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Seismic Design Forces and Risks 

Junichi Abe, Hiroyuki Sugimoto and Tadatomo Watanabe 
Hokubu Consultant Corporation, Hokkai Gakuen University 

Japan 

1. Introduction  

In recent years, seismic damages caused by giant earthquakes have occurred in many 
countries. For example, over 250,000 people were killed by the Haiti Earthquake in 
January 2010. In addition, over 15,000 people were killed by the Tohoku Japan 
Earthquake and the coasts of Tohoku Japan were devastated by the massive tidal wave 
in March 2011. 
Meanwhile, The Japanese seismic design criteria for road and railway bridges provide that 
two levels of earthquake motions – Level 1, which is small in scale but is generated 
frequently, and Level 2, which is intensive but is not generated frequently – must be used 
for the verification of seismic performance.  For Level 1 earthquake motions, the elastic limit 
value of a structure is usually adopted as the seismic performance. For Level 2 earthquake 
motions, on the other hand, the limit value with which a structure does not collapse or is 
repairable is adopted as the seismic performance depending on the importance of the 
intended structure. 
Level 2 earthquake motions used for verification are based on the records of strong motion 
seismograms obtained from the Hyogoken-Nanbu and other earthquakes, and seismic 
waveforms are assigned according to ground type. The earthquake motions are assigned 
according to classification of the land area of Japan categorized into three types by degree of 
seismic risk and adjusting the seismic motions using regional correction factors of 1.0, 0.85 
and 0.7 depending on the regional classification.   
Meanwhile, studies to calculate seismic waveforms unique to the target region of seismic 
design have been conducted in recent years. Seismic waveforms calculated in these studies 
were determined by carefully examining past seismic records, ground data, source models 
and other data of the target region from the viewpoint of earthquake and geotechnical 
engineering. 
In reality, however, earthquakes that generate ground motions stronger than Level 1 but do 
not exceed Level 2 may occur during the service life of a structure. In current seismic design, 
direct consideration was not given to changes in performance and risk with seismic motions 
through time or the importance of applying effective repair and reinforcement methods. 
These factors cannot be taken fully into account by simply verifying the elastic limit or the 
limit of reparability or collapse of a structure subject to Level 1 or 2 earthquake motions 
based on the current seismic design force.  
Many seismic risk management studies, which evaluated the loss (seismic risk) caused by 

the damage or collapse of a structure, have also been conducted in recent years. In these 
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papers, seismic risks were calculated using a hazard curve representing the probability of 

the generation of earthquake motions and a damage curve representing the probability of 

damage to the structure.  

While this damage curve is calculated by statistical procedures using past damage records 

and analyses, it is necessary to define the damage to a structure with a single index, such as 

the top horizontal displacement or ductility factor. When damage is defined with an index, 

it is difficult to precisely associate the index with the repair for the damage. Therefore, these 

methods are considered difficult to apply them to the examination of seismic risks based on 

the definition of changes in the damage process and other details due to the difference in 

design.  

To achieve these, it is first necessary to calculate design solutions reflecting the damage and 

collapse process of a structure under a uniform standard of value for various seismic forces. 

By calculating seismic risks for respective design solutions and comparing them for different 

seismic forces, it is possible to find the seismic force with which the total cost including the 

initial construction cost and seismic risk can be minimized. This is called the “target seismic 

design force” in this chapter. Although this method involves complex procedures, the 

necessity for target seismic design forces is expected to be higher for the design of long 

bridges and other structures that are highly important as lifelines from the viewpoint of the 

seismic risk management. 

This chapter consists of the section presented below. 

2. describes a design system with which design solutions are calculated using various 

seismic forces and the method for calculating the target seismic design forces.  3. explains 

the method for calculating seismic risks based on the definition of damage.   

4. present the results of the analysis of an RC rigid-frame viaduct as Example of the 

calculation of the target seismic design forces.  

While there is the possibility of loss caused by environmental and other effects besides those 

of earthquakes during the life cycle of a structure, such additional effects will be studied in 

the future and this paper limits its focus on the effects of earthquakes. 

2. Target seismic design force 

This section explains the method for calculating the target seismic design forces.  In the case 

of design where the seismic risks of a variety of seismic forces are taken into account, it is 

assumed that the initial construction cost is low but the seismic risk is high for a structure 

designed for a low seismic force, while the seismic risk is low but the initial construction 

cost is high for a structure designed for a high seismic force. By quantifying this seismic risk 

based on the cost for the repair of damage and other factors to find the seismic risk cost, 

calculating the total cost by adding this to the initial construction cost and finding its 

relationship with the seismic force, the target seismic design force and the corresponding 

design solution can be obtained. Fig. 1 illustrates the flow of finding the target seismic 

design force and the corresponding design solution. Details of the flow are as described 

below. 

2.1 Setting of the target structure and region 
The type of the structure to be designed and the region where the structure will be 

constructed are set. 
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Fig. 1. Flow of calculation of the taqrget seismic design force. 
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2.2 Setting of the seismic waveform, hazard curve and range of seismic forces 
Appropriate seismic waveform and hazard curve are set for the target region. The incremental 
value ∆S and division number NS of the seismic forces are also set as shown in Fig. 2.  
 

 

Fig. 2. Relationship between the totalcost and seismic force. 

2.3 Setting of the seismic force 
Based on the range of seismic forces set in 2), the seismic force for optimum seismic design 
Si(i=1~ NS) is set. 

2.4 Optimum seismic design 
Optimization of seismic design is performed for each seismic force Si (i=1~NS). Details of the 
formulation of optimum seismic design will be presented later. Time history response analysis 
is performed by conducting amplitude adjustment to make the maximum amplitude for the 
seismic waveform set in 2) equal to the seismic force Si. In this chapter, the optimum solution is 
calculated through the optimization of the response surface using the RBF network and 
Genetic Algorithm under the minimized initial construction cost. The initial construction cost 
of the optimum design solution obtained is presented as C0i (i =1~Ns). 
In this section, the optimum solution is calculated through the optimum seismic design system 
of the response surface using the RBF network and Genetic Algorithm by the authors. 

2.5 Calculation of the seismic risk cost 
The seismic risk cost Cri (i =1~Ns) for each design solution found in 4) is calculated for the range 
of seismic forces set in 2). It means that analysis and verification are performed Ns times for 
each design solution. The method for calculating the seismic risk cost is as mentioned below. 

2.6 Evaluation of the design solution 
The design solution for a seismic force Si is evaluated by the equation below, as the total cost 
Cti (i =1~Ns) found by adding the initial construction cost C0i of the design solution found in 
4) to the seismic risk cost Cri found in 5), 

 t 0 r
i i iC C C   (1) 
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2.7 Calculation of the target seismic design force 
The above calculation is performed to calculate the total cost Cti for each Si. Fig. 2 is a 
conceptual diagram of the relationship between the total cost Cti and seismic force Si.  Of 
these Cti values, the seismic force corresponding to the minimum total cost Ctmin is the target 
seismic design force. 
 

 

Fig. 3. Skeleton curve and degree of damage. 

3. Seismic risk cost 

As mentioned before, the total cost for each seismic force is calculated by totalling the initial 
construction and seismic risk costs. The seismic risk cost is usually calculated using damage 
and hazard curves. However, a damage matrix is constructed by evaluating damage to all 
elements where nonlinearity is taken into account instead of using a damage curve, and the 
seismic risk cost is found by calculating repair and other costs. 
This section first defines the damage to an RC structure, and then describes the method for 
calculating seismic risk costs. 

3.1 Definition of damage 
In this chapter, damage is defined for all elements where nonlinearity is taken into account. 
The M-θ relationship of a tetra-linear model, which is represented by the thick black line in 
Fig. 3, is used as the relationship between the nonlinearity of RC elements and damage , in 
accordance with the method defined in the Design Code for Railway Structures and 
instruction manual (seismic design). In the figure, Mc is the bending moment at the time of 
cracking, My is the bending moment at the time of yield, Mm is the maximum bending 
moment, θc is the angle of rotation at the time of cracking, θy is the angle of rotation at the 
time of yield, θm is the maximum angle of rotation to maintain Mm, and θn is the maximum 
angle of rotation to maintain My. 
Classified degree of damage is defined as degree 1 if the maximum response angle of 

rotation found from time history response analysis is θy or smaller, degree 2 if it is θm or 

smaller, degree 3 if it is θn or smaller and degree 4 if it exceeds θn.  
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The term “degree 1” represents a condition in which the cracks of concrete member have 
occurred.  The term “degree 2“ represents a condition in which the reinforcing bar in the 
axial direction has yielded. The term “degree 3“ represents a condition in which the side of 
compression of concrete member has fractured.  The term “degree 4 “represents a condition 
in which the flexure capacity has decreased by under the yield capacity. 

3.2 Calculation of the damage matrix 
To calculate the seismic risk cost, it is necessary to determine the damage of the structure for 

a certain seismic force and calculate repair and other costs. As mentioned before, this study 

uses a damage matrix instead of a damage curve, which is generally used to represent the 

relationship between the seismic force and damage of the structure. 

Fig.4 presents the damage matrix using a single-layer portal rigid-frame structure. In the 

case of a rigid-frame structure, plastic hinges with the effect of nonlinearity are found at 6 

sections in total – the upper and lower ends of each column member and the left and right 

ends of beam members. The table on fig.4 shows the node numbers displayed in the rows 

and seismic forces in the columns. It is a matrix notation of the damage at each node when 

various seismic forces are input for a certain design solution. In the table, “C” represents the 

collapse of the structure. This kind of damage matrix is developed for each of the design 

solution found for each seismic force. 

3.3 Calculation of seismic risk costs 
In this chapter, the seismic risk cost is calculated using a damage matrix representing the 

relationship between the seismic force and damage as shown in fig. 4 and a hazard curve 

representing the relationship between the seismic force and annual probability of excess as 

shown in Fig. 5.  The seismic risk cost is calculated by the equation below, 

 
Ns

r
i j ij S

j 1

C h(S ) c Δs(i 1 ~ N )


     (2) 

where, Cri is the seismic risk cost of the design solution designed for the i-th seismic force, h 

(Sj) is the annual probability of occurrence found from the hazard curve for the j–th seismic 

force Sj, cij is the seismic loss cost for the damage of each element caused by the j-th seismic 

force when the design solution is designed for the i-th seismic force. While the seismic force 

Sj is given as a discrete value in this study, the hazard curve shown in Fig. 5 is a continuous 

function. In this chapter, the annual probability of occurrence is converted into a discrete 

value by directly using the difference between the annual probabilities of excess 

corresponding to the seismic forces Sj and Sj+1. It will be necessary in the future to study the 

influence on seismic risks in cases where the annual probability of excess is set with 

consideration to the range of incremental value ΔS. 

While there is the possibility of loss caused by repeated sequence earthquakes, such 

additional effects will be studied in the future and this chapter limits its focus on the effects 

of a single earthquake.  

While there is the possibility of loss caused by repeated sequence earthquakes, such 

additional effects will be studied in the future and this chapter limits its focus on the effects 

of a single earthquake. 
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Fig. 4. Flow of the calculation of damage matrix. 
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Fig. 5. An example of a hazard curve. 

4. Example of the calculation of the target seismic design force 

In this chapter, the target seismic design force of an RC rigid-frame railway viaduct is 
calculated. The optimum design problem and examples of numerical calculation will be 
presented below. 

4.1 Optimum design problem 
A standard single-layer RC rigid-frame railway viaduct with a spread foundation shown in 
Fig. 6 is used for calculation example. Non-linearity is taken into account for the columns 
and beam members. 
 

 

Fig. 6. Structural model. 
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In the optimum design for a certain seismic force Si, the initial construction cost, which is  
the total of the costs related to concrete and reinforcement, is used as the objective function.  
The objective function is calculated by the equation below 

 o c s
iOBJ C C C min     (3) 

where, Cc is the concrete-related cost (unit) and Cs is the reinforcement-related cost (unit). 
They are calculated by the equations (4) and (5), respectively, 

 C c c cC α V K    (4) 

 S s s s sC α V K G     (5) 

where, αc is the unit correction factor of concrete, Vc is the amount of concrete (m3), Kc is the 
cost per unit volume of concrete (=65.1unit/m3), αs is the unit correction factor of 
reinforcement, Vs is the amount of reinforcement (m3), Ks is the cost per unit weight of 
reinforcement (= 9.1unit/kN) and Gs is the unit weight of reinforcement (=77kN/m3). In this 
study, αc and αs are both set as 1.0. The cost per unit volume of concrete and the cost per 
unit weight of reinforcement are found through conversion from the construction cost, 
including material cost, cost for scaffolding and personnel cost.   
Constraints are found for the verifiability of the angle of rotation and shear force against the 
seismic force Si, and are calculated by the equation below, 

 
d

Jkr
Jk mm

Jk

θ
g 1 0 (J 1 ~ N , k 1 ~ 2)

θ
      (6) 

 )N~10　　　(1
V

V
g m

J
rd

J
d

J
SD   (7) 

where, grJk is the angle of rotation, gSDJ is the constraint related to shear force, θdJk is the 
maximum response angle of rotation at the end k of the member J, θmJk is the maximum 
angle of rotation with which Mm on the skeleton curve of the end k of the member J can be 
maintained, VdJ is the maximum response shear force of the element J, VrdJ is the permissible 
shear force of the member J and Nm is the number of members. 
The subjects of design are column and beam members. The cross sections of column 

members are square and those of beam members are rectangular. There are 7 design 

variables in total -- the section width B, section height H, number of reinforcing bars in the 

axial direction N, number of rows of reinforcing bars in the axial direction JN, diameter of 

reinforcing bars in the axial direction D, placing of shear reinforcement NW and spacing of 

shear reinforcement SV . 

Figs. 7 and 8 display the section specifications and arrangement of shear reinforcement, 

respectively. The spacing of shear reinforcement in section 2H of Fig. 8 is 100 mm.  

Table 1. lists the potential values of design variables.  By setting the minimum spacing of 

reinforcement as the diameter of reinforcement D × 2.5 (mm) and the maximum spacing of 

reinforcement as 250 mm, the maximum and minimum numbers of reinforcing bars, which 

are obtained based on the section width and diameter of reinforcing bars, are divided by 8 to 

find the design variable of the number of reinforcing bars in the axial direction N.  
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As materials, concrete with a design standard strength of 24N/mm2 and SD345 
reinforcement are used. 
 

 

Fig. 7. Details of dimensions and reinforcement for x-sections of columns and beams. 

 

 

Fig. 8. Details of arrangement of shear reinforcement. 

 

B  (mm)

H  (mm)

N

J N

D (mm)

N W

S V  (mm)

500～1200  (100mm intervals)

1～4

100 or 200

B + 200～800  (100mm intervals)

8 types depending on B and H

1 or 2

19 or 25 or 29 or 32

 

Table 1. Potential values of design variables. 

www.intechopen.com



 
Seismic Design Forces and Risks 

 

11 

4.2 Seismic loss cost 
The repair cost for damage is used as the seismic loss cost. The seismic loss cost is calculated 
by the equation below, 

 
m

rep

N

ij ijJ S S
J 1

c c  (i 1 ~ N , j 1 ~ N )


      (8) 

where, cij is the seismic loss cost for the damage of members caused by the j-th seismic force 
in a design solution designed for the i-th seismic force, and crepijJ is the repair cost for the 
member J damaged by the j-th seismic force in a design solution designed for the i-th seismic 
force. The repair cost is determined depending on the repair method applicable to the 
considered section. In this chapter, different repair methods are adopted for the lower and 
upper ends of column members and upper beam sections. 
Table 2. presents the damage conditions and repair methods corresponding to the damage 
of different members. Table 3. presents the calculation formulas of repair cost corresponding 
to the repair methods.  Fig. 9 illustrates the calculation model of repair cost. 
 
 
 
 
 
 
 
 

Culumn(upper end) Culumn(lower end) Upper beam

1 Slight bending cracking None None None

Yield of reinforcement in the
axial direction

Scaffolding Excavation Scaffolding

Bending and shear cracking Grouting of cracks Grouting of cracks Grouting of cracks
Track removal

Scaffolding Excavation Scaffolding
Grouting of cracks Grouting of cracks Grouting of cracks

Adjustment of reinforcement Adjustment of reinforcement Adjustment of reinforcement
Buckling of reinforcement in

the axial direction
Repair of concrete cover Repair of concrete cover Repair of concrete cover

Bridge-deck waterproofing
Track restoration

Temporary support of slab
Damage of internal concrete Temporary support of slab Temporary support of slab Track removal

Scaffolding Excavation Scaffolding
Concrete removal Concrete removal Concrete removal

Replacement of reinforcement Replacement of reinforcement Replacement of reinforcement
Concrete placement Backfilling Concrete placement

Break of lateral ties Bridge-deck waterproofing
Track restoration

4

Degree
of

damage
Damage condition

Repair method

2

3

Flaking of concrete cover

Break of reinforcement in the
axial direction

 
 
 
 
 
 
 
 
 

Table 2. Damage conditions and repair methods. 
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(1) Culumn(upper end)

）egree
of

damage
Unit Unit price （alculation formula

1 - - -　-　-　-　-

m
2 2,380 {(H＋0.914×2＋0.4×2)×2＋(H＋0.4×2)×2}×2×H 1

ℓ 5,500 (H ×B ×H )×2×10

m
2 2,380 {(H＋0.914×2＋0.4×2)×2＋(H＋0.4×2)×2}×2×H1

ℓ 5,500 (H ×B ×H ×H )×2×10

1 m
3 22,410 (H ×B ×H )×2×0.35

2 m
2 7,090 (H ×H )×4×2

m
3 4,680 10×(B 2+H )×H

m
2 2,380 {(H＋0.914×2＋0.4×2)×2＋(H＋0.4×2）×2}×2×H 1

m
3 32,000 (H ×B ×H )×2

1 kg 120
7850×A SD ×(H ×1.5)×((N -1)×4+2×(N -2)×(J N -1)) + 7850×A SD ×N W ×2×

((1+0.4×(NW-1))×(B -2×0.04-D )+N W ×(H -2×0.04-D ))

2 2,700 4×(N- 1)+2×(N -2)×(J N -1)+N W

1 m
3 22,410 (H ×B ×H)×2

2 m
2 7,090 (H ×H )×4×2

(2) Culumn(lower end)

）egree
of

damage
Unit Unit price （alculation formula

1 - - -　-　-　-　-

m
3 6,720 {(H＋2)2-H 2}×0.5×2

ℓ 5,500 (H ×B ×H )×2×10

m
3 1,112 ｛(H＋2)2－H 2)×0.5×2

m
3 6,720 {(H＋2)2-H 2}×0.5×2

ℓ 5,500 (H ×B ×H )×2×25

1 m
3 22,410 (H ×B ×H )×2×0.35

2 m
2 7,090 (H ×H )×4×2

m
3 1,112 ｛(H＋2)2－H 2)×0.5×2

m
3 4,680 L 1×(B 2+H )×H

m
3 6,720 {(H＋2)2-H 2}×0.5×2

m
3 32,000 (H ×B ×H )×2

1 kg 120
7850×A SD ×(H ×1.5)×((N -1)×4+2×(N -2)×(J N -1)) + 7850×A SD ×N W ×2×

((1+0.4×(NW-1))×(B -2×0.04-D )+N W ×(H -2×0.04-D ))

2 2,700 4×(N- 1)+2×(N -2)×(J N -1)+N W

1 m
3 22,410 (H ×B ×H )×2

2 m
2 7,090 (H ×B ×H )×4×2

m
3 1,112 ｛(H＋2)2－H 2)×0.5×2

(3) Upper beam

）egree
of

damage
Unit Unit price （alculation formula

1 - - -　-　-　-　-

m
2 2,380 㸦B ×2＋B ×2)×H 1

ℓ 5,500 㸦H ×B ×H )×2×10

ｍ 50,000 L 1×2

m
2 2,380 㸦B ×2＋B ×2)×H 1

ℓ 5,500 㸦H ×B ×H )×2×25

1 m
3 22,410 (H ×B ×H )×2×0.35

2 m
2 7,090 {(H- 0.3)×H ×2＋(H ×B )}×2

m
2 20,000 B 1×L 1

ｍ 150,000 L 1×2

m
3 4,680 L 1×(B2+H)×H

ｍ 50,000 L 1×2

m
2 2,380 㸦B×2＋B×2㸧×H1

m
3 32,000 (h1×B×h1㸧×2

1 kg 120
7850×A SD

*
×(H ×1.5)×((N -1)×4+2×(N -2)×(J N -1)) + 7850×A SD ×N W×2×

((1+0.4×(NW-1))×(B -2×0.04-D )+N W ×(H -2×0.04-D ))

2 2,700 N×J N ×2+N W

1 m
3 22,410 (H ×B ×H )×2

2 m
2 7,090 {(H- 0.3)×H ×2＋(H ×B )}×2

m
2 20,000 B 1×L 1

ｍ 150,000 L 1×2

（oncrete placement

Track removal

Track restoration

Scaffolding

（oncrete removal

Replacement of reinforcement

Repair method

None

2
Scaffolding

Grouting of cracks

4

Temporary support of slab

Excavation

（oncrete removal

Replacement of reinforcement

Repair of concrete cover

Backfilling

3

Excavation

Grouting of cracks

Repair of concrete cover

Backfilling

Repair method

None

2

Excavation

Grouting of cracks

Backfilling

Repair method

None

2
Scaffolding

Grouting of cracks

3

Scaffolding

Grouting of cracks

Repair of concrete cover

4

Temporary support of slab

Scaffolding

（oncrete removal

Replacement of reinforcement

（oncrete placement

Track restoration

3

4

Scaffolding

Grouting of cracks

Repair of concrete cover

Bridge-deck waterproofing

Track removal

Temporary support of slab

Bridge-deck waterproofing

 

Table 3. Calculation formulas of repair cost. 
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Fig. 9. Calculation model of repair cost. 

If the lower ends of all the column members exceed the ultimate angle of rotation, it means 
that the structure has collapsed and the reconstruction cost replaces the repair cost, which is 
supposed to be 1.5 times the initial construction cost. 
While this definition is based on bending fracture-type collapse, it is also necessary to take the 
shear fracture-type collapse of structures into account. However, since the seismic force causing 
bending fracture could be calculated using the damage matrix in this method, it is considered 
possible to perform analysis based on bending fracture-type collapse by the placement of shear 
reinforcement, which is not subject to shear fracture caused by the seismic force. 
The acceleration waveform of an inland-type earthquake with Level 2 earthquake motion 
displayed in Fig. 10 is used as the input earthquake motion for time history response 
analysis and the calculation of the seismic risk cost, and 3 hazard curves (0.16, 0.50 and 0.84 
in fractile) displayed in Fig. 11 are adopted. 
 

 

Fig. 10. Acceleration waveform. 
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Fig. 11. Hazard curves. 

4.3 Numerical results 
The calculation results for the RC rigid-frame viaduct are presented. The calculation is  
performed for seismic forces of 50 to 1,000 gal on the assumption that the dividing width ΔS  is 
50 gal and the dividing number Ns is 20 for the seismic forces. Since the incremental value of 
design acceleration must be set taking the influence on design solutions into account, the value 
in this study is set as 50 gal, which is small enough not to have a significant influence on design 
solutions. The incremental value of design acceleration can be even smaller if necessary. 
Table 4. lists the design solutions found for various seismic forces. In the table, NP and NB 
represent the numbers of reinforcing bars in the column and beam sections, respectively.  
Fig. 12 displays the relationship between the seismic force and initial construction cost. In 
the figure, the symbol ■ represents the initial construction cost. 

When the seismic force is within the range of 50 to 400 gal, the initial construction cost is 
uniform. These are the design solutions with which the objective function becomes 
minimum by a combination of preset design variables.  The initial construction cost tends to 
increase with increasing seismic force in design solutions of 400 gal or greater. The initial 
construction cost sharply increases between 750 and 800 gal. As shown in Table 4, this is 
because the design variables of the two design solutions, B = 900 mm and H = 1,200 mm of 
H, are necessary when the seismic force is 800 gal, while the seismic performance is satisfied 
with B = 600 mm and H = 800 mm at 50 gal. 
Next, Table 5. presents the damage matrix of design solutions found for various seismic forces 
(Table 4.). The table shows the seismic forces in rows and input seismic forces for calculation of 

the damage matrix in columns. The structural model used has nonlinear performance at a total 

of 28 sections -- 22 in the direction of the bridge axis and 6 in the direction perpendicular to the 
bridge axis. Although damage is calculated for all members, the maximum values for columns 

and beams in two directions are presented for each design solution since it is difficult to 
display all the calculation results. In the table, PI is the column member in the direction of the 

bridge axis, PO is the column member in the direction perpendicular to the bridge axis, BI is the 
beam member in the direction of the bridge axis, and BO is the beam member in the direction 

perpendicular to the bridge axis. The right side of the thick line represents the cases where the 
input seismic force exceeds the value used for design.  

www.intechopen.com



 
Seismic Design Forces and Risks 

 

15 

 
 

Si

(gal)

B

(mm)

H

(mm䠅
N P Ｎ B J N

D

䠄mm)
N W

S V

(mm)

OBJ  (C
0

i)

(unit ×10
3
)

50 500 700 3 5 1 22 1 200 6940

100 500 700 3 5 1 22 1 200 6940

150 500 700 3 5 1 22 1 200 6940

200 500 700 3 5 1 22 1 200 6940

250 500 700 3 5 1 22 1 200 6940

300 500 700 3 5 1 22 1 200 6940

350 500 700 3 5 1 25 1 200 6940

400 500 700 3 5 1 22 1 200 6940

450 500 700 4 6 1 22 1 200 7219

500 500 700 3 5 1 22 2 200 7389

550 500 700 3 5 1 25 2 200 7610

600 500 700 6 10 2 22 2 100 9646

650 600 800 4 6 1 22 2 200 10193

700 600 800 4 6 1 22 2 200 10193

750 600 800 5 7 2 25 2 100 12000

800 900 1200 16 23 1 22 2 200 24635

850 1000 1200 15 19 1 22 2 200 26833

900 1000 1200 16 21 1 22 2 200 27189

950 1000 1200 10 12 1 32 2 200 28087

1000 1100 1300 19 23 1 22 2 200 31852  
 

Table 4. Design solution by seismic force (Si ). 
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Fig. 12. Initial construction cost and total repair costby seismic force. 
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Table 5. Damage matrix. 
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Damage is examined for design solutions at 400 gal or more, with which the initial 
construction cost became the minimum.  In design solutions between 400 gal and 800 gal, 
where the objective function increases sharply, collapse in the direction perpendicular to the 
bridge axis occurred with a seismic force 50 to  150 gal stronger than the seismic force 
used for design, while collapse in the direction of the bridge axis occurred with a seismic 
force 100 to 200 gal stronger. It can thus be seen that the seismic performance in the 
direction perpendicular to the bridge axis is lower than that in the direction of the bridge 
axis when the seismic force is stronger than that used for design. In design solutions at 800 
gal or more, on the other hand, collapse does not occur even with a seismic force of 1,000 
gal. 
Next, the symbol ◆ in Fig. 12 represent the total repair cost for each design solution 

calculated from the damage matrix in Table 5. The total repair cost is found by totalling the 
repair costs for all the seismic forces (columns in Table 5.) between 50 and 1,000 gal for each 
design solution.  The total repair cost of each design solution tends to be in inverse 
proportion to the initial construction cost.  The difference in total repair cost is small 
although the initial construction cost of the design solution at 750 gal is almost double that 
of the design solution at 800 gal. This is because the damage level of the beam member using 
the design solution at 800 gal is 2 at 350 gal, while the beam member using the design 
solution at 750 gal is undamaged until the seismic force reached 800 gal. Since the repair of 
beam members requires scaffolding and other works even if damage is minor, the repair 
cost is higher compared with that for column members. Also, since collapse would not occur 
even with a seismic force of 1,000 gal in the case of a design solution for a seismic force of 
800 gal or more, the total repair cost is approximately half of that for other design solutions 
with collapse, except for that at 750 gal. 
Figs. 13 to 15 display the relationship between the total cost and seismic force in the case where 
the repair cost for each design solution, which is calculated using the hazard curve in Fig. 11 
and based on the damage matrix in Table 5. , is used as the seismic risk cost. In the figures, the 
horizontal and vertical axes represent the seismic force and total cost and the white and blue 
parts indicate the initial construction cost and seismic risk cost, respectively. Each figure 
presents the results for a 0.16, 0.50 or 0.84 fractile hazard curve. The arrow in each figure 
indicates the section where the total cost is the lowest, or the target seismic design force.  
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Fig. 13. Relationship between the total cost and seismic force (0.16 fractile hazard curve) . 
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Fig. 14. Relationship between the total cost and seismic force (0.50 fractile hazard curve). 
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Fig. 15. Relationship between the total cost and seismic force (0.84 fractile hazard curve) . 

The target seismic design force is 400, 450 and 550 gal for 0.16, 0.50 and 0.84 fractile hazard 

curves, respectively. It is confirmed that, even with the same structural model, the target 

seismic design forces would vary with differences in the occurrence probability of 

earthquakes. In the relationship between the total cost and seismic force in 0.50 and 0.85 

fractile hazard curves, the total cost at 750 gal is locally low. This is because the seismic risks 

are extremely high at 650 and 700 gal. It can be seen from the damage matrix that damage to 

beam members started at 150 gal in design solutions designed for 650 and 700 gal. Because 

the seismic force causing damage is lower compared with other design solutions and the 

repair cost for beam members is higher, the estimated seismic risk became higher. As a 

result, the total cost at 750 gal is locally low. 

5. Conclusion 

The current seismic design criteria are based on the verification of seismic performance 
using Level-1 and -2 seismic forces. However, since earthquake motions that are stronger 
than Level 1 but do not exceed Level 2 may be generated through time during the service 
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life of a structure in reality. Against such a background, this chapter examined target seismic 
design forces taking seismic risks into account as an attempt to apply seismic risk 
management to seismic design methods. 
The results obtained in this chapter are as listed below. 
1. A method for calculating seismic forces with which the total cost can be minimized is 

presented.  The proposed method has the following characteristics: 

 The total cost is the total of the initial construction and seismic risk costs.  The seismic 
risk cost includes the costs associated with the damage and collapse of structures. 

 The damage of members is calculated by using the nonlinear characteristics related to 
the damage of members. 

 To find the damage and collapse processes of structures, a damage matrix based on the 
damage conditions of all members with nonlinearity is used to reflect the influence of 
the repair cost depending on differences in structural type and damage conditions as 
precisely as possible. 

2. The proposed method for calculating target seismic design forces is applied to RC rigid-
frame railway viaduct. As a result of calculation using three hazard curves with 
different fractile values, the following knowledge is obtained: 

 In calculation example, the target seismic design forces vary with difference in the 
occurrence probability of earthquakes. When the probability is higher, the target forces 
also become higher. 

A method is presented for the calculation of target seismic design forces, for which the 
seismic risks of damage and collapse caused by various seismic forces are taken into 
account. By applying hazard curves unique to this region and seismic waveforms taking 
regional ground and other properties closely into account to the method presented in this 
study, the target seismic design force with minimum total cost including seismic risk can be 
found from the occurrence probability of earthquakes in the target region and damage 
unique to the target structure. While social consensus based on the accumulation of this 
kind of study is necessary for the setting of seismic forces to use in seismic design, the 
authors will be pleased if these studies serve as references for future studies of seismic 
forces in seismic design. 
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