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1. Introduction

The propagation of electrical waves through cardiac tissue is a very important phenomenon
to study since those waves activate the mechanisms for cardiac contraction, responsible to
pump blood to the body. An electrical wave of excitation, called also an action potential
wave, is initiated periodically at a place called the sinoatrial node, the natural pacemaker of
the heart. This wave, propagates throughout the atria where it arrives at the atrioventricular
node, where after some time delay, it propagates to the ventricles via the Purkinje fibers
(Zaret et al., 1992). In normal conditions, this process is repeated approximately 70 to 100
times each minute and is commonly referred to as a heartbeat. The condition at which
abnormal generation or propagation of excitation waves during the process described above,
is termed as arrhythmia.
One of the proposed mechanisms involved in the development of certain type of arrhythmias,
are spiral waves, a particular form of functional reentry (Fenton et al., 2002; Veenhuyzen et al.,
2004). Spiral waves, are self sustained waves of excitation that rotate freely or around an
obstacle, reactivating the same area of tissue at a higher frequency than the normal SA
node would do, increasing the normal heartbeat rate. In the worst scenario, a spiral wave
might break up into smaller spiral waves giving uncoordinated contractions of the heart in a
phenomenon known as fibrillation. When this phenomenon occurs in the ventricles, the heart
quivers and looses its strength to pump blood to the body leading to immediate cardiac arrest
(Fenton et al., 2002; Zaret et al., 1992). Fibrillation, is the main cause of death in industrialized
countries (Fenton et al., 2002; Priori et al., 2002; Tang et al., 2005; Zipes, 2005).
An important research area is the study of the interaction of spiral waves in cardiac tissue with
obstacles. Obstacles in cardiac tissue can be partially excitable or non excitable. Examples
of partially excitable obstacles are scar tissue (Starobin et al., 1996) or ionic heterogeneities
(Starobin et al., 1996; Tusscher & Panfilov, 2002; Valderrábano et al., 2000), whereas examples
of non excitable obstacles are arteries (Valderrábano et al., 2000) or the natural orifices in the
atria (Azene et al., 2001).
It has been observed that an obstacle in cardiac tissue might act as a stabilizer of
spiral wave dynamics (Davidenko et al., 1992; Ikeda et al., 1997; Kim et al., 1999; Lim et al.,
2006; Pertsov et al., 1993; Valderrábano et al., 2000), as it provides a transition between
meandering spiral waves (Ikeda et al., 1997) or multiple spiral waves (Shajahan et al., 2007;
Valderrábano et al., 2000) into a simple rotation spiral, which is attached to the obstacle. This
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transition is clinically important because as it has been shown, fibrillation like activity changes
to a tachycardia regime (Kim et al., 1999).
The interaction of spiral waves with obstacles and its relationship with the transition
between different arrhythmic regimes has been experimentally and computationally
studied by different researchers (Azene et al., 2001; Comtois & Vinet, 2005; Ikeda et al., 1997;
Shajahan et al., 2007; 2009; Valderrábano et al., 2000). Valderrabano et al. (Valderrábano et al.,
2000) studied in a cardiac tissue preparation the transition between ventricular fibrillation
and ventricular tachycardia due to the presence of obstacles; Ikeda et al. (Ikeda et al., 1997),
also considered the transition of different arrhythmic regimes due to the attachment of a
spiral wave to an obstacle of minimum size. Shajahan et al. (Shajahan et al., 2007) used the
Luo-Rudy and Panfilov models to study the transition of spiral turbulence to a simple rotating
spiral wave due to the presence of an obstacle, which again provides a transition between
different arrhythmic regimes; Xie et al. (Xie et al., 2001) presented a computational study of
the effects of regional ischemia on the stability of a spiral wave; Azene et al. (Azene et al.,
2001) carried out a computational study of the attachment and detachment of wavefronts to
obstacles based on the Luo-Rudy model; Olmos (Olmos, 2010) studied the interaction of spiral
waves in a particular case of the meandering regime, with rectangular obstacles. The aim in
that work was to understand better necessary conditions in order to obtain attachment of the
meandering spiral wave to the obstacle.
However, the interaction of spiral waves with obstacles and its relationship with transitions
between different arrhythmic regimes, is a topic that has not been completely understood. For
example, the interaction of a spiral wave in the meandering regime with an obstacle, has not
previously being considered. Such interactions can be very complex (Olmos & Shizgal, 2008;
Yermakova & Pertsov, 1986), and the determination of the conditions for which a meandering
spiral wave attaches to an obstacle is an important endeavor. On the other hand, it has been
considered that the presence of obstacles can be only of a stabilizing nature, which is not
always the case. Therefore, the main objective of this work is to present a numerical study of
the interaction of spiral waves with obstacles and to show the existence of different transitions
due to the presence of obstacles.
By considering non-excitable and partially excitable obstacles we will show that obstacles
cannot only stabilize the dynamics as shown in (Ikeda et al., 1997; Kim et al., 1999; Lim et al.,
2006), but also, they can act as destabilizers. In both cases and by different mechanisms, the
obstacle might act as a switch between two arrhythmic regimes, in which one is less dangerous
than the other. In the case of non-excitable obstacles, it is shown that under certain conditions
like the size of the obstacle, a more complex arrhythmia might appear.
To this end, this work will consist in the following sections. We start by presenting a general
background about generation and propagation of action potentials (Section 2). In Section
3, we describe the model equations considered in the simulations. Then, in Section 4 the
formation of a spiral wave is discussed. In the same section, we discuss the concepts of
meandering and drift of spirals, which will be essential in explaining the results in this work.
We follow this section by presenting the results obtained with partially excitable obstacles and
non-excitable obstacles (Sections 5 and 6). We finish this work with Section 7 by presenting
some conclusions, limitations and open questions in this topic.

2. Generation and propagation of an action potential

An important electrical property of atrial and ventricular cells is excitability. At rest, a
ventricular cell has a transmembrane potential of about u = −84mV (Beeler & Reuter, 1977),
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which is called the resting membrane potential (RMP). If a short time pulse of current is
applied such that the new potential is below −60mV, the value of u will return to the RMP
immediately. However, if the potential is raised above u = −60mV, the transmembrane
potential will undergo a large excursion raising its value approximately to 28mV, generating
a peak, then a plateau and finally return to the RMP (Fig. 1). This phenomenon is called
an action potential (AP) and cells with this property are called excitable cells. The value of
u above which an AP is elicited, which in this case is u ≈ −60mV, is called the threshold
potential value uth.
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Fig. 1. Membrane potential u versus time during an AP. Representative mechanisms
involved in the generation of an AP in a cardiac cell.

Changes in the membrane potential are due mainly to the passage of Na+, K+ and Ca++

ions via ion channels and other mechanisms through the cell membrane. The ion channels
are membrane proteins which allow the passage across the membrane of specific type of ions
between the interior and exterior of the cell. An essential part of the work by Hodgkin and
Huxley (Hodgkin & Huxley, 1952) was to establish that the Na, K and Ca channels can be
opened or closed, and that state depends on the membrane potential at a given time.
The general mechanism by which an AP is generated is as follows: Initially the cell is at rest
i.e. the potential across the cell membrane is at the RMP value. When the current is applied
such that the new potential is above uth, Na channels open in a fast time scale and a flux of
Na+ inside the cell, follows (Fig. 1A). The Na current is responsible for the rapid change in
u, which changes dramatically from −60mV to 28mV in a phenomenon called depolarization.
In Fig. 1B, K channels open in a slow time scale compared to the time scale of the Na channels
opening, and K+ flow outside the cell. In Fig. 1C, the Na channels close and the K+ current
lowers the membrane potential generating a peak in the AP. After that, Ca channels open in a
slow time scale and a flow of Ca++ from outside to inside the cell occurs (Fig. 1D). During this
stage, K and Ca currents move in the opposite direction, generating what is called a plateau
(Fig. 1E). Finally, both channels close and the membrane potential returns to the RMP value
(Fig. 1F).
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Direction of propagation
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AP)
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Return to resting state.

Fig. 2. Propagation of an AP. The propagation is taken over a hypothetical large myocyte.

Each location of the cell membrane, once it has a response above uth, will experience an AP.
The AP generated in a cell location, with the proper conditions (Kléber & Rudy, 2004), will
propagate through the rest of the cell and through the cardiac tissue. The general mechanism
by which an AP travels through cardiac muscle can be explained by considering a large single
cell as shown in Fig. 2. In Fig. 2, it is considered that an AP is propagating only in the x
direction and from right to left. At location A, the membrane potential is at the RMP value
and it is ready to accept an AP. At point B, an AP has just been elicited. At point C, an AP is in
process and at this location the cell is in refractory state and another AP cannot be generated.
Durig this stage the Na channels, responsible for the depolarization of the cell, are closed and
remain inactive for a time called the refractory period. Finally, at location D, an AP has just
passed and at this location the membrane potential has almost returned to the RMP value.
Therefore, the propagation of the AP is as follows. At location B, where the AP has just been
elicited, Na ions are entering to the cell. These ions generate a current in the x direction due
to the concentration gradient in a neighborhood of point B. These ions move to location A,
increasing its corresponding u value until it reaches uth. Then, an AP is elicited at location A
and the AP advances in space. Therefore, propagation of the AP follows.
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3. The model equations

In order to make simulations we consider equations of the reaction-diffusion type given by

∂u

∂t
= ∇ · (D∇u)− 1

Cm
(Iion) (1)

where, u is the transmembrane potential, D is the conductivity tensor, Cm is the capacitance
and Iion is the sum of the different ionic currents. There are different forms in which Iion can be
chosen, depending on which cell type is considered. For example the Luo-Rudy (Luo & Rudy,
1994) or the Priebe-Beuckelmann (Priebe & Beuckelmann, 1998) models are considered for
ventricular cells, whereas the Courtemanche (Courtemanche et al., 1998) and the Nygren
(Nygren et al., 1998) models were developed for atrial cells. Other models are the Yanagihara
model for the sinoatrial node (Yanagihara et al., 1980), and the DiFrancesco- Noble model for
the Purkinje cells (DiFrancesco & Noble, 1985). A complete list of models can be found in
(Fenton & Cherry, 2008).
In this work, we consider the ionic currents given by Fenton and Karma (Fenton & Karma,
1998). This set of equations is a minimal model and was designed to mimic the behavior of
complex models with a minimum number of variables. The Fenton-Karma (FK) equations are
of the reaction diffusion type. They are given by

∂u
∂t = ∇ · (D∇u)− 1

Cm
(I f i + Iso + Isi)

∂v
∂t = 1

τ
−
v

Θ(uc − u)(1 − v)− 1
τ
+
v

Θ(uc − u)v
∂w
∂t = 1

τ
−
w

Θ(uc − u)(1 − w)− 1
τ
+
w

Θ(uc − u)w

(2)

where
I f i = − v

τd
Θ(u − uc)(1 − u)(u − uc)

Iso = u
τo

Θ(uc − u) + 1
τr

Θ(u − uc)

Isi = − w
2τsi

(1 + tanh[k(u − usi
c )])

τ−
v (u) = Θ(u − uv)τ

−
v1 + Θ(uv − u)τ−

v2

(3)

In this case, u = u(x, t) measures the membrane potential at a location x and time t, whereas
v and w are gate variables. I f i, Iso and Isi denote fast inward, slow outward and slow inward
currents, respectively. Also D = 0.001, Cm = 1,τd = 0.403, τr = 50.0, τsi = 44.84, τo =
8.3, τ

+
v = 3.33, τ

−
v1 = 1000.0, τ

−
v2 = 19.2, τ

+
w = 667.0, τ

−
w = 11, uc = 0.13, uv = 0.055, usi

c = 0.85.
Θ(x) is the Heaviside step function. Numerically, we consider Θ(x) as

Θ(x) =
1

2
(1 + tanh(50x))

Equations (2) are solved in a rectangular domain Ω = [−7, 7]× [−7, 7] using finite differences
with N = 512 points in each dimension. Advancing in time is done with Euler as in
(Fenton & Karma, 1998) with dt = 0.125. At the domain boundary and at the boundary of
non-excitable obstacles (Section 6), no-flux boundary conditions were imposed. Boundary
conditions at obstacles were implemented as done in (Morton & Mayers, 2005).

4. Generation of a spiral wave

Spiral waves have been observed to occur in cardiac tissue (Ikeda et al., 1997; Isomura et al.,
2008; Pertsov et al., 1993) and in computer models (Isomura et al., 2008; Olmos, 2010; Otani,
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2000). There are different ways in which a spiral wave might be generated. For example,
spiral waves arise when an unexcitable obstacle is stimulated with high frequency of AP
(Panfilov & Kenner, 1993); they can also be generated by using the method of cross-field
stimulation (Pertsov et al., 1993); and they might arise due to the appearance of ectopic beats
(Otani, 2000). Ectopic beats can arise due to abnormal calcium cycling (Benson & Holden,
2005) or by overload of calcium inside the cell (Luo & Rudy, 1994).
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Fig. 3. Generation of a spiral wave due to ectopic activity. See text for details. The black bold
line is the contour plot u(x, y, t∗) = 0.1. The different colored regions represent different
levels of refractoriness of the medium. The region in white represents the medium
completely recovered and an AP can be elicited. The region in red is a completely
unexcitable region as an AP is occurring. The regions in orange and clear blue have a very
low excitability level. The region in dark blue is more excitable and an AP might propagate
in this region. The arrows point the direction of wave propagation. (x and y are in cm)

A particular and simple way in which the formation of a spiral wave can be explained, is
shown in Fig. 3, where a solution of Eq. (2) is shown for four different integration times.
In Fig. 3A, a pulse travels from left to right as shown by the direction of the arrows. After
the pulse has passed, an ectopic firing appears at the back of the pulse. The ectopic firing
starts propagating in all directions except at the back of the front where the region is still
in refractory state (Fig. 3B). The abnormal firing generates a curved front with a free end
that propagate downwards (Fig. 3C). The original AP moves to the right, disappears at the
right boundary and the region that was initially in refractory state is now ready to accept
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another AP. Then, the free end can propagate on the recovered region generating a spiral
wave (Fig. 3D). After a spiral wave has been generated, if its rotation frequency is faster than
the stimulation frequency from the sinoatrial node, then the spiral wave becomes the new
pacemaker of the heart (Lee, 1997).

4.1 Meandering and drift of a spiral wave

When a spiral wave evolves in excitable media in general, its dynamics are ruled by (i) the
local conducting mechanisms, and; (ii) the heterogeneities of the medium. The former gives
rise to a phenomenon called meandering, whereas the later to a phenomenon referred to as
drift of a spiral wave.
One way to get a better understanding of meandering and drift of a spiral wave, is by studying
the evolution of the position of its tip. The tip of a spiral wave can be defined in a variety of
ways and a resume can be found in (Fenton et al., 2002). In this work it is considered the
tip of the spiral wave as the point over the level curve u = 0.5 with zero normal velocity
(Fenton et al., 2002).

d0.430.400.34 0.37

Fig. 4. Tip trajectories of the spiral waves obtained with Eqns. (2), with uc = 0.13 and varying
the parameter τd from 0.34 to 0.43. An increase in the value τd implies a reduction in the
excitability of the medium.

4.1.1 Meandering of a spiral wave

In Fig. 4, different tip trajectories of spiral waves corresponding to different values of τd are
shown. The value τd controls the speed at which the depolarizing ions enter to the cell and is
a measure of the excitability of the cell (Efimov et al., 1995; Fenton et al., 2002). An increase in
the value τd implies a reduction in the excitability of the medium. When τd = 0.43 the tip of
the spiral wave traces a circumference. When the value of τd is reduced to 0.425 the radius of
the circular trajectory is reduced. However, when the value of τd is reduced to about 0.415 the
trajectory is no longer circular but a curve that resembles an epitrochoid (Fig. 5B). Decreasing
the value of τd increases the radius R (Fig. 5B) of the epitrochoidal trajectory. For τd = 0.3965
the value of R tends to infinity obtaining a trochoidal trajectory (Epitrochoid with R = ∞).
For smaller values of τd the tip trajectory resembles an hypotrochoid of radius R (Fig. 5A). For
values less than τd = 0.34 deformations of hypotrochoidal trajectories are obtained (Fig. 4).
The phenomenon shown in Fig. 4, is called meandering of the tip trajectory or meandering. In
order to understand the mechanisms behind meandering it is necessary to study the recovery
regions when the spiral wave is propagating in the medium. In Fig. 6, it is shown the contour
of the variable u(x, y, t∗) = 0.1 for a particular time t∗ (Labeled bold line in Fig. 6B); Also, are
shown different regions corresponding to the level of recovery of the medium, given by the
variable v in Eqns. 2, plotted also for the time t∗. The region in black means that the region is
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Fig. 5. (A) An hypotrochoid and; (B) an epitrochoid. From (Olmos, 2007)

completely unexcitable (v in this case is close to zero); As the region becomes clearer, the value
of v gets closer to 1 and therefore the region is able to accept more easily another AP. The line
in blue is the trajectory followed by the tip for a time interval around t∗.
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Fig. 6. Propagation of a spiral wave generated with Eqns. (2) with τd = 0.3965. The line in
blue represents the trajectory of the tip. The different coloured regions represents different
levels of refractoriness given by the v variable. For v close to 0 (black), the region is in its
maximum level of refractoriness and an AP cannot be elicited here. For v ≈ 1 (white), the
region is almost or totally recovered and an AP can be elicited in this region. (A) Formation
of a petal; (B) Formation of an arc. The blue dot filled in white, is the location of the tip of the
spiral.

In Figures 4 and 6, it is shown that the trajectory of the tip of the spiral wave has high and
low curvature in an alternate and periodic fashion. The part with high curvature is referred
to as a petal, whereas the part with low curvature, an arc. In Fig. 6A, the tip is tracing a petal,
whereas in Fig. 6B, an arc.
In Fig. 6A, it is shown the spiral wave at the time where the tip is tracing a petal. In
this case, the front that is close to the tip (blue dot filled in white) of the wave, propagates
through a region that is almost completely recovered giving a maximum in the curvature of
the trajectory. A different scenario occurs in Fig. 6B, where the tip is tracing an arc. Here,
it is clear that the front close to the tip of the spiral propagates through a region that is not
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completely recovered. This causes the front to propagate in another direction, where the
medium is more excitable. This deviation generates the low curvature part of the trajectory or
the arc. This process occurs periodically and the trajectory shown in Fig. 6 is obtained.
In order to give an explanation about the occurrence of the different trajectories obtained in
Fig. 4, we use the information of the previous paragraph and the facts that (i) 1/τd is the speed
at which the Na ions enter to the cell to depolarize it. For shorter τd the ions enter faster to the
cell, and; (ii) from Eqns. (2), changing the value of τd does not affect the threshold value uth.
Consider the case shown in Fig. 6, where τd = 0.3965, ie, when the tip trajectory is trochoidal.
In Fig. 6A, a petal is being traced. When the value of τd is reduced then the flux of Na ions
(In Eqns. (2), I f i is carried by Na ions) is increased. Therefore, the larger amount per time unit
of ions with a constant diffusion coefficient, makes that the spiral wave will trace a petal with
larger curvature than in the case with τd = 0.3965. In the same way, it will follow that the front
of the spiral wave will reach its own tail before than the case with τd = 0.3965. Therefore, it is
obtained an hypotrochoidal trajectory like the one shown in Fig. 4 with τd = 0.37. A similar
argument follows for epitrochoidal trajectories.

4.1.2 Drift of a spiral wave

Drift of a spiral wave is a directed change of its location with time in response to perturbations
(Biktashev, 2007). There are different ways in which drift might occur and an complete list
can be found in (Biktashev, 2007). In this work we focus on two different ways in which
drift occurs (Fig. 7). In Fig. 7A, it is shown the drift of a spiral wave due to the presence of
inhomogeneities. Initially, we considered a spiral wave with τd = 0.43. With this choice of τd,
the tip of the spiral wave traces a circumference. After some integration time, we changed the
value of τd to 0.39 for y < 0. The result of this change in the value of τd is shown in Fig. 7A. In
the figure, it is observed that the tip trajectory no longer traces a circumference but a trajectory
that resembles a spring. When the tip is far from the interphase y = 0, the trajectory traces
the usual circumference. However, when the tip hits the region above y = 0, the curvature
generated is higher than the curvature below y = 0 due to the decrease in τd. This causes
a drift of the position of the center of the circumference. It follows that the trajectory moves
along the line y = 0 where there is a difference in τd between the two phases.
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Fig. 7. Drift of a spiral wave due to (A) Inhomogeneities in the medium, and; (B) Interaction
with a boundary. In (A) τd = 0.43 for y ≥ 0 and τd = 0.39 for y < 0.

In Fig. 7B, it is shown the drift of a spiral wave due to the presence of a boundary. In this
case, when a spiral wave with a circular tip trajectory gets close enough to a boundary, there
is an increase in the curvature of the trajectory giving as a consequence drift of the center
of the circular trajectory. Therefore, the trajectory drifts along the boundary. The physical
mechanism by which the gain in curvature of the trajectory is observed, is apparently as
follows: The impermeable boundary prevents the spread of the current produced by the
spreading wavefront, which is equivalent to local rise in the excitability of the medium close
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to the boundary (Yermakova & Pertsov, 1986), and therefore an increase in the curvature of
the trajectory (Subsection 4.1.1).

5. Partially excitable obstacles

Partially excitable obstacles are inhomogeneities in the tissue that originate from changes
in single-cell properties such as the conductance of ion channels (Shajahan et al., 2009).
Such inhomogeneities can arise from damaged or scar tissue (Starobin et al., 1996), when
a lesion is created via ablation (Azene et al., 2001) or by regional hyperkalemia (Xie et al.,
2001). These changes affect the propagation speed of the pulse (Kléber & Rudy, 2004), the
action potential duration (Beeler & Reuter, 1977; Efimov et al., 1995; Shajahan et al., 2009) and
prolongs recovery of excitability after the occurrence of an action potential (Xie et al., 2001).
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Fig. 8. Tip trajectories of spiral waves obtained with Equations (2) with a partially excitable
circular obstacle (A) τd = 0.38 outside the circular obstacle and τd = 0.43 inside, r = 4; (B)
τd = 0.43 outside the obstacle and τd = 0.38 inside, r =

√
4.5.

The stability of spiral waves depending on inhomogeneities in the medium has been studied
by Shajahan (Shajahan et al., 2009) and Xie (Xie et al., 2001). In this work, we focus on partially
excitable obstacles of circular shape. A pair of simulations are shown in Fig. 8. In Figure 8A,
τd = 0.38 outside the circular obstacle and τd = 0.43 inside. The radius of the obstacle is
r = 4. In the previous section, the tip of the spiral wave followed the boundary between the
two regions. In Figure 8A, it is shown that the trajectory also follows such boundary, which
corresponds to the boundary of the inhomogeneity. In this case, it is shown that the tip traces
a curve that resembles an hypotrochoid. In the case where the value of τd is inverted, i.e. τd =

0.43 outside the inhomogeneity and τd = 0.38 inside, with a radius r =
√

4.5, we obtain the
trajectory shown in Fig. 8B. Here, the trajectory obtained resembles an epitrochoid. This last
result has been presented in (Biktashev, 2007) within a frame of drift due to inhomogeneities
where inside the obstacle the refractory period is longer than outside.
Now, consider varying the radius of the obstacle. In Fig. 9 we present the results of
considering the two cases presented in Fig. 8. In the top row, we show the case when the
trajectory resembles a hypotrochoid. In order to obtain these trajectories, we took τd = 0.43
inside the obstacle, such that inside the obstacle the trajectory is circular. Outside the obstacle
τd was taken as 0.38, such that the trajectory outside is hypotrochoidal. The radius of the
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obstacle is increased from left to right. When the radius of the obstacle is less than the radius
of the circumference traced by the tip trajectory, the trajectory is circular. As the radius of
the obstacle is increased, the trajectory changes from circular to hypotrochoidal. Then, by
considering an increase in the radius of the obstacle, the circular trajectory experiences a
bifurcation as the one periodic rotation changes to a two period rotation. This result was
reported by Mikhailov et al. (Mikhailov et al., 1994) where a circular domain with no flux
boundary conditions was considered.

Fig. 9. Trajectories obtained with Eqns. (2) with a partially excitable circular obstacle and
different radii. The red circle in each case, represents the boundary of the obstacle. Top row:
τd = 0.38 outside the circular obstacle and τd = 0.43 inside. Circular and hypotrochoidal
trajectories are obtained; Bottom row τd = 0.43 outside the obstacle and τd = 0.38.
Epitrochoidal trajectories are obtained

In the bottom row of Fig. 9 is shown the case when the trajectory traces an epitrochoid.
In this case, if we take a smaller radius, an epitrochoidal trajectory remains even by taking
R tending to zero. Additionally to this result, it is also clear that by considering partially
excitable obstacles it is possible to obtain the case of an epitrochoidal trajectory with R = ∞

and therefore a transition between the hypotrochoidal and epitrochoidal cases. Just like the
case of meandering discussed in subsection 4.1.1.
The results presented in the top row of Figure 9, have a completely different meaning from
those presented in (Mikhailov et al., 1994). As an example, consider the tip trajectory shown
in Fig. 10, which corresponds to the upper left case shown in Fig. 9. Initially, the tip of the
spiral wave is located outside of the obstacle. Because τd = 0.38 outside the obstacle, an
hypotrochoid is obtained. However, as soon as the trajectory hits the obstacle, the tip of the
spiral wave gets trapped by the obstacle and the trajectory becomes circular (Fig. 10).
Therefore, in this section we have shown that heterogeneities in the conducting properties of
the medium can give different results. (i) If inside the obstacle we take a value of τ1

d such that
the tip trajectory is a circumference of radius r1 and outside the obstacle the value of τd is less
than τ2

d < τ1
d , where τ2

d gives a circular trajectory with radius r2 < r1, then if the radius of
the obstacle is r ∈ [r2, r1] then a circular tip trajectory due to the interaction between the tip of
the spiral wave and the obstacle is obtained. Clearly, this case includes the situation of having
an epitrochoidal or hypotrochiodal trajectory outside the obstacle (with the values of τd given
in Fig. 4). (ii) Under the same conditions as above but the radius r of the obstacle larger
than r1, then the trapped trajectory will trace a hypotrochoid. Observe that in this regime, we
can obtain a transition from epitrochoidal (given by meandering) to hypotrochoidal trajectory
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Fig. 10. τd = 0.38 outside τd = 0.43 inside the obstacle. The radius of the obstacle is r = 1.
The simulation was done in the domain Ω = [−7, 7]× [−7, 7], but a zoom of the region of
interest is shown. x and y in cm.

(given by drift of the spiral wave). (iii) Finally, when the values of τd inside and outside the
obstacle are reverted, what is obtained is an epitrochoidal trajectory.
It is important to observe that two periodic rotations, named epitrochoidal and
hypotrochoidal trajectories, and transitions from circular to hypotrochoidal regimes, are also
obtained through drift. Therefore, the presence of partially excitable obstacles in cardiac tissue
may induce the existence of trajectories that mimic the meandering behavior.

6. Non-excitable obstacles

Obstacles in cardiac tissue have been modeled with regions where the zero flux condition
is imposed (Azene et al., 2001; Isomura et al., 2008; Panfilov & Kenner, 1993; Shajahan et al.,
2009; Starobin et al., 1996; Valderrábano et al., 2000). Arteries (Valderrábano et al., 2000) and
the natural orifices in the atria, (Azene et al., 2001) are examples of this type of obstacles. Also,
these obstacles can be artificially generated in experimental preparations by making cuts in
the tissue (Cabo et al., 1996; Ikeda et al., 1997).
The interaction of spiral waves with non excitable obstacles has been considered by different
authors (Azene et al., 2001; Ikeda et al., 1997; Isomura et al., 2008; Panfilov & Kenner, 1993;
Shajahan et al., 2009; Starobin et al., 1996; Valderrábano et al., 2000). Of particular interest is
the work by Ikeda (Ikeda et al., 1997), where it is observed that when a spiral wave attaches
to an obstacle, a transition between two different classes of arrhythmias is observed.
In the present section we extend the results observed by Ikeda (Ikeda et al., 1997) and show
that the presence of non excitable obstacles, just as the partially excitable ones, can stabilize
or destabilize spiral wave dynamics. Initially, it is considered a spiral wave in the circular
regime (τd = 0.426), with a circular obstacle with radius r = 1.7 and center in the origin.
In this regime, we placed the tip of the spiral wave near the obstacle. The result is shown
in Fig. 11. In this situation, it is observed that the spiral rotates and at the same time starts
moving around the obstacle. Due to the drift at an impermeable boundary plus the circular
shape of the obstacle, it is observed that the tip of the spiral traces a curve very similar to an
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epitrochoid. Therefore, the presence of a circular obstacle, has changed the simple rotation of
the spiral wave into a two periodic rotation. This phenomenon, was observed for obstacles of
all sizes above mesh partition. The speed of the drift was a decreasing function of the radius.

x

y

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Fig. 11. Drift of a spiral wave around a circular obstacle. τd = 0.426, radius r = 1.7.

In our second experiment, we considered a spiral wave in the epitrochoidal regime (τd =
0.405). In the same way, we placed the spiral wave in such way that the tip of the spiral
interacts with the obstacle. The results are shown in Fig. 12. In the figure, it is shown a spiral
wave in the epitrochoidal regime interacting with the circular obstacle at different integration
times. In Figs. 12A,B, it is shown that the spiral wave traces an epitrochoid. As soon as the
spiral wave hits the boundary, the tip trajectory changes its direction due to the boundary
effects (Olmos & Shizgal, 2008; Yermakova & Pertsov, 1986). In the figure, it is shown that the
tip of the spiral wave hits the boundary four times. In the first three interactions, it is observed
that the spiral bounces at the obstacle. However, in the fourth interaction it is observed that
the spiral wave attaches to the obstacle (Fig. 12C). A major consequence obtained is that the
two frequency rotation given by the epitrochoidal regime, changes after a transient, to a simple
rotation given by the circular regime.
The change from the two rotation period to simple rotation was due to attachment of the
spiral wave to the obstacle (Olmos, 2010). However, this experiment raises different questions.
When the tip of the spiral hits the obstacle, why in some cases bouncing is observed and
then attachment?, Does attachment always occur? Does attachment depend on the size of the
radius of the obstacle?, How long it takes to a spiral to attach to the obstacle? To answer these
questions is a very difficult task.
In order to show the complexity of this problem, we consider a previous analysis done in
(Olmos & Shizgal, 2008). We interact the tip of spiral waves in the trochoidal regime (R = ∞

in Fig.5) with a flat boundary. With these settings we remove the effect of the curvature of the
obstacle and the curvature of the epitrochoidal and hypotrochoidal regimes. We took initial
conditions such that the trajectory had an incident angle θi with respect to the boundary (Fig.
13A).
When the tip of a spiral wave interacts with a boundary, there are two possible outcomes. The
tip of the spiral wave bounces at the boundary as in Fig. 13A, or disappears at the boundary, in
which case the spiral wave also disappears from the domain (Olmos & Shizgal, 2008). When
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Fig. 12. Interaction of a spiral wave in the epirtrochoidal regime with a circular obstacle for
different integration times. The arrow points at the place where the trajectory starts. (A)
shows the trajectory of the spiral wave meandering; (B) the spiral wave hits the obstacle and
bounces, and; (C) the spiral wave hits the obstacle and gets anchored. Note the difference in
the frequency of excitation between (A)-(B) and (C).

considering obstacles, the effect of bouncing is the same for a boundary and for the obstacle.
However, the effect of annihilation at a boundary becomes attachment of the spiral wave to the
obstacle (Olmos, 2010). In Fig. 13B, we show the probability of annihilation of a spiral wave at
the boundary as a function of the incident angle, following the procedure in (Olmos & Shizgal,
2008). From the figure, it is clear that for θi ∈ [0o, 60o ]

⋃
[160o , 180o ] the tip of the spiral wave

bounces at the boundary. For θi ∈ (60o , 160o) in some cases, there was observed bouncing but
also annihilation. As we increase the value of θi from 60o to 140o , there is an increase in the
proportion of spiral waves that annihilate at the boundary. For θi = 140o all the trajectories
considered in the simulations disappeared at the boundary giving annihilation. From there,
as the value of θi is increased up to θi = 160o , the proportion of spirals that bounced at the
boundary increased again.
Based on the previous information, we run several examples in the epitrochoidal regime (τd =
0.405) as the one shown in Fig. 12. We considered obstacles with three different radius, r = 0.8,
r = 1.1 and r = 1.7. From there, we took all the cases where attachment of the spiral wave
to the obstacle was obtained. It was observed from this numerical experiment that the angles
at which attachment occurred, ranged from 10o to 100o . From this observation and from Fig.
13B, it is shown that for incident angles θi ∈ [10o , 60o], annihilation at the flat boundary is not
possible, but attachment to the circular obstacle is possible.
The phenomenon of obtaining attachment for angles θi that in the flat boundary gave
bouncing might be expected from the studies in (Leal-Soto, 2011; Olmos, 2010), where a spiral
wave in the trochoidal regime interacted with the face of a square shaped obstacle. In these
studies, it is shown that a spiral wave that would experience bouncing in a flat boundary, will
experience attachment to the obstacle, as the interaction of the spiral wave takes place near
a corner of the obstacle. Therefore, when we consider a circular obstacle, the interactions of
the tip of the spiral wave with the obstacle can be thought as the interaction of the tip of a
spiral with a smoothed corner of a square shaped obstacle. This explains why attachment is
observed for angles less than θi = 60o observed in the simulations.
Attachment to the circular obstacle was observed to happen with angles θi between 10o to
100o . This does not imply that attachment is not possible for θi outside this range of values.
In fact, from the simulations, the interaction of the spiral wave with the obstacle rarely
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Fig. 13. (A) Interaction of a spiral wave in the trochoidal regime (R = ∞ in Fig. 5,
τd = 0.3965) with a boundary. θi is the angle of incidence. In the figure, the tip of the spiral
wave bounces at the boundary. (B) Probability of annihilation of the spiral wave at the
boundary for a particular angle of incidence θi.

occurs with angles greater than 100o . This basically happens because we are considering
epitrochoidal trajectories. If we consider hypotrochoidal trajectories, then interactions will
take place mostly with angles above 90o.

6.1 More complex dynamics

The interaction of a meandering spiral wave with an obstacle has different outcomes. In Fig.
14A, we show how complex dynamics can be. We took a spiral wave in the epitrochoidal
regime such that the tip touches the obstacle and bounces at it. The dynamics of the tip
trajectory are shown in Fig. 14A. From the figure it is clear that the trajectory hits the obstacle
repeatedly following no visible pattern. As seen in the figure, there is no attachment of
the spiral to the obstacle for large time integrations. Clearly, the activation of the tissue is
completely irregular and might be considered as being in a fibrillatory regime.
When we consider an obstacle of a very small size, and an epitrochoidal trajectory, it is
observed that the trajectory follows a more stable pattern (Fig. 14B). In this case, the trajectory
gets close to the obstacle periodically and it can be said that it happens each time the trajectory
traces an epitrochoid. As soon as the tip of the trajectory gets close to the obstacle, the
boundary effects induce an increase in the curvature of the trajectory, producing drift of the
spiral wave. It is important to note that the increase in the curvature is very small as the
size of the obstacle is also very small. This small perturbation in the tip trajectory allows the
trajectory to preserve the epitrochoidal trajectory as opposed in what is shown in Fig. 14A.
In this section, we have shown that obstacles might act as a switch between the one and two
periodic rotations. Therefore, it follows that the presence of obstacles does not necessarily
induce a more stable regime in the spiral wave. Moreover, if the spiral wave is in the
epitrochoidal regime, the result might be (i) A transition to a simple rotation scheme; (ii)
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Fig. 14. Tip trajectories traced by a spiral wave solutions of Eqns. (2) when a circular obstacle
is imposed. (A) The trajectory does not follow a regular pattern; (B) When the size of the
obstacle is small enough a three periodic trajectory is obtained.

A transition to a more complex pattern, and; (iii) if the radius of the obstacle is sufficiently
small, a transition to a three period rotation 1.

7. Conclusions, limitations and open questions

In this work, it was considered the interaction of spiral waves in the circular and meandering
regime with partially and non excitable obstacles of circular shape. The aim was to understand
the transitions that occur between three different regimes: the circular, the epitrochoidal and
the hypotrochoidal. The presence of a spiral wave in the circular regime, provides a periodic
stimulation of the tissue in a more stable fashion than the other two regimes, as only one
excitation frequency is present. When a spiral wave attaches to an obstacle the arrhythmic
regime is the same as is the tip of a spiral wave were tracing a circle.
When partially excitable obstacles were considered (Section 5), it was shown that the presence
of such inhomogeneities induced the appearance of epitrochoidal and hypotrochoidal
trajectories, commonly associated to meandering. This implies that epitrochoidal and
hypotrochoidal trajectories might arise due to meandering or drift. It is important to point
out that tip trajectories obtained with meandering, like linear trajectories (Fenton et al., 2002),
were not obtained with drift. Nonetheless it is important to understand the nature of these
trajectories to apply the proper procedure to remove them.
Transitions between different spiral wave regimes were obtained when an obstacle was placed
in the medium (Sections 5 and 6). In Section 5, tip trajectories changed from epitrochoidal or
hypotrochoidal to circular ones. Also, the reversed process might be obtained, i.e. circular
trajectories can switch to epitrochoidal or hypotrochoidal trajectories. Finally, transitions from
epitrochoidal to hypotrochoidal might also be obtained. On the other hand, in Section 6, it was
shown that the presence of an obstacle, might act as a switch between two different arrhythmic
regimes. (i) Simple rotating spirals changed to a two period meandering spiral wave; (ii) Two
periodic meandering spiral waves changed to (a) simple rotating spiral; (b) Three periodic
meandering spiral wave and; (c) More complex trajectory with no regular pattern associated.

1 Strictly speaking, the trajectory is not three periodic, but there are three frequencies associated to the
tip motion.
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In general, it was shown that the presence of inhomogeneities in the medium not
only stabilizes the spiral wave dynamics as shown in (Ikeda et al., 1997; Kim et al., 1999;
Shajahan et al., 2007) but also might generate more complex dynamics, which implies that
the presence of obstacles might induce a more dangerous arrhythmic regime than the one
without the obstacle.
Drift of a spiral wave had been considered only for planar boundaries (Yermakova & Pertsov,
1986) and inside circular domains (Mikhailov et al., 1994). In this work, it was presented the
drift of a spiral wave around a circular obstacle which was not previously reported. Up to
now, there are still missing conditions for general shape obstacles that allow drift of the spiral
wave around the obstacle, when the spiral tip traces a circle. A similar analysis for partially
excitable obstacles is missing. i.e. which geometric properties must have an obstacle such that
the tip trajectory of a spiral wave will follow its boundary?
The study of attachment of meandering spiral waves to non-excitable obstacles is a very
difficult task, as there is not a clear a pattern that relates the radius of the obstacle and the
radius of the epitrochoid. Also, it is still the question of studying which type of trajectory,
epitrochoidal or hypotrochoidal, will attach more easily to an obstacle of a given size. In
this work it was not considered the study of hypotrochoidal trajectories and non-excitable
obstacles as the original study was to establish conditions to consider an obstacle as a switch
between the circular and epitrochoidal regime.

8. Acknowledgements

The author would like to acknowledge ACARUS at the University of Sonora, for their facilities
for the numerical computations. This work was supported by PROMEP.

9. References

Azene, E. M.; Trayanova, N. A. & Warman, E. (2001). Wave Front-obstacle interactions in
cardiac tissue: a computational study. Ann. Biomed. Eng., Vol. 29, No. 1, (January
2001) (35-46), 0090-6964

Beeler, G. W. & Reuter, H. (1977). Reconstruction of the action potential of ventricular
myocardial fibres. J. Physiol., Vol. 268, No. 1, (June 1977) (177-210) 0022-3751

Benson, A. P. & Holden, A. V. (2005). Calcium oscillations and ectopic beats in virtual
ventricular myocytes and tissues: bifurcations, autorhythmicity and propagation, In:
Lecture Notes in Computer Science, Frangi, F; Radeva P. I.; Santos A. & Hernandez,
Springer, (895-897), Springer-Verlag Berlin, 3-540-26161-3, Berlin, Germany

Biktashev V. N. (2007). Drift of spiral waves. Scholarpedia, Vol. 2, No. 4, (2007) (1836), 1941-6016
Cabo, C.; Pertsov, A. M.; Davidenko, J. M.; Baxter, W. T.; Gray, R. A. & Jalife J. (1996). Vortex

shedding as a precursor of turbulent electrical activity in cardiac muscle. Biophys. J.,
Vol 70, No. 3, (March 1996) (1105-1111), 0006-3495

Comtois, P. & Vinet, A. (2005). Multistability of reentrant rhythms in an ionic model of a
two-dimensional annulus of cardiac tissue. Phys. Rev. E, Vol. 72, No. 5, (November
2005) 051927(1-11), 1539-3755

Courtemanche, M.; Ramirez, R. J. & Nattel S. (1998). Ionic mechanisms underlying human
atrial action potential properties: insights from a mathematical model. Am. J. Physiol.
and Heart Circ. Physiol., Vol. 275, No. 1, (July 1998) (H301-H321), 0363-6135

373Spiral Waves, Obstacles and Cardiac Arrhythmias

www.intechopen.com



18 Will-be-set-by-IN-TECH

Davidenko, J. M.; Pertsov, A. V.; Salomonsz, R.; Baxter, W. & Jalife, J. (1992). Stationary and
drifting spiral waves of excitation in isolated cardiac muscle. Nature, Vol. 355, No.
6358, (January 1992) (349-351), 0028-0836

DiFrancesco, D. & Noble, D. (1985). A model of cardiac electrical activity incorporating ionic
pumps and concentration changes. Phil. Trans. R. Soc. Lond., Vol. 307, No. 1133,
(January 1985), (353-398), 0962-8436

Efimov, I. R.; Krinsky, V. I.; & Jalife, J. (1995). Dynamics of rotating vortices in the Beeler-Reuter
model of cardiac tissue. Chaos, Sol. and Frac., Vol. 5, No.3-4 (March-April 1995)
(513-526), 0960-0779

Fenton, F. H. & Cherry, E. M. (2008). Models of cardiac cell. Scholarpedia, Vol. 3, No. 8, (2008)
(1858), 1941-6016

Fenton, F. H. & Karma, A. (1998). Vortex dynamics in three-dimensional continuous
myocardium with fiber rotation: Filament instability and fibrillation. CHAOS, Vol.
8, No. 1, (March 1998) (20-47), 1054-1500

Fenton, F. H.; Cherry, E.; Hastings, H. M. & Evans, S. J. (2002). Multiple mechanisms of
spiral wave breakup in a model of cardiac electrical activity. CHAOS, Vol. 12, No.
3, (September 2002) (852-892), 1054-1500

Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol, Vol. 117, (August 1952),
(500-544), 0022-3751

Ikeda, T.; Yashima, M.; Uchida, T.; Hough, D.; Fishbein, M. C.; Mandel, W. J.; Chen, P.
S. Karagueuzian, H. (1997). Attachment of meandering reentrant wave fronts to
anatomic obstacles in the atrium - Role of the obstacle size. Circ. Res., Vol. 81, No.
5, (November 1997) (753-764), 0009-7330

Isomura, A.; Hörning, M.; Agladze, K. & Yoshikawa, K. (2008). Eliminating spiral waves
pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli.
Phys. Rev. E. Vol. 78, No. 6, (December 2008) 066216(1-6), 1539-3755

Kim, Y.; Xie, F.; Yashima, M.; Wu, T.; Valderrábano, M.; Lee, M.; Ohara, T.; Voroshilovsky, O.;
Doshi, R. N.; Fishbein, M. C.; Qu, Z.; Garfinkel, A.; Weiss, J. N.; Karagueuzian, H.
S. & Chen, P. (1999). Role of papillary muscle in the generation and maintenance
of reentry during ventricular tachycardia and fibrillation in isolated swine right
ventricle. Circulation, Vol. 100, No. 13, (September 1999), 1450-1459, 0009-7322

Kléber, A. G. & Rudy, Y. (2004). Basic Mechanisms of cardiac impulse propagation and
associated arrhythmias. Physiol. Rev., Vol. 84, No. 2, (April 2004) (431-488), 0031-9333

Leal-Soto, D. A. (2011). M. Sc. Thesis: Interacción de ondas en espiral y obstáculos en medios
excitables con la ecuación de Fitzhugh-Nagumo (In Spanish). Universidad de Sonora,
México.

Lee K.J. (1997) Wave Pattern Selection in an Excitable System. Phys. Rev. Lett. Vol. 79, No. 15,
(October 1997) (2907-2910) 0031-9007

Lim, Z. Y.; Maskara, B.; Aguel, F.; Emokpae R. & Tung, L. (2006). Spiral wave attachment to
millimeter-sized obstacles. Circulation, Vol 114, No. 20 (November 2006) (2113-2121),
0009-7322

Luo, C.-S. & Rudy, Y. (1994). A Dynamic Model of the Cardiac Ventricular Action Potential.I.
Simulations of ionic currents and concentration changes. Circ. Res., Vol. 74, No. 8,
(June 1994) (1071-1096), 0009-7330

374 Cardiac Arrhythmias – New Considerations

www.intechopen.com



Spiral Waves, Obstacles

and Cardiac Arrhythmias 19

Luo, C.-S. & Rudy, Y. (1994). A Dynamic Model of the Cardiac Ventricular Action Potential.II.
Afterdepolarizations, triggered activity, and potentiation. Circ. Res., Vol. 74, No. 8,
(June 1994) (1097-1113), 0009-7330

Mikhailov, A. S.; Davydov, V. A.; Zykov, V. S. (1994). Complex dynamics of spiral waves and
motion of curves. Physica D, Vol 70, No. 1-2, (January 1994) (pages 1-39) 0167-2789

Morton K. W. & Mayers D. F. (2005). Numerical Solution of Partial Differential Equations,
Cambridge University Press, 978-0-521-60793-0, Cambridge.

Nygren, A.; Fiset, C; Firek, L.; Clark, J. W.; Lindblad, D.S.; Clark, R. B.; Giles W. R. (1998).
Mathematical Model of an Adult Human Atrial Cell: The Role of K+ Currents in
Repolarization Circ. Res., Vol 82, No. 1, (January 1998) (63-81), 0009-7330

Olmos, D. (2007). Ph. D. Thesis: Pseudospectral solutions of reaction-diffusion equations that
model excitable media: convergence of solutions and Applications. University of
British Columbia, Canada.

Olmos, D. & Shizgal B. D. (2008). Annihilation and reflection of spiral waves at a boundary
for the Beeler-Reuter model. Phys. Rev. E, Vol. 77, No. 3, (March 2008) (031918 1-14),
1539-3755

Olmos, D. (2010). Reflection and attachment of spirals at obstacles for the Fitzhugh-Nagumo
and Beeler-Reuter models. Phys. Rev. E, Vol. 81, No. 4, (April 2010) 041924(1-9),
1539-3755

Otani, N. F. (2000). Mini Review: Computer Modeling in Cardiac Electrophysiology. J. Comput.
Phys., Vol. 161, No. 1, (June 2000) (21-34), 0021-9991

Panfilov, A. V. & Keener, J. P. (1993). Effects of high frequency stimulation on cardiac tissue
with an inexcitable obstacle, J. Theor. Biol, Vol. 163, No. 4, (August 1993) (439-448),
0022-5193

Pertsov, A. M.; Davidenko, J. M.; Salomonsz, R.; Baxter, W. T. & Jalife, J. (1993). Spiral waves
of excitation underlie reentrant activity in isolated cardiac muscle. Circ. Res., Vol. 72,
No. 3, (March 1993) 631-650, 0009-7330

Priebe, L. & Beuckelmann, D. J. (1998). Simulation Study of Cellular Electric Properties in
Heart Failure. Circ. Res., Vol. 82, No. 11 (June 1998) (1206-1223) 0009-7330

Priori, S. G.; Aliot, E.; Blømstrom-Lundqvist, C.; Bossaert, L.; Breithardt, G.; Brugada, P.;
Camm, J. A.; Cappato, R.; Cobbe, S. M.; Di Mario, C.; Maron, B. J.; McKenna, W. J.;
Pedersen, A. K.; Ravens U.; Schwartz, P. J.; Trusz-Gluza, M.; Vardas, P.; Wellens, H.
J. J. & Zipes, D. P. (2002). Task Force on Sudden Cardiac Death, European Society of
Cardiology. Europace, Vol. 4 (January 2002) (3-18), 1099-5129

Shajahan, T. K.; Sinha, S. & Pandit, R. (2007). Spiral-wave dynamics depend sensitively on
inhomogeneities in mathematical models of ventricular tissue. Phys. Rev. E, Vol. 75,
No. 1, (January 2007) 011929(1-8), 1539-3755

Shajahan, T. K.; Nayak, A. R. & Pandit, R. (2009) Spiral-Wave Turbulence and its Control in
the Presence of Inhomogeneities in Four Mathematical Models of Cardiac Tissue. Plos
One, Vol. 4, No. 3, (March 2009) (1-21), 1932-6203

Starobin, J. F.; Zilberter, Y. I.; Rusnak, E. M. & Starmer, C. F. (1996). Wavelet formation
in excitable cardiac tissue: the role of wavefront-obstacle interactions in initiating
high-frequency fibrillatory-like arrhythmias. Biophys. J., Vol. 70, No. 2, (February
1996) (581-594), 0006-3495

Tang, A. S.; Ross, H.; Simpson, C. S.; Mitchell, L. B.; Dorian, P.; Goeree, R.; Hoffmaster,
B.; Arnold M. & Talajic, M. (2005). Canadian cardiovascular society / Canadian

375Spiral Waves, Obstacles and Cardiac Arrhythmias

www.intechopen.com



20 Will-be-set-by-IN-TECH

heart rhythm society position paper on implantable cardioverter defibrillator use in
Canada. Can J. Cardiol, Vol. 21, Suppl A, (May 2005) (11A-18A), 0828-282X

Ten Tusscher, K. H. W. J. & Panfilov, A. V. (2002). Reentry in heterogeneous cardiac tissue
described by the Luo-Rudy ventricular action potential model. Am J. Physiol. Heart
Circ. Physiol., Vol. 284, No. 2, (February 2002) (H542-H548), 0363-6135

Valderrábano, M.; Kim, Y.-H.; Yashima, M.; Wu, T.-J.; Karagueuzian, H. S. & Chen, P.-S. (2000).
Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated
swine right ventricles: Insights into the transition dynamics and implications for
the critical mass. J. Am. Col. Cardiol., Vol. 36, No. 6, (November 2000) (2000-2008),
0735-1097

Veenhuyzen, G. D.; Simpson, C. S. & Abdollah, H. (2004). Atrial Fibrillation. CMAJ, Vol. 171,
No. 7, (September 2004) (755-760), 0820-3946

Xie, F.; Qu, Z.;Garfinkel A. & Weiss J. N. (2001). Effects of simulated ischemia on spiral
wave stability. Am. J. Heart Circ. Physiol., Vol. 280, No. 4, (April 2001) (H1667-H1673).
0363-6135

Yanagihara, K.; Noma, A. & Irisawa, H. (1980). Reconstruction of sino-atrial node pacemaker
potential based on the voltage clamp experiments. Jap. J. Physiology, Vol. 30, No. 6,
(1980) (841-857), 0021-521X

Yermakova, Y. A. & Pertsov, A. M. (1986). Interaction of rotating spiral waves with a boundary.
Biophysics, Vol. 31, No. 5,(932-940) 0006-3509

Zaret, B. L.; Moser, M. & Cohen, L. S. (1992). Yale University School of Medicine Heart Book,
Hearst books, 0-688-09719-7, New York.

Zipes, D. P. (2005). Epidemiology and mechanisms of sudden cardiac death. Can J. Cardiol, Vol.
21, Suppl A, (May 2005) (37A-40A), 0828-282X

376 Cardiac Arrhythmias – New Considerations

www.intechopen.com



Cardiac Arrhythmias - New Considerations

Edited by Prof. Francisco R. Breijo-Marquez

ISBN 978-953-51-0126-0

Hard cover, 534 pages

Publisher InTech

Published online 29, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The most intimate mechanisms of cardiac arrhythmias are still quite unknown to scientists. Genetic studies on

ionic alterations, the electrocardiographic features of cardiac rhythm and an arsenal of diagnostic tests have

done more in the last five years than in all the history of cardiology. Similarly, therapy to prevent or cure such

diseases is growing rapidly day by day. In this book the reader will be able to see with brighter light some of

these intimate mechanisms of production, as well as cutting-edge therapies to date. Genetic studies,

electrophysiological and electrocardiographyc features, ion channel alterations, heart diseases still unknown ,

and even the relationship between the psychic sphere and the heart have been exposed in this book. It

deserves to be read!

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Daniel Olmos-Liceaga (2012). Spiral Waves, Obstacles and Cardiac Arrhythmias, Cardiac Arrhythmias - New

Considerations, Prof. Francisco R. Breijo-Marquez (Ed.), ISBN: 978-953-51-0126-0, InTech, Available from:

http://www.intechopen.com/books/cardiac-arrhythmias-new-considerations/spiral-waves-obstacles-and-

cardiac-arrhythmias-



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


