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1. Introduction 

Asthma is the syndrome defined with chronic airway inflammation and hypersensitivity. 

Asthma is classified into two phenotypes, atopic with IgE antibodies for specific allergens 

and nonatopic without IgE antibodies. Unlike adults, 90-95% of pediatric asthma patients 

exhibit an atopic phenotype (Japanese Society of Pediatric Allergy and Clinical Immunology 

[JSPACI], 2008). In addition, there are several significant differences between adult and 

childhood asthma such as duration of disease, extent of lung and immunological 

development, and duration of inhaled corticosteroid (ICS) use. 

The phenotype of airway inflammation is caused by a complex network of various 

immunocytes; such as T helper 2 (Th2) cells, T helper 17 (Th17) cells, eosinophils, basophils 

etc (Broide et al., 2011). Typically, it is known that Th2 cells can promote eosinophil 

activation and IgE production by B cells, while recently Th17 cells have been thought to play 

a part in exacerbation of asthma, due to their ability to recruit neutrophils following 

neutrophil activation at an inflammatory site (Molet et al., 2001; Barczyk et al., 2003; Zhao et 

al., 2008).  

Regulatory CD4+CD25+ T (Treg) cells, which are characterized by their anergy and immune-
regulatory functions, can control allergic responses such as airway eosinophilia and airway 
hypersensitivity. To date, several reports have indicated that reduced numbers of Treg cells 
or functionally impaired Treg cells are implicated in asthma, rheumatoid arthritis and 
Kawasaki disease, among others (de Kleer et at., 2004; Furuno et al., 2004; Karlsson et al., 
2004; Haddeland et al., 2005., Orihara et al., 2007; Schaub et al., 2008; Ly et al., 2009). 
Consistent with these reports, our own data suggested that Treg cells from childhood 
asthma patients were impaired in their suppressive functions (Yamamoto et al., 2011). 
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Coincident with the reduced regulatory functions of Treg cells, the ratio of Th17 cells also 
increased in childhood asthma patient (Yamamoto et al., 2010). Furthermore, single 
nucleotide polymorphisms of FOXP3 have been associated with childhood allergy (Bottema 
et al., 2009). 

Treg cells are anergic in both the resting state and after activation by TCR stimulation. 
Murine Tregs showed a low Ca2+ level accompanying their anergic state (Gavin et al., 2002) 
and our recent human Treg data imply that it the same low Ca2+ level accompanies their 
anergy (Yamamoto et al., 2011). The Ca2+ channel on the cell surface of T cells that responds 
to TCR stimulation is called the calcium release-activated Ca2+ (CRAC) channel. We have 
hypothesized that, in contrast to naïve T cells, the CRAC channel in resting Treg cells may 
not open easily in response to TCR stimulation and thus the regulation of the CRAC channel 
may be impaired in Treg cells from asthma patients. This impaired Ca2+ regulation in Treg 
cells may then partly contribute to reduce their regulatory functions. 

2. Immune and inflammatory pathology in childhood asthma 

Airway inflammation plays a critical role in the pathogenesis of asthma in both adults and 

during childhood (Warner et al., 1998; Wenzel, 2006; Broide et al., 2011). The immune 

mechanisms underlying adult asthma derive from the infiltration and activation of immune 

cells such as eosinophils, mast cells, T cells, basophils and neutrophils, and the activation of 

parenchymal cells like epithelial cells. It is also generally known that there are different 

inflammatory phenotypes in adult asthma such as those with a neutrophilic or an 

eosinophilic predominance (Wenzel, 2006). The airway inflammatory pattern of eosinophilic 

asthma is characterized by mast cell activation and increasing numbers of activated 

eosinopils and T cells. Neutrophilic asthma, which is dominanted by neutrophil infiltration 

and activation in the airways, is related to the severity of adult asthma and steroid-resistant 

disease (Wenzel et al., 1997). Almost all pediatric asthma has a similar basis to chronic 

asthma in adults. However, broncho-alveolar lavage cell profiles and induced sputum in 

childhood asthma revealed increasing numbers of eosinophils and neutrophils compared 

with controls (Warner et al., 1998). The number of neutrophils in childhood asthma was 

correlated with the frequency of symptoms and with positive bacterial cultures from the 

alveolar lavage. In the case of childhood asthma, the increasing neutrophil infiltration 

appears not to be an exacerbating factor related to disease severity, in contrast to such 

findings in adult asthma.  

Human lung development can be broken down into four prenatal phases including the 
embryonic phase (up to the sixth week of gestation), pseudoglandular phase (from the seventh to 
the sixteenth week of gestation), canalicular phase (from the 16th to the 26th week of gestation), 
and saccular phase (from the 24th to the 26th week of gestation) (DiFiore & Wilson, 1994; 
Jeffery et al., 1998; Bolt et al., 2001). The development persists postnatally as the alveolar 
phase, during the formation of alveoli by 2yrs of age and the further development until 
adulthood, i.e., suggesting that the respiratory system in children is immature (Schittny et 
al., 1998; Bolt et al., 2001). 

Likewise, development of the immune system is very important in early childhood and a 

significant body of evidence suggests that antigen reactivity could be initiated by the fetal 

immune system after approximately 22 weeks of gestation (Jones et al., 1996; Szépfalusi et 
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al., 2000). Immunotoxin exposure during pregnancy through causes such as maternal 

smoking, folate intake, heavy metals, antibiotics and environmental estrogens etc is a 

particular concern at a period from mid-gestation until 2 years after birth (Dietert & Zelikoff, 

2008). Furthermore, maternal exposure to allergens can induce the fetus to respond 

specifically to the allergens at birth (Prescott et al., 1998, 1999); implying that allergen 

sensitization could be determined prenatally. Both innate and acquired immune responses 

are still immature in infancy, for instances poor T cell responses due to defective functions 

of antigen presenting cells (APC) (Delespesse et al., 1998; Levy et al., 2004; Maródi, 2006; 

Lappalainen et al., 2009). Interestingly, the germ-free status of intrauterine environment 

favors Th2 responses, and a Th2-skewed response at birth in the human has been 

demonstrated (Prescott et al., 1998).  

Asthma is an inflammatory disease that features a Th2 type immune response caused by 

inhaled allergens. The immune response is characterized by Th2 type cytokines such as IL-4, 

IL-13 and allergen-specific IgE. IL-4 and IL-13 play a role in class switching of B cell to 

produce allergen-specific IgE antibodies that bind to specific receptors on mast cells and 

basophils. IL-4 also promotes differentiation of naïve T cells into Th2 cells (Robinson et al., 

1992; Constant et al., 2000). 

Recently, Th17 cells, which are considered to be developmentally distinct from Th1 and Th2 

cells, were found to be a subset of Th cells closely connected with the increased prevalence 

of allergies and asthma (Molet et al., 2001; Laan et al., 2002; Barczyk et al., 2003; Oboki et al., 

2008). IL-17 gives rise to production of IL-6, IL-8 and CXCL1 from bronchial fibroblasts or 

epithelial cells, consequently inducing a positive neutrophil chemotaxis followed by chronic 

airway inflammation (Kawaguchi et al., 2001; Molet et al., 2001). In some cases, Th17 cells 

were able to secrete both Th2 and Th17 type cytokines and the cells increased in the 

peripheral blood from asthma patients (Cosmi et al., 2010). In addition, human eosinophils 

constantly expressed IL-17- and IL-23-receptors and IL-23 stimulated eosinophils to produce 

both chemokines (CXCL1, CXCL8, and CCL4) and cytokines (IL-1, IL-6 and IL17/IL-23) 

(Cheung et al., 2008).  

Our preliminary data have suggested that pediatric asthma patients exhibited a higher 

frequency of Th17 cells within the peripheral CD4+ T cell population (Yamamoto et al., 

2010). Th17 cells appeared during an early stage at the onset of child asthma and the 

increased frequency of Th17 cells in the peripheral blood could reflect the presence of their 

symptoms of asthma, but it could not be connected with the severity of asthma. The data 

implies that early neutrophil infiltration in the airways of children with asthma may be 

attributed to the high frequency of Th17 cells. In line with our results, polymorphisms of the 

IL-17A gene were also associated with the incidence of pediatric asthma (Wang et al., 2009). 

In contrast, the presence of elevated numbers of Th17 cells in adult airways was related to 

the severe type of asthma and the neutrophilic inflammation, such as an occur in steroid-

resistant asthma (Zhao et al., 2010). The role of Th17 cells may thus be similar between 

childhood and adult asthma. Furthermore, a negative correlation between the frequency of 

Th17 cells and Treg cells was shown in a moderate type of child asthma and in 

autoimmunity (Bettelli et al., 2006; Yamamoto et al., 2010). Neutrophilic inflammation 

therefore seems to be ascribed to the increased activation of Th17 cells and the decline in the 

number and activity of Treg cells.  
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3. The role of Treg cells in childhood asthma 

Allergy is a hyper-immunoresponse to specific antigens that also emerges as a consequence 
of perturbed immune tolerance. Since immune functions are initiated very early in life, the 
onset of allergic reactivity also appears before birth. Reflecting such a situation, the cytokine 
profiles such as the ratio of T helper 1 (Th1)/Th2 and elevated IgE levels in cord blood may 
predict those individuals who are at risk of developing allergic diseases later in life (Hinz et 
al., 2010). The germ-free status of the intrauterine environment favors Th2 responses, and a 
Th2-skewed response at birth in humans has been demonstrated (Prescott et al., 1998). A 
stronger maternal Th2 immune response has also been connected with childhood wheezing 

and atopy (Kim et al., 2008). Furthermore, reduced production of the Th2 antagonist IFN- 
during pregnancy has been associated with increasing IL-13 production in the child (Kopp 
et al., 2001). Maternal cells could cross the placenta and affect the regulation of immune 
responses after birth (Mold et al., 2008). Taken together, these results suggested that the 
perturbation of immune tolerance is initiated in utero and as a result specific responses to 
allergens emerge in early in life. 

There are several reports implicating reductions in the numbers and functionality of 
CD4+CD25+ Treg cells in both human and mouse allergies; although the regulatory ability of 
Treg cells is still controversial in a mouse model of ovalbumin sensitized airway 
hypersensitivity (Suto et al., 2001; Hadeiba & Locksley, 2003; Jaffar et al., 2004). As previously 
noted, many studies have shown that the reduced number and the dysfunction of Treg cells 
were related with asthma. In adult humans, the regulatory function of Treg cells was reduced 
in symptomatic hay fever subjects during the pollen season but not in asymptomatic status 
from the same population outside of the pollen season (Ling et al., 2004). Ca2+ signaling is very 
important for lymphocyte functions and our own data have indicated that impaired Ca2+ 
regulation within CD4+CD25+CD45RO+ Treg cells correlated with child asthma symptoms 
(Yamamoto et al., 2011). We showed that anergy, one of the defining human Treg cell features, 
is dependent on intra-cellular calcium. Importantly, intra-cellular Ca2+ influx in Treg cells 
identifies those populations that lack anergic status and may have a role in impairing their 
regulatory functions. Moreover, pulmonary CD4+CD25high Treg cells were also functionally 
impaired in childhood asthma (Hartl et al., 2007). A diminished number of Treg cells were also 
observed in the peripheral blood of children subjects with symptomatic food allergy and 
atopic dermatitis implicating these cells in yet further allergic reactions (Bellinghausen et al., 
2003; Karlsson et al., 2004). It has been proposed that reduced numbers of maternal Treg cells 
and increased production of Th2 cytokines during pregnancy might play a significant role in 
enhancing the allergy risk in children (Hinz et al., 2010).  

Forkhead box P3 (FOXP3) is a forkhead transcription factor that has been shown to be a 
master regulator of Treg cell development and functions, and thereby is considered as the 
one of the most specific markers of Treg populations (despite its transient induction in 
activated human effector CD4+ T cells). Human naïve and memory T cells can be 
distinguished by the reciprocal expression of CD45 isoforms (RA+: naïve, RO+: memory) 
(Michie et al., 1992). Human FOXP3+CD4+ Treg cells in adult peripheral blood are classified 

into three distinct subpopulations, namely CD45RA+FOXP3low, CD45RAFOXP3high and 
CD45RAFOXP3low T cells (Miyara et al., 2009). CD45RA+FOXP3low and CD45RAFOXP3high 
Treg cells are resting and activated cells respectively, and both cell populations have 

functional suppressor activity in vitro. The CD45RAFOXP3low Treg cells are cytokine 
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secreting non-suppressive cells. CD45RA+ (naïve) subset in FOXP3+ Treg cells from umblical 
blood is far greater than CD45RO+ (memory) subset, because the fetus receives little 
stimulation from environmental factors such as bacteria, viruses and allergens (Thornton et 
al., 2004). We identified two subsets of CD4+CD25+ Treg cells, CD45ROFOXP3low (nearly 
equal in numbers to the CD45RA+ population) and CD45RO+FOXP3high (nearly equal in 

numbers to the CD45RA population) T cells in peripheral blood from children (Yamamoto 
et al., 2011). However, our data indicated that CD45RO Treg population did not have the 
distinctly different FOXP3 expression levels seen in the adult subsets and Ca2+ 
unresponsiveness in the cells seemed to be similar at different FOXP3 expression levels in 
children. This population seems to be anergic but the suppressive function may vary with 
FOXP3 expression levels, like the adult Treg cells subsets, since Treg cells with low level 
FOXP3 remained anergic but their suppressive activities was greatly impaired (Wan & 
Flavell, 2007). Furthermore, intra-cellular Ca2+ concentration in response to TCR activation 

also seemed to be different between CD45ROFOXP3low and CD45RO+FOXP3high Treg cells 
from children, suggesting that the two populations were not equally functional. 
Furthermore, CD45RA+ Treg cells from newborns were reported to lack Treg capability (Ly 

et al., 2009). That is, it may be different in the functions of CD45RO Treg cells in children 
unlike the adult Treg cells subsets.  

What kind of factors impair the functions of Treg populations? Tumor necrosis factor- (TNF-
) has been reported to contribute to dysfunction of Treg cells and consequent breakdown of 
immunological self-torelance in Rheumatoid Arthritis (RA) (Nadkarni et al., 2007). TNF- is 
one of main causative factors in RA, and anti-TNF treatment (infliximab etc) led to the elevated 
number of Treg cells and restored the partly impaired suppressive functions. TNF- was able 
to inhibit the suppressive activity of CD45RA Treg cells, via TNF- receptor 2 (TNFR2) on 
their surface, in human RA subjects (Nagar et al., 2010). In childhood asthma, escalation of 
TNF- level in allergen stimulated-peripheral blood mononuclear cells (PBMC) and in 
asthmatic airway has also seemed to be related to the functional insufficiency of Treg cells (Lin 
et al., 2008). Furthermore, the frequency of FOXP3+ cells in CD4+CD25high Treg cells in the 
subjects was significantly reduced and TNF- treatment in vitro compromised the function of 
Treg cells, which was also associated with increased TNFR2 expression. CD45RA+ Treg cells 
can promote human Th17 differentiation, which is impaired by TNF-(Baba et al., 2010) but 
CD45RO+CD25high Treg cells inhibit the function of murine Th17 (Bettelli et al., 2006).  
In childhood asthma, CD45ROFOXP3low (nearly equal in numbers to the CD45RA+ 
population) Treg cells may accelerate Th17 development in addition to impairing the functions 
of CD45RO+FOXP3high (equally CD45RO+CD25high) Treg cells. 

4. Different mechanisms of determining anergic status in Treg cells 

In response to TCR activation, under some conditions, T cells can be led to an unresponsive 
status termed anergy. Anergic cells do not transcribe the IL-2 gene or proliferate in response 
to TCR activation, even in the presence of costimulation (Fathman & Lineberry, 2007; Zheng 
et al., 2008; Wells, 2009). Generally, when T cells are activated via TCR and CD28 
costimulation molecule, phospholipase C (PLC), protein kinase C (PKC) and Ras can be 
activated very quickly. Subsequently, the activation of the major signal transduction 
pathways such as MAPK, JNK, RSK and IB kinase (IKK) and intra-cellular Ca2+ influx are 
provoked. Finally, transcription factors (NFAT, AP1 and NFB etc), which are essential for 
the transcription of IL-2, are activated (Kane et al., 2002; Wells, 2009).  
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The induction of anergy is observed both in vitro and in vivo. There are several methods for 
the induction of in vitro anergy; including antigen presentation by chemically fixed antigen 
presenting cells (APC), ionomycin stimulation, anti-CD3 stimulation without co-stimulation, 
etc (Lamb et al., 1983; Jenkins & Schwartz, 1987). Likewise there are several models of in vivo 
anergy induction, systemic delivery of superantigens, administration of soluble peptide 
antigen into TCR transgenic mice, etc (Rammensee et al., 1992; Rellahan et al., 1990; Kawabe 
& Ochi, 1990). Under these conditions, the in vitro induced clonal anergic cells produce less 
IL-2, proliferate poorly, and can be long-lived and stable for weeks if they escape from 
apoptosis. However, Ca2+ influx in these T cells is normal and subsequently induces the 
activation of nuclear factor of activated T cells (NFAT) when the cells are re-stimulated 
(Fathman & Lineberry, 2007). Cyclosporin A, an inhibitor of the immediate upstream 
activator of NFAT, can inhibit the induction of T cell anergy (Jenkins et al., 1990). Since 
NFAT (the Ca2+-calcineurin signal) promotes IL-2 transcription and cooperates with Fos/Jun 
dimers (AP-1) (the CD28-MAPK signal). Mutation of NFAT, which prevents its binding to 
AP-1, also induces an anergic phenotype (Macián et al., 2002). Excessive calcium-
calcineurin-NFAT signaling without AP-1 induces the negative regulatory factors for 
TCR/CD28 dependent signaling such as the transcription factors, early growth response 
(Egr) 2, Egr3 and the lipid kinase, diacylglycerol kinase- (DGK- etc (Safford et al., 2005; 
Zheng et al., 2008). In contrast, in vivo adaptive tolerance models showed a defect in TCR-
induced calcium influx (Chiodetti et al., 2006). In vitro induced anergic cells also showed the 
same results but a short rest period of 1-2 days after anergy induction resulted in recovery of 
a normal calcium flux (Gajewski et al., 1994, 1995). As mentioned above, the in vitro clonal 
anergy model showed that Ca2+-calcineurin-NFAT signal functions were normal but the 
MAPK-AP1 signal was impaired, whereas the in vivo adaptive tolerance model showed 
Ca2+-calcineurin-NFAT signal was significantly impaired. These systems thus operate at 
quite different mechanisms at the molecular level.  

In contrast to effector T cells, CD4+CD25+ Treg cells produce less IL-2, proliferate poorly, 
and exhibit a low level of Ca2+ influx in response to TCR stimulation (Gavin et al., 2002; 
Yamamoto et al., 2011). The decline of IL-2 transcription in Treg cells is mainly attributed to 
the master regulator FOXP3, which is able to inhibit the function of NFAT by competing 
with its binding to AP-1 (Wu et al., 2006). Although anergy is one of the key Treg features, 
the molecular mechanisms by which this phenotype are achieved are quite different from 
those mentioned above in the in vitro clonal anergy and in vivo adaptive tolerance models. 
FOXP3 acts as both a transcriptional repressor and activator, regulating the transcription of 
a diverse array of target genes (Marson et al., 2007; Zheng et al., 2007). Low level of Ca2+ 
influx in response to TCR activation may be either directly or indirectly regulated by 
FOXP3. One possible explanation for the low level of Ca2+ influx in Tregs is that several 
molecules involved in the regulation of intra-cellular Ca2+ concentration may be controlled 
by FOXP3. Intra-cellular Ca2+ influx, in response to TCR activation, in T cells depends on the 
CRAC channel, comprising the subunits ORAI1 and STIM1 etc (Zhang et al., 2005; Prakriya 
et al., 2006). Intra-cellular Ca2+ signaling events in T cells are as follows: Engagement of the 

TCR brings about ZAP70 phosphorylation and is followed by PLC1 activation. Activated 

PLC1 cleaves membrane phospholipids into two different second messengers, inositol 
triphosphate (IP3) and diacylglycerol (DAG). IP3 interacts with IP3Rs (Ca2+ channel) on 
endoplasmic reticulum (ER) and triggers this to release Ca2+ from the ER via IP3Rs. 
Increasing intra-cellular Ca2+ concentration induces Ca2+ influx through a pore-forming unit 
of CRAC channels involving ORAI1 on plasma membrane (Zweifach & Lewis, 1993). Down 
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regulation of any component of this signaling cascade offers the possibility to reduce the 
Ca2+ influx in Treg cells. Notably, ZAP70 is one of target genes reported to be repressed by 
FOXP3 (Marson et al., 2007). However, the exact molecular mechanisms of low level of Ca2+ 
influx in response to TCR activation remain obscure in Treg cells.  

5. Conclusion 

Immunopathology of childhood asthma seems to have little difference in terms of 
neutrophilic inflammation when compared to the adult disease. Impaired Ca2+ regulation in 
Treg cells from asthma patients appears to compromise their regulatory functions, 
consequently increasing the number of Th17 cells and neutrophils. Consistent with these 
data, Ca2+ elevation in immunocytes induced by several stimuli also seems to have a key 
role for aggravation of airway inflammation in asthma. The intra-cellular Ca2+ elevation may 
then result in production of IL-2 via NFAT activation in asthma Treg cells. These data imply 
that dysregulation of Ca2+ unresponsiveness was concurrent with the impaired regulatory 
functions in Treg cells from asthma patients (Fig.1). Moreover, our Ca2+ analysis is a useful 
tool for the evaluation of Treg functions that proves particularly valuable when only small 
blood samples are available for study. 

 

 

Fig. 1. Characteristics of CD4+CD25+FOXP3+ Treg cells. 

In response to TCR activation, FOXP3 T cell (effector T cell, left), FOXP3+ Treg cells from 
non-asthma (middle) and from asthma (right) are compared in terms of anergy status (low 
IL-2 production and proliferation poorly) and Ca2+ response. 
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