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1. Introduction 

Embryos and young growing animals do not develop in isolation. The lake shiner, Notropis 

atherinoides, and the blue-gill sunfish, Lepomis incisor, produce more body segments when 

raised in cool water. Chickens raised in constant light have flattened corneas, making them 

abnormally hyperopic, or “far-sighted”. Cichlids provided with different types of diets 

during early growth develop different jaw morphologies as adults. Craniofacial proportions 

are different in children born with fetal alcohol syndrome, and those born to women who 

smoke tend to be underweight compared to the average. These examples demonstrate the 

plasticity of shape and size that is possible during ontogeny as a result of environmental 

conditions, and all produce permanent effects on the adult phenotype. In this chapter, I will 

describe different forms of vertebrate developmental phenotypes and phenotypic plasticity, 

with a brief review of the relevant biology, and then I will present some preliminary 

approaches to morphometric quantification of these phenomenae. 

The metamorphosis of a unique embryonic, or larval, body type into the definitive adult 

body form of the species (such as seen in fishes) involves dramatic, permanent phenotypic 

change, whereas regeneration, a property that the embryos of many species possess to a 

remarkable degree, is a form of phenotypic plasticity that effects embryonic repairs. 

Metamorphosis is highly refined among the invertebrates, in particular among insects, 

however some vertebrates (fishes) exhibit metamorphosis too, and quite spectacularly (see 

Figure 1). Among the mesopelagic Stomiiform fishes, larval craniofacial features include 

elaborate larval eyestalks and elongated, dorso-ventrally flattened skulls, which transform 

during metamorphosis into a more typical face...eyes seated within orbital sockets instead 

of at the ends of eye stalks…and increased skull depth. Some species of fishes actually 

shrink in size as well as change their shape during metamorphosis. For instance, the 

leptocephalus larvae of anadromous eels is significantly larger than the adult of the 

species. 

Embryonic regeneration is spectacular…it is the ability to achieve scarless reconstruction of 

injured body parts…and can extend from replacement of missing limbs to functional repair 

of enucleated eyes, as noted among amphibians in the order Urodela. The ability to 
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regenerate is more robust among embryos and among the young, although some 

vertebrates, such as the urodelans, retain vigorous regenerative capacity throughout life. 

 

Fig. 1. Larval dragonfish Idiacanthus atlanticus (a) standard length (SL) 3.5 cm, and adult  
(b) SL 13 cm. Craniofacial metamorphosis is pronounced, especially around the periocular 
area. Larval eye stalks are up to 1/3 of total body length, but are absent in the adult. The 
adult specimen shown here has partially ingested a jelly, still visible in its throat  
(Specimens photographed by C. Wahl at CSIRO, Hobart, and at the Australian Museum, 
Sydney, Australia). 

Although gene expression is at the heart of development and determines the basic 
“bauplan”, specific details of morphology such as size, shape, numbers of body segments, 
and even sex can be strongly influenced by the embryonic and early life environment, 
principally through action on signaling pathways or through gene regulation. In recent 
years, new attention has been paid to the ways in which developmental mechanisms are 
able to produce specific phenotypic solutions to environmental variables (Müller, 2011).  

Flexibility to adapt the body to local conditions during growth confers on the embryo, larva, or 
juvenile an opportunity to fine-tune certain aspects of anatomy and physiology and may 
increase fitness as the individual reaches adulthood. Epigenetic influence on development may 
prove to be not only common, but in many cases, critical to adaptive evolutionary change. 

Whereas the healing of amputated limbs or enucleated eyes in salamanders can result in 
slightly smaller yet functional replacements (Wahl, 1985), among embryos perfectly scaled 
repairs are possible (Wahl and Noden, 2001). The mechanisms active during embryonic 
regeneration must co-exist in the same body with temporally disparate ontogenetic 
activity….because one part of the body is being completely re-built while the rest is already 
further along the road towards adulthood.  

Development is defined, for the purposes of this chapter, as the process of transformation of 
haplo-diploid organisms from zygote to sexual maturity. The “embryonic period” is defined 
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as the time during development when the organism is unable to live without either a yolk 
sac or a placenta. The term “fetal” is used most often by medical professionals in reference to 
the latter period of human gestation, but since the exact developmental interval it refers to is 
poorly defined and does not apply to other vertebrates, the term is not useful to the basic 
science of developmental biology.  

Morphometry, i.e., methods used to quantify body forms, can be usefully applied to many 
questions in development, ecology, and physiology. Morphometric assessment of 
developing organisms offers valuable insights into the consequences of both natural and 
pathological environmental variables, and usefully informs analysis of epigenetic influence 
on gene expression patterns. This chapter introduces the different types of morphological 
variation among vertebrate embryos, and discusses some morphometric assessment 
techniques. As a colleague has pointed out, “It may be worth noting in passing that shape is 
a qualitatively discrete character; it is only our insufficient description of it that forces us to 
rely on continuous measures.” (McCune, 1981) . Quantitative measurements allow us to 
evaluate incremental changes in shape and size, both without and within bodies and organs. 

2. Adaptive and maladaptive morphological plasticity 

Growth is either uniform or allometric (disproportionate), and each type occurs naturally 
both within and among species. An example of uniform growth is bilateral symmetry. 
However, the developmental bauplan also necessitates allometry; limbs cannot grow 
properly without the prior appearance of the nervous and circulatory systems. The 
vertebrate head is usually disproportionately large throughout the embryonic period in 
order to prioritize development of the brain, eyes, and mouthparts. Allometry as a 
manifestation of morphological integration occurring during development has been studied 
for many years (Klingenberg, 2008). 

Environmental stressors alter growth patterns, and this is important to recognize and 
quantify morphometrically. It may also be important to distinguish between stressors that 
affect uniform growth versus those that influence allometric growth, since these have 
different implications to both short and long term fitness and viability.  

2.1 Uniform growth 

As D’Arcy Thompson pointed out in 1917, with respect to biological systems, as an 
organism increases in size, the forces in action within its systems vary. For instance, some 
physical features scale as functions of the mass, others scale with volume. While the 
“dimensions” may remain the same in our equations of equilibrium, the relative values alter 
with scale (Bonner, 1969). The consequences of this “principle of similitude”, first described 
by Galileo, has implications at every level of the developing body. Thus, gravity is of 
consequence to the whole animal only after it reaches a certain size, putting constraints on 
the maximum size attainable--but gravity is not a significant force to the neurulating 
embryo, where other properties such as diffusion gradients and turgor pressure are more 
important. The young embryo relies on direct diffusion of oxygen to the tissues prior to the 
development of its circulation, and makes use of turgor pressure to expand the brain and 
create various body folds. Such forces as viscosity and surface tension can have enormous 
influence on body form during this period. 
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Aside from genetic malfunctions, variations of developmentally significant environmental 
parameters produce asymmetries of uniform scaling, known as “fluctuating asymmetry” 
(Van Valen, 1962). Because bilateral asymmetries originate from random perturbations of 
developmental processes (Klingenberg, 2003), such asymmetries must arise within the 
developmental pathways themselves. Possibly because symmetry is a measure of 
developmental stability, among vertebrates it has been shown that bilaterally symmetrical 
individuals are more attractive than asymmetrical individuals to members of the opposite 
sex (Etcoff, 2000).  

What is the scholarly interest in attending to variations of uniform scaling among developing 

organisms? In the evolutionary context, it is because interactions between developmental 

pathways have significant effects on the phenotypic outcome and stabilizing selection should 

limit variation. However, adaptive plasticity to environmental parameters is also a survival 

strategy and is the mechanism by which the choice is made to mature at smaller or larger body 

sizes, a response to limited resources known as the “thrifty phenotype”. 

“The thrifty phenotype is the consequence of three different adaptive processes - niche 

construction, maternal effects, and developmental plasticity… The three processes also 

operate at different paces... In contemporary populations, the sensitivity of an offspring’s 

development to maternal phenotype exposes the offspring to adverse effects, through four 

distinct pathways. The offspring may be exposed to (1) poor maternal metabolic control (e.g. 

gestational diabetes), (2) maternally derived toxins (e.g. maternal smoking), or (3) low 

maternal social status (e.g. small size).” (Wells, 2007). 

During nutritional dearth, an individual may complete development at a smaller body size 
or mass than when the nutritional status is excellent. Smaller, metabolically less active 

individuals produced on limited nutrition exhibit this “thrifty phenotype”, demonstrated in 
several species, including rats (Buresova et al., 2006). Understanding how the thrifty 

phenotype is generated, and what the long-term consequences of such a phenotype might 
be, is currently of great interest due to the rising incidence of obesity and type 2 diabetes 

among western civilizations (Wells, 2007). These “diseases of the wealthy” are regarded by 
some as a maladaptive response to calorie-rich but nutritionally inadequate prenatal diets, 

where offspring, like their mothers, continue to consume more calories than their “thrifty” 
metabolism is equipped to burn. 

2.2 Allometric growth 

Normal developmental patterns of allometry and variations due to selection pressures are a 
topic of long-standing interest to evolutionary biologists, spawning the field of “evo-devo”. 
Some growth patterns may be a “normal” consequence of the immediate environment, for 
instance, differences correlated with temperature include shorter limbs among endotherms 
at higher latitudes (Allen’s Rule) for which a possible mechanism has recently been 
discovered… mice raised at lower temperatures have shorter limbs than littermates raised at 
higher temperatures (Serrat et al., 2008). Another example is that more body segments 
differentiate among fish of a given species developing in cool water, than are found in 
conspecifics raised in warmer water. Further study of this meristic and others correlated 
with temperature might reveal whether Bergman’s Rule (the reduction of surface-to-volume 
ratio with reduced environmental temperature) or Allen’s Rule (shorter limbs at lower 
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environmental temperatures) are manifestations of epigenetic responses by the developing 
animal. There are also pragmatic reasons to count fish vertebrae or make other 
measurements of animals from different climates. This information could be of assistance, 
along with DNA fingerprinting, in identifying fishing violations, or in determining where a 
particular animal “grew up”.  

Thompson defined allometry as “the study of size and its consequences” (Bonner, 1969), and 

there are physiological consequences of size and scale within the developing organism that 

are related to constraints of integration of developing body systems. Many allometric 

relationships scale as the power function y = bxa, where x and y are the two traits being 

compared (for instance, height and weight), b is the y-intercept, and α is the slope. However, 

any linear relationship with a y-intercept greater than 0 can describe allometric growth. For 

a detailed discussion of the use, and misuse, of mathematical relationships that describe 

allometric growth the reader is referred to many excellent reviews on the subject, for 

instance, (Gould, 1966).  

The response of developing organisms to local environment with phenotypic adaptation has 

been termed “epigenetic innovation”.  

“The fact that perturbations of general developmental parameters, such as blastema size, 
timing of processes, inductive interactions, or cell division rates, could yield very specific 
morphogenetic results that (mimic) patterns observed in natural change (is) a strong 
indication that the rules of ontogenetic development (have) an impact on the process of 
evolutionary variation.” (Müller, 2011). 

This idea has profound implications when one considers how developmental pathologies 

arise as a result of conditions such as hypoxia, hypertension, hyperglycemia, and the like. If 

embryos are capable of “epigenetic innovation” in a single generation, then environment…. 

influenced, among amniotes, by such factors as maternal diet and behavior….will affect 

both the morphological and physiological phenotype of the offspring, just as external 

environmental parameters like temperature directly affect the development of 

poikilotherms.  

Examples of abnormal variations in the embryonic environment include placental 
insufficiencies, fungal/viral infections, and teratogens. The effects of these unusual 
environmental parameters on embryonic morphometrics may not be direct, but can be 
mediated through changes in embryonic behavior patterns. For instance, mechanical forces 
influence formation of bones and cartilage, hence “phenotypic plasticity” of the skeleton 
(Müller, 2003), so reduced embryonic motility will produce skeletal insufficiencies (Hall and 
Herring, 1990). The responsiveness of skeletogenesis to embryonic movements means that 
there is a genetic permissiveness for de novo formation of skeletal elements in the embryo, a 
phenomenon we have often observed while performing experiments in the study of avian 
craniofacial morphogenesis (Wahl and Noden, 2001). 

The variance of maladaptive phenotypic expressions is often greater than “normal”. This 
confounds to some degree the ability to determine whether the response is primary or 
secondary to the perturbation. One approach utilizes a strain of animals with a mutation in 
the somatic growth axis as a second control when making morphometric comparisons 
(Boughner et al., 2008). 
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3. Morphological responses by embryos and growing vertebrates to 
environmental variables 

Although many environmental variables are known to influence developmental 

phenotypes, here I will discuss just two: the effects of oxygen tension on overall craniofacial 

development, and the effects of ambient light on the shape and ultimate size of the 

developing eye. The reader will find many other examples in the literature on topics such as: 

the effects of light on pigmentation and neuromast distribution; the effects of environmental 

organophosphates on limb development, differentiation of the reproductive organs, and rate 

of sexual maturation; the influence of gravity on early body patterning; and the effects of 

temperature on sex determination in reptiles. 

3.1 Responses to hypoxia 

At early embryonic stages, oxygen effects on cell proliferation and differentiation are 

different from those in the adult. For example, low oxygen tension is critical to certain 

aspects of normal development and cell differentiation, such as neurulation and 

chondrogenesis. Each type of embryonic tissue responds uniquely to local variations in 

oxygen tension (Huang et al., 2004; Webster, 2007). Thus, mesenchymal condensations 

destined to give rise to endochondral skeletal elements and joints normally show marked 

hypoxia compared to neighboring tissue during early embryogenesis, and will not 

differentiate if local O2 concentrations are too high (Provot et al., 2007; Thompson et al., 

1989). Angioblasts, highly migratory cells that aggressively cross tissue boundaries during 

embryogenesis, retain the ability to switch into a “hypoxic phenotype” as they transition to 

endothelial cells and adulthood.  

Retinopathy of prematurity (ROP), a condition responsible for 13% of the cases of childhood 

blindness in the U.S. and 62% of the cases in Mexico, occurs because in utero blood oxygen 

levels are much lower than postnatal levels, disturbing vascular development among 

children born prematurely (Adams, 2008). The effect of this premature “relative hyperoxia” 

on angiogenesis is to downregulate hypoxia driven, VEGF mediated cell proliferation, 

resulting in delayed vascularization of the peripheral retina. Subsequent hypoxia in the 

peripheral retina then produces proliferation of blood vessels in the eye of the premature 

infant (Fleck and McIntosh, 2008). Children with ROP often display abnormal eye 

movements and crossed eyes, suggesting that developing periocular tissues are also 

sensitive to variations in oxygen tension (O'Connor et al., 2007). Also important to this 

study, a strong correlation has been found between strabismus, anisotropia, amblyopia, and 

microphthalmia among newborns and maternal smoking during pregnancy (Hakim RB, 

1992; Lempert, 2005; Ponsonby AL, 2007; Stone RA, 2006). Smoking lowers maternal blood 

oxygen carrying capacity because carbon monoxide irreversibly binds to hemoglobin, thus 

there is a clear implication here that the fetus may be subjected to a relatively hypoxic 

environment when mom is a smoker. 

Thus, hypoxia per se can not be said to precipitate abnormal development (Grabowski, 1958), 

but rather it provokes adaptive changes that occur in response to hypoxia, thereby changing 

the pattern of gene expression at critical periods (Seta and Millhorn, 2004). Embryonic stem 

cell populations do not all respond in the same way to hypoxia. The “hypoxic phenotype” 
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among mesenchymal cells is characterized as “highly invasive and expressing several 

hypoxia regulated genes” (Lash et al., 2002). These features normally characterize 

trophoblast cells, that are responsive to hypoxic conditions via invasive, migratory 

behavior—if this behavior fails, abnormal blood flow occurs in the placenta’s intervillous 

spaces as early as week 7 of gestation (Jaffe et al., 1997). Although relatively low oxygen 

tension is important for proper neurulation, autonomic nerves proliferate excessively along 

blood vessels among embryos experiencing chronic hypoxia (Ruijtenbeek et al., 2000), thus 

early peripheral nerve cell populations respond differently to hypoxia from neurepithial 

cells. Apoptosis and necrosis of brain tissue are among the most dramatic indicators of 

hypoxia among older embryos (Grabowski, 1966), demonstrating that nervous tissues’ 

response to oxygen changes rapidly as they differentiate and grow. Among myoblasts, the 

two embryonic processes of cellular division and differentiation show reciprocal behaviors 

in response to oxygen. Although the rate of differentiation of myoblasts as measured by 

fusion into myotubes is proportional to oxygen concentration, the rate of division of 

myoblasts varies inversely with the oxygen concentration used, within a range of 2%-80% 

oxygen (Hollenberg et al., 1981). 

The behavior of cells during cell migration and differentiation events is critical to proper 

tissue and organ assembly. A good example of a complex system consisting of different 

tissues that initially arise and proliferate in isolation from each other, but differentiate and 

grow in proximity, is the periocular region of the head. Vertebrate vision depends on the 

ability to stabilize the eye with respect to the surroundings long enough to generate an 

image on the retina. The oculorotatory muscles that perform this function commit to the 

myogenic lineage and are hard-wired to the brain very early, before migrating to their final 

periorbital positions, and while they are still in the paraxial mesoderm along the hindbrain 

of the embryo (Wahl, 2007). Eye muscles have been observed to develop even in the absence 

of eyes in some mutants, or where eye size is dramatically reduced (Franz and Besecke, 

1991), an indication that the developmental program for early myogenic differentiation is 

not dependent on the presence of the eye. However, the periorbital environment is where 

extraocular muscles must integrate with surrounding support tissues and grow to 

appropriate size, so their ultimate functionality depends on the latter stages of 

organogenesis. The tissues that support the eyes and share that very limited periocular 

space include the optic nerve, lacrimal gland, extraocular muscles, fibroadipose tissue, 

peripheral nerves, ganglionic tissue, and blood vessels. These tissues originate both rostral, 

caudal, and dorsal to their final location in the periorbital region. They originate as neural 

crest, neural tube, ectodermal, and mesodermal cells. 

3.2 Effects of oxygen deprivation on craniofacial growth in chick embryos  

I designed experiments to study the physical environment’s effects on early craniofacial 

development in chick embryos. My preliminary work is described here.  

3.2.1 Methods 

To learn how acute anoxia affects eye and periocular development, 48 hr chick embryos 

(Hamburger-Hamilton stages 13-14) were exposed to a pure nitrogen atmosphere at the 
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normal incubation temperature of 380 C for 2, 3, or 4 hours as follows: One cc of thin 

albumen was withdrawn from the pointed end of each egg using a sterile syringe. This 

eggshell opening was re-sealed with warm paraffin wax. A one-centimeter diameter 

window over the embryo was made by first cleaning the shell with 70% ethanol, allowing it 

to dry, and then chipping away the shell using sterile forceps. Embryos were examined and 

staged according to the Hamburger-Hamilton stage series (HH). Any embryos found to be 

developing abnormally were eliminated from the experiment, the HH stage of each 

remaining normal embryo was recorded in pencil on each egg, and the eggshell window 

was sealed with clear Scotchgard tape. Eggs were transferred to Billups-Rothenburg 

incubator pods. One pod was flushed for two minutes with high-purity nitrogen gas, and 

sealed for either 2, 3, or 4 hours. Normal atmospheric air was left in the other (control) pod. 

Eggs were then returned to a standard, humidified Percival incubator with circulating 

atmospheric air and allowed to continue developing normally for an additional 2 days. 

Embryos were examined in situ, then collected into 4% paraformaldehyde in phosphate 

buffer (pH 7.4) for further study. 

3.2.2 Results 

I found that hypoxia causes craniofacial malformations of increasing severity, proportional 

to the length of exposure to anoxic conditions (pure nitrogen gas). Most (95%) of both 

control and experimental embryos survived and were robustly vascularized. A composite 

photo of representative embryos, placed over a micrometer ruler, is shown in Figure 2. 

Compared to control embryos (A), 3-hour exposure to anoxic conditions produced ocular 

phenotypes varying from near-normal to microphthalmic (B), and more than half of all 

embryos in this group were reduced in size compared to the controls. Four hours of anoxia 

produced 100% anencephalic, dwarfed embryos (C). Two hours of anoxia resulted in grossly 

normal embryos (data not shown). 

Frontal development of the face in each of these treatments is shown in Figure 3. Normally-

developing embryos (A) display prominent medial nasal and maxillary prominences, and 

the lateral nasal prominence is also well-developed. After 3 hours of anoxia, the maxillary 

process is reduced or absent (B) and the eyes are smaller than normal. These deformities are 

not bilaterally symmetrical in every case, as shown in B. The ocular defect includes a lens 

that is disproportionately large relative to the eyecup. After 4 hours of anoxia, all embryos 

exhibit anencephalia, but some retain tissues from the lower face (C). At the time of 

treatment, at stage 14, the primary eye field has already separated, embryos have developed 

eyecups, and their lens placodes are in the process of invaginating to form vesicles. In C, it 

can be seen that after 4 hours of anoxia, eyecups subsequently failed to expand. However, 

lens vesicles did form (arrow). The eyecups differentiated further, but failed to grow: 

pigmented epithelium extends along the presumptive optic tract. This abnormal distribution 

of pigmented cells indicates defects in genetic patterning that should have separated the 

eyecup from the optic tract and brain. 

All surviving embryos had well-developed vitelline vasculature, and normal trunk and 

limb morphology. Several of those exposed to nitrogen had avascular allantoic 

membranes. 
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Fig. 2. Lateral view of chick embryos exposed at HH stage 14 (48 hr incubation) to nitrogen 
gas for 0 (A), 3 hours (B), or 4 hours (C), then returned to normal atmospheric conditions 
and allowed to develop for a further 2 days. To provide scale, the embryos are positioned 
over a centimeter ruler. 
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Fig. 3. Frontal views at 4 days: (A) control embryos (HH ~stage 25). Medial and lateral nasal 
processes are fusing with the maxillary process (arrow). Eyes have expanded greatly since 
stage 14, when the lens placode was forming a vesicle and inducing formation of the optic 
cup. (B) Failure of the left maxillary process to develop after 3 hours of anoxia at stage 14. 
Only the medial and lateral nasal processes are intact (arrow), and the nasal pits are reduced 
in size. An undivided visceral arch is present (asterisk). Partial fusion of the undivided first 
arch is seen, with the medial/lateral nasal processes on the right. Reduction in size of the 
frontonasal prominence of the neural tube, and failure of the eyecups to expand is apparent. 
Lens vesicles have formed. (C) Following 4 hours of anoxia, the frontonasal prominence is 
entirely absent. The first arch has not divided (it is located just below the arrow).  
The eyecups have failed to expand. Differentiation has proceeded, but genetic programming 
that should distinguish and separate the eyes from the optic tract has failed, as 
demonstrated by a trail of pigmented epithelium that extends along the entire presumptive 
optic tract. Lens vesicles have formed (arrow). 

3.2.3 Conclusions 

Growth and differentiation of the eyecup, brain, and first visceral arch is retarded if exposed 

to anoxic conditions at HH stages 13 or 14. The first arch fails to properly divide and grow, 

resulting in severe reduction of the maxillary process on one or both sides. However, the 

lens placode does form a lens vesicle and the olfactory placode develops into a nasal pit. 

Histological assessment is necessary to determine whether this stunted growth is a result of 

necrosis or arrested mitosis, and to follow the differentiation of the periocular mesenchyme 

and muscles. Morphometry of the defect at different exposures at different developmental 

intervals will provide a trajectory of severity that can be analyzed to determine the relative 

susceptibility of each cell population contributing to the growth of the face.  

3.3 Effects of light on growth and shape of the eye  

It is a common misperception that the lens and cornea display fixed patterns of 

development that are independent of non-visual environmental influence, however we have 

found that light regimen plays an important role in overall shaping of the eye. The effect of 

light on the cornea, in particular, is of interest because the air/cornea interface is the major 

focusing surface of the eye. The development of persistent ocular defocus is commonly 

studied in the chick (Gottlieb et al., 1987; Wallman et al., 1978). Refractive errors (myopia, or 

nearsightedness, hyperopia, or farsightedness) have been induced in chick eyes using 

constant darkness (CD, (Gottlieb et al., 1987), and constant light (CL, (Lauber et al., 1970); 
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(Li, 1995)), producing corneal flattening and hyperopia within three weeks. Long term CL 

produces shallow anterior chambers, corneal thickening, lenticular thinning, cataracts, and 

damage to the retina, pigment epithelium, and choroid (Li, 1995).  

These studies demonstrate that corneal shaping during growth is influenced by ambient 

light. We found differences in the pattern of corneal growth between chicks raised in CL 

vs. normal light conditions (N, raised in 12 hours light/12 hours darkness) using 

morphometric techniques, including: a) a comparison of eye weights and wet and dry 

corneal weights, b) measurement of corneal thicknesses and corneal diameters, c) spatial 

dynamics of corneal expansion, d) measurement of corneal curvatures, and e) stromal cell 

densities (Wahl, 2009). We learned that the eye’s ability to model its shape towards 

emmetropia is diminished in the absence of periods of light and dark. Particularly 

sensitive are the stromal cells of the cornea, which show significant changes in density 

and distribution in CL.  

We pursued this finding with additional experiments to learn whether the effect of CL was a 

direct result of light on the corneal cells, or whether stromal growth of the cornea was 

regulated by hormones that, in turn, were affected by light cycle (Wahl, 2011). To do this, an 

organ culture system was designed for chick corneas. Light regimen alone had no effect on 

corneal growth in culture. Melatonin and/or retinoic acid were applied to the cornea both in 

vivo or in vitro, and compared to controls. We found that both melatonin and retinoic acid 

affect the hydration state of the cornea and alter its shape in growing birds, and we 

speculate that this effect results from altered ratios of glycosaminoglycans (GAGs) in the 

corneal matrix. It has been demonstrated that the corneal matrix has a gradient of GAGs that 

have different properties of hydration (Castoro, 1988), and so it is reasonable to suppose that 

altering this gradient or changing the ratio of GAG production in any way could affect the 

curvature of the cornea and its thickness. 

4. Morphometric changes in response to physical/mechanical injury 

Embryos have a remarkable ability to regenerate themselves through re-specification of cell 

populations, often resulting in a change in shape and/or body mass. They do not scar, 

however at birth they are usually smaller and may be physically disproportionate.  

4.1 Chick embryo regenerative capacity 

Surgical manipulation of avian embryonic tissues always introduces a greater number of 

variables than the experimenter can control for or, often, readily identify. Because most of 

our microscopic approaches to the study of embryonic cell behavior, individually or 

collectively, is limited by the necessity of killing the cells, we really have very little concept 

about how these cells are dynamically interacting, or what timeframe is involved in those 

interactions. Most analyses of avian embryonic development are devoted to defining normal 

events, especially identifying the origins of specific tissues and documenting the precise 

history and movements of cellular precursors. The observational skills required for this 

work include morphometric tools that allow interpretation of relationships among tissues 

surrounding the site or sites of interest. It is important to be prepared for unexpected 

findings in these studies, as it is all too easy to shoehorn one’s observations to fit into a 
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popular theory, rather than consider the possibility that something entirely new is being 

witnessed. 

In the quest to follow the fates of individual precursor cells in chick embryos, the most 
significant technical advancement was the discovery by Nicole LeDouarin of a nucleolar 
marker present in most quail cells (Douarin and Barq, 1969). Staining for nucleolar-
associated heterochromatin in quail cells allows transplanted quail cells and all their 
progeny to be followed in avian embryos throughout their development. The quail–chick 
chimeric method has been applied to nearly all developing organ systems (Wahl and 
Noden, 2001) but it is in following the fates of highly migratory populations such as the 
neural crest, myoblasts, angioblasts, and gastrulating mesoblasts that the greatest benefits 
have accrued.  

Morphometric assessment may be made using these methods. Questions such as what 
number of cellular progeny are produced, how far and in what directions they have moved, 
and what three-dimensional changes in shape follow a specific time interval or 
manipulation may be addressed using specific lineage tracing techniques. 

One typical method in embryology involves ablation of a target tissue of interest. In many 

situations, ablations are repaired by compensatory hyperplasia and restitution of the deleted 

tissue by remaining committed progenitors or adjacent multipotent cells. Healing without 

restitution, as in the case of an ablated optic cup, may indicate an absence of nearby 

responsive multipotent populations, or inhibition by newly-differentiated neighboring cells, 

such as occurs between rhombomeres (Guthrie and Lumsden, 1991). Where restitution takes 

place, the regenerated element is generally smaller than the normal counterpart, an effect 

that becomes increasingly pronounced as the age of the embryo at the time of ablation 

increases. 

During transplant procedures, both the size and shapes of the graft and the host lesion sites 

often change considerably within minutes of excising the tissue. Surface tension at the 

wound margin contributes to this, both expansive (e.g. surface ectoderm) and compressive 

(e.g. neural plate). Usually, these changes are transient, however during the initial healing-in 

time they can be quite important. Many of us have spent hours struggling to fit a curling 

graft precisely into a well-cut host hindbrain, as the margins of the host site begin to shrink 

and the graft, too, becomes more compact. If the embryo appears healthy several hours after 

tissue transplantation and grafted tissue is evident at the intended location, then the surgery 

is considered a success. If the embryo is alive and shows no gross abnormalities after several 

days, all the better! However, this ‘normalcy’ may mask substantial transient or permanent 

deviations from the normal course of development. 

In our experiments on several embryonic tissues in the neurula-stage avian head, we assume 
that all cells that are directly contacted by microsurgical instruments die immediately. Even 
among embryos that appear to heal excellently, extensive cellular disintegration adjacent to 
the lesion is evident via histological examination within a few hours of surgery. This focal 
cellular trauma can initiate responses that alter the normal intra-embryonic milieu at 
considerable distances from the site of surgery. 

We also found that focal cellular trauma can initiate responses that alter the normal 
behavior of cells at some distance from the surgical site. In particular, nerve trajectories were 
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disturbed as far away as the forebrain following a lesion in the hindbrain (Wahl and Noden, 
2001). Careful morphometry and assessment at multiple times following surgery are 
important to proper understanding of this phenomenon.  

4.2 Salamander regenerative ability following gross physical injury 

Most urodeles can regenerate many body tissues, including most of the eye. Structures 

that regenerate include the retina, the lens, the iris, the pigment epithelium (RPE), and the 

choroid. Tissue replacement may even be repetitive (Hasegawa, 1965; Reyer, 1977a; Stone, 

1960), but the mechanism involved is incompletely understood. Most investigators agree 

that the central retina is regenerated from the RPE, while the periphery is replaced by 

cells of the pars-ciliaris-ora serrata complex (Hendrickson, 1964; Keefe, 1973). 

During regeneration several processes occur simultaneously, e.g. necrosis triggers 

phagocytosis by migrating macrophages, the eye’s dimensions diminish as the vitreous 

cavity shrinks, and normally, the lens deteriorates. There is a concurrent proliferation of cell 

types that ultimately restores function to the eye: cells destined to from new lens, new RPE, 

and new retina appear and may migrate to sites of continued development. Even cell death 

among regenerating cells may further affect the changing morphology of the eye 

(Oppenheim, 1981). 

Neural retina regeneration in larval Triturus. pyrrogaster and T. viridescens, as in adult newts, 

was initiated primarily at the growth zone of the anterior complex. Larval urodelan eyes, 

unlike the eyes of adults, are resistant to a temporary loss of blood supply and can be 

transplanted without a degeneration of the neural retina (Stone, 1930). Regeneration is more 

rapid in larvae than adults, and is initiated exclusively from the peripheral margins of the 

retina. In larval Ambystoma maculatum lentectomy and retinectomy result in regeneration 

from the marginal growth zone as in T. viridescens (Stone and Cole, 1942; Stone and Ellison, 

1945). However, neural retina regeneration did not occur over a waiting period of sixty days 

when only the retinal pigment epithelium was left in the eye. 

Comparing regenerative events of newt limbs with those of the eye is relevant (Zarrow, 

1961). During the first stage of limb regeneration, the wound is covered by a specific wound 

epithelium without which regrowth will not occur. This special epithelium is known as the 

“wound blastema”. A sutured wound will not regenerate…it requires the wound blastema 

to organize regrowth of the missing tissue(s). Initially, this epithelium is translucent, and 

later becomes pigmented. It is formed by a single layer of cells that migrate from the 

periphery of the wound. This regenerative layer later proliferates, becoming up to several 

cell layers thick, and displays extensive mitotic activity. Initially, the epidermal cells are 

squamous, becoming columnar as they proliferate. Later they are almost exclusively 

cuboidal. The basal layers, however, remain low columnar (Zarrow, 1961). The basal cells of 

the wound epithelium form villous projections into the subjacent dermis. In normal dermis, 

the reticular basement membrane forms a coarse network through which migratory 

(macrophage) cells move with relative ease, extending their pseudopodia between the fibers. 

Epithelization of the wound is followed by a random deposition of fibrils basally that in 

form resembles a feltlike mat, similar to the normal dermis. Later, lamellar organization and 

differentiation occur. 
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5. Morphometry may be the principle way to solve certain developmental 
problems: 3-D analysis of primordial follicle distribution 

Some problems in development are best solved using morphometric analysis.  A prime 

example of this is the ongoing question of ovarian follicular reserves.  A “central dogma” of 

female reproductive biology has long held that oogenesis ceases prior to birth in most 

mammals and that the functional lifespan of the ovaries is dictated in part by the number of 

oocytes present; a number that is known to decline precipitously during both fetal 

development and postnatal life. Primordial (dormant) follicles are distributed in an 

apparently random fashion throughout the ovarian outer cortex during the three-day estrus 

cycle of the mouse. However, a discrepancy of 10-fold or more has been shown in the total 

numbers of follicles among individuals and among mouse strains (Bolon et al., 1997; Bucci et 

al., 1997).  Most consider this a failure of the sampling methods, and call for a more reliable 

way to evaluate ovarian follicular reserves using a standardized procedure. Most reported 

methods employ sampling of the ovary by counting representative sections. They use this 

data to calculate the number of follicles per representative volume, and then multiply that 

figure by the total volume of the ovary under study(Britt et al., 2004). However, it is difficult 

to see how one can improve on total sampling of the ovarian reserve, since there are widely 

different follicle populations among different strains and ages of mice (Myers et al., 2004).  

This fact, in addition to evidence that replacement germ cells may exist in the bone marrow 

(Tilly, 2003), suggest that gametes may arise from a more complicated stem cell population 

than long supposed. 

An alternative hypothesis for such variation could be that the population of follicles in the 

mouse ovary is dynamic, and is in fact replenished by as yet undetermined mechanisms.  

We designed a three-dimensional reconstruction method to accurately portray primordial 

follicle distributions in young mouse ovaries.   We reasoned that primordial follicles are not 

randomly distributed throughout the ovarian cortex, and wished to visualize the variation 

in follicle distribution in the cortex from ovary to ovary.  Our previously unpublished work 

is presented here. 

5.1 Specimen preparation and histological assessment 

Three “wild-type mice” were raised until 5 months of age and euthanized by CO2 overdose 

during the same stage of estrus. Their left ovaries were fixed in Bouin’s fixative and then 

paraffin embedded.  The tissues were serially sectioned at 6µm and stained with Periodic 

Acid Schiff (PAS) and iron hematoxylin.    

Histological examination of the stained and sectioned ovaries showed good preservation of 

tissue structure and normal ovarian anatomy.  However, rare clusters of primordial oocytes 

sharing a single follicle were found (Figure 4).  I have found no reference to the occurrence 

of follicles with multiple oocytes in the literature.  I suspect we found these rare follicles 

because we were very thorough in our examination of every section from each ovary.    We 

found just two such follicles in the three ovaries reconstructed in Figure 5, and no more than 

three among several other ovaries not included in this study. These unusual compound 

follicles are very interesting, although their rarity is an obstacle to further study. 

www.intechopen.com



 
Morphometry Applied to the Study of Morphological Plasticity During Vertebrate Development 

 

101 

5.2 Analysis of primordial follicular distribution 

Using a Zeiss microscope equipped with a camera lucida, tracings of every section within 

each ovary were made at 100X magnification.  Each tracing delineated the boundary of the 

ovary as well as the location of primordial follicles within that section.  Since each follicle 

occupied more than one section, primordial follicles were defined in this study as those 

sections containing the nucleus of the oocyte, and surrounded by a single layer of 

predominantly squamous granulosa cells, of which no more than fifty percent were 

cuboidal. We used the tracings to map the coordinates of each primordial follicle in three-

dimensional space using SYSTAT with the ovary slice number as the Z coordinate.  

 
 
 

 
 
 

Fig. 4. Cluster of three oocytes within a single primordial follicle from a 6 micron paraffin 
section stained with iron hematoxylin and PAS. Primordial oocyte clusters are not discussed 
in the literature, however we see them occasionally. They are usually located near the 
germinal epithelium, as seen here. 
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Fig. 5. 3-D reconstruction of primordial follicle distribution within three mouse ovaries. 

Ovary A. Coefficient of Dispersion = 2.30, Ovary B. Coefficient of Dispersion = 1.28, Ovary 

C. Coefficient of Dispersion =4.05. In this representation, follicles that are near the observer 

in the Z axis are shown as large circles, whereas those further away are small circles. Note 

that ovary B has far fewer follicles than either A or C, although all three were from 5 month 

old female mice that came from the same litter. Note that none of these have random 

distributions of follicles, but rather, the follicles occur in clumped patterns. 

Each ovary drawing was divided into approximate cubic units (350 X 350 X 300 µm), and 

then the number of primordial follicles in each cube was recorded, discounting cubes 

containing the medulla or corpora luteae. We graphed the positions of primordial follicles 

among cubes using a modified Poisson distribution, and then calculated a coefficient of 

dispersion by finding the ratio of the variance of numbers of follicles per cube to the mean 

number per cube.  

A coefficient of dispersion greater than 1 is indicative of a clumped distribution pattern. 

All three ovaries had a coefficient of dispersion greater than 1, thus we conclude that 

primordial follicles are non-randomly distributed in the ovarian cortex. Also apparent 
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from the figures is that the number of primordial follicles varies widely from one ovary to 

the next.  

From just these three reconstructions, it may be seen that a) there are not enough 

primordial follicles in the 5 month mouse ovary to account for the number required 

throughout its reproductive lifespan, b) primordial follicles are not randomly dispersed 

throughout the ovary, and c) numbers of follicles vary widely from one mouse to the next, 

although all three were collected while in the same phase of the estrus cycle. These 

observations demonstrate the power of careful morphometry in elucidating important, 

fundamental facts about the basic biology of the organism that are difficult to obtain any 

other way. 

6. Summary 

In this paper, I have tried to provide a sense of the great range of morphological plasticity in 

developing systems…both plasticity of normal development, and in response to injury or 

environmental change. In addition to a brief review of the literature, I have used examples 

from my own work (both published and unpublished) to illustrate the plasticity of form 

among a wide variety of vertebrate embryos, and I have indicated how morphometric 

analysis is a useful tool for learning about the changes of form possible in developing 

vertebrates. The emergent properties of the developing organism, both in response to the 

environment, or following injury, illustrate yet again that in biological systems, the whole is 

always greater than the sum of its parts. 
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