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1. Introduction 

Recently, the role played by photochemical and free radical-mediated processes in the 
degradation of lipid components during the senescence of phototrophic organisms was 
investigated. The present paper reviews the results obtained in the course of these studies. 

In a first part, visible and UV light-induced photooxidation of the main lipid cell 
components (chlorophylls, carotenoids, sterols, unsaturated fatty acids, highly branched 
isoprenoid and linear alkenes, alkenones, cuticular waxes …) in senescent phototrophic 
organisms (phytoplankton, cyanobacteria, higher plants, purple sulfur bacteria and aerobic 
anoxygenic phototrophic bacteria) is examined. Probably due to its long lifetime in 
hydrophobic micro-environments and thus in senescent cells, singlet oxygen plays a key 
role in the photodegradation of most of the lipid components.  

The second part of this paper describes the free radical oxidation (autoxidation) of lipid 
components during the senescence of phototrophic organisms, which have been virtually 
ignored until now in the literature. In senescent phototrophic organisms, the mechanism of 
initiation of free-radical oxidation seems to be the homolytic cleavage (catalyzed by some metal 
ions) of photochemically produced hydroperoxides. It was also demonstrated recently that viral 
infection and autocatalytic programmed cell death could also lead to elevated production of 
reactive oxygen species (ROS) able to induce the degradation of cell components.  

2. Photodegradation processes in phototrophic organisms 

Several works suggested photo-oxidation as an important sink of organic matter in the photic 
layer of oceans (Zafiriou, 1977; Zafiriou et al., 1984). However, due to the lack of suitable 
markers this phenomenon has never been fully addressed. Owing to the problem of 
stratospheric ozone depletion, some studies have recently examined the degradative effects of 
enhanced UV-B doses on phytoplanktonic lipids (He and Häder, 2002). However, 
photochemical damages in phytoplanktonic cells are not a monopoly of UV radiation. In fact, 
due to the presence of chlorophylls (which are very efficient photosensitizers (Foote, 1976; 
Knox and Dodge, 1985)), numerous organic components of phytoplankton are susceptible to 
being photodegraded during senescence by photosynthetically active radiation (PAR). 
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2.1 Photodegradation of the main lipidic components of phytoplankton during 
senescence 

When a chlorophyll molecule absorbs a quantum of light energy, an excited singlet state 

(1Chl) is formed which, in healthy cells, leads predominantly to the characteristic fast 

reactions of photosynthesis (Foote, 1976). However, a small proportion (<0.1%) undergoes 

intersystem crossing (ISC) to form the longer lived triplet state (3Chl; Knox and Dodge, 

1985). 3Chl is not only itself potentially damaging in type I reactions (hydrogen atom or 

electron abstraction) (Knox and Dodge, 1985), but can also generate highly reactive oxygen 

species (ROS) and, in particular, singlet oxygen (1O2), by reaction with ground state oxygen 

(3O2) via Type II processes. In order to avoid oxidative damage, there are many antioxidant 

protective mechanisms in chloroplasts. Carotenoids quench 3Chl and 1O2 by energy transfer 

mechanisms at very high rates (Foote, 1976) and tocopherols can remove 1O2, O2
-, HOO 

and HO by acting as sacrificial scavengers (Halliwell, 1987). Superoxide dismutase enzyme 

(SOD) and ascorbic acid may also scavenge O2
- (Halliwell, 1987), while catalase activity 

decreases H2O2 levels. 

In senescent phototrophic organisms, the fast reactions of photosynthesis clearly do not 

operate, so an accelerated rate of formation of 3Chl and 1O2 would be expected (Nelson, 

1993). The rate of formation of these potentially damaging species can then exceed the 

quenching capacity of the photoprotective system and photodegradation can occur 

(photodynamic effect; Merzlyak and Hendry, 1994). In phytodetritus, when the ordered 

structure of the thylakoid membranes has been disrupted, pigments tend to remain 

associated with other hydrophobic cellular components such as membrane lipids (Nelson, 

1993). As a result, the photooxidative effect of chlorophyll sensitization might be strongly 

amplified within such a hydrophobic micro-environment. Moreover, the lifetime of 1O2 

produced from sensitizers in a lipid-rich hydrophobic environment could be longer, and its 

potential diffusive distance greater, than its behaviour in aqueous solution (Suwa et al., 

1977). It is not surprising, therefore, that photodegradation processes act on the majority of 

unsaturated lipid components of senescent phytoplankton. 

2.1.1 Chlorophylls 

Irradiation of dead phytoplankton cells by PAR and UVR radiations results in rapid 
degradation of chlorophylls (Nelson, 1993; Rontani et al., 1995; Christodoulou et al., 2010). 
Photodegradation of chlorophyll-a and -c in killed cells of E. huxleyi appeared to be induced 
by both PAR and UVR (Christodoulou et al., 2010). The photochemical degradation of 
chlorophylls has so far been studied almost exclusively with respect to the macrocycle 
moiety of the molecule, which is the more reactive. Despite some progress regarding 
intermediary photoproducts (Engel et al., 1991; Iturraspe et al., 1994), no stable and specific 
markers for the chlorophyll macrocycle photodegradation have been characterised. 

The isoprenoid phytyl side-chain of chlorophylls is also sensitive to photochemical 
processes. In fact, in phytodetritus, the photodegradation rates were only 3 to 5 times higher 
for the chlorophyll tetrapyrrolic structure than for the phytyl side-chain (Cuny et al., 1999; 
Christodoulou et al., 2010). Analysis of isoprenoid photoproducts of chlorophylls after 
irradiation of different dead phytoplanktonic cells by visible light clearly established that 
the photodegradation of the chlorophyll phytyl side-chain in phytodetritus involved mainly 
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1O2. The type II (i.e. involving 1O2) photosensitized oxidation of the phytol moiety of 
chlorophylls leads to the production of photoproducts of structures a and b (Fig. 1), 
quantifiable after NaBH4-reduction and alkaline hydrolysis respectively in the form of 
6,10,14-trimethylpentadecan-2-one (1) (phytone) and 3-methylidene-7,11,15-trimethyl-
hexadecan-1,2-diol (phytyldiol) (2) (Fig. 1) (Rontani et al., 1994).  
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Fig. 1. Photooxidation of chlorophyll phytyl side-chain and reactions of oxidation products 
during alkaline hydrolysis. 
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Irradiation with UVR resulted in the additional production of small amounts of Z-phytol 
and Z and E-3,7,11,15-tetramethylhexadec-3-en-1,2-diols (3,4) (Christodoulou et al., 2010). 
The detection of Z-phytol allowed to demonstrate the induction of cis-trans photosensitized 
isomerization by UVR. These reactions probably involve triplet states of ketones as 
sensitizers. Type II photosensitized oxidation of the Z configuration of phytol, which should 
lead to the production of photoproducts of structures a, b and c (Fig. 1) (Schulte-Elte et al., 
1979), explains the detection of small amounts of Z and E-3,7,11,15-tetramethylhexadec-3-en-
1,2-diols (3,4) after irradiation with UVR. Irradiation with UVR also resulted in a faster 
degradation of chlorophyll phytyl side-chain oxidation products (Christodoulou et al., 
2010). This higher reactivity was attributed to UVR-induced homolysis of the peroxyl group 
of photoproducts of structures a, b and c (Fig. 1). 

Phytyldiol (2) is ubiquitous in the marine environment and has been proposed as tracer for 
photodegradation of chlorophyll’s phytyl side chain (Rontani et al. 1994; 1996a; Cuny and 
Rontani 1999). Further, the molar ratio phytyldiol:phytol (Chlorophyll Phytyl side-chain 
Photodegradation Index, CPPI) was employed to estimate the extent of chlorophyll 
photodegraded in natural marine samples by the empirical equation: chlorophyll 
photodegradation % = (1-(CPPI + 1)-18.5) x 100 (Cuny et al. 2002). 

2.1.2 Carotenoids 

In phytodetritus, chlorophylls and carotenoids remain in a close molecular-scale association 
at relatively high localized concentrations, even though the structure of the thylakoid 
membrane has been disrupted (Nelson, 1993). Thus, the sensitized photooxidation of 
carotenoids is enhanced. The photosensitized oxidation (involving 1O2) of carotenoids in 
solvents has been studied (Iseo et al., 1972) and loliolide (5), iso-loliolide (6) and 
dihydroactinidiolide (7) (Fig. 2) were identified as major photoproducts, depending on the 
functionality of carotenoids at C-3. Loliolide (5) and iso-loliolide (6) have been detected in 
killed cells of Dunaliella sp. irradiated by visible light (Rontani et al., 1998). However, due to 
their apparent production by anaerobic bacteria (Repeta, 1989) and during dark incubations 
of killed phytoplanktonic cells (Rontani et al., 1998), these compounds cannot constitute 
unequivocal indicators of photooxidative processes. 

O O O
HO HO

OOO

5 6 7
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Fig. 2. Structure of the main carotenoid oxidation products. 

2.1.3 5
-sterols 

As important unsaturated components of biological membranes, 5-sterols are highly 
susceptible to photooxidative degradation during the senescence of phytoplankton. 
Irradiation by visible light of killed cells of Skeletonema costatum, Dunaliella sp., 
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Phaeodactylum tricornutum and Emiliania huxleyi (Rontani et al., 1997a; 1997b; 1998) resulted 
in a quick photodegradation of the sterol components of these algae. The results obtained 
clearly established that the photooxidation of sterols in senescent cells of phytoplankton 

involves type II photoprocesses. These processes mainly produce6-5-hydroperoxides (8) 

and to a lesser extent 4-6/6-hydroperoxides (9 and 10) (Fig. 3) (Nickon and Bagli, 1961; 

Kulig and Smith, 1973). 6-5-hydroperoxysterols (8) are relatively unstable and may 

undergo allylic rearrangement to 5-7-hydroperoxysterols (11), which in turn epimerize to 

the corresponding 7-hydroperoxides (12) (Fig. 3) (Smith, 1981). It was previously 
demonstrated that during singlet oxygen-mediated photooxidation of sterols in biological 
membranes (Korytowski et al., 1992) and senescent phytoplanktonic cells (Rontani et al., 
1997a) the photogeneration of Δ4-6ǂ/6ǃ-hydroperoxides (9 and 10) was more favourable 
than in homogeneous solution (ratio Δ4-6ǂ/6ǃ-hydroperoxides/Δ6-5ǂ-hydroperoxysterols 
ranging from 0.30 to 0.35 instead of 0.1). 
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Fig. 3. Type II photosensitized oxidation of 5 sterols. 

Allylic rearrangement of 6-5-hydroperoxides (8) appeared to take place very weakly in 
senescent phytoplanktonic cells (Rontani et al., 1997a; 1997b; 1998). This surprising stability 
was attributed by Korytowski et al. (1992) either to hydrogen bonding between the 

unsaturated fatty acyl chain of phospholipids and 6-5-hydroperoxides (8) which could 
hinder the allylic rearrangement, or to differences of polarity in the carbon 7-10 zone of the 
fatty acyl chain (where sterols tend to localize in phospholipid/sterol bilayers (MacIntosch, 
1978)). It is also interesting to note that the reduction of hydroperoxysterols to the 
corresponding diols weakly operates in killed phytoplanktonic cells (Rontani et al., 1997a). 
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6-5-Hydroperoxysterols (8) are potential type II photodegradation markers, not only 

because they are the major products of singlet oxygen attack on the steroidal 5-3- system, 
but also because biological functionalization of steroids at C-5 is rare. Unfortunately, if these 
compounds are particularly stable in phytodetritus, they decay slowly in the sediment to 

their corresponding 5-7/-derivatives (11 and 12) (Rontani and Marchand, 2000), which 
are not selective markers (see chapter 3.3). Moreover, according to the stability of the alkyl 
radicals formed during ǃ-scission of the corresponding alkoxyl radicals, the following order 
of stability was proposed: Δ4-6-hydroperoxysterols (9 and 10) > Δ5-7-hydroperoxysterols (11 

and 12) > Δ6-5-hydroperoxy-sterols (8) (Christodoulou et al., 2009). Consequently, 4-6-

hydroperoxysterols (9 and 10) (or their degradative products 4-6/-hydroxysterols and 

4-6/-oxosterols) may be considered as more reliable in situ markers of type II 

photodegradation processes than 6-5-hydroperoxides (8). 

2.1.4 Unsaturated fatty acids 

Chloroplast membrane components are particularly susceptible to type II photooxidation 
(Heath and Packer, 1968). This is the case notably for unsaturated fatty acids, which 
generally predominate in algal lipids, particularly in the photosynthetic membranes 
(Woods, 1974). In killed phytoplanktonic cells, the photodegradation rates of unsaturated 
fatty acids logically increase with their unsaturation degree (Rontani et al., 1998). Singlet 
oxygen-mediated photooxidation of monounsaturated fatty acids involves a direct reaction 
of 1O2 with the carbon–carbon double bond by a concerted ‘ene’ addition (Frimer 1979) and 
leads to formation of hydroperoxides at each carbon of the original double bond. Thus, 
photooxidation of oleic acid produces a mixture of 9- and 10-hydroperoxides with an allylic 
trans-double bond (Frankel et al. 1979; Frankel, 1998), which can subsequently undergo 
stereoselective radical allylic rearrangement to 11-trans and 8-trans hydroperoxides, 
respectively (Porter et al. 1995) (Fig. 4).  

The free radical nature of the allylic hydroperoxide rearrangement is supported by the 
observation that the rearrangement is catalysed by free radical initiators or light and 
inhibited by phenolic antioxidants (Porter et al., 1995). This allylic rearrangement weakly 
intervenes in most of the killed phytoplanktonic cells examined (Rontani et al., 1998). This 
was attributed to the relatively high localized fatty acid concentrations present in 
phytodetritus (Nelson, 1993), which favoured the dimerisation of hydroperoxides. 
Hydrogen atom abstraction to form allylperoxyl radicals does indeed occur readily from 
hydroperoxide monomers but not from hydroperoxide dimers (Porter et al., 1995). 

During early diagenesis, isomeric hydroperoxyacids undergo heterolytic cleavage to 

aldehydes and -oxocarboxylic acids (Frimer, 1979) or homolytic cleavage and subsequent 
transformation to the corresponding alcohols or ketones (Fig. 5). 

Taking into account the high amounts of photoproducts of mono-unsaturated fatty acids 
detected in the particulate matter samples (Marchand and Rontani, 2001; Christodoulou et 
al., 2009; Rontani et al., 2011a), and the well known increasing photooxidation rates of fatty 
acids with their degree of unsaturation (Frankel., 1998), it can be concluded that 
considerable amounts of poly-unsaturated fatty acids must be photooxidized during the 
senescence of phytoplankton in the marine environment. However, at this time 
photooxidation products of this kind of fatty acids could not be detected in natural samples.  
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Fig. 4. Type II photosensitized oxidation of oleic acid. 
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Fig. 5. Degradation of allylic hydroperoxides resulting from Type II photosensitized oxidation 
of monounsaturated fatty acids (the example given is this of 9-hydroperoxyoctadec-10-enoic 
acid) (RH = hydrogen donors, e.g. lipids or reduced sensitizers). 
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This is possibly due to: (i) the instability of the hydroperoxides formed, or (ii) the 
involvement of cross-linking reactions leading to the formation of macromolecular 
structures (Neff et al., 1988) non-amenable by gas chromatography. 

2.1.5 Alkenones 

Alkenones are a class of mono-, di-, tri-, tetra- and penta-unsaturated C35-C40 methyl and ethyl 

ketones (Boon et al., 1978; Volkman et al., 1980; de Leeuw et al., 1980; Marlowe et al., 1984; 

Prahl et al., 2006; Jaraula et al., 2010), which are produced by certain marine haptophytes. 

Emiliania huxleyi and Gephyrocapsa oceanica are the major sources of alkenones in the open 

ocean (Volkman et al., 1980; 1995; Conte et al., 1994). The unsaturation ratio of C37 alkenones, 

defined as 37
KU  = [C37:2] / ([C37:2] + [C37:3]) where [C37:2] and [C37:3] are the concentrations of di- 

and tri-unsaturated C37 alkenones respectively, varies positively with the growth temperature 

of the alga (Prahl and Wakeham, 1987; Prahl et al., 1988).  The 37
KU  - growth temperature 

relationship in haptophyte algae and transferred to sinking marine particulate matter leads to 

a linear relationship between sedimentary C37 alkenone composition and mean annual SST 

records throughout the oceans (Rosell-Melé et al., 1995; Müller et al., 1998). The 37
KU   index is 

now routinely used for paleotemperature reconstruction. 

For alkenones to be useful as measures of sea surface temperature in the geological record, it 
is essential that any effects of degradation in the water column and in sediments either do 
not affect the temperature signal established during their initial biosynthesis by the alga 
(Harvey, 2000; Grimalt et al., 2000), or if there is a change its extent can be reasonably 
estimated. 

Visible light-induced photodegradation of these compounds was thus previously 

investigated in order to determine if photochemical processes could appreciably modify 

37
KU   ratios during algal senescence (Rontani et al., 1997b; Mouzdahir et al., 2001; 

Christodoulou et al., 2010). Though potentially selective, photochemical degradation of 

alkenones is not fast enough in killed cells of E. huxleyi to induce strong modifications of the 

37
KU   ratio before the photodestruction of the photosensitizing substances (Rontani et al., 

1997b; Mouzdahir et al., 2001). UVR also appeared to be inefficient to alter the 37
KU   ratio 

(Christodoulou et al., 2010). 

This stability was attributed to the trans configuration of alkenone double bonds (Rechka 
and Maxwell, 1988) that is 7 to 10 times less sensitive against singlet oxygen-mediated 
oxidation than the classical cis configuration of fatty acids (Hurst et al., 1985). This may 
explain the difference of photoreactivity observed between the alkenones and fatty acids 
with the same number of unsaturations. We also previously attributed the poor 
photoreactivity of alkenones to a localisation of these compounds elsewhere than in cell 
membranes (Rontani et al., 1997b; Mouzdahir et al., 2001), which could significantly 
decrease the likelihood of interaction between singlet oxygen and alkenones. Although this 
hypothesis is well supported by the recent results of Eltgroth et al. (2005), who 
demonstrated that alkenones are mainly localized into cytoplasmic vesicles, the migration of 
singlet oxygen from phytodetritus to attached heterotrophic bacteria previously observed 
(Rontani et al., 2003a; Christodoulou et al., 2010) strongly suggests a diffusion of this excited 
form of oxygen also in these cytoplasmic vesicles. 
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2.1.6 n-Alkenes 

The visible light-induced degradation of n-alkenes was previously investigated in killed 
cells of the Prymnesiophycea E. huxleyi and the Eustigmatophycea Nannochloropsis salina 
(Mouzdahir et al., 2001). 

In E. huxleyi killed cells, minor C31 and C33 n-alkenes were strongly photodegraded, while 
the major C37 and C38 n-alkenes appeared particularly recalcitrant towards photochemical 
processes. These strong differences of photoreactivity imply distinct biological syntheses 
and/or functions for these two groups of hydrocarbons in E. huxleyi cells. Interestingly, the 
stereochemistry of the internal double bonds in C31 and C33 n-alkenes has been established 
to be cis, while C37 and C38 alkenes internal double bonds exhibit a trans geometry (Rieley et 
al., 1998; Grossi et al., 2000). The photochemical recalcitrance of C37 and C38 n-alkenes could 
thus be partly attributed to the trans geometry of their internal double bonds. 

Irradiation of dead cells of N. salina resulted in a strong modification of the hydrocarbon 
fraction. It did not provide evidence of a significant light-dependent degradation of 
monounsaturated hydrocarbons; this result was attributed to the terminal position of the 
double bond in these compounds (Gelin et al., 1997), which is poorly reactive towards 
singlet oxygen (Hurst et al., 1985). In contrast, di-, tri-, and tetraenes were strongly 
photodegraded during irradiation. The visible light-dependent degradation of 
phytoplanktonic n-alkenes showed apparent second-order kinetics with respect to light 
exposure and the half-life doses obtained logically decrease with increasing number of 
double bonds in these compounds (Mouzdahir et al., 2001).  

2.1.7 Highly branched isoprenoid (HBI) alkenes 

HBI alkenes are widely distributed in aquatic environments (Rowland and Robson, 1990; 
Sinninghe-Damsté et al., 2004), although they appear to originate from a relatively small 
number of diatomaceous algae including Haslea spp., Rhizosolenia spp., Pleurosigma spp. and 
Navicula spp. (Volkman et al., 1994; Sinninghe-Damsté et al., 2004; Belt et al., 2000, 2001; 
Allard et al., 2001; Grossi et al., 2004). Despite this, they have been commonly reported in 
marine sediments worldwide and provide some insight into the deposition of organic 
matter from the water column. One HBI alkene, a mono-unsaturated isomer termed IP25, has 
been used as a proxy for the occurrence of spring sea ice in the Arctic (e.g. Belt et al., 2007, 
2010; Massé et al., 2008). 

Examination of the photoreactivity of several mono-, di-, tri- and tetra-unsaturated HBI 
alkenes in the presence of a photosensitizer solution and in dead cells of H. ostrearia allowed 
to show that HBI alkenes possessing at least one tri-substituted double bond may be photo-
oxidized at similar or higher rates compared to other highly reactive lipids (e.g. PUFAs, 
vitamin E and chlorophyll a) during the senescence of diatom cells (Rontani et al., 2011b). As 
a consequence, it is proposed that HBI alkenes possessing trisubstituted double bonds are 
likely to be susceptible to photodegradation within the euphotic zone. In contrast, HBIs 
containing only mono- and di-substituted double bonds were found to be significantly less 
reactive towards 1O2 and should, therefore, be relatively preserved during sedimentation 
through the water column (Rontani et al., 2011b). The kinetic experiments are supported by 
product analysis, which revealed that the main reaction with 1O2 primarily occurs with the 
trisubstituted double bonds of HBI alkenes affording tertiary and secondary allylic 
hydroperoxides (Fig. 6). In contrast, the extremely low photoreactivity of the HBI monoene 

www.intechopen.com



 
Senescence 

 

12

IP25, can be attributed to its containing only the least photochemically reactive double bond. 
This lack of reactivity supports (in part) the good preservation of IP25 generally observed in 
sediments (Belt et al., 2007, 2010; Massé et al., 2008). 
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Fig. 6. Type II photosensitized oxidation of HBI alkenes (RH = hydrogen donors)  

2.2 Photodegradation processes in other phototrophic organisms 

Visible light-dependent degradation processes have been also studied in senescent cells of 
two purple sulfur bacteria (Thiohalocapsa halophila and Halochromatium salexigens) isolated 
from microbial mats from Camargue (France) (Marchand and Rontani, 2003). These 
reactions act intensively on the phytyl side chain of bacteriochlorophyll-a and lead to the 
production of phytone (1) and phytyldiol (2) as in the case of chlorophylls (Fig. 1). 
Palmitoleic and cis-vaccenic acids also undergo strong photodegradation, affording mainly 
isomeric allylic oxo-, hydroxy- and hydroperoxyacids. 

These processes were also investigated in aerobic anoxygenic phototrophic bacteria (AAPs) 
(Rontani et al., 2003a). These organisms constitute a relatively recently discovered bacterial 
group (Yurkov and Beatty, 1998) and seem to be widespread in the open ocean (Kolber et 
al., 2000). They perform photoheterotrophic metabolism, requiring organic carbon for 
growth, but they are capable to use photosynthesis as an auxiliary source of energy (Kolber 
et al., 2001). Though sensitive to photochemical processes in senescent purple sulfur bacteria 
(Marchand and Rontani., 2003), the isoprenoid phytyl side-chain of bacteriochlorophyll -a is 
not significantly photodegraded in senescent cells of AAPs (Rontani et al., 2003a). In 
contrast, significant amounts of allylic hydroxyacids arising from the photo-oxidation of the 
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major unsaturated fatty acid of these organisms (cis-vaccenic acid) could be detected after 
irradiation (Rontani et al., 2003a). 

As in the case of phytoplankton and cyanobacteria, visible light-dependent degradation 
processes act significantly on the chlorophyll phytyl side-chain (Rontani et al., 1996b), 
unsaturated fatty acids and sterols (Rontani, Unpublished results) during terrestrial higher 
plant senescence affording similar photoproducts. 9-Hydroperoxy-18-hydroxyoctadec-
10(trans)-enoic (13) and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic (14) acids 
deriving from type II photooxidation of 18-hydroxyoleic acid (15) (Fig. 7) were detected 
after visible light-induced senescence experiments carried out with Petroselinum sativum and 
subsequent cutin depolymerisation (Rontani et al., 2005a).  
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Fig. 7. Type II photosensitized oxidation of 18-hydroxyoleic acid in cutin polymers. 

These results showed that in senescent plants, where the 1O2 formation rate exceeds the 
quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts 
and affect the unsaturated components of cutins. Significant amounts of 9,18-
dihydroxyoctadec-10(trans)-enoic (16) and 10,18-dihydroxyoctadec-8(trans)-enoic (17) acids 
resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also 
detected in different natural samples (Rontani et al., 2005a). These results well support the 
significance of the photooxidation of the unsaturated components of higher plant cutins in 
the natural environment. 

3. Free radical degradation (autoxidation) processes in phototrophic 
organisms 

Autoxidation is the direct reaction of molecular oxygen with organic compounds under 
mild conditions. The autoxidation of organic compounds (in particular, lipids) involves free 
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radical reaction chains and thus includes an initiation, a propagation and a termination 
phase. Mechanisms of initiation for the free radical processes have been the subject of many 
studies. In senescent phytoplanktonic cells, initiation seems to result from the 
decomposition of hydroperoxides produced during photodegradation of cellular organic 
matter (Rontani et al., 2003b). Until now, autoxidative degradation in the marine 
environment has been largely ignored. Specific markers of these reactions have been 
highlighted by in vitro studies (Frankel, 1998; Rontani et al., 2003b; Rontani and Aubert, 
2005). Using these markers, it was demonstrated in situ that autoxidation plays a very 
significant role in the degradation of particulate organic matter (Marchand et al., 2005; 
Rontani et al., 2006; Christodoulou et al., 2009; Rontani et al., 2011a). 

Although the occurrence of autoxidation processes was clearly demonstrated in situ, it is not 
easy to induce these processes in laboratory cultures. Indeed, the mechanism of initiation of 
lipid radical oxidation, which has been debated for many years, seems to be the homolytic 
cleavage of photochemically produced hydroperoxides in phytodetritus (Rontani et al., 
2003b). Redox-active metal ions are generally considered as the initiators of perhaps greatest 
importance for lipid oxidation in biological systems (Pokorny, 1987; Schaich, 1992). They 
may direct the cleavage of hydroperoxides either through alkoxyl or peroxyl radicals. In 
classical culture media (such as f/2) the metal chelator EDTA, which is present in high 
amounts, tightly binds free catalytic metal ions and thus renders them unavailable. EDTA 
thus acts in the culture media as an antioxidant and strongly limits radical oxidation 
processes. 

Recently, autoxidative damages in cells of E. huxleyi strain CS-57 could be induced after 
incubation of this strain under an atmosphere of air + 0.5% CO2 (Rontani et al., 2007a). The 
presence of additional CO2 allowed: (i) to induce a stress that favoured oxidative damage 
and (ii) to decrease the pH of the culture medium releasing metal ions from EDTA 
complexes, which can act as catalysts of hydroperoxide homolysis. 

It was also demonstrated recently that viral infection (Evans et al., 2006) and autocatalytic 
programmed cell death (Bidle and Falkowski, 2004) of phytoplanktonic cells could also lead 
to elevated production of reactive oxygen species (ROS) able to induce the degradation of 
cell components. 

3.1 Chlorophyll phytyl side-chain 

Autoxidation of the esterified chlorophyll phytyl chain involves either addition of peroxyl 
radicals to the double bond or hydrogen abstraction at the allylic carbon 4 (Rontani and 
Aubert, 1994; Rontani and Aubert, 2005). Classical addition of peroxyl radical to the double 
bond gives a tertiary radical (Fig. 8). This radical can then: (i) lead to Z and E epoxides (18 and 
19) by fast intramolecular homolytic substitution (Fossey et al., 1995), or (ii) react with 
molecular oxygen affording (after hydrogen abstraction on another molecule of substrate) a 
diperoxide (20) (Fig. 8). Subsequent NaBH4-reduction and alkaline hydrolysis of these 
compounds gives 3,7,11,15-tetramethylhexadecan-1,2,3-triol (21) (Fig. 8). In contrast, 
abstraction (by photochemically-produced peroxyl radicals) of a hydrogen atom at the allylic 
carbon 4 of the phytyl chain and subsequent oxidation of the allylic radicals thus formed 
affords (after NaBH4-reduction and alkaline hydrolysis) Z and E 3,7,11,15-tetramethylhexadec-
3-en-1,2-diols (3 and 4) and Z and E 3,7,11,15-tetramethyl-hexadec-2-en-1,4-diols (22 and 23) 
(Fig. 8). Compounds 22 and 23 (which are well specific markers of free radical oxidation) could 
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be detected in particulate matter samples (Marchand et al., 2005) and E. huxleyi cells (Rontani 
et al., 2007a) attesting to the involvement of such processes in senescent phytoplanktonic cells. 
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Fig. 8. Free radical-mediated oxidation of chlorophyll phytyl side-chain. 

Free radical oxidation of chlorophyll phytyl chain appeared to be different in senescent cells 
of S. costatum (Rontani et al., 2003b). The differences observed were attributed to the well 
documented high chlorophyllase activity of this strain (Jeffrey and Hallegraeff, 1987) 
catalysing the hydrolysis of chlorophyll to free phytol and chlorophyllide. Indeed, in the 
case of free allylic alcohols hydrogen abstraction at carbon 1 is strongly favoured to the 
detriment of addition reactions (Huyser and Johnson, 1968). 

3.2 Unsaturated fatty acids 

Free radical oxidation of isolated classical 1,2-disubstituted double bonds generally involved 

mainly allylic hydrogen abstraction. Addition of peroxyl or alkoxyl radicals to the double 

bond becomes competitive only in the case of conjugated, terminal, or trisubstituted double 

bonds (Schaich, 2005). Effectively, autoxidation of mono-unsaturated fatty acids appears to 

mainly involve allylic hydrogen abstraction and subsequent oxidation of the allylic radical 

thus formed. For example, autoxidation of oleic acid mainly results in the formation  

of 9-hydroperoxyoctadec-trans-10-enoic (24), 10-hydroperoxyoctadec-trans-8-enoic (25),  

11-hydroperoxyoctadec-trans-9-enoic (26), 11-hydroperoxyoctadec-cis-9-enoic (27),  

8-hydroperoxyoctadec-trans-9-enoic (28) and 8-hydroperoxyoctadec-cis-9-enoic (29) acids  

(Fig. 9) (Frankel, 1998). 
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Fig. 9. Free radical-mediated oxidation of oleic acid. 

Free radical oxidative processes can be easily characterised based on the presence of cis 
allylic hydroperoxyacids, which cannot be produced photochemically (see Fig. 4) and are 
specific products of these degradation processes (Porter et al., 1995; Frankel, 1998). 

Large amounts of oxidation products of oleic acid could be detected in cells of E. huxleyi 
grown under an atmosphere of air + 0.5% CO2 for 10 days (Rontani et al., 2007a). The 
presence (after NaBH4-reduction) of a high proportion of 11-hydroxyoctadec-cis-9-enoic (27) 
and 8-hydroxyoctadec-cis-9-enoic (29) acids (Fig. 10) showed that under these conditions the 
degradation of oleic acid mainly involved free radical oxidation processes. 

3.3 5
-sterols 

Free radical autoxidation of Δ5-stenols yields mainly 7┙- and 7┚-hydroperoxides and, to a 
lesser extent, 5┙/┚,6┙/┚-epoxysterols and 3┚,5┙,6┚-trihydroxysterols (Smith, 1981; Morrissey 
and Kiely, 2006) (Fig. 11).  
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Fig. 10. Partial mass chromatogram of m/z 227, 329, 241 and 343 revealing the presence of 
oxidation products of oleic acid in the saponified fraction of E. huxleyi strain CS-57 grown 
under an atmosphere of air + 0.5% CO2. 

Owing to: their lack of specificity (possible formation by allylic rearrangement of 

photochemically-produced 5-hydroperoxides (see chapter 2.1.3), 7-hydroperoxides 

cannot be employed as tracers of autoxidation processes in phytodetritus. In contrast, it 

is generally considered that 5┙/┚,6┙/┚-epoxysterols arise mainly from  peroxidation 

processes (Breuer and Björkhem, 1995; Giuffrida et al., 2004). Unfortunately, these 

compounds are not very stable and may be easily hydrolysed to the corresponding triol 

in seawater and during the treatment of the samples. 5┙/┚,6┙/┚-Epoxysterols and the 

corresponding 3┚,5┙,6┚-trihydroxysterols were thus finally selected as tracers of sterol 

autoxidation.. 

5┙/┚,6┙/┚-Epoxysterols and 3┚,5┙,6┚-trihydroxysterols corresponding to sitosterol, 

stigmasterol and campesterol were previously detected in young and old cell cultures of 

Chenopodium rubrum (Meyer and Spiteller, 1997). The results showed that the increase of 

these oxidation products well correlated with the age of the culture. 

www.intechopen.com



 
Senescence 

 

18

 

HO

HO OOHHO

HO

O

HO
OH

     Free radical  
        oxidation

7

+ H2O

5
6

 

Fig. 11. Free radical-mediated oxidation of 5 sterols. 

3.4 Vitamin E 

Vitamin E is relatively abundant in most photosynthetic organisms, such as higher plants 
(Rise et al., 1988; Schultz, 1990), cyanobacteria (Dasilva and Jensen, 1971), microalgae 
(Brown et al., 1999) and macroalgae (Sanchez-Machado et al., 2002), where it plays an 
essential role in the removal of toxic forms of oxygen (singlet oxygen, superoxide anion, 
hydroxyl and peroxyl radicals), by acting as sacrificial chemical scavenger (Halliwell, 1987); 
the process results in the irreversible oxidation of the tocopherol molecule.  Vitamin E reacts 
rapidly with peroxyl radicals, affording small amounts of phytone (1), 4,8,12,16-

tetramethylheptadecan-4-olide, -tocopherylquinone and epoxy--tocopherylquinones, 
and dimers and trimers as major oxidation products (Liebler, 1994; Frankel, 1998; Rontani et 
al., 2007b) (Fig. 12). 
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Fig. 12. Autoxidation of vitamin E and methanolysis of the foregoing trimers. 
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Isomeric trimers have been previously observed as products in numerous oxidations of 
vitamin E (e.g. Suarna et al., 1988; Krol et al., 2001). Such compounds cannot be easily 
detected since they are too heavy to be amenable by gas chromatography. However, 
methanolysis of the residues obtained resulted to the formation of high amounts of 5a-
methoxytocopherol (30) arising from the methanolysis of the ketal group of trimers (Fig. 12) 
(Yamauchi et al., 1988). ESI-TOF MS analyses of oxidation products were also carried out in 
order to confirm the presence of high proportions of trimers (Nassiry et al., 2009). 

Despite the intensive study of vitamin E oxidation since several decades, trimeric oxidation 
products could be detected in plants only very recently by Row et al. (2007). These authors 
detected these trimers in seeds of Euryale ferox containing extraordinarily high content of 
tocopherols. It is interesting to note that trimers were previously obtained as the major 
reaction products of vitamin E autoxidized under mild conditions in solution (1%) in methyl 
linoleate (Yamauchi et al., 1988). In plastoglobules, which are lipid monolayer 
subcompartments of the thylakoid membranes of chloroplasts (Maeda and Dellapenna, 
2007), the concentration of tocopherols can reach 10% of the total fatty acids (Vidi et al., 
2006). At such a concentration, the formation of a high proportion of trimers during 
photodynamic damages is thus very likely. In order to check this hypothesis, we searched 
for the presence of 5a-methoxytocopherol (30) after methanolysis of NaBH4-reduced and 
non-reduced lipid extracts obtained from cells of Emiliania huxleyi strain TWP1 and 
Chrysotila lamellosa strain HAP17. The detection of significant amounts of this methanolysis 
product of trimers (Yamauchi et al., 1988) in these extracts (Nassiry et al., 2009) well 
supported the presence of such trimeric oxidation products of vitamin E in these algae. 

3.5 Alkenones 

The autoxidative reactivity of alkenones was studied in the laboratory in the presence of a 
radical initiator (di-tert-butyl nitroxide) and a radical enhancer (tert-butyl hydroperoxide) 
(Rontani et al., 2006). Alkenones appeared to be more sensitive towards oxidative free 
radical processes than analogues of other common marine lipids such as phytyl acetate, 
methyl oleate and cholesteryl acetate, and their oxidation rates increase in proportion with 
their number of double bonds. As the result of this increasing reactivity with degree of 
unsaturation, the 37

KU   ratio increased significantly (up to 0.20) during the incubation.  

Autoxidation of alkenones appears to mainly involve allylic hydrogen abstraction and 
subsequent oxidation of the allylic radical thus formed (Fig. 13). According to these 
processes, oxidation of each double bond of alkenones and subsequent NaBH4 reduction 
affords four positional isomeric alkenediols. These compounds could be very useful 
indicators of autoxidation of alkenones but, unfortunately, they did not accumulate during 
the incubation. Indeed, due to the presence of additional reactive double bonds, 
hydroperoxyalkenones may undergo subsequent oxidation reactions affording, di-, tri- and 
tetrahydroperoxyalkenones according to the degree of unsaturation of the starting alkenone. 
In seawater, these different hydroperoxides may undergo two main degradative processes: 
(i) homolysis of the O-O bond leading to carbonyl (dehydration), alcoholic (reduction) and 
fragmentation (-scission) products (Rontani et al., 2007c) and (ii) heterolysis of the O-O 
bond leading to the formation of two carbonyl fragments (Hock cleavage), this proton-
catalysed cleavage being initiated by migration of groups to positive oxygen (Frimer, 1979). 
Dimeric and oligomeric compounds cross-linked through either peroxide or ether linkages 
(Frankel, 1998) may also be formed during autoxidation of alkenones. 
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Fig. 13. Characterization of oxidation products derived from the autoxidation of the 22 
double bond of the C37:3 alkenone (TMS = trimethylsilyl). 

www.intechopen.com



 
Senescence 

 

22

These results were corroborated by the further finding of significant amounts of alkenediols 
arising from NaBH4-reduction of the corresponding hydroperoxyalkenones in cultures of E. 
huxleyi strain CS-57 grown under an atmosphere of air + 0.5% CO2 (Rontani et al., 2007a) and 
more recently after incubation of a culture of the strain E. huxleyi TWP1 under darkness 
(Rontani, Unpublished results) (Fig. 14) both exhibiting an anomalously high unsaturation 
ratio It seems thus that autoxidation processes have the potential to affect alkenone 
distributions leading to a warm bias in estimates of palaeotemperatures derived from 
alkenone ratios in sediments.  
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Fig. 14. Partial mass fragmentograms of m/z 311 and 325 revealing the presence of silylated 
C37 and C38 alkenediols after NaBH4-reduction and silylation of the total lipid extract of  
E. huxleyi cells incubated under darkness (A) and standard autoxidation products of 
alkenones (B). 

4. Conclusions 

Due to the lack of adequate tracers, the role played by light-induced photochemical and free 
radical-mediated (autoxidative) processes during the degradation of lipid components of 
phototrophic organisms has been virtually ignored until now. 
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It was recently demonstrated that most of the unsaturated lipid components of these 
organisms (chlorophylls, carotenoids, unsaturated fatty acids, sterols, n-alkenes and HBI 
alkenes) could be photodegraded by visible and UV radiations during the senescence. This 
degradation mainly involves type II (i.e. involving 1O2) photoprocesses. Singlet oxygen 
appeared to be sufficiently stable in this hydrophobic micro-environment to migrate outside 
the chloroplasts and affect the unsaturated components of cutins of higher plants. 

Free radical-mediated oxidation (autoxidation) processes also intervene intensively during 
the senescence of phototrophic organisms. Induction of these processes seems to mainly 
result from the homolytic cleavage (catalyzed by some metal ions) of photochemically 
produced hydroperoxides. Unsaturated fatty acids, chlorophyll phytyl side-chain, vitamin 
E, sterols and alkenones appeared to be strongly affected by these degradative processes. In 
the case of alkenones, it is very important to note that autoxidative degradation processes 
may alter significantly their unsaturation ratio and thus constitute a potential source of 
biases during paleotemperature reconstruction. 
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