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1. Introduction 

I will first briefly review the types and range of morphometric studies of the Hymenoptera, 

and will discuss the characters used. Wing venation characters are very commonly 

employed and I will briefly discuss wing development and functional aspects of 

hymenopteran wings in this context. The chapter will be partly a selected review of work in 

this area by myself and others but will also include some original work of my own not 

previously published. 

The Hymenoptera are an extremely diverse order of insects containing 144,695 described, 

extant species (Huber, 2009), fewer than the Coleoptera (beetles) and Lepidoptera (moths 

and butterflies), however if undescribed species are included then the Hymenoptera may be 

the most specious of all insect orders and there could be as many as a million species 

(Sharkey, 2007). There are two main groups of the Hymenoptera; the more primitive 

Symphyta (sawflies, horntails) and the Apocrita, which contain 93% of the species (Huber, 

2009.) The Apocrita is subdivided into the Parasitica (parasitoids) and the Aculeata, the 

stinging Hymenoptera which includes the familiar ants, bees and wasps. There are many 

evolutionary and taxonomic questions concerning the Hymenoptera which can be answered 

using applications of morphometrics. 

Morphometrics can be broadly defined as the quantitative study of the size and shapes of 

organisms. Often only parts (e.g. limbs) or organs of an organism are measured, and more 

general conclusions are drawn about evolutionary relationships, for example, from these 

measurements. What is now called traditional morphometrics or multivariate morphometics, 

is the application of multivariate statistical techniques (e.g. discriminate function analysis) to 

morphological data sets (Adams et al., 2004). One problem, in addition to others, with using 

standard multivariate methods for the analysis of shape is that linear distances are usually 

highly correlated and so much effort was expended correcting for size (Adams et al., 2004). 

The “Geometric Morphometric Revolution” overcame these problems by developing 

methods which allowed the shape of parts, or of the whole organism to be analysed (Rohlf 

& Marcus, 1993; Adams et al,. 2004). This is geometric morphometrics. 
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Morphological measurements of insects, including Hymenoptera and especially the eusocial 

species, have had a long history of use (e.g. Huxley 1972) and have often been termed 

morphometrics. This is not true multivariate morphometrics as currently defined above and 

often only involves plots of two variables, such as head width and antennal scape length to 

describe allometric growth and caste differences in ants (Huxley, 1972; Wilson, 1971), 

although a combination of univariate and multivariate statistics has sometimes been 

employed to determine caste differences (e.g. Gelin et al., 2008). In other studies, such as 

those on bees, multiple characters will be measured and used descriptively but multivariate 

statistical analysis is not employed. I will refer to this approach as classical morphometrics.  

2. Morphometric studies of hymenoptera 

2.1 Wings and wing venation characters 

Classical morphometric studies have primarily used various mouthpart measurements in 

addition to a measure of overall size usually radial cell length or total length of the wing 

(Medler, 1962; Pekkarinen, 1979; Harder, 1985), however wing measurements alone have 

been used in the majority of traditional and geometric morphometric studies. In 

holometabolous insects the longitudinal veins develop first, followed by the crossveins. 

Wing veins contain trachea, blood lacunae and nervous tissue, and are sensitive to 

developmental disturbances, as shown by studies of Drosophila (Marcus, 2001). The primary 

function of the wing veins is to provide structural support and the pattern of venation is a 

crucial determinant of flight mechanics. During flight insects constantly adjust wing camber 

for optimal air flow, and this adjustment results from the flexural stiffness of the wing, 

which in turn depends on the position of the crossveins (Marcus, 2001). The pattern of 

venation can be quantified by measuring the coordinates of the junctions (which I will call 

points) of the longitudinal and the crossveins, which presumably reflect phylogenetic and 

developmental information. Wing morphometrics has been successfully used in taxonomic 

studies of Hymenoptera to differentiate between closely related taxa, and has also shown 

significant differences in wing shape, size and mechanical properties between species 

(Aytekin et al., 2007), however there are only a relatively few studies using wing 

morphometrics to estimate fluctuating asymmetry.  

Essentially the same set or a slightly reduced set of coordinates have been employed in most 

studies of Hymenoptera. Forewings have been used in all studies but some have also used 

data from the hindwings (Aytekin et al., 2003, 2007; Klingenberg et al. 2001). Representative 

examples of hymenopteran forewings are shown in figure 1 (bumble bee, Bombus), figure 2 

(solitary wasp, Sphex), figure 3 (social wasp Dolicovespula) and figure 4 (parasitoid wasp, 

Braconidae) with the points used for measurement. The wing venation in figure 1 is 

essential homologous among bees (Table 1) and a maximum of 20 points in any particular 

study have been used on the forewing (Table 1) and six on the hindwing (Aytekin et al., 

2003, 2007; Klingenberg et al., 2001). There is a slight difference in the venation between 

bumble bees and honeybees which means that point 23 is not homologous. How the 

measurements are then analysed depends on the approach, e.g. traditional or geometric 

morphometrics, etc. The wing venation in figure 2 is homologous among some of the 

aculeate wasps (Table 1). 
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Fig. 1. Right forewing of a Bombus rufocinctus queen. This shows the total of 29 points which 

have been used in various combinations for multivariate morphometric studies of bees (see 

Table 1). The wing venation and the points are homologous among taxa of bees. The 

numbering of the first 20 points follows Aytekin et al. (2007). The length (distance 1-2) of the 

radial (= marginal cell) cell is also indicated as this has been used as one measure of size in 

some studies. The distance from the tegula (point 28) to either the distal end of the radial cell 

1) or to the wingtip (29) have also been used a measures of bee size. 

 

Fig. 2. Forewing of Sphex maxillosus redrawn from the photograph (Figure 1) of Tüzün 

(2009). This shows the total of 22 points which have been used in various combinations for 

multivariate morphometric studies of wasps (see Table 1). The wing venation and the points 

are homologous among taxa of aculeate wasps. The numbering of the first 20 points follows 

Tüzün (2009). 
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Family, 
Tribe or 
subfamily 

Genus Number
of 

points

Points used (forewing) Caste/
Sex1 

Type of 
study2 

Reference 

Apidae, 
Bombini 

Bombus 20 Fig. 1 : 1-20 M G, C Aytekin et 
al. 2007 

Apidae, 
Bombini 

Bombus 20 Fig. 1: distances (28-29),(20-27),
(1-27),(1-5), 
(3-16),(10-13),(9-10),(3-12)  

Q ,W T, C Aytekin et 
al. 2003 

Apidae, 
Bombini 

Bombus 19 Fig. 1: 
1,2,3,4,5,8,9,10,11,12,13,14,16,18,19,21,
23,24,25 

Q T, NT Plowright 
& Stephen, 

1973 

Apidae, 
Bombini 

Bombus 19 Fig. 1: 
1,2,3,4,5,8,9,10,11,12,13,14,16,18,19,21,
23,24,25 

Q T, C Plowright 
& Pallett, 

1978 

Apidae, 
Bombini 

Bombus 19 Fig. 1: 
1,2,3,4,5,8,9,10,11,12,13,14,16,18,19,21,
23,24,25 

Q T, C Plowright 
& Stephen, 

1980 

Apidae, 
Bombini 

Bombus 19 Fig. 1: 
1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,18, 
19,23,26 

Q, W T, C Kozmus et 
al., 2011 

Apidae, 
Bombini 

Bombus 14 Fig. 1: 1,3,4,5,8,9,10,11,12,16,17,18,19,24 Q T, C Owen et 
al., 2010 

Apidae, 
Bombini 

Bombus 13 Fig. 1: 3,4,5,7,8,9,10,11,12,14,17,18,19,24 W G, FA Klingenbe
rg et al., 

2001 

Apidae, 
Apini 

Apis 19 Fig. 1: 
1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,18, 
19,23,26 

W G, FA Smith et 
al., 2007 

Apidae, 
Apini 

Apis 19 Fig. 1: 
1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,18, 
19,23,26 

W G, 
ABIS, C 

Francoy et 
al., 2009 

Apidae, 
Euglossini 

Euglossa, 
Eulaema 

Fig. 1: distances M1 (1-17), M2 (1-12), 
M3 (12-18), M4 (17-18) 

M FA Silva et al., 
2009 

Sphecidae, 
Sphedini 

Sphex 20 - 24 Fig. 2: 1-20 ? G, C Tüzün, 
2009 

Sphecidae, 
Larini 

Tachysph
ex 

15 Fig. 2: 
1,2,3,4,6,7,8,9,10,13,14,17,18,21,22 

M, F G, C Pretorius, 
2005 

Vespidae, 
Polistini 

Polistes Fig. 2: distances (1-4),( 7-11), (10-12), 
(13-14) 

Q, M T, V Eickwort, 
1969 

Vespidae, 
Vespinae 

Dolichov
espula 

17 Fig. 3: 1-17 M T,C Tofilski, 
2004 

Braconidae, 
Agathidinae 

Bassus 15 Fig. 4: 1-15 F G, C Baylac, et 
al. 2003 

1 Q = queen, W = worker (female), F = female, M = male, ? = sex not specified. 
2 G = geometric morphpmetics, T = traditional morphpmetics, ABIS = automated bee identification system,  
FA = fluctuating asymmetry, C = classification/taxonomy, NT = numerical taxonomy,  
V = quantitative variation. 

Table 1. A representative selection of multivariate morphometric studies of the 
Hymenoptera. Either the distances between points, the distance of each point from an 
origin, the Cartesian coordinates of the points, or the angles between certain points are used 
as data. See the text for details of each study. 

www.intechopen.com



 
Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees (Bombus, Apidae) 5 

 

Fig. 3. Right forewing of a Dolicovespula sylvestrimale redrawn from figure 4 of Tofilski (2004). 

 

Fig. 4. Right forewing of a Bassus tumidulus female redrawn from figure 2 of Baylac et al. 
(2003). 

As can be seen from the figures and Table 1, the wing venation and the wing points are not 

homologous among even all the Apocrita represented here, so morphometric comparisons 

have to be done on relatively closely related species. Wing vein characters are, however, used 

in cladistic analysis (Alexander, 1991; Sharkey & Roy, 2002; Shih et al., 2010) although these are 

generally not quantitative but instead presence/absence of veins, etc. As Sharkey & Roy (2002) 

point out reduction and loss characters are difficult to code and are subject to homoplasy.  

2.2 Classical morphometrics 

Medler (1962) measured the lengths of the radial cell of the forewing, the glossa, the 

prementum and the first segment of the labial palpus in 35 species of bumble bees (Bombus 

spp.). He then calculated correlation coefficients between each of these characters and 

calculated a wing index and a labial index (queen/worker x 100). Medler (1962) found that 
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these indices did vary among the recognized subgenera of Bombus. Univariate measures of 

various characters of bumble bees and correlations between characters have been reported 

in other studies (Pekkarinen, 1979; Harder 1982, 1985; Owen, 1988). Pekkarinen (1979) 

measured radial cell length and calculated mouthpart indices for 13 species of bumble bees 

in Denmark and Fennoscandia. He found that many closely related species, subspecies or 

populations could be distinguished from one another on the basis of mouthpart indices 

(mouthpart length/radial cell length). He also found allometric variation of wing length and 

some mouthpart indices with body size (Pekkarinen, 1979). 

Morphometric variation in relation to foraging and resource partitioning has been 
extensively studied in bumble bees, but these have been limited to univariate measures or 
indices of characters important for the foraging behaviour of worker bees. It is well 
established that glossa (tongue) length is a major determinant of flower choice as there is a 
positive correlation between glossa length and corolla length of flowers visited (Pekkarinen, 
1979; Harder, 1985; Prŷs-Jones & Corbet, 1987). However Harder (1985) found that besides 
glossa length other factors, such as body size, wing length flower species richness and plant 
abundance, also influence flower choice. 

Similar morphometic studies have also been done with other bees, for example stingless 
bees, the Meliponinae (Danaraddi & Viraktamath, 2009), and univariate measures of size 
variation, usually in relationship to sex ratios and sex allocation, is well known in leafcutter 
bees, particularly Megachile (e.g. Rothschild, 1979; O’Neill et al. 2010). I am not including 
here studies of quantitative genetic variation and heritability as these will be discussed later. 

2.3 Traditional morphometrics  

Discriminant function analysis, introduced by Fisher (1936), has been widely used in 
traditional morphometrics. Discriminant analysis is used to classify individuals into groups, 
i.e. to define group boundaries (Sneath & Sokal, 1973; Hintze 1996). It derives linear 
functions of the measurements which best discriminate populations (Fisher, 1936). These 
maximize discrimination between groups, the goal being to be as certain as possible that 
individuals are assigned to the “correct” group according to a qualitative predictor variable. 
Mathematically the technique is similar to multiple regression analysis, the difference being 
that in discriminant analysis the dependent variable is discrete instead of continuous 
(Hintze 1996). The predictor variable in taxonomic studies is species name, and the null 
hypothesis is that the original classification of the species is correct. Since discriminant 
analysis derives equations that maximize distinction between groups it is an inherently 
conservative technique as this will correspondingly minimize the likelihood of making a 
Type I error. Where real differences do exist the technique does correctly discriminate 
between species. Canonical variates analysis is very similar to discriminant function analysis 
except that the discriminate scores, D, are plotted in a system of orthogonal axes, which are 
the canonical variates (Sneath & Sokal, 1973). Discriminant functions are relatively 
insensitive to overall size differences, but an individual of the same shape but of much 
different size may be classified incorrectly (Sneath & Sokal, 1973). 

Traditional morphometric approaches have been applied to problems of taxonomy, 

classification and geographic variation in the honeybee Apis mellifera and the other three 

commonly defined species; A. florea, A. cerana, and A. dorsata (Ruttner, 1986). A combination 
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of discriminant function analysis, principal component analysis and cluster analysis allows 

the 23 geographic races of A. mellifera to be distinguished (Ruttner, 1986). Forty 

morphological characters were used for this analysis including angles of wing venation 

(Ruttner, 1986). I shall not attempt to review the large literature on honeybee morphological 

variation, instead I will concentrate mainly on some examples from bumble bees.  

An early application of traditional morphometrics and numerical taxonomy to bumble bees 
was the study of Plowright & Stephen (1973) on the evolutionary relationship of Bombus and 
their social parasites, Psithyrus. They measured the coordinates of 19 points using point 19 
as the origin and the line from 19-4 as the horizontal axis (Fig. 1, Table 1). The measurements 
were standardized by dividing them by the length 19-4 to give variables independent of size 
(Plowright & Stephen, 1973). The generalized Mahalanobis distance, D2, was calculated for 
each species pair (Sneath & Sokal, 1973) and each distance was subtracted from the largest 
distance to give a measure of similarity (Plowright & Stephen, 1973). Plowright & Stephen 
(1973) then used weighted-pair-group cluster analysis (Sneath & Sokal, 1973) to produce a 
phenogram. The 13 species of Psithyrus were clearly separated from the 60 Bombus species. 
They also used multiple discriminant analysis (canonical variates analysis) to visualize the 
groupings (Hintze, 1996). Again Psithyrus was clearly separated from the Bombus subgenera 
on the plot of the first two canonical variates (Plowright & Stephen, 1973).  

Traditional morphometrics has also been successful for lower level species discrimination. 

As will be described later, there are numerous taxonomic problems in the genus Bombus 

concerning the exact relationship of closely related species. Plowright & Pallett (1978) 

applied the same measurement techniques as used by Plowright & Stephen (1973) and 

discriminant analysis to re-investigate the taxonomic status of B. sandersoni Fkln. They 

measured previously identified museum specimens, and found a non-overlapping 

separation between B. sandersoni, and B. frigidus F. Sm., and B. vagans F. Sm. Therefore 

Plowright & Pallett (1978) suggested retaining sandersoni as the valid name for the species. 

However they did also point out that their results did not preclude this taxon from being a 

clinal variant of frigidus. Similarly Plowright & Stephen (1980) re-examined the taxonomic 

status of Bombus franklini (Frison) and multivariate analysis gave a clear separation of 

franklini from other species within the subgenus.  

Tofilski (2004) was able to correctly classify all 22 individuals of the two wasp species 

Dolicovespula sylvestrimale and D. saxonica using stepwise discriminate function analysis of 

the coordinates of 17 wing vein points (Fig. 3, Table 1).  

Not only have the distances between points been used for traditional and geometric 

morphometrics, but the angles described by wing veins, and some indices based on the 

points have also been calculated and used as characters for species discrimination (Tüzün, 

2009; Kozmus et al., 2011). Also Alexander (1991) used two wing vein angles in his cladistic 

analysis of the genus Apis. Tüzün (2009) used wing vein angles to discriminate between and 

30 species of wasps from different families. He used a combination of traditional and 

geometric morphometric techinques. He used 20 points (see Fig. 2, Table 1) and an 

additional four points (not shown here) on some species, measured the distance between all 

combinations of points and calculated vein length ratios (Tüzün, 2009). All possible 

combinations and ratios were calculated and also all angles between points were calculated, 

yielding a table of 77 different angle and ratio values for all species (Tüzün, 2009). One focus 
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of his study was to differentiate between three Sphex species S. maxillosus, S. flavipennis and 

S. pruniosus. He used stepwise discriminant fuction analysis and found that the three species 

were unambiguously separated by this method (Tüzün, 2009). He measured 27 more wasp 

species and entered the data into a database. He wrote a computer program to compare an 

unknown specimen with those in the database by calculating: 

Total Angle Variation = |Angle 1 [unknown species]-Angle 1[species found in the database] |+|Angle 2 
[unknown species]-Angle 2[species found in the database] |+…+ etc., and 

Total length Variation = |1-Length 1[unknown species]/ -Length 1[species found in the database] |+ |1-

Length 2[unknown species]/ -Length 2[species found in the database] |+…+ etc. (Tüzün, 2009). 

The lower the value the higher the probability of a correct identification. Some examples are 

given in Table 2 which is extracted from Table 6 of Tüzün (2009). He also calculated a 

Similarity coefficient = (1/A x R) x K, where A = sum of the differences in wing angles, and 

R = sum of differences among the ratios of wing veins, and K = a constant (Tüzün, 2009.) 

 

Pre diagnosed 
species 

Species 
estimated by 
the program 

Sum of 
differences in 
wing angles 

(A) 

Sum of 
differences among 
the ratios of wing 

veins (R) 

Result: 
Similarity 
coefficient 

Vespa 
orientalis 

Vespa orientalis
19.873 2.111 23.8 

 Vespa crabro 51.714 2.856 6.8 

 Vespa bicolor 55.962 3.368 5.3 

  

Sphex 
rufocinctus 

Sphex 
rufocinctus

60.036 0.495 33.6 

 Sphex maxillatus 87.548 2.459 4.6 

 Myzina 
tripunctata

78.030 2.001 6.4 

  

Eumenes 
dubius 
cyranaius 

Eumenes dubius 
cyranaius 16.048 0.171 364.4 

 Eumenes 
coronatus 
detensus

33.398 3.193 9.4 

 Eumenes 
pomiformis

60.840 4.483 3.7 

Table 2. Some examples of the identification of wasp species according to wing 

morphometric values. (Modified from Tüzün (2009)). 

His methods are clearly very successful at discriminating between wasp species, at least 

those represented in his data base. Kozmus et al. (2011) used eight lengths, 17 wing angles 

and five indices calculated from 19 points (Fig. 1, Table 1) for a total of 37 characters, and 

measured 530 queens and workers from 18 European species of bumble bees. They did 
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discriminant analysis based on Mahalanobis distance and from this assigned each specimen 

to a group. Canonical variates analysis was also performed and used to calculated three 

variables to separate the species into groups (Kozmus et al, 2011). They were able to 

correctly assign 97% of the bumble bees to the correct species, an in 13 species all the bees 

were correctly assigned (Kozmus et al, 2011). They found that three characters were 

particularly informative, based on high R2 (explained variability) from an ANOVA. These 

were angle J16, A4 and discoidal shift (Dis D). Angle A4 is the angle described by the points 

(Fig. 1) 9, 7, 5 (where the vertex is denoted by the second number in the series and then first 

and last are the end points of line segments), J16 is the angle described by the points 3, 11, 26 

and Dis D that between 1, 2, 7 (Kozmus et al, 2011). The R2 were 63.82%, 61.91% and 60.30% 

respectively. This particular technique obviously holds great promise for identification and 

discrimination of Bombus species and groups.  

The discussion of combined traditional morphometrics and genetic studies (e.g. Aytekin et 

al., 2003; Owen et al., 2010) will be left until section 4, below.  

2.4 Geometric morphometrics 

As mentioned earlier, the development of geometric morphometrics has led to the analysis 

of shape by removing the confounding effects of size. It encompasses a variety of 

multivariate statistical techniques for the analysis of Cartesian coordinates. These 

coordinates are usually (but do not have to be) based on point locations called landmarks 

(Slice et al., 2009). The studies which I will discuss here are based on landmarks so the 

specific suite of techniques used is referred to as landmark based geometric morphometrics 

(Adams et al., 2004). Since it is crucial to understand exactly how landmarks are defined, I 

have taken the definition directly from Slice et al. (2009): 

“landmark - A specific point on a biological form or image of a form located according to 

some rule. Landmarks with the same name, homologues in the purely semantic sense, are 

presumed to correspond in some sensible way over the forms of a data set. 

Type I landmark - A mathematical point whose claimed homology from case to case is 

supported by the strongest evidence, such as a local pattern of juxtaposition of tissue types 

or a small patch of some unusual histology.  

Type II landmark - A mathematical point whose claimed homology from case to case is 

supported only by geometric, not histological, evidence: for instance, the sharpest curvature 

of a tooth.”  

(There are also Type III landmarks which do not concern us here). It is obvious that vein 

intersection points on insect wings are ideal Type I landmarks (Figs. 1, 2, 3,4), although they 

will not be homologous between relatively distantly related taxa (e.g. wasps and bees). It is 

better to use Type I landmarks and not Type II landmarks (e.g. wingtips) for evolutionary 

and developmental studies (Aytekin et al., 2007). Therefore differences between wings, 

either right and left ones of an individual, or differences between species can be analyzed 

using the Cartesian coordinates of landmarks as the data. The analysis proceeds by 

removing non-shape variation. This is variation in orientation, position and scale (Adams et 

al., 2004). There are a number of superimposition methods developed to remove the non-
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shape variation, but the Generalized Procrustes analysis (or just Procrustes analysis) has 

become widely used. Procrustes analysis is an optimization technique which superimposes 

landmark configurations using least-squares estimates for translation and rotation 

parameters (Adams et al., 2004). After superimposition the deformation or “warping” in 

shape of each individual from a consensus form is given by partial warp scores (Adams et 

al., 2004; Aytekin et al., 2007 ). The partial warp scores can be analysed statistically to 

compare variation in shape within and between populations. Relative warp analysis is a 

principal component analysis of the partial warps (Adams et al., 2004). The thin-plate spline 

is used to plot the deformations them on a grid.  

Landmark based geometric morphometrics and Procrustes methods have been used in a 
wide variety of studies over a wide range of taxa (Adams et al., 2004). Three applications of 
relevance here are (1) allometry of shape, (2) fluctuating asymmetry, and (3) taxonomy and 
classification.  

Allometry of shape was detected by Klingenberg et al. (2001) in their study of development 
and fluctuating asymmetry in bumble bees, although it was not the main focus of their 
investigation. In another arthropod, the Fiddler crab, Rosenberg (1997) analysed shape 
allometry of the major and minor chilipeds. Studies of fluctuating asymmetry will be 
discussed in section 3, below. Here I will review a few selected studies of Hymenoptera 
using landmark based geometric morphometrics.  

a. Bumble bees: As will be discussed in section 4, there are many taxonomic problems 
involving the exact status of species in some subgenera of bumble bees (Bombus). 
Aytekin et al. (2007) used landmark based geometric morphometrics to resolve some 
taxonomic problems in the subgenus Sibiricobombus. In particular the specific of B. 
vorticus and B. niveatus has been questioned (Williams, 1998). They collected 52 males 
from six species representing three subgenera (see Table 3).  

 

Species  Bending energy (10-5) 

 n Front-wing Hind-wing 

B. (Sibricobombus) niveatus 26 3369 1121 

B. (Sibricobombus) vorticosus 6 3850 1117 

B. (Sibricobombus) sulfureus 3 4004 1299 

B. (Mendacibombus) handlirchianus 6 5073 1816 

B. (Melanobombus) erzurumensis 3 2087 289 

B. (Melanobombus) incertus 8 294 61 

Table 3. The six species of bumble bees collected by Aytekin et al. (2007). Also given are the 
sample sizes (n) and the bending energies for the front- and hind-wings, calculated from the 
thin-plate-spline. Modified from Aytekin et al. (2007). 

Principal component analysis clearly separated all species except B. vorticus and B. niveatus, 

also there was no significant difference in size between these two species although all others 

could be separated by size Aytekin et al. (2007). The bending energies, calculated from the 

thin-plate-spline showed some difference in the front-wing between B. vorticus and B. 

niveatus, but were remarkably similar for the hind-wings (Table 3). They concluded that 

there were no significant morphological differences between these two taxa and they should 
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be considered conspecific. Aytekin et al. (2007) also concluded that landmark based 

geometric morphometrics was a powerful method for resolving taxonomic problems in 

bumble bees and that venation shape may be an important factor for the mechanics of 

bumble bee flight. Although it must be realised that the bending energies from the thin-plate 

spline (Table 3) do not represent actual bending energies of a real bumble bee wing, but that 

they may nevertheless reflect some real mechanical differences between species. Shih et al. 

(2010) analysed the patterns of wing venation in extinct (fossil) and living pelecinid wasps 

and identified an “X” pattern of venation in the forewing which evolved and was 

maintained in some lineages. They suggest that this pattern could have provided a stronger 

wing structure and led to better flight performance for the larger species (Shih et al., 2010).  

b. Apis mellifera: Francoy et al. (2009) used geometric morphometrics and an Automated Bee 
Identification System (ABIS) to examine changes in morphology of an Africanized 
honeybee population in Brazil 34 years after the African bee swarms escaped. This is 
interesting because it compare bees collected from 1965 – 1968 with those collected in 2002 
at the same location (Francoy et al., 2009). In 1957 swarms of 26 colonies of the African 
honeybee Apis mellifera scutellata escaped in Brazil and hybrized with the previously 
introduced European honeybee races (Francoy et al., 2009). These Africanized bees have 
since spread throughout South America, Central America and into the USA by 1990 and 
are now found as far north as Nevada (Francoy et al., 2009). In 2002 Francoy et al. (2009) 
collected samples of five workers from 10 colonies from Ribeirão Preto, about 150 km 
from the original place of introduction of A. mellifera scutellata. They measured the right 
front wing of these specimens, the bees collected from 1965-1968 in the same location and 
also specimens of A. mellifera scutellata, A. mellifera carnica, A. mellifera mellifera, and A. 
mellifera lingustica. They used the standard 19 landmarks on the honeybee wing (Fig. 1, 
Table 1) and carried out two analyses: (1) geometric morphometrics was done using a 
Procrustes superimposition followed by the calculation of the relative warps and then a 
discriminant analysis. Mahalanobis distances, D2, were also calculated (Table 4) and a 
dendrogram was plotted using these values (Francoy et al., 2009); (2) ABIS performs an 
automated analysis of images of honeybee forewings. It analyses the venation pattern and 
then uses various statistical techniques either linear discriminant analysis or a more 
powerful Kernal discriminant analysis which allows species and subspecies identification 
(Francoy et al., 2009). The system has to be “trained” with at least 20 specimens of each 
group (Francoy et al., 2009). 

 

 RP - 1968 RP - 2002 A. mellifera 
scutellata 

A. mellifera 
mellifera 

A. mellifera 
carnica 

A. mellifera 
lingustica 

RP - 1968 - 12.43 12.40 21.60 32.98 29.83 

RP - 2002 - 15.14 24.18 37.68 34.04 

A. mellifera scutellata - 22.47 27.08 23.65 

A. mellifera mellifera - 34.54 29.68 

A. mellifera carnica - 9.32 

A. mellifera lingustica - 

Table 4. Mahalanobis distances, D2, between the centroids of the Apis mellifera groups 

calculated through relative warp analysis (modified from Francoy et al., 2009). RP = Ribeirão 

Preto populations. 
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Fig. 5. A dendrogram produced by the Unweighted Pair-Group method (UPGMA) using the 
Mahalanobis distances in Table 4. Francoy et al. (2009) used the neighbour-joining tree 
method to produce a very similar dendrogram. Note that RP = Ribeirão Preto populations. 

From Table 4, from which a dendrogram is constructed (Fig. 5) it is clear that Africanized 

bees resemble the African race more than they do the European races. Also it is interesting 

to see that there have been some morphological changes in the Africanized bees in Brazil 

over the 34 years since the hybridization event. The 1968 and 2002 Ribeirão Preto 

populations are clearly distinct with a Mahalanobis distance of 12.43 (Table 4, Fig. 5). The 

ABIS gave essentially the same results. 

As mentioned earlier Tüzün (2009) used both traditional and geometric morphometric 

techniques. Clustering of the relative warps also separated the three Sphex species very well. 

Two more studies are of interest as they show slightly different applications of the 

techniques. Pretorius (2005) used standard geometric morphometrics to examine wing 

shape dimorphism between male and female wasps in the genus Tachysphex. He used 24 

species in this genus and measured 15 landmarks (Fig. 2, Table 1). He did find small but 

definite differences in the shapes of the wings between the sexes and cautioned that in an 

analysis of a genus only one of the sexes should be used as small-scale differences, may in 

some cases influence the results (Pretorius, 2005). 

Baylac et al. (2003) studied two closely related species of Bracoinid parasitoids. The two 

species Bassus tumidulus and B. tegularis had been synonymised and then subsequently split. 

Baylac et al. (2003) used geometric morphometrics of wing venation to study this problem 

but they also used some aspects of pattern analysis. Pattern analysis involves statistical 

techniques such as kernel density estimates and Gaussian mixture analysis (Baylac et al., 

2003). Baylac et al. (2003) measured 15 landmarks on the wing (Fig. 4, Table 1) and found 

that both methods did separate the species into two definite morphological groups.  
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It is often useful and informative to combine traditional and geometric morphometric 

techniques and other methods (Fruciano, et al., 2011; Tüzün, 2009; Baylac et al., 2003). For 

instance Fruciano et al. (2011) point out that it may be necessary to use traditional 

techniques to allow a comparison with earlier results in the literature.  

3. Fluctuating asymmetry 

Most animals are bilaterally symmetrical, with paired internal organs and paired 

appendages. However the symmetry is often not exact or “perfect”. There are two general 

classes of asymmetry; conspicuous and subtle; conspicuous asymmetries are very obvious, 

for example the extreme difference in size between right and left claws in some crabs, e.g. 

Fiddler Crabs. However many animals exhibit less obvious types of asymmetry which can 

only be quantified in a sample of individuals, and thus statistical methods must be used to 

analyze it (Palmer, 1994). Measurements are made on a structure on the right (R) and left (L) 

sides of each individual in the sample and an index of asymmetry is then calculated. Three 

types of asymmetry can occur: (1) fluctuating asymmetry (FA), with a normal distribution of 

R- L values around a mean of zero, (2) directional asymmetry (DA) where the mean of one 

side is almost always greater than that of the other, and (3) antisymmetry where there is a 

difference between the two sides but it cannot be predicted which will show the greater 

value, so giving a broad-peaked or bimodal distribution of R-L values about a mean of zero 

(Palmer & Strobeck 1986). 

Developmental stability (DS) is defined as “the ability of an organism to buffer development 

against genetic or environmental perturbation” (Clarke, 1997). For instance, populations 

undergoing decline are likely exposed to environmental and genetic stresses which may 

cause developmental instability (DI) of individuals (Parsons 1990, Milankov et al. 2010). This 

DI is often manifest by deviations from bilateral symmetry (Palmer 1994). Insect wing 

venation characters are ideal for assessing FA and environmental stress. Fluctuating 

asymmetry (FA), where the differences between right and left sides follow a normal 

distribution, should reflect perturbations from perfect bilaterally symmetrical development 

and thus serve as a measure of the stresses experienced by an individual during its 

development (Palmer & Strobeck 1986). In turn it can be used as an epigenetic measure of 

stress in natural populations (Parsons 1990). Therefore the estimation of FA could be an 

important indicator of the “health” of species and help guide decisions regarding 

conservation. Recently much attention has been paid to the significant contraction of the 

distributions, and the decline in the abundance, of some bumble bee species in North 

America and Europe (Evans et al. 2008; Goulson et al. 2008). In North America Bombus affinis 

Cresson, B. terricola Kirby and B. occidentalis Greene have all disappeared from significant 

parts of their historic ranges (Colla and Packer 2008; Evans et al. 2008, Grixti et al. 2009; 

Cameron et al. 2011). If FA is a good predictor of stress then we would predict higher levels 

of FA in species undergoing decline than stable species.  

3.1 Developmental stability, fluctuating asymmetry and quantitative genetic variation 

Here I clarify the relationship between developmental stability, fluctuating asymmetry and 
quantitative genetic variation in the Hymenoptera. Hymenoptera (ants, bees and wasps), 
have what is known as a haplodiploid genetic system. This means that females (queens and 
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workers in eusocial species), like most animals, are derived from fertilized eggs while males 
arise from unfertilized eggs. Thus males are haploid (n) inheriting only one member of each 
pair of chromosomes, those from their mother, whereas females are diploid (2n) having both 
members of each pair of chromosomes. Formally the system of inheritance follows the 
pattern of X-linked inheritance in organism in which both sexes are diploid. Many aspects of 
the genetics of X-linked or haplodiploid genes are different from that of autosomal genes, 
including the expression of quantitative or polygenic characters. One consequence is that for 
a genetically determined quantitative trait males are likely to be more variable than females 
(Eickwort, 1969; Owen, 1989). The variances are derived on the assumption of dosage 
compensation of genotypic values in males (Fig. 6), and we must distinguish between mean 
within-family (or within-colony) variances and population variances. Consider a single gene 
locus with alleles A1 and A2 at frequencies p and q respectively, and let the genotypes take 
the genotypic values shown in figure 6. 

 

Fig. 6. Arbitrarily assigned genotypic values of a quantitative trait at an X-inked or 
haplodiploid locus, showing the difference between dosage compensation (Male DC) and no 
dosage compensation (Male NDC) of male genotypic values. 

The well-known population variances (Owen, 1989) are, 

  Females:   ( )
22

fV = 2pqα + 2pqd  

Af Df= V + V  

  Males:    2
m AmV = V = 4pqb  

Where the average effect α = a+d(q-p),and VAf and VDf are the female additive and dominance 
variance components, respectively. Note that the male genotypic variance, Vm consists solely 
of an additive component, Vm. The corresponding mean within-colony variances are, 

  Females:   ( )2 2
2½ [   ]fV pq ad q p dα= + − +  

  Males:   2
2mV pqb=  

www.intechopen.com



 
Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees (Bombus, Apidae) 15 

It is assumed that the male and female offspring are full-siblings. Thus we can see that with 
(i) no dominance in females (d = 0), and (ii) dosage compensation in males (a = b), then for 
the population variances, 

2m fV V=  

and for the mean within-colony variances, 

4m fV V=  

Thus males are predicted to more variable than females, and this will generally be the case 

unless there is complete dominance in females and only then when the allele frequency 

q>0.62 (Owen, 1989). However if there is no dosage compensation then females will be more 

variable, i.e. Vf >Vm, except with intermediate dominance when q<0.16 and with complete 

dominance when q<0.21 (Owen, 1989). This differential variability has no relationship per se 

with developmental stability and FA, it is just the result of the different ploidy levels in 

males and females. However if genome wide heterozygosity promotes DS then we would 

expect haploid males to show more DI and FA than their diploid counterparts, thus 

haplodiploid organism are good models with which to partition the effects of heterozygosity 

and ploidy on DI and FA (Clarke, 1997; Smith et al. 1997). The prediction is that, due to the 

absence of heterozgosity, the haploid males will show higher FA than the diploid females. 

3.2 Differential morphological variation between the sexes in the hymenoptera 

Males in many species of Hymenoptera, in accordance with quantitative genetic theory are 

indeed more variable in morphological characters than females, although this is not always 

the case. For comparisons of eusocial species it is important to compare reproductives, i.e. 

males with queens and not workers. In the Hymenoptera worker size variation is great and 

due to many different factors (Wilson, 1971). Eickwort (1969) in her multivariate 

morphometric study of Polistes exclamans found that males were more variables than queens 

in the characters used. In addition to wing measurements (see Fig. 2 and Table 1) she also 

used six other morphological characters (number of hamuli, distance between the most 

distal and proximal hamular sockets, mesoscutal width and length, distance between 

compound eyes, head width). She sampled 19 nests and calculated generalized variances 

(D) to compare mean within-colony (nest) variances of males and females. Variance-

covariance matrices were calculated across all the characters for males and females in each 

nest and the determinants of these matrices were defined as the generalized variances. 

Males were more variable than queens (P<0.01), and she noted that even the largest 

generalized variance for queens (0.000006020) was smaller than the smallest generalized 

variance of any group of males (0.000075343) ( Eickwort, 1969). 

Univariate studies of differential variability in the Hymenoptera are relatively common. I 

examined variation of radial cell length (distance between points 1-2, Fig. 1) in the bumble 

bee Bombus rufocinctus. A sample of 787 young queens from 38 laboratory reared colonies 

and a sample of 680 males from 38 colonies were measured. The males, with a coefficient of 

variation (CV) of 5.75% were significantly more variable (P<0.01) than the females 

(CV=3.98%). There were also significant intraclass correlations between male (tm = 0.553) and 
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young queen (tf = 0.435) offspring, indicating a considerable degree of phenotypic 

resemblance between bees of the same caste within each colony (Owen, 1989). Heritability as 

estimated from offspring-parent regression (0.20 ± 0.19 for queens and 0.47 ± 0.38 for males) 

was significantly lower that than estimated from the intraclass correlations, suggesting that 

environmental variation is of the same order of magnitude as additive genetic variation 

(Owen, 1989). 

In other Hymenoptera environmental variation clearly is the most important determinant of 

phenotypic variation. Owen & McCorquodale (1994) examined variation and heritability of 

body size and postdiapause development time in the leafcutter bee, Megachile rotundata. The 

bees were from a domesticated population and the nests were in pine blocks (12 cm long) 

with about 500 standard nest tubes 5 mm in diameter (Richards, 1984). Head widths of 

offspring from total of 200 nests was measured and the frequency distribution is shown in 

figure 7.  

 

Fig. 7. Frequency distributions of head width in a sample of female and male offspring from 
200 nests of Megachile rotundata (modified from Owen & McCorquodale, 1994). 

Female offspring (n=312) from 151 of these nests had a mean head width ( ±SEM) = 3.5  ± 

0.011 mm, and male offspring (n=769) from 172 of the nests were significantly smaller 

(P<0.00001) with mean head width = 2.96  ±0.006 mm. Interestingly the males also were less 

variable with a CV=5.65% as compared to females with a CV of 6.58%. Heritability of head 

width, estimated from offspring-parent regression, was not significantly different from zero 

and was considerably lower than that obtained from the intraclass correlation coefficient. 

Because intraclass correlations can be inflated by environmental variation, the difference 

between these two estimates implies that in this case maternal effects are the most important 

determinant of head width (Owen & McCorquodale, 1994). O’Neill et al. (2010) found that in 

feral populations of M. rotundata offspring size (head width) was generally positively 

related to tunnel diameter. Again, as Owen & McCorquodale (1994) did, they found 

offspring within families were more similar to each other than to bees in other families. 
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O’Neill et al. (2010) concluded that the most important maternal effect which probably 

accounted for this was the amount of provision provided by the mother. In M. rotundata and 

other leafcutter bees there is low if any, genetic variation for body size, and environmental 

factors are the major causes of variation in males and females (Owen & McCorquodale, 

1994). 

In mass provisioning wasps the size of the offspring is determined to a great extent by the 

mass of provision they receive (Hastings et al., 2008), and so the variation in offspring size 

would also reflect the variation in mass provision size. Therefore we would expect genetic 

sources of variance to be quite weak in comparison to environmental causes. This is 

illustrated well by the cicada killer wasp, Specius speciosus (Hastings et al., 2008; 2010). 

Hastings et al. (2010) studied two populations of Eastern cicada killer wasp in northern 

Florida, and they measured wet mass (mg) and right wing length (mm) of males and 

females. Both males and females were significantly larger and heavier at St. Johns than at 

Newberry, but in both populations males were less variable than females. The CV’s 

calculated from Table 1 in Hastings et al. (2010) are: St. Johns, males CV=0.08%, females 

CV=0.10%; Newberry, males CV=0.05%, females CV=0.07%. There is a very interesting 

relationship between body size of the wasps and their prey. S. speciosus females provide 

male offspring with usually a single cicada, and each female offspring with usually two 

cicadas irrespective of prey size (Hastings et al., 2008). Hastings et al. (2008) sampled the 

wasps and cicadas from 12 different locations in 10 states in the USA, and they found a 

significant correlation between wasp size and the mean local cicada mass. However they did 

find the two locations in Florida (St. Johns and Newberry) where the pattern did not hold. 

Hastings et al. (2010) found that in these populations female wasps exhibited prey selection 

by size. Small wasps only collected small cicadas and large wasps only collected large 

cicadas. The small wasps probably cannot carry the large cicadas but the large wasps, which 

could carry the small ones, select only the larger sizes (Hastings et al., 2010).  

3.3 Fluctuating asymmetry in haplodiploids 

There are relatively few studies of FA and DI in Hymenoptera and haplodiploid organisms. 

Some studies have used traditional morphometric methods while others have employed 

geometric morphometric techniques. Clarke’s (1997) study was to test the hypothesis that 

haploid males should show greater DI than the diploid females, as manifest by larger FA in 

males. He used a combination of morphometric (wing vein lengths; the details were 

unspecified) and meristic (number of humuli) in six taxa of Hymenoptera; two races of Apis 

mellifera (capensis and scutellata), A. cerana, Trichocolletes affenutus (Colletidae) , Vespula 

germanica (Vespidae) and Solenopsis invicta (Formicidae). He also assessed two haplodiploid 

thrip (Tysanoptera) species, Haplothrips angustus and H. froggatti, the measure used was the 

number of duplicated cilia along the posterior margin of the forewing. Clarke (1997) 

calculated mean asymmetry values for each character in each sex, and tested the difference 

between sexes using single classification and multivariate analysis of variance. Clarke’s 

(1997) did not find any consistent pattern and his conclusion was that, as a whole, haploid 

males are no more asymmetric than diploid females. Of the 60 direct comparisons made 

using univariate ANOVA only 8% showed the haploid males to be more variable than the 

females and only 3% showed the reverse, and the other comparisons showed no significant 
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difference. Clarke (1997) found no significant difference in asymmetry between males and 

females in the two Haplothrips species. Crespi & Vanderkist (1997) measured FA in the thrip, 

Oncothrips tepperi also to test the hypothesis of higher FA in males, and also to compare FA 

in functional and vestigial traits. The latter should exhibit higher FA than the former due to 

relaxion of selection for functionality (Crespi & Vanderkist, 1997). They measured fore 

femora lengths of soldier and disperser morphs, and wing lengths of dispersers (functional 

traits), and wing length of soldiers (vestigial trait). Analysis was done following the 

methods of Palmer (1994). They found complex interactions between sex, caste and FA, 

namely that for wings FA was higher in female soldiers that in male soldiers, but in 

dispersers males had the higher FA. For the femora males and females did not differ in FA 

in either morph. Crespi & Vanderkist (1997) concluded that there was no consistently higher 

FA in males than females, but that vestigial traits did show higher FA than functional traits.  

Silva et al. (2009) estimated FA in two species of Euglossine bees in Brazil to assess the 

effects of climatic and anthropogenic stresses on these bee populations. They collected 60 

males of each species, 30 from the forest border and 30 from the interior of the forest, and 

half were collected during the hot, wet season and the other half during the cold, dry season 

(Silva et al., 2009). Four measurements (M1, M2, M3, M4, see Fig. 1, Table 1) were made on 

both wings of each individual, and for each measurement FA was calculated. A general 

body size index was obtained from a principal component analysis of measurements M 1-3, 

and then the transformed FA and size index data were analysed using ANOVA (Silva et al., 

2009). There were no differences in FA for the four characters between areas and seasons in 

Eulaema nigrita, however in Euglossa pleostica, they found significant greater FA of M3 in bees 

collected in the hot and wet season than those collected in the cold and dry season. Silva et 

al. (2009) concluded that this species was responding to increased environmental stress in 

the hot, wet season. 

The last two studies of FA that I will discuss used geometric morphometric methods. Smith 
et al. (1997) were interested in partitioning out the effects of ploidy and hybridization on 
levels of FA in A. mellifera. They used the coordinates of 19 points (see Fig. 1 and Table 1) on 
the forewings of ten workers and five males (drones) from each of 27 hives. The coordinates 
were digitized and subject to a Procrustes analysis of asymmetry (Smith et al., 1997). The 
specialized analysis described by Smith et al. (1997) produces a measure of asymmetry, A2, 
for each specimen, then the mean A2 of a series of specimens is decomposed into one term 
for FA and another term for directional asymmetry (DA). Smith et al. (1997) found that 
across all populations total asymmetry was significantly greater (one-way ANOVA, 
P<0.001)for haploid males than for diploid females, however they were surprised to find 
that most of the asymmetry was not due to FA but was directional asymmetry (Table 5). 

 

 All bees Females Males 

n=  377 261 116 

Total squared asymmetry 7.29 6.34 9.42 

Directional squared asymmetry 3.61 2.89 6.31 

Fluctuating squared asymmetry 3.68 3.45 3.11 

Table 5. Partitioning of total squared asymmetry in Apis mellifera into directional and 

fluctuating components. Note all entries are x 104. Modified from Smith et al. (1997). 

www.intechopen.com



 
Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees (Bombus, Apidae) 19 

Smith et al. (1997) concluded that perhaps DA was more common than previously thought. 

Klingenberg et al. (2001) examined FA and variation among individuals in the forewings 

and hindwings of bumble bees as part of an investigation of developmental modularity. The 

fore- and the hindwings develop from separate imaginal discs and so are expected to be 

independent developmental modules (Klingenberg et al., 2001). Klingenberg et al. (2001) 

predicted that patterns of variation among individuals should be similar to the patterns of 

FA within each wing, and that individual variation between fore-and hindwings will co-

vary (depending on how much they really are independent modules), but that FA will be 

independent between them. They measured 13 points on the forewings (see Fig. 1 and Table 

1) and six on the hindwings of worker bees. They used laboratory reared bumble bee 

colonies and subject sets of colonies to three treatments which consisted of providing a flow 

of air through the colonies, two with different concentrations of CO2, 10% and 5%, and one a 

control treatment with just air (ultimately they only used the control and 5% treatments). 

Klingenberg et al. (2001) used geometric morphometric and Procrustes methods to 

characterize size and shape variation in fore- and hindwings separately. They found that the 

major pattern of variation within each wing was the coordinated shifts in sets of landmarks 

over the entire wing. This suggests that each wing is a developmental module which is not 

further subdivided into smaller domains (Klingenberg et al., 2001). As a consequence they 

also concluded that any small perturbations causing FA are transmitted throughout the 

entire wing, affecting all landmarks. Since shape asymmetry co-varied only between fore- 

and hindwings in the CO2 treatment Klingenberg et al. (2001) concluded that the 

developmental interactions between wings are probably related to gas exchange.  

4. Taxonomic and systematic problems: Concordance between genetic and 
morphometric approaches in bumble bees 

Here I will discuss the use of combined genetic and morphometric approaches to resolve 

taxonomic problems, with examples from bumble bees. Bumble bees (tribe Bombini) form a 

well-defined monophyletic group containing a relatively small number of species (239 

according to Williams 1998), thus it may seem surprising that bumble bees pose many 

taxonomic and systematic problems. At the specific level the taxonomic status of closely 

related taxa is often unclear and subject to contradictory interpretations. Bumble bees are 

relatively quite invariant or ‘monotonous’ morphologically compared to other bees 

(Michener 2000), but many species show considerable pile colour variation. Some of this has 

a simple (Owen & Plowright 1980) or relatively simple (Owen & Plowright 1988) genetic 

basis, but most variation is continuous and probably polygenic in nature (Stephen 1957), 

and to complicate matters further, considerable convergence in colour pattern, often 

between distantly related species also occurs (Plowright & Owen 1980). The root of the 

problem is that traditional taxonomic approaches are limited when applied to bumble bees. 

Genetic and statistical methods must be used to understand processes of speciation in 

Bombus. For example, Scholl et al. (1990) found that B. moderatus differed from B. lucorum at 3 

out of 26 enzyme-gene loci, with the electromorphs exhibiting fixed differences in each 

species. Again, Scholl et al. (1992) found fixed electrophoretic differences between B. 

auricomus and B. nevadensis at 5 out of 18 enzyme loci. In both cases the authors suggested 

the return to the original specific designations. A powerful approach, which has been very 

successful in resolving some of these problems, is to combine genetics and morphometrics.  
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Aytekin et al. (2003) combined these approaches to elucidate the relationship between two 

subspecies of Bombus terrestris. In the eastern Mediterranean region two subspecies have 

been recognized, B. terrestris dalmatinus from the Balkans and surrounding areas; and B. t. 

lucoformis from Anatolia (Aytekin et al., 2003). Aytekin et al. (2003) sampled 157 specimens 

of queens and workers from Bulgaria, Greece and Turkey. They assessed allozyme variation 

by using six enzyme systems and morphometric variation by using 28 morphological 

characters. Of the morphological characters employed 13 were distances measured between 

points, eight on the front wing (Fig. 1, Table 1) and five on the hindwing. They found that 

the allozymes exhibited very little variation and the electromorphs appeared to be fixed in 

all populations, and both taxa were monomorphic in all loci scored (Aytekin et al., 2003.). 

They found no heterozygotes or different electromorphs, except B. t. lucoformis found in the 

Ankara region had two alleles for malic enzyme (Me) with electrophoretic mobilities of 100 

and 102. The morphological characters were analysed by multigroup discriminant function 

analysis (canonical variates CANOVAR) and principal component analysis (PCA), and also 

failed to separate the two groups, so (Aytekin et al., 2003) concluded that there was not 

enough of a difference between lucoformis and dalmatinus to warrant separate sub-species 

status. I will now discuss two examples of some of my own work in more detail. 

4.1 B. melanopygus/ B. edwardsii  

Owen et al. (2010) examined the relationship between the two nominate taxa B. melanopygus 
Nylander, and B. edwardsii Cresson, using a combination of genetic and morphometric 
analyses. Traditionally there was absolutely no question that these taxa represented two 
distinct species (Stephen 1957; Milliron 1971) since the bees differ dramatically in the colour 
of the abdominal terga two and three, these being ferruginous (or red) in B. melanopygus and 
black in B. edwardsii, although other morphological differences between the two are minor 
(Stephen 1957; Owen et al. 2010). Moreover, the distributions have relatively little overlap. 
B. edwardsii occurs throughout California and just into neighbouring Nevada, while B. 
melanopygus extends north through Oregon, Washington, British Columbia, Alaska, east into 
Alberta, Saskatchewan, and across northern Canada possibly to Labrador (Stephen 1957; 
Laverty and Harder 1988). They are sympatric only in southern Oregon and northern 
California (Stephen 1957). However, the taxonomic status of these bees was called into 
question when Owen & Plowright (1980) reared colonies from queens collected in the area 
of sympatry. They discovered that pile coloration was due a single, biallelic Mendelian gene, 
with the red (R) allele dominant to the black (r). Also, the observed numbers of queen 
genotypes and colony types at each collection location conformed to those expected under 
Hardy-Weinberg equilibrium. This suggested that the two taxa are in fact conspecific, in 
which case there is a gene frequency cline running from north to south where the red allele 
is completely replaced by the black allele over a distance of about 600 km (Owen & 
Plowright 1980; Owen 1986). Although this genetic evidence is compelling, because the bees 
were only collected from the region where both alleles are present, it still leaves open the 
logical possibility that B. edwardsii is the dimorphic species and B. melanopygus exists as a 
separate, northern species.  

Owen et al. (2010) showed that both enzyme electrophoresis and wing morphometrics do 

unambiguously distinguish between these two species. Allozyme electrophoresis can be 

useful for distinguishing closely related species. If there are fixed differences, or large gene 
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frequency difference between two taxa then this would strongly suggest either complete, or 

a very high degree of, reproductive isolation. Conversely, if two taxa have identical 

allozyme profiles, then this would strongly suggest conspecificity (see above Aytekin et al., 

2003); however it cannot of course prove it. Similarly, morphometric analysis of wing 

venation patterns has also proved to be very successful for differentiating between bumble 

bee species as discussed earlier. Owen et al. (2010) included in their analysis a closely related 

species, B. sylvicola with which B. melanopygus is sympatric in Alberta. This was to verify 

that the techniques they used were sensitive enough to correctly discriminate closely related 

species if real differences do exist. Specimens were collected from Alberta and locations in 

Oregon and California (Fig. 8) and 113 bees were scored at 16 enzyme-gene loci using 

horizontal starch gel electrophoresis. For details see Owen et al. (2010). Traditional 

morphometrics was used and the points measured were a subset of those used by Plowright 

& Stephen (1973) The distance from 18 to the 13 points shown (Table 1, Fig. 1) was measured 

(for more details see Owen et al. (2010). Discriminant analysis was done using the statistical 

software package NCSS (Hintze 1996).Owen et al. (2010) did not standardize the 

measurements as done by Plowright & Stephen (1973), for two reasons: one was to ensure 

that any differences between taxa would be maximized by the discriminant analysis and the 

other reason was because size of bumble bee queens is important ecologically (Owen 1988), 

which might reflect real differences between the species if they exist. 

 

Fig. 8. Collection locations for bees examined electrophoretically and morphometrically. The 

enlarged section shows the gene frequency cline in Bombus melanopygus in Oregon and 

California. Pie diagrams give the relative frequency of the R (red) allele (clear portions) and 

the r (black) allele (shaded portions). The sample size (N) at each location represents the 

combined total of queen bees collected in1978, 1979, 1980, 1981 and 1988. 

www.intechopen.com



 
Morphometrics 22

All bees had identical electrophoretic mobilities, and were invariant at 11 of the 16 

enzyme loci examined. Five loci exhibited either differences between taxa and/or 

variation within taxa (Table 6). The nominate forms of sylvicola and melanopygus from 

Alberta clearly have different electrophoretic profiles (Table 6). The electrophoretic 

profiles of melanopygus and edwardsii from all locations were entirely consistent with each 

other. There was a very small amount of variation present, with heterozygotes being 

detected at a few locations (Table 6).  

What was really interesting was the six bees (“MEL X”), collected in Alberta, that were 

assigned to melanopygus by eye when they were collected but turned out to have an 

electrophoretic profile inconsistent with that of melanopygus but consistent with that of 

sylvicola (Table 6). Going back to the collection records it was found that these bees (plus 

another three that were not electrophoresed) came from high elevations in the Kananaskis 

Valley (Fortress Mountain and Highwood Pass) where typical sylvicola had been collected. 

These were later reassigned to sylvicola on the basis of the wing morphometric analysis (see 

below).  

 

 Enzyme electromorph 

Pgm Gpi Idh (NAD) Hk Sdh 

Taxon* 72/82 82 93 93/100 92/96 96 95 100 102 100 100/105 105 100 105 

               

B. sylvicola 
(n=18) 

1 17    18 16 2    18 1 17 

               

“X” (n=6)  6    6  6   1 5 6  

“B. 
melanopygus” 
AB (n = 16) 

  16   16  13 3 16   16  

               

“B. 
melanopygus” 
OR/CA (n=25) 

  23 2 1 24  15 10 25   25  

               

“B. edwardsii” 
OR/CA (n=48) 

  24 2 2 46  35 13 48   48  

* Taxon: B. sylvicola; “X” = the bees from Alberta resembling melanopygus, but with an electrophoretic 
profile inconsistent with the other melanopygus; B. melanopygus AB = from Alberta; B. melanopygus 
OR/CA = from Oregon and California; B. edwardsii OR/CA = from Oregon and California 

Table 6. Electrophoresis results for the five enzymes exhibiting either differences between 

taxa and/or variation within taxa. The other 11 loci were invariant within, and showed no 

differences between, all taxa. The body of the table gives the number of individual bees of 

each electromorph. Electromorph mobilities (mm) are standardized relative to those of B. 

occidentalis (= index 100, Scholl et al. 1990). Modified from Owen et al. (2010). 
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Fig. 9. Plot of the first two Canonical scores for B. sylvicola (S), the Alberta B. melanopygus (M) 
and the anomalous Alberta B. melanopygus (“Mel X”). Modified from Owen et al. (2010). 

 

Fig. 10. Plot of the first two Canonical scores for the total data set. S = B. sylvicola, R = red 

“melanopygus” from Oregon and California, B = black “edwardsii” from Oregon and 

California, M = B. melanopygus from Alberta. Modified from Owen et al. (2010). 

The discriminant functions analysis was run three times. Initially only specimens from Alberta 

were included. This was to verify that the technique could separate closely related species 

(melanopygus and sylvicola) in sympatry, and to determine the status of the aberrant 

melanopygus (“MEL X”). In addition to the six “MEL X” bees that were electrophoresed (Table 

6) three other queens that were collected on the same dates and at the same locations were 

reassigned from melanopygus and included in the “MEL X” category. The plot of the first two 

canonical scores is shown in Figure 9. B. melanopygus is clearly separated from B. sylvicola by 
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the first canonical score. Similarly the “MEL X” bees are obviously distinct from melanopygus 

and are grouped with sylvicola. Next, the analysis was run using the complete data set (Figure 

10) with the “MEL X” bees now being reclassified as sylvicola. Again, B. sylvicola is clearly 

separated by canonical score one, but melanopygus and edwardsii are not obviously resolved.  

Enzyme electrophoresis and wing morphometrics failed to distinguish the nominate species 

B. edwardsii and B. melanopygus, yet clearly separated B. sylvicola from the latter. This, 

together with the colour dimorphism genetic data (Owen and Plowright 1980), and the lack 

of other morphological differences led Owen et al. (2010) to conclude that melanopygus and 

edwardsii are conspecific. If B. melanopygus is a “good” species, then there is a gene frequency 

cline for the color dimorphism (Fig. 8).  

4.2 B. occidentalis/B. terricola 

Two other taxa, where the evolutionary status and taxonomic classification are also unclear, 
are B. terricola Kirby and B. occidentalis Greene. The basis of this confusion originates with 
their classification being based primarily on pile colour pattern. Greene's original 
description of B. occidentalis reads "…first four abdominal segments black… "(Franklin 1913). 
Given that this is the type specimen description, specimens with the first four abdominal 
segments being black should be considered 'typical' B. occidentalis. In contrast, typical B. 
terricola have TIII and TIV that are consistently and clearly defined by complete yellow 
bands, and lack the large amount of white to cream-coloured pile typical of B. occidentalis on 
TV and TVI. However, in some parts of its distribution including areas of overlap with B. 
terricola, B. occidentalis exhibits considerable pile colour variation with some specimens 
closely resembling B. terricola (Stephen, 1957; Milliron, 1971). The primary ambiguous 
components of these bees are the complete to incomplete yellow bands on gastral terga III 
and IV. Nevertheless Stephen (1957) noted that B. terricola was “one of the most color stable 
species in western America” (p. 82) showing little or no variation throughout its range, and 
that it could be distinguished from B. occidentalis in having TII always yellow and TIV black. 
On this basis many authors have regarded B. occidentalis and B. terricola to be separate 
species (Stephen 1957; Thorp et al. 1983). However, Milliron (1971) reduced B. occidentalis to 
subspecific status under B. terricola, citing a lack of evident reliable or constant 
morphological features by which to differentiate specimens in areas of overlap. Milliron 
(1971) also suggested that these two subspecies most probably interbreed, producing 
numerous perplexing subspecific hybrids. This is certainly one possible explanation for the 
rare occurrence of colonies headed by definite B. occidentalis queens which produce B. 
terricola-like offspring.  

Recently Bertsch et al. (2010) sequenced part (1005 bp) of the mitochondrial cytochrome 
oxidase subunit I (COI) gene and found a difference of 30 nucleotides between B. occidentalis 
and B. terricola, which is significantly larger than that found within a species. On this basis 
Bertsch et al. (2010) concluded that B. occidentalis and B. terricola do represent good 
biological species. They also suggested that to clarify the situation these taxa should be 
studied in greater detail in their area of contact in British Columbia and southern Alberta.  

Whidden (2002) studied sympatric populations of B. occidentalis and B. terricola in Alberta 

using randomly amplified polymorphic DNA (RAPD) analysis. For comparison he also 

analyzed one consubgeneric species, B. moderatus, and one non-consubgeneric species B. 
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(Pyrobombus) perplexus. Ninety two bands using four different PCR primers were generated. 

Fixed differences occurred between all groups, and individual haplotypes did not occur in 

more than one taxonomic group, although there was overlap in haplotype components. The 

corrected average number of pairwise differences of between B. moderatus and B. terricola 

and B. moderatus and B. occidentalis was 6.98 and 5.92 respectively, and that between B. 

occidentalis and B. terricola was 5.07 (Table 7). 

 

Species (n)  B. terricola B. occidentalis B. moderatus B. perplexus 

B. terricola (87) 1.28 6.27 7.91 54.76 

B. occidentalis (79) 5.07 1.11 6.77 53.87 

B. moderatus (104) 6.98 5.92 0.59 53.55 

B. perplexus (54) 53.21 52.41 52.34 1.81 

Table 7. Average pairwise differences between and within bumble-bee species.Above 
diagonal: Average number of pairwise differences between groups (PiXY).Diagonal 
elements: Average number of pairwise differences within groups (PiX). Below diagonal: 
Corrected average number of pairwise differences (PiXY-( PiY)/2). Sample sizes are given in 
parentheses.  

Traditional morphometric analysis was done on some specimens of B. occidentalis and B. 

terricola queens collected in 1985 and 1986. The left forewing was removed and measured 

using the methods of Owen et al. (2010) as described above, and discriminant analysis 

performed. The classification counts are given in Table 8, and the first and third canonical 

scores are plotted in Fig. 11. 

 

Species Predicted  

Actual1 occidentalis
1985 

occidentalis
1986 

terricola 
1985 

terricola 
1986 

Total 
(n) 

% correctly 
classified 

occidentalis 
1985 

16 15 4 5 40 77.5% 

occidentalis 
1986 

17 39 2 5 63 88.9% 

terricola1985 2 0 17 4 23 91.3% 

terricola 1986 1 3 6 15 25 84.0% 

       

Total 36 57 29 29 151 85.4% 

1 Reduction in classification error due to variables measured = 43.5%. 

Table 8. Classification count (actual and predicted) of the B. occidentalis and B. terricola from 
1985 and 1986 using discriminant analysis of wing venation.  

The taxa are clearly separated by both the genetic and morphological evidence. The 

corrected average number of pairwise differences of between B. moderatus and B. terricola 

and B. moderatus and B. occidentalis was 6.98 and 5.92 respectively, and that between B. 

occidentalis and B. terricola was 5.07. Therefore since B. terricola and B. occidentalis are 
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differentiated from each other to the same extent as they are from B. moderatus, they should 

regarded as distinct taxa. Discriminant function analysis of wing morphometric data 

correctly classified over 85% of the specimens of B. occidentalis and B. terricola, indicating 

significant morphological divergence. 

 

Fig. 11. Plot of the first and third Canonical scores for the 1985 and 1986 specimens of B. 
occidentalis (O) and B. terricola (T). 

5. Conclusions 

Morphometric analysis has been applied in a number of different ways to problems in the 

Hymenoptera and has proved to have an important and useful set of techniques for 

answering interesting questions. It is particularly useful for species identification and 

classification. The more traditional approaches appear to be as sensitive as geometric 

morphometrics for many problems. A powerful approach is to combine morphometric 

genetic methods, particularly to help answer questions of systematic and taxonomy. 

6. Acknowledgements 

Funding for some of this research was provided by a Mount Royal University Internal 

Research grant. I thank Daniel Lee-Owe for measuring the bee wings.  

7. References 

Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004) Geometric morphometrics: Ten years of 
progress following the ‘revolution’. Italian Journal of Zoology, 71: 5-16. 

Alexander, B. (1991) A cladistic analysis of the genus Apis. In: Diversity in the genus Apis, 
Smith, D.R. (ed.) pp. 1-28, Westview Press, Boulder, Colorado. 

www.intechopen.com



 
Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees (Bombus, Apidae) 27 

Aytekin A., M., Terzo, M., Rasmont P. & Çağatay, N., (2007) Landmark Based Geometric 
morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: 
Bombus Latreille). Annales de la Société Entomologique de France, 43: 95-102. 

Aytekin,A. M., Rasmont, P. & Çagatay, N. (2003) Molecular and morphometric variation in 
Bombus terrestris Lucoformis Krüger and Bombus terrestris Dalmatinus Dalla 
Torre (Hymenoptera: Apidae) Mellifera 3:34-40  

Baylac, M., Villemant, C. & Simbolott, G. (2003) Combining geometric morphometrics with 
pattern recognition for the investigation of species complexes. Biological Journal of 
the Linnean Society 80: 89-98. 

Bertsch, A., Hrabe de Angelis, M. & Przemeck, G.K.H. (2010) A phylogenetic framework for 
the North American species of the subgenus Bombus sensu stricto (Bombus affinis, B. 
franklini, B. moderatus, B. occidentalis & B. terricola) based on mitochondrial DNA 
markers. Beitrage zur Entomologie, 60, 229-242. 

Cameron, S.A., Lozier, J.D., Strange, J.P., Koch , J.B., Cordes, N., Solter, L.F. & Griswold, T.L. 
(2011) Patterns of widespread decline in North American bumble bees. Published 
online before print January 3, 2011, doi: 10.1073/pnas.1014743108, PNAS, U.S.A. 
January 3, 2011 

Clarke, G.M. (1997) The genetic basis of developmental stability. III. Haplo-diploidy: Are 
males more unstable than females? Evolution 51: 2012-2028. 

Colla, S.R. & Packer, L. (2008) Evidence for decline in eastern North American bumblebees 
(Hymenoptera:Apidae), with special focus on Bombus affinis. Biodiv and Cons 17: 
1379-1391 

Crespi, B.J. & Vanderkist, B.A. (1997) Fluctuating asymmetry in vestigial and functional 
traits of a haplodiploid insect. Heredity, 79: 624-630. 

Cresson (Hymenoptera: Apidae). Canadian Journal of Zoology, 66: 1172-1178. 
Danaraddi, C.S. & Viraktamath, S. (2009) Morphometric studies on the stingless bee, Trigona 

iridipennis Smith. Karnataka Journal of Agricultural Science, 22: 796-797. 
Eickwort, K.R. (1969) Differential variation of males and females in Polistes exclamans. 

Evolution, 23: 391-405. 
Evans, E., Thorpe, R., Jepson, S. & Black, S.H. (2008) Status review of three formerly 

common species of bumble bee in the subgenus Bombus. 63 pp. The Xerces Society, 
Portland, Oregon. 

Fisher, R.A. (1936) The use of multiple measurements in taxonomic problems. Annals of 
Eugenics, 7: 179-188. 

Franklin, H.J. (1913) The Bombidae of the New World. Transactions of the American 
Entomological Society 38:177-486.  

Francoy, T.M., Wittmann, D., Steinhage, V., Drauschke, M., Müller, S., Cunha, D.R., 
Nascimento, A.M., Figueiredo, V.L.C. Simões ,Z.L.P., De Jong, D., Arias,M.C. & 
Gonçalves, L.S.  (2009) Morphometric and genetic changes in a population of Apis 
mellifera after 34 years of Africanization. Genetics and Molecular Research, 8: 709-717. 

Fruciano, C., Tigano, C. & Ferrito, V. (2011) Traditional and geometric morphometrics detect 
morphological variation of lower pharyngeal jaw in Coris julis (Teleostei, Labridae). 
Italian Journal of Zoology, 78: 320-327. 

Gelin, L.F.F., Da Cruz, J.D., Noll, F.B., Giiannotti, E., Dem Santos, G.M., & Bichara-Filho, 
C.C. (2008) Morphological Caste Studies In The Neotropical Swarm-Founding 

www.intechopen.com



 
Morphometrics 28

Polistinae Wasp Angiopolybia pallens (Lepeletier) (Hymenoptera: Vespidae) 
Neotropical Entomology 37: 691-701  

Goulson, D., Lye, & B. Darvill, B. (2008) Decline and conservation of bumble bees. Ann. Rev. 
Ent. 53:191–208 

Grixti, J.C., Wonga, L.T., Cameron, S.A. & Favreta, C. (2009) Decline of bumble bees 
(Bombus) in the North American Midwest. Biol. Cons. 142: 75-84 

Harder, L.D. (1982) Measurement and estimation of functional proboscis length in 
bumblebees. Canadian Journal of Zoology, 60: 1073-1079. 

Harder, L.D. (1985) Morphology as a predictor of flower choice by bumble bees. Ecology 66: 
198-210. 

Hastings, J. M., C.W. Holliday and J. R. Coelho (2008) Body size relationship between 
Sphecius speciosus (Hymenoptera: Crabronidae), and their prey: Prey size 
determines wasp size. Florida Entomologist 91: 657-663. 

Hintze, J.L. (1996) NCSS 6.0.21-2 Statistical System for Windows. User’s Manual II. Hintze, 
Kaysville, Utah. 

Huber, J.T. (2009) Biodiversity of Hymenoptera. In: Foottit, R.G. and Adler, P.H. (eds.), pp. 
303-323, Insect Biodiversity; Science and Society, Wiley-Blackwell, Chichester, UK. 

Huxley, J. (1972) Problems of Relative Growth 2nd edition, Dover Publications Inc., New York. 
Hastings, J. M., C.W. Holliday and J. R. Coelho. (2010) Size-specific provisioning by cicada 

killers, Sphecius speciosus, (Hymenoptera : Crabronidae) in north Florida. Florida 
Entomologist 93: 412-421. 

Klingenberg, C.P., Badyaev, A.V., Sowry, S.M. & Beckwith, N.J. (2001) Inferring 
developmental modularity from morphological integration: Analysis of individual 
variation and asymmetry in bumblebee wings. The American Naturalist, 157: 11-23. 

Kozmus, P., Virant-Doberlet, M., Meglič & Dovč, P. (2011) Identification of Bombus species 
based on wing venation structure. Apidologie 42: 472-480. 

Marcus, J.M. (2001) The development and evolution of crossveins in insect wings. Journal of 
Anatomy, 199: 211-216. 

Medler, J.T. (1962) Morphometric studies on bumble bees. Annals of the Entomological 
Society of America, 55: 212-218. 

Michener, C.D. (2000) The Bees of the World. Johns Hopkins University Press, Baltimore and 
London. 

Milankov, V., Francuski, L., Ludoški, J., Stăhls, G. & Vujié, A. (2010) Estimating genetic and 
phenotypic diversity in a northern hoverfly reveals lack of heterozygosity 
correlated with significant fluctuating asymmetry of wing traits. Journal of Insect 
Conservation, 14: 77-88. 

Milliron, H.E. (1971) A monograph of the western hemisphere bumblebees (Hymenoptera: 
Apidae; Bombinae) - The Genera Bombus, Megabombus Subgenus Bombias. 
Memoirs of the Entomological Society of Canada, 82, 1-80. 

O’Neill, K.M., ,Pearce, A.M., O’Neill, R.P, & Miller, R.S. (2010) Offspring Size and Sex Ratio 
Variation in a Feral Population of Alfalfa Leafcutting Bees (Hymenoptera: 
Megachilidae) Annals of the Entomological Society of America, 103: 775- 784 

Owen, R.E. & McCorquodale, D.B. (1994) Quantitive variation and heritability of 
postdiapause development time and body size in the Alfalfa leafcutting bee 
(Hymenoptera: Megachilidae). Annals of the Entomological Society of America, 
87:922-927. 

www.intechopen.com



 
Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees (Bombus, Apidae) 29 

Owen, R.E. & Plowright, R.C. (1980) Abdominal pile color dimorphism in the bumble bee 
Bombus melanopygus. Journal of Heredity, 71: 241-247. 

Owen, R.E. & Plowright, R.C. (1988) Inheritance of metasomal pile colour variation in the 
bumble bee Bombus rufocinctus  

Owen, R.E. (1986) Gene frequency clines at X-linked or haplodiploid loci. Heredity, 57:209-219. 
Owen, R.E. (1989) Differential size variation of male and female bumble bees (Hymenoptera, 

Apidae, Bombus). Journal of Heredity, 80:39-43. 
Owen, R.E. 1988 Body size variation and optimal body size of bumble bee queens 

(Hymenoptera: Apidae). Canadian Entomologist, 120:19-27. 
Owen, R.E., T. L. Whidden & Plowright, R.C. (2010) Genetic and morphometric evidence for 

the conspecific status of the bumble bees Bombus melanopygus and B. edwardsii 
(Hymenoptera, Apidae). Journal of Insect Science, 10:109, available online: 
insectscience.org/10.109. 

Palmer, A. R. (1994) Fluctuating asymmetry analyses: A primer. In: T. A. Markow (ed.) pp. 
335-364, Developmental Instability: Its Origins and Evolutionary Implications. Kluwer, 
Dordrecht, Netherlands. 

Palmer, A. R., & Strobeck, C. (1986) Fluctuating asymmetry: measurement, analysis, 
patterns. Annual Review of Ecology and Systematics, 17: 391-421. 

Parsons, P.A. (1990) Fluctuating asymmetry: an epigenetic measure of stress. Biological 
Reviews of the Cambridge Philosophical Society, 65: 131-145.  

Pekkarinen, A. (1979) Morphometric, colour and enzyme variation in bumblebees 
(Hymenoptera, Apidae, Bombus) in Fennoscandia and Denmark. Acta Zoologica 
Fennica 158: 1-60. 

Plowright, R.C. & Owen, R.E. (1980) The evolutionary significance of bumble bee color 
patterns: A mimetic interpretation. Evolution, 34, 622-637. 

Plowright, R.C. & Pallett, M.J. (1979) A morphometric study of the taxonomic status of 
Bombus sandersoni (Hymenoptera: Apidae) Canadian Entomologist, 110: 647-654. 

Plowright, R.C., & Stephen, W.P. (1973) A numerical taxonomic analysis of the evolutionary 
relationships of Bombus and Psithyrus (Apidae: Hymenoptera). Canadian 
Entomologist, 105: 733-743. 

Plowright, R.C., & Stephen, W.P. (1980) The taxonomic status of Bombus franklini 
(Hymenoptera: Apidae). Canadian Entomologist, 112: 475-479. 

Pretorius, E. (2005) Using geometric morphometrics to investigate wing dimorphism in males 
and females of Hymenoptera – a case study based on the genus Tachysphex Kohl 
(Hymenoptera: Specidae: Larinae). Australian Journal of Entomology, 44: 113-121. 

Prŷs-Jones, O.E. & Corbet, S.A. (1987) Bumblebees. Cambridge University Press, Cambridge. 
Richards, K.W. (1984) Alfalfa leafcutter bee management in Western Canada. Agriculture 

Canada Publication 1495E: 1-53. 
Rohlf F. J. & Marcus L. F. (1993) A revolution in morphometrics. Trends Ecol. Evol., 8: 129-132 
Rohlf, F.J. & Slice, D. (1990) Extensions of the procrustes method for the optimal 

superimposition of landmarks, Systematic Zoology, 39: 40-59. 
Rosenberg, M.S. (1997) Evolution of shape: differences between the major and minor 

chelipeds of Uca pugnax (Decapoda: Ocypodidae). Journal of Crustacean Biology, 
17: 52-59. 

www.intechopen.com



 
Morphometrics 30

Rothschild, M. (1979) Factors influencing size and sex ratio in Megachile rotundata 
(Hymenoptera, Megachilide). Journal of the Kansas Entomological Society, 52: 392-
401. 

Ruttner, F. (1986) Geographical variability and classification. In: Bee Genetics and Breeding, 
Rinderer, T.E. (ed.) pp. 23-56 Academic Press, inc., New York. 

Scholl, A., E. Obrecht & Owen, R.E. (1990) The genetic relationship between Bombus 
moderatus Cresson and the Bombus Iucorum Auct. species complex. Canadian 
Journal of Zoology, 68, 2264-2268.  

Scholl, A., Thorp, R.W., Owen, R.E. & Obrecht, E. (1992) Specific distinctiveness of Bombus 
nevadensis Cresson and B.auricomus (Robertson)(Hymenoptera: Apidae) - enzyme 
electrophoretic data. Journal of the Kansas Entomological Society, 65, 134-140. 

Sharkey, M.J. & Roy, A. (2002) Phylogeny of the Hymenoptera: a reanalysis of the Ronquist 
et al. (1999) reanalysis, with an emphasis on wing venation and apocritan 
relationships. Zoologica Scripta, 31, 57–66 

Sharkey, M.J. (2007) Phylogeny and classification of Hymenoptera. Zootaxa, 1668, 521–548 
Shih, C., Feng, H., Liu, C., Zhao, Y., & Ren, D. (2010) Morphology, phylogeny, evolution, 

and dispersal of pelecinid wasps (Hymenoptera: Pelecinidae) over 165 million 
years. Annals of the Entomological Society of America, 103: 875-885. 

Silva, M.C., Lomônaco, C., Augusto, S.C. & Kerr, W.E. (2009) Climatic and anthropic 
influence on size and fluctuating asymmetry of Euglossine bees (Hymenoptera, 
Apidae) in a semideciduous seasonal forest reserve. Genetics and Molecular 
Research, 8: 730-737. 

Slice, D.E., Bookstein, F.L., Marcus, L. F. & Rohlf, F.J. (Revised Feb. 12, 2009) A Glossary for 
Geometric Morphometrics In: Morphometrics at SUNY Stony Broo,k Date of access, 
30.09.2011, Available from: http://life.bio.sunysb.edu/morph/ 

Smith, D.R., Crespi, B.J. & Bookstein, F.L. (1997) Fluctuating asymmetry in the honey bee, 
Apis mellifera: effects of ploidy and hybridization. Journal of Evolutionary Biology, 
10: 551-574. 

Sneath, P.H.A. & Sokal, R.R. (1973) Numerical Taxonomy. W.H. Freeman & Co., San 
Franscisco. 

Stephen, W.P. (1957) Bumble Bees of Western America - (Hymenoptera: Apoidea). Technical 
Bulletin, 40, 2-163.  

Thorp, R.W., Horning, D.S., and Dunning, L.L. (1983) Bumble bees and cuckoo bumblebees 
of California (Hymenoptera: Apidae). Bulletin of the California Insect Survey 23:1-79. 

Tofilski, A. (2004) DrawWing, aprogram for numerical description of insect wings. 5pp. 
Journal of Insect Science, 4:17, Available online: http://www.insectscience.org/4.17 

Tüzün, A. (2009) Significance of wing morphometry in distinguishing some of the 
hymenoptera species. African Journal of Biotechnology 8: 3353-3363. 

Whidden, T.L. (2002) Applications of randomly amplified and microsatellite DNA to 
problems in bumble bee biology. 155 pp. Doctoral dissertation, University of 
Calgary. 

Williams, P.H. (1998) An annotated checklist of bumble bees with an analysis of patterns of 
description (Hymenoptea: Apidae, Bombini). Bulletin of the National History Museum 
of London 67, 79-152. 

Wilson, E.O. (1971) The Insect Societies. The Belknap Press of Harvard University Press, 
Cambridge, Mass. 

www.intechopen.com



Morphometrics

Edited by Prof. Christina Wahl

ISBN 978-953-51-0172-7

Hard cover, 108 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

It is human nature to measure things, and this holds true for science as well as everyday life. The five papers

in this book demonstrate the usefulness of a morphometric approach to a variety of subjects in natural history,

including systematics, phenotypic plasticity in response to environmental variation, and ontogenetic adaptation.

As our understanding of genetic control mechanisms and epigenetics has matured over the last several

decades, it has become clear that morphometric assessment continues to be important to our overall

understanding of natural variability in growth and form. The tremendous growth of our knowledge base during

the last century has necessitated that we find new ways to measure and track greater detail as well as greater

numbers of parameters among populations and individuals.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Robin E. Owen (2012). Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees

(Bombus, Apidae), Morphometrics, Prof. Christina Wahl (Ed.), ISBN: 978-953-51-0172-7, InTech, Available

from: http://www.intechopen.com/books/morphometrics/applications-of-morphometrics-to-the-hymenoptera-

particularly-bumble-bees-bombus-apidae-



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


