decline phase, so artificial waves only shown more 

accurately as stationary time history, in present, common way is steady state ( )x t  multiply 

by decided time varying envelop function ( )g t , that is to say, change stationary state into 

steady form. 
Seismic acceleration could be shown as: 

 ( ) ( ) ( )g gA t g t X t   (3) 

Where ( )gX t  is ( )x t , ( )g t  is envelop curve, so structure of spectrum frequency is not vary 

with time but variance is changing with time. 

Generally envelop function is decided in according with seismic total duration and strong 

vibration duration. Seismic total duration means earthquake time history from begin time to 

end time, we can know that seismic duration change from several seconds to dozens of 

seconds and at most one to two minutes, (Murphy and O’Brien,1977) from American 

analysis about 400 recorded earthquake waves and found the vast majority of recorded 

waves duration within 25～40s when the total duration within 2~100s, so 30s was decided 

as standard artificial wave duration. After engineering technician analyze vast actual 

seismic recorded acceleration ( )a t , they found an common characteristic: stationary of 

intensity and frequency spectrum, vibration intensity divided as ascent stage, strong 

vibration sustain stage and weakening stage, meanwhile stationary in every stage. In 

engineering we often pay attention to strong vibration stage called strong vibration duration 

T , because importance of strong vibration duration has been realized by engineering 

technician, but definition of which is not definite, so in the article relative duration based 
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energy was been considered, and (Husid,1974), (Trifunac & Bardy,1975) studied that they 

thought using 2

0
( )

t
a t dt  as time-vary characteristic of earthquake vibration energy, and 

shown as Eq.(4): 

 

2

0

2

0

( )
( )

( )

t

T

a t dt
I t

a t dt
 


  (4) 

Where T is total duration of seismic wave, ( )I t  is function within 0~1. Definition of strong 

vibration duration is : 

 2 1T t t    (5) 

The relation of 2t  and 1t  is :  

 2 1( ) ( ) %I t I t    (6) 

Japanese and American researchers (Takjzawa,1980), (Jennings & Housner,1968) compared 

90%, 80%, 70%, 60% and 50% of energy duration for destructive effect of buildings and 

decided 70% of energy duration was more fitting to actual situation, the article author also 

analysed and computed representative seismic record in Tab.(1), in the same time 

considered standard deviation 5% , and energy in ascent stage occupy 10% of total energy , 

moreover 1( )I t  is 10%, 2( )I t  is 80%. 
 

Earthquake 
(T) 

10% 

1t  

80% 

2t  

Strong 
duration 

T  

Earthquake
(T) 

10% 

1t  

80% 

2t  

Strong 
duration 

T  

EI-centro 
(37.03s) 

6.12s 10.18s 4.06s 
Northridge 

(15.01s) 
1.90s 3.80s 1.90s 

Taftew 
(27.11s) 

1.87s 7.73s 5.86s 
Chichi long

(39.98s) 
10.26s 15.00s 4.74s 

Kobe 
(46.38s) 

4.00s 8.50s 4.50s 
Nanjin 
(16.10s) 

3.00s 8.90s 5.90s 

Tianjinew 
(19.08s) 

7.26s 10.01s 2.75s 
Qiananns 
(22.10s) 

1.79s 4.74s 2.95s 

Tangshanew 
(49.20s) 

20.9s 39.4s 18.5s 
Wenchuan 

(500s) 
11.92s 91.7s 79.78s 

Table 1. Statistics and analysis of strong vibration duration in earthquake record 

Tri-stage curve and exponent curve have been accepted widely now by engineering because 
of simple, visualized and physical significanceȐOhsaki,1978;Kaul,1978;Amin & Ang, 

1968ȑ, tri-stage curve could be shown as: 
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 

2

1
1

1 2

2 2

( ) 1

exp ( )

t t t
t

g t t t t

c t t t t

        
    


 (7) 

Where 1t , 2t  and c  are model parameters, 1t  and 2t  are begin moment and end moment, 

c  present weakening velocity in descent stage, sT  is vibration duration in strong vibration 

duration for 70% energy of total seismic energy, in which 1 20.5 , 1.2 , 2.5s s st T t T c T     . 

Exponent curve is shown as ( ) tg t te   ,in which  and   is model parameter,  =0.01, 

 =0.028. 
 

  
a b 

Fig. 2. Envelop curve (a: exponent form, b: tri-stage form) 

 

 

Fig. 3. Initial stationary artificial stochastic acceleration time history 

 

 

Fig. 4. Initial artificial stochastic response spectrum(from top to bottom: spectrum 
displacement, spectrum velocity, spectrum acceleration) 
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3.3 Artificial seismic record update 

If initial artificial seismic response spectrum from record 0( )a t  isn’t meet degree of fitting 

with specify earthquake response spectrum or code response spectrum, there has need to 

update for more precision. Generally two ways now have been used for updating. The 

article used the second method. 
First method： 

 ( ) ( )V
i i

V

S
A t A t

S
 


 (8) 

Where ( )iA t  is updated Fourier spectrum, ( )iA t is Fourier spectrum of initial artificial 

record, VS is target response spectrum velocity, VS  is spectrum velocity of initial record. 
Second method： 

 

2
( )

( ) ( )
( )

g g

TRSA
S S

SRSA

 


    
 

 (9) 

Where ( )gS   is updated power spectrum density, ( )gS  is initial power spectrum density, 

( )TRSA   is intend to compared target response spectrum, ( )SRSA   is computed stationary 

artificial seismic response spectrum, next step compute new steady artificial wave and 

multiply seismic envelop curve for updating new stationary artificial seismic wave, the 

updating could be repeated several times until degree of fitting is satisfy with accuracy. 
It is aware of that we need to control frequency in updating process, at first spectrum 

acceleration value of control points need be computed out, secondly comparing with control 

points of frequency, adjust ratio between two points need linear interpolation method to 

compute. As shown in Tab. 2. 

 

The number of control points Frequency Range ȐHzȑ 

5 0.10 0.18 

29 0.20 3.00 

4 3.15 3.60 

7 3.80 5.00 

11 5.25 8.00 

14 8.50 15.00 

4 16.00 30.00 

Table 2. Frequency adjust control points for artificial wave 

Fig. 5-6 are updated samples for intensity 9 from (Chinese Seismic Code, 2001). The program 

iterative computed 5~8 times and result meet degree of fitting with Chinese code response 

spectrum, now artificial wave after updated was fitting to code response spectrum, 120 

seismic record fitting to major earthquake and code response spectrum were created in this 

way and become applied load for next computation. 
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Fig. 5. Updating process of artificial seismic acceleration 

 

 

Fig. 6. Updating process of artificial response spectrum 

4. Proposed damage index of frame buildings  

At the moment seismic theory of China is more emphasis in prevent buildings collapse instead 
of prevent structural damage, first aim of buildings design is prevent collapse in major 
earthquake but obvious plastic deformation and damage is evitable, and key point is how to 
assure structural damage within acceptable degree based moment code, especially many 
lifeline constructions for example: nuclear energy station, bridge, tunnel, gymnasium and 
important factory buildings, so design based performance now have been approved widely, 
and content of structural vulnerability index is significant part of design based performance. 

Damage index in early research mainly emphasis in member ductility, ductility ratio could 

be define as curvature  , rotation   and deformation  , 
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 m m m

y y y
  

            (10) 

Where m , m  and m  are respectively maximum curvature, maximum rotation and 

maximum deformation of member end, y , y  and y  are respectively yielding curvature, 

yielding rotation and yielding deformation. 
(Banon,1982) also proposed a correctional ductility parameter that considering structural 
rigid and strength degeneration in same time,  

 o

m

K
FDR

K
  (11) 

Where oK  is initial tangent stiffness, mK  is equivalent tangent stiffness after maximum 

reaction. But in fact whether ductility ratio or correctional ductility ratio all could not give 

accurate judgment for structural damage and invalid. 
Another damage index is relative storey displacement or relative storey rotation, in which 

relative storey rotation is widely accepted as estimate damage index at present in fragility 

research, in many research articles the index have taken as fragility standard in reinforced 

concrete buildings, and that relate to compatibility and effective in judging structural 

damage, that is to say that the index has characteristic in revealing both whole damage and 

local damage, and more better express structural whole damage compare with building 

bearing capacity, HAZUS99 series damage evaluation manual of US also adopted relative 

storey rotation as seismic vulnerability index. 

Above both index could not reflect material accumulative damage effect, so other scholars 

lately proposed some index with accumulative damage effect, in which Park-Ang damage 

index is widely influence, the index is consist of two parts as shown in Eq. (12) , and one is 

transformation effect and second is absorbing energy effect. 

 
m

e
u y u

dE
D

F

 
 

  
 (12) 

Where D  damage parameter, m  is maximum seismic transformation, dE  is accumulative 

absorbing hysteresis energy, u  is ultimate deformation under monotonic loading, yF  is 

yielding strength with longitudinal steel bars, e  is constant damage parameter under 

considering hysteresis loading, which is connect with ratio of shear span to effective depth 

of section, axial-load ratio, ratio of longitudinal reinforcement and stirrup ratio. 

Damage parameter D  is function with structural maximum deformation m  and whole 

hysteresis energy dE , which is connect to loading time history, while the quantities e , 

u and yF  are independent of the loading history and are determined from experimental 

tests (Moustafa,2011), 1D   means that buildings damage completely and could not bear 
loading.  

  2 100
00.37 0.36 0.2 0.9 c

e pn k       
  (13) 
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Where 0 ( )cn N bdf   is standard axial loading, which is 0.05 when it less than 0.05, c  is 

stirrup ratio, which is stirrup volume compare to core concrete volume, and is 0.004 when 

less than 0.004,  0.85p p yp ck f f   is standard reinforcement ratio. 

  
0.48 0.150.93

0.27

0

100
0.0052 0.85

0.6895
cs c

u p c

fl
k l

d n




          
    

 (14) 

 

Where sl  is span length with shearing, cl  is respective member length or height, cf   is 

uniaxial concrete compression strength, unit is 2kN cm , d is effective height, units is 

cm . 

In 1985, Park suggested that set 0.4D   as limit line between repairable and irreparable, 

in 1987, he proposed more detailed qualitative classified chart of concrete buildings’ 

damage, as shown in Tab. 3. 
 

0.1D   Undamaged or localized trivial crack 

0.1 0.25D   Light damage – trivial crack throughout 

0.25 0.4D   Moderate damage-severe crack and localized buckling 

0.4 1D   Severe damage-concrete crashing and reinforcing bars exposure 

1D   collapse 

Table 3. Qualitative damage description for concrete buildings (Park & Ang, 1985) 

Strength and stiffness degeneration is main characteristic of material and structure damage, 

because of high variability of stiffness degeneration in cylinder-load lead to difficult in 

actual application, in 2005 Colombo-Negro proposed modified Park-Ang damage parameter 

model corresponding to strength degeneration, and which is defined: 

 
1

1

max
2 3

1

1 1 0.5 1 tanh exp

ac

yo

u u u

M
D

M

dE dE

E E


  

  

 

                                

   (15) 

Where acM  is yield force or moment actual degradation value, yoM  is force or moment of 

theoretical yielding point on skeleton envelop curve, max  is attainable deformation 

ductility, u is ultimate ductility, uE is ultimate cylinder energy, 1 is coefficient of harden 

slope or soften slope in stress-strain curve, 2 is consuming energy point in structure 

damage model when resistance force sloping, 3  is strength dropping ratio in fragility 

damage model, as shown in Tab. 4. 
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coefficient (a) (b) (c) (d) (e) 

Ductility-based strength decay 

parameter 1  
0.10 0.10 0.10 0.15 0.15 

Energy-based ductility strength decay 

parameter 2  
2.40 3.20 7.00 0.10 0.10 

Energy-based brittle strength decay 

parameter 3  
0.10 0.10 0.10 9.00 2.20 

(a) Damage behavior of well confined reinforced concrete columns. (b) Damage behavior of concrete-filled 
steel rectangular columns.  (c) Damage behavior of welded steel joints.  (d) Damage behavior of poorly 
confined reinforced concrete columns. (e) Damage behavior of shear-deficient reinforced concrete walls. 

Table 4. Damage model coefficient suggested value㸦Colombo & Negro,2005㸧 

Where assuming system is double linear hysteresis model, post-yield stiffness is equal 3% of 

elastic yielding stiffness, so when ductility =  , hysteresis consumed energy is shown as 

Eq.(16). 

 1 1
( )

2 2
y e y ydE f f      (16) 

Where y  is yielding deformation, ef  is yielding strength of equivalent linear system, 

1

2
y f  is energy of equivalent linear system, 

1
( )

2
y yf    is energy of plastic system, 

ultimate hysteresis energy is 

 1 1
( )
2 2

y e u yu yuE f f f      (17) 

Where yuf  ultimate standard yielding strength, and assumed as 0.8, in according with 

above equations that could compute Colombo-Negro adjusted damage coefficient of specific 
structure  
 

Damage Scale Value Range 

Light damage 0.01-0.10 

Moderate damage 0.10-0.40 

Severe damage 0.40-0.70 

collapse >0.70 

Table 5. Colombo-Negro suggested revised damage index for different limit states 

One of primary object for calculate damage parameters is decided level of limit-value of 
different damage coefficient, and provide vulnerability scale for later seismic vulnerability 
analysis. 

5. Finite element and frame modeling 

In order to assess the adequacy of results obtained from Finite Element (FE) analyses have 
been carried out. The reinforced concrete models have been conducted with SeismoStruct 
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V5.0, a fibre-element based professional 3D program for seismic analysis of framed 
structures, which can be freely downloaded from the Internet. The program is capable of 
predicting the large displacement behavior and the collapse load of framed structures under 
static or dynamic loading, duly accounting for geometric nonlinearities and material 
inelasticity. Section with fibre-element of column or beam is shown as Fig.7, and 200 fibre 
elements fulfill calculated requirement. 
Distributed fibre inelasticity elements are becoming widely employed in earthquake 
engineering applications, Whilst their advantages in relation to nonlinear constant-confined 
concrete model theory proposed by (Madas,1992), (Martinez-Rueda J.E. & Elnashai 
A.S.,1997) in 1990s, which uniaxial stain-stress relationship shown as Fig.8a, skeleton 
envelop curve could reflect confinement effect and hysteresis-stiffness degenerated 
characteristic. Steel stress-strain relationship proposed by (Menegotto and Pinto,1973), 
coupled with the isotropic hardening rules proposed by (Filippou,1983). The current 
implementation follows that carried out by (Monti & Nuti, 1992). Its employment should be 
confined to the modelling of reinforced concrete structures, particularly those subjected to 
complex loading histories, where significant load reversals might occur. As discussed by 
(Prota et al.,2009) , with the correct calibration, this model, initially developed with ribbed 
reinforcement bars in mind, can also be employed for the modelling of smooth rebars, often 
found in existing structures, as shown in Fig.8b. 
In the article frame models proposed by (Ghobarah et al.,1999), who had been calculated on 
the based above fibre element, results coincide with results from general finite element 
program Drain-2D, in the same time, its accuracy in predicting the seismic response of 
reinforced concrete structures has been demonstrated through comparisons with 
experimental results derived from pseudo dynamic tests carried out on large-scale models 
(Casarotti et al.,2005). 
 

 

Fig. 7. Fibre in Section 
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a b 

Fig. 8. Material stress-strain model (a: concrete  b: steel bar) 

6. Seismic vulnerability analysis of RC shear wall frame buildings  

At present, there are still many RC buildings in Western China regions. Most of them are 
small high-rise (12~16 storey) RC frames in recent years. The sample buildings were 
designed according to the prescriptions for loading, material, member dimensioning and 
detailing of the seismic design and gravity load design codes in place in China in 2002. 
The full design of the sample RC frame in Western China is presented in Fig.9 
 

 

Fig. 9. Plan of typical frame-shear wall structure of 12-story 

The structure consists of seven frames with bay width of 4.8m ,3m ,4.8m respectively and 
frame spacing of 6m. It is symmetrical in plan and elevation, and RC beam section is 
0.60m×0.30m, at the same time RC column is 0.60m×0.60m, which connected beams around 
the building at the corner and intersect with inner columns of building. Thickness of RC 
shear-wall is 0.3m and floors consist of cast-in place reinforced concrete slabs is 120 mm 
thick.  
Diameter longitudinal reinforcements of columns and  beams’ section  are revealed in 
Fig.10, 8mm diameter stirrups must be spaced 100mm apart at the extremes and 200mm at 
the centre of the elements. The stress method used for the design is according to China 
seismic code.  
The gravity load scenario consists of dead load and live load. When calculating the dead 
load, the weight of the structural members and the infill walls was included. The live load 
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used was 2.5 kN/m2, which is typical for  school building. Other types of loading, such as 
wind and snow, were not considered. 
 

 
i ii iii 

Fig. 10. Reinforced bars of section (i: column ii: side-beam iii:mid-beam ) 

Because of complicated climate in China all of year, the concrete strength must at least C30 
according to China seismic code, reinforced bar (HPB235 HRB335) strength is 235 and 335 
Mpa respectively, concrete strength is 30 Mpa, the stress-stain relationship are illustrated in 
Fig.8. 
Ground motion characteristics have a significant effect on the vulnerability curves and 
special attention is required during the record selection phase in Fig.11. 
 

 

Fig. 11. Stochastic record compatible with the target spectrum of China code 

6.1 Determination of limit states 
The aim of this analysis is to evaluate the building’s potential seismic performance. Four 
limit state conditions have been taken into account: light damage, moderate damage, 
extensive damage and complete damage. So if a building deformation beyond the extensive 
damage limit state it might not be economically advantageous to repair the building because 
many of the school buildings of Sichuan region were being set up without carefully thought 
of structural seismic codes of China. 
 

Limit 
state 

Inter-storey 
drift (mm) 

Inter-storey 
drift ratio(%) 

Limit 
state 

Inter-storey 
drift (mm) 

Inter-storey 
drift ratio(%) 

Light 
Moderate 

6.6 
13.2 

0.20 
0.40 

Extensive 
Complete 

33.0 
82.5 

1.00 
2.00 

Table 6. Limit states and corresponding inter-storey drifts ratios(ISD%) 
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6.2 Vulnerability curve 
Dynamic time-history analysis is used to evaluate the seismic response and to derive the 

vulnerability curve. This approach is the most tedious but it is also the more accurate way to 

assess the vulnerability of RC buildings in China. The selected frame was subject to each 

group of the stochastic artificial records.  

The stochastic damage scatter diagram and damage versus hazard relationship of the typical 

RC frame is illustrated in Fig.12. The damage axis (y-axis) described as the hazard axis (x-

axis) is described as spectral acceleration pga. Each vertical line of scattered data 

corresponds to an intensity level. The horizontal lines in the figure represent the limit states 

used in this study and described in terms of ISD%.  

A statistical distribution is fitted to the data for each intensity level on each vertical line. The 

normal parameters, the mean dsM and standard deviation ds of the damage state are 

calculated for each of these kS  intensity levels. At each intensity level, the probability of 

exceeding each limit state is calculated. LS1, LS2, LS3 and LS4 represent the limit states for 

light, moderate, extensive and complete damage, respectively, as mentioned above. The 

mean and standard deviation values of the response data are also given in the Fig.13. 
The probability of exceedance of a certain limit state is obtained by calculating the area of 
the standard normal distribution over the horizontal line of that limit state. 
 

 
i ii 

Fig. 12. Damage scatter dots relationship with PGA-ISD%max  (i:X axis; ii:Y axis) 
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Fig. 13. Damage column dots plot with PGA-ISD%max  (i:X axis; ii:Y axis) 

After calculating the probability of exceedance of the limit state for each intensity level, the 

vulnerability curve can be constructed by plotting the calculated data versus spectral 

acceleration. In this study, a standard deviation fit is assumed as 0.3. 
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Figure.14 represents the vulnerability curves of typical frame-shear wall buildings in China 

with different spectral characteristic parameter. The curves become flatter as the nature of 

the statistical distribution of the response data. Vertical curves would represent 

deterministic response. 

 

   
i ii 

Fig. 14. Vulnerability curves with respected PGA㸦i：X axis; ii：Y axis㸧 

7. Seismic vulnerability analysis of structures with mid-story seismic 
isolation and reduction (MIRS) 

At present, there are many new built RC buildings in China large cities because of rapid 

developing economy. The buildings are designed according to the prescriptions for loading, 

material, member dimensioning and detailing of the seismic design and gravity load design 

codes in place in China in 2002. 

The full design of the typical 12 stories MIRS in China is presented in Fig.15. 

 

       

i. front façade 
ii. left 

facade view
iii. 3D globe view 

iv. 3D finite model with 
inelastic bars 

Fig. 15. The full design of the typical MIRS in China 

The structure consists of seven frames with bay width of 4.8m ,3m ,4.8m respectively and 
frame spacing of 6m. It is symmetrical in plan and elevation, and RC beam (0.6×0.35m2) 
around the exterior perimeter and along the top of interior longitudinal and transverse 
columns in all the floors of the building including ground base level according China code. 
At the same time RC column (0.6×0.6m2) which connected beams around the building at the 
corner and intersect with inner columns of building. Story height is 3.3m, floors consist of 
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cast-in place reinforced concrete slabs is 120 mm thick. Reinforcement of section of MIRS is 
shown in Fig.16. 
 

     
i ii iii Iv 

Fig. 16. Reinforcement of section of MIRS (i: column section of subway platform ii:column 
section on isolation layer iii: mid-beam section iv: side-beam section) 

Columns have twelve 20mm diameter longitudinal reinforcements, 8mm diameter stirrups 
must be spaced 100mm apart at the extremes and 200mm at the centre of the elements, 
beams have four tension bars and two compressive bars. The stress method used for the 
design is according to China seismic code. 
The gravity load scenario consists of dead load and live load. When calculating the dead 
load, the weight of the structural members and the infill walls was included. The live load 
used was 2.5 kN/m2, which is typical for city tall building. Other types of loading, such as 
wind and snow were not considered.  

7.1 Material and member property  
Because of moist climate in Sichuan district all of year, the concrete strength must at least 
C30 according to China seismic code, reinforced bar strength is 235 and 335 Mpa 
respectively, concrete strength is 30 Mpa. 

Design of laminated rubber bearing is chosen LRB-G4-850-180 based China isolation design 

code(CECS126,2001), the key parameters of bearing are: equivalent  damping ratio is 0.27, 

secant stiffness ratio is 0.128,initial stiffness 0k is 18100 KN/m , yielding force yF is 203 KN 

and post yielding ratio is 0.1, laminated rubber bearing stress-strain relationship is shown in 

Fig.17. 
 

 

Fig. 17. Rubber bearing stress-strain model 
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7.2 Analytical model 
In order to evaluating seismic vulnerability of MIRS accurately, the building is modeled as a 

3-D pole frame with lumped masses the study when assessing seismic response. Inelastic 

frame elements means 3D beam-column elements capable of modeling members of space 

frames with geometric and material nonlinearities with  5% global damp coefficient. 

 Ground motion characteristics have a significant effect on the fragility curves and special 

attention is required during the record selection phase. Considering this fact, 30 corrected 

stochastic artificial ground motions have been used in this study from different PGA 

covering a wide range of characteristics with a magnitude range between 5.1 and 7.8. The 

motions are generally recorded on soft to medium sites according to Sichuan region’s 

circumstance where basis prominent period range from 0.35s to 0.45s according China 

seismic code and crossed over the foundation in random orientation within x-direction or y-

direction or both direction, as shown in Fig.11.  

7.3 Damage level definition 
The aim of this analysis is to evaluate the building’s potential seismic performance, 

establishing a relation between the intensity of the seismic action and different damage 

states up to collapse. so damage level is defined according to the cracking, yielding or 

collapse of a set of elements or connections in the structure, as presented following Table.7 . 

In view of being prone to brittle shear injury of inner brick masonry wall under strong 

motion, four limit state conditions have been taken into account: light damage, moderate 

damage, extensive damage and complete damage. So if a building deforms beyond the 

extensive damage limit state it might not be economically advantageous to repair the 

building because many of the school buildings of Sichuan region were being set up without 

carefully thought of structural seismic codes of China. 

 

Limit state Inter-story drift (mm) ISD ratio(%) 

Light damage 
Moderate damage 
Extensive damage 

Collapse 

6.6 
16.5 
33.0 
99.0 

0.20 
0.50 
1.00 
3.00 

Table 7. Limit States and corresponding inter-story drifts ratios(ISD%) 

7.4 Fragility curve 
Dynamic time-history analysis is used to evaluate the seismic response and to derive the 
fragility curve. This approach is the most tedious but it is also the more accurate way to 
assess the vulnerability of MIRS in China. The selected frame was subject to each group of 
the stochastic artificial records. The stochastic damage scatter diagram of the typical MIRS is 
illustrated in Fig.18.  

A statistical distribution is fitted to the data for each intensity level on each vertical line. The 

normal parameters, the mean dsM and standard deviation ds of the damage state are 

calculated for each of these Sa intensity levels. At each intensity level, the probability of 

exceeding each limit state is calculated. LS1, LS2, LS3 and LS4 represent the limit states for 

light, moderate, extensive and complete damage, respectively, as mentioned above. The 

mean and standard deviation values of the response data are also given lately.  
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i ii 

Fig. 18. Stochastic damage scatter diagram for MIRS(i : Sa; ii: PGA) 

The probability of exceedance of a certain limit state is obtained by calculating the area of 

the standard normal distribution over the horizontal line of that limit state. 

After calculating the probability of exceedance of the limit state for each intensity level, the 

vulnerability curve can be constructed by plotting the calculated data versus spectral 

acceleration. In this study, a standard deviation fit is assumed as 0.3. 

Fig.19 represents the fragility curves of typical MIRS in China with different spectral 

characteristic parameter. The curves become flatter as the nature of the statistical 

distribution of the response data. Vertical curves would represent deterministic response.  

 

  
i ii 

Fig. 19. Vulnerability curve for typical MIRS of China (i : Spectral accelerate; ii: PGA) 

8. Seismic vulnerability analysis of RC industrial buildings 

At present, there are many new built and old RC industrial buildings in Western China 
because of rapid developing economy. The buildings are designed according to the 
prescriptions for loading, material, member dimensioning and detailing of the seismic 
design and gravity load design codes of China. 
The full design of the typical 12 stories MIRS in China is presented in Fig.20. 

The structure consists of two frames with general configuration of bent widths and bay 

widths of 6m and 24m respectively, so the whole building have 66 meters long with 12 

columns and 24m width, It is symmetrical in plan and elevation, and rectangular 

reinforced concrete ring beam (0.30฀0.40m2) on the bracket of two side longitudinal 

columns of the building. At the same time RC column (0.40฀0.60m2) which connected 

ring beam as confined frame element array along the exterior side of the building at the 

intersect with inner confined brick wall between columns. The roof of building which 
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height selected is 9.6 m consist in steel fibres truss, the truss depth is changed from 2.4m 

in centre to 1.5m of two sides, there are four kind of circular hollow rod being defined to 

using with diameter from 0.03m to 0.05m, and thickness of bar’ section is also verify from 

2 to 3mm. 
 

 

Fig. 20. The full design of the typical industrial buildings in China 

The building’s wall between columns generally consist of load-bearing infill masonry walls 
commonly made of clay bricks in Sichuan district of western China , confined by reinforced 
concrete vertical columns and width and thickness of wall are changed from 0.24m to 0.37m 
according China masonry code. Columns must have four 24mm and 28mm diameter 
longitudinal reinforcements, 8mm diameter stirrups must be spaced 100mm apart at the 
extremes and 200mm at the centre of the elements. The stress method used for the design is 
according to China code. 
 

  
i ii 

Fig. 21. RC industrial buildings’ section (i: column ii: beam) 

The industrial building was designed according to the China code for design of structure 
load for both gravity and seismic loads. The gravity load scenario consists of dead load and 
live load. When calculating the dead load, the weight of the structural members and the 
masonry infill walls was included. The roof live load used was 0.5 kN/m2, which is typical 
for an industrial building. Other types of loading, such as wind and snow, were not 
considered. At the same time lifting capacity of crane is considered randomly from 22 to 66 
ton base on crane span and working condition. 

www.intechopen.com



 
Seismic Vulnerability Analysis of RC Buildings in Western China 

 

273 

8.1 Material and member property  
Because of moist climate in Sichuan district all of year, the clay brick strength must at least 

MU15 and the mortar strength must at least M10 according to China masonry code, so 

typical masonry shear strength is 0.27-1 Mpa. Bilinear stress-strain relationships with strain 

hardening were used for reinforced members which yield strength is 200Mpa and 300 Mpa, 

concrete strength is 30 Mpa in considering of that many industrial buildings in Sichuan 

district have been built two decades ago, some respective buildings among those built even 

without any consideration of horizontal seismic loads. And coefficient of variation of 30% 

have been considered for steel and concrete respectively. Uniaxial nonlinear constant 

confinement concrete model that constant confining pressure is assumed throughout the 

entire stress-strain range is proposed by (Madas,1992) to apply to element of concrete. 

8.2 Generation of ground stochastic motion input 
Ground motion characteristics have a significant effect on the fragility curves and special 

attention is required during the record selection phase. Considering this fact, 90 corrected 

stochastic artificial ground motions have been used in this study from different PGA 

covering a wide range of characteristics with a magnitude range between 5.1 and 7.8. The 

motions are generally recorded on soft to medium sites according to Sichuan region’s 

circumstance where basis prominent period range from 0.35s to 0.45s according China 

seismic code and crossed over the foundation in random orientation within x-direction or y-

direction or both direction. as shown in Fig.11.  

8.3 Damage level definition 
The aim of this analysis is to evaluate the building’s potential seismic performance, 

establishing a relation between the intensity of the seismic action and different damage 

states up to collapse. so damage level is defined according to the cracking, yielding or 

collapse of a set of elements or connections in the structure, as presented following 

Table.8 . 

Four limit state conditions have been taken into account: light damage, moderate damage, 
extensive damage and complete damage as table1 So if a building deforms beyond the 
extensive damage limit state it might not be economically advantageous to repair the 
building because many of the industrial buildings of Sichuan region were be set up without 
carefully thought of structural seismic codes of China. 
 

Limit state Inter-story drift (mm) ISD ratio(%) 

Light damage 
Moderate damage 
Extensive damage 

Collapse 

24 
38.5 
96.0 
240 

0.25 
0.40 
1.00 
2.50 

Table 8. Limit States and corresponding inter-story drifts ratios (ISD%) 

8.4 Fragility curve 
Dynamic time-history analysis is used to evaluate the seismic response and to derive the 
fragility curve. This approach is the most tedious but it is also the more direct and accurate 
way to assess the fragility of Sichuan industrial buildings. The selected frame with confined 
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masonry shear wall was subject to each group of the stochastic artificial records. Each group 
records were consisted of three stochastic ground motions.  
There have some peak-displacement-history of original frame to be shown in Fig.22.  
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Fig. 22. Top drift time history with pga=300 gal in X and Y direction 

The damage versus motion relationship is illustrated in Fig.23, The damage axis (Y-axis) 

described in terms of maximum inter storey drift ratio (ISDmax%) when the hazard axis (X-

axis) is described as spectral acceleration (Sa). Each vertical line of scattered data 

corresponds to an intensity level. From bottom to top, these are four limit states as light 

damage to complete damage respectively. Moreover the average value of each vertical data 

are connect by red line when ±0.3 variance have been considered as brown lines. The results 

also revealed that difference of seismic capacity of structure at two directions of industrial 

buildings, a standard deviation fit is assumed as 0.3. 

The probability of exceedance of a certain limit state is obtained by calculating the area of 

the standard normal distribution over the horizontal line of that limit state. 
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Fig. 23. Damage versus motion relationship in X and Y direction 

After calculating the probability of exceedance of the limit state for each intensity level, the 
vulnerability curve can be constructed by plotting the calculated data versus Sa.  
Fig.24 represents the fragility curves of typical industrial buildings in Western China with 
different spectral characteristic parameter. The curves become flatter as the nature of the 
statistical distribution of the response data. Vertical curves would represent deterministic 
response.  
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Fig. 24. Vulnerability curve with spectral acceleration (i : X direction; ii: Y direction) 

9. Conclusion 

The following conclusions have been obtained. 
1. The seismic vulnerability research is actual important part of perform based seismic 

design (PBSD), and the research work is inevitably lasting along perform based seismic 

design theory. The representative response spectrum of West China was been built and 

fit unsteady initial stochastic record in consideration of characteristic of frequency and 

random angle of phase position. The actual applied stochastic wave was been created 

after initial wave optimized with China code spectrum. 

2. The representative small high-rise RC-shear wall buildings were been selected and 

seismic vulnerability analysis been made based dynamic time-history method, the 

analytical vulnerability curves were been obtained firstly in homeland. Probability of 

moderate damage was much seldom when PGA<0.1g under foundation stability pre-

condition, in contrary probability of moderate damage was started to increasing 

when PGA>0.3g. The seismic capability of longitudinal and transversal orientation of 

small high-rise RC-shear wall  buildings was different, probability of slight damage 

was coherent under minor earthquake, vulnerability of longitudinal orientation (X 

axis) was less than transverse orientation (Y axis) of frame under major earthquake 

obviously.  

3. The typical MIRS in China were been modeled and their seismic fragility characteristic 

were studied on the base of dynamic nonlinear method. The results display better 

response features than general type of RC frames. The steep light damage curve reflects 

the roles of the infill brick panels that dominate the response in the vicinity of the light 

damage limit state. When the confined infill column are damaged and laminated rubber 

bearings began to play a key role in seicmic energy dissipation, the building reach inter-

story drift more flexible than before. 

4. The seismic performance and vulnerability of industrial buildings were also been 

analyzed, seismic capacity and vulnerability of based-isolated models and original 

models were been compared. The seismic capability of two orientations was also 

different and longitudinal orientation of industrial buildings (X axis) was more capacity 

in seismic resistance than transverse orientation (Y axis) of buildings. Based-isolated 

model minimized 30%-50% of ISDmax% comparing to original model under major 

earthquake, so the based-isolated industrial buildings are more high seismic resistance 

than original industrial buildings in major earthquake. 
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