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1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, followed by vascular and
frontotemporal dementia. Approximatly 8% of the population in developed countries is
impaired by AD at the age of 65, with the risk expanding to 30% for individuals over the
age of 85 years (Petrella et al. (2003)). Due to the increasing life expectancy, the spread of AD
is estimated to triple over the next 50 years (Petrella et al. (2003)). If AD remained untreated,
the economic impact on society would increase dramatically (Carr et al. (1997); Mueller et al.
(2005)), but it is even more important to alleviate the psychological strain on patients and
their relatives. Normally, a patient affected by AD has an anticipated average life expectancy
of 8-10 more years, divided into several stages of the disease. The neuropathological stages
of AD are described in detail in Braak & Braak (1991), where the development of amyloid
deposition and neurofibrillary changes within the brain are explained. These changes can
already be observed in the preclinical phase, i.e., before clinical symptoms occur. Clinical
symptoms usually begin (in early stages) with memory and learning impairment, followed by
alterations in judgement, display of social behavioral problems and reduced faculty of speech.
In late stages of AD, motoric and sensory functions are affected as well (Selkoe (2001)).

First pharmaceuticals for treatment of AD symptoms were recently developed, and there are
several more under clinical trials at the moment, which in turn require the early detection
of AD (Petrella et al. (2003)). Cases with early-onset AD are usually diagnosed with mild
cognitive impairment (MCI). According to Tabert et al. (2006), about 10% of cases with
amnestic MCI (i.e., patients with memory deficits) and about 50% of MCI cases with further
cognitive domain deficits will convert to AD within three years.

In early stages of AD, structural changes within the brain are difficult to detect, as they are
restrained to very specific areas (e.g., hippocampal atrophy) until AD is advanced to a middle
or later stage. Petrella et al. (2003) advise therefore to resort to nuclear medicine imaging
which captures more subtle pathological changes, rather than to magnetic resonance imaging
(MRI) or X-ray computed tomography (CT) as they are less capable for early detection of
dementia. Prevalent in clinical assessment of AD are positron emission tomography (PET) and
single-photon emission computed tomography (SPECT), where PET is observed to perform
superior to SPECT for distinguishing between AD and a control group (CTR), e.g., in Herholz
et al. (2002b).

In nuclear medicine, the biomarkers used for detection of AD include increased f-amyloid
deposition, decreased glucose metabolism and reduced blood flow in the brain, which are
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among many indicators for AD. Furthermore, AD can be correlated to several risk factors,
such as the genetic inheritance of the €4 allele of the apolipoprotein E (APOE) or the increased
accumulation of tau proteins in the cerebrospinal fluid (CSF).

SPECT or PET images are typically evaluated by clinical reading, but this procedure requires
expert knowledge, is time-consuming and rater-dependent. Therefore, statistical analyses
for automated detection or prediction of AD progression in MCI have been subject to recent
research.

As SPECT or PET datasets contain a large amount of information, i.e., more than 10°
voxel-values within the whole-brain region, and as usually up to 100 subjects are considered in
a study;, statistical analysis of the 3D-images is very challenging. It includes univariate analysis
where a voxel-wise comparison is performed to differentiate between AD and normal controls
(CTR), e.g., in Dukart et al. (2010) and Habeck et al. (2008). More recently also multivariate
analysis, such as principal component analysis (PCA), has been applied to enable statistical
evaluation of all voxel-values at the same time, thereby accounting not only for differences
in single intensity values but also correlations between regions. This usually outperforms
univariate analysis in the early identification of AD (Habeck et al. (2008)).

In many studies, PCA is therefore employed to either reduce the high dimensionality of the
data (Markiewicz et al. (2009; 2011a;b); Merhof et al. (2009; 2011)), to discriminate between
dementia of Alzheimer type and asymptomatic controls (Fripp et al. (2008a); Habeck et al.
(2008); Scarmeas et al. (2004)) or to assess the amount of variability of the data (Fripp et al.
(2008a;b)).

The objective of this review is to present and discuss these applications of PCA, and also to
give an insight into adequate preprocessing of the data and implementation of PCA:

Basically, any analysis of PET or SPECT data requires preprocessing of the data in a first
step, comprising registration of each subject to a brain atlas (a.k.a. spatial normalization),
smoothing of all voxel-values and normalization of intensities as briefly described in
Section 2.2. This enables voxel-wise comparisons between images in univariate analysis (see
Section 6.2.1) and the correlation (or interpretation of covariance) of all voxels within the
whole-brain region in multivariate analysis.

After preprocessing, neuroimaging data is commonly reduced to a lower-dimensional
subspace in the studies reviewed in this work. In most cases, this is achieved by PCA
implemented as in Section 3.1, but also by the scaled subprofile model (S§SM), which is a
modification of PCA described in Section 3.2. Partial least squares correlation or regression
(PLSC/ PLSR) is also related to PCA as it is based on the same decomposition procedure
(Section 6.2.2).

The method to be used for dimensionality reduction and further analysis depends on the
purpose of the study, and also on different criteria regarding stability of the dimensionality
reduction. In Section 5, some criteria for the validation of PCA regarding stability and
robustness are presented.

After PCA is accomplished on the neuroimaging data of AD patients and a CTR group,
the resulting projections of all subjects can be used to train discrimination as described in
Section 4.3. Employing MCI cases where AD is prognosed or was already confirmed, the
disrimination can then be tested regarding its potential to detect AD in early stages.

www.intechopen.com



Principal Component Analysis Applied to SPECT and PET Data of Dementia Patients — A Review 169

A detailed outline of all methods presented in this review and a workflow for the analysis of
PET and SPECT data is depicted in Figure 1.

2. Constitution of the data matrix

In all studies reviewed in this work, PET or SPECT images of asymptomatic controls and
patients with AD are considered.

Both techniques generate three-dimensional images of the brain, depicting the aggregation of
a radioactive tracer and therefore providing metabolic information (e.g., glucose metabolism,
brain perfusion or plaque deposition) within distinct brain areas. Although PET produces
images with higher resolution, SPECT is considered to be adequate to detect abnormalities
of perfusion which are specific for AD (e.g., Caroli et al. (2007); Herholz et al. (2002b); Ishii
et al. (1999); Matsuda (2007)). As SPECT is — in comparison to PET — more prevalent and
economical, it is commonly the preferred imaging method according to Minati et al. (2009).

Overall, three tracers were used for the SPECT and PET data examined in this review:

SPECT-scans based on the tracer technetium-99m-ethyl cysteinate dimer (**”"Tc-ECD) show
perfusion patterns of the brain. In Herholz et al. (2002b) it is observed, that superior results
regarding the detection of AD and the assessment of affected brain regions can be achieved by
I18E-2-fluoro-2-deoxy-D-glucose (FDG) PET-imaging, which measures the changes in glucose
metabolism (Ishii et al. (1999)). The tracer !!Carbon-Pittsburgh compound B (1'C PiB) is able
to quantify f-amyloid deposition in the diseased brain as pointed out by Klunk et al. (2004).

2.1 Sample selection

If a groupwise comparison of subjects with AD and CTR is intended by statistical analysis of
PET or SPECT images, not all datasets are apt to be included in the sample. Especially the
CTR group should be gender- and age-matched to account for age-related atrophy within
the brain. The effect of age-related changes of the brain on multivariate analysis such as
PCA is discussed in Zuendorf et al. (2003), where at least two principal components, i.e., two
independent directions of variance, could be correlated with age.

Subjects representing the AD group should not be affected by other neuro-degenerative
diseases, and are also recommended to be in a stage of mild to moderate AD. Cases of late
AD, where almost the whole brain is affected, would put too much emphasis on regions still
unaffected by early-onset AD.

2.2 Preprocessing of the images

In each study, the PET or SPECT images selected for statistical analysis are registered to
an atlas of the brain (a.k.a. spatially normalized), smoothed and intensity normalized. An
optimized preprocessing method for SPECT images is presented in Merhof et al. (2011),
where a dataset containing AD and CTR subjects is preprocessed by various methods, and
subsequently tested by PCA and discrimination analysis. Best results regarding robustness
and classification accuracy are achieved by affine registration (Bradley et al. (2002); Herholz
et al. (2002a)), smoothing of voxel intensity values based on the standard isotropic Gaussian
filter with full width half maximum (FWHM) of 12mm (Herholz et al. (2002a); Ishii et al.
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Fig. 1. Application flow and methods presented in this review
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(2001); Matsuda et al. (2002)) and normalization according to the 25% brightest voxels within
the whole-brain region.

To our knowledge, a detailed review of preprocessing methods and their impact on PCA
applied to PET images (and subsequent analysis, with regard to discrimination of AD and
CTR) has not yet been published. However, Herholz et al. (2004) present a detailed and
effectual survey of the general handling of PET images in neuroscience.

After sample selection and preprocessing, the voxel-values of each scan are converted into
a vector and all datasets are stored column-wise in a data matrix X as depicted in Figure 2.
This enables univariate (i.e., voxel-wise) comparison, or multivariate analysis (e.g., PCA and
in some cases subsequent discriminant analysis), as the observations for each voxel or brain
region are now represented row-wise in X.

3. Principal component analysis

Two main implementations of PCA are considered in this review:

¢ The first and widely used approach is based on variance, where principal components
(PCs) are determined by singular value decomposition (SVD) of the m x n data matrix
X (e.g., Markiewicz et al. (2009); Merhof et al. (2011)). In this way, it is not necessary to
compute the m x m covariance matrix XX T which is time-consuming due to the very high
dimensionality m of the data (in SPECT and PET images, the whole-brain region contains
more than 10° voxels) and might even lead to a loss of precision.

¢ In a second implementation, PCA is modified to a scaled subprofile model (S55M) (e.g., in
Habeck et al. (2008); Scarmeas et al. (2004)). SSM is also covariance-based, but also captures
the regional patterns of brain function and thereby advances subsequent discriminant
analysis. PCA is performed, and afterwards subject scaling factors are calculated to convey
each subject’s contribution to a fixed PC as described in Alexander & Moeller (1994) and
Moeller et al. (1987).

Another framework is presented in Miranda et al. (2008) and Duda et al. (2001), where an
approximation of PCA is achieved by minimizing the mean square error of approximation,
also characterized as a total least squares regression problem (Van Huffel (1997)). However,
to our knowledge this method has not been applied to SPECT or PET data of patients affected
by AD and a CTR group so far and is therefore not considered further in this review.

As PCA is sensitive to outliers within the data, methods to perform a more robust PCA are also
considered, e.g., in Serneels & Verdonck (2008). However, for analysis of SPECT or PET images
the underlying data usually contains a manageable amount of subjects and can therefore be
sorted manually or by applying tests as presented in Section 5. It is also advisable to visualize
those PCs intended to remain in the subsequent analysis as explained in Section 3.4. Thereby,
it can be assured that only those regions of the brain which explain the difference to CTR in
mild to moderate AD are considered, and that there are no abnormally prominent regions
identified by the PCA.

In this review, PCA via SVD and SSM are presented in Sections 3.1 and 3.2. During
resampling, both of these methods may become unstable; therefore, an alternative
implementation is indicated in Section 3.3.
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Fig. 2. Exemplary development of PCA on neuroimaging data. Left: Volume dataset. Middle:
Data matrix X containing one volume dataset per column. Right: Projection into subspace
spanned by three PCs.

A general outline of the PCA on neuroimaging data is depicted in Figure 2, where each image
contained column-wise in the data matrix X is projected into a subspace spanned by the first
three PCs.

3.1 PCA via singular value decomposition

Prior to multivariate analysis, the overall mean of the data matrix X is usually set to zero
by subtracting the mean vector from each column. This is not compulsive but considerably
simplifies further analysis (Habeck et al. (2010); Miranda et al. (2008)).

Singular value decompositon (SVD) of the data matrix is applied by X = VSU! (as in
Markiewicz et al. (2009; 2011b)). As X is of size m x n with m >> n, it is sufficient to
compute only the first n columns of V, i.e., the first n PCs. If the datasets contained in X were
mean-centered beforehand, X is of rank n — 1 at most, so the number of PCs to be computed
is furthermore reduced to n — 1 (this follows from the properties of the associated centering
matrix, i.e., it is idempotent and therefore of rank n — 1).

The columns of V are sorted according to the magnitude of their associated singular values,
i.e., the diagonal elements of S. PC scores for all subjects are computed by VX, i.e., each
subject is projected into a PC-subspace as depicted in Figure 2. If all PCs were used, all
variance of the data would be maintained, but a subset of only a few PCs is sufficient to
represent more than 60% of the variance (see Section 4.2).

3.2 PCA modified to scaled subprofile model analysis

Scaled subprofile model (5SM) analysis enhances the discriminative powers of the PCA as it
not only extracts the covariance structure within groups but also assesses the contribution
of each subject to the covariance pattern. As explained in detail in Alexander & Moeller
(1994), the data matrix X is natural log-transformed, and subsequently mean-centered over
brain regions and subjects. Then PCA is performed on X as in Section 3.1 by X = VSu’
and n PCs are contained in V. Furthermore, PCA via eigenvalue decomposition of the n x n
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Fig. 3. Examples for the first three principal components of a dataset containing SPECT
images of 23 asymptomatic controls and 23 patients with Alzheimer’s disease.

covariance matrix X! X is applied, resulting in n eigenvectors which represent sets of subject
scaling factors (SSFs). The associated eigenvalues to the PCs, SSFs respectively, of both
decompositions are equal. Whereas the PCs describe the main directions of variance in the
data, the SSFs describe the degree of subjects” expression of the fixed PC (Habeck et al. (2008)).
The expression of the PC-scores VT X for each subject is quantified by the associated SSFs in
accordance with the procedure described in Alexander & Moeller (1994) and Habeck et al.
(2008). As above in Section 3.1, only a few PCs and associated SSFs are sufficient to reflect
pathological differences within the data.

3.3 PCA via non-linear iterative partial least squares

During bootstrap resampling (e.g., to assess robustness of the PCA as described in Section 5.3),
individual subjects may be repeatedly present within the resampled data matrix, thereby
rendering the SVD unstable.

In this case, Markiewicz et al. (2009) propose the application of the non-linear iterative
partial least squares (NIPALS) algorithm. The (resampled) data matrix X is decomposed by
X = v1t] + R, where v; denotes an estimate of the first PC of X, ; represents the appendent
PC scores of each subject and R is the remaining residual. As an estimate for v, Wold et al.
(1987) propose the (normalized) column of X with the largest variance, but the employment
of other start vectors is possible as well (Miyashita et al. (1990)). The NIPALS algorithm
is iterated with R acting as new start matrix until all PCs required for further analysis are
computed. The NIPALS method is related to canonical correlation analysis (Hoskuldsson
(1988)), and thereby also to canonical variate analysis as presented in Section 4.3.3.

3.4 Visualization of PCs

Axial slices of PCs can be visualized as illustrated in Figure 3, where 99mTe-ECD SPECT images
of 23 subjects with Alzheimer’s disease and 23 asymptomatic controls were decomposed by
PCA via SVD. As PCA seeks directions for representation (rather than discrimination), the
displayed patterns are not to be mistaken with discriminant images.

The voxel-values of each PC are converted back into a three-dimensional image (reverse to
the procedure in Section 2.1), and every third slice of the PC-image between slice 15 and
72 is depicted. The intensities of the voxel-values are mapped to a colormap ranging from
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blue negative values to red positive values. Neutral voxel-values (= 0, as the data was
mean-centered) correspond to white.

The main variance observed in the temporal lobes is captured in the first PC, whereas the
second PC expresses changes in the area of the ventricles, which could be attributed to the
expansion of ventricles in AD patients. A first intuitive conclusion might be to maintain only
the first two PCs for further analysis, as those describe the regions usually affected by AD
within the brain most distinctly. However, there are more reliable methods to decide which
PCs to keep (see Section 4.2).

4. Applications

In the statistical evaluation of neuroimages, the main purpose of PCA is primarily an
efficient reduction of the very high dimensionality and the removal of noise and redundant
information within the data. The PCs produced during PCA represent the axes of the new
subspace, into which the original datasets containing the voxel-values are transformed. The
decision which PCs are suited to represent the data sufficiently has a great impact on all
further analysis. Therefore, the contribution of each PC should be thoroughly evaluated.
Different criteria for choosing a well-fitting subset of PCs are presented in Section 4.2. Also,
the measurement of the amount of variability maintained within each PC is closely connected
with the question of its significance (see also Section 4.1).

If the dataset at hand contains two (or more) groups of subjects, the PCs established to be
relevant for further analysis are found to notably describe those regions within the brain,
which differ significantly across groups. PCA can therefore be useful to train a discrimination
or to provide the basis for subsequent discriminant analysis as presented in Section 4.3.

4.1 Explanation of the variability

Under the condition that the variables (voxels) of all subjects are on the same scale (this has to
be ensured during preprocessing of the images), the variance of the ith PC equals its associated
eigenvalue e; (Massy (1965)). The percentage of the accumulated variance represented by any
number 71 of all N PCs is then calculated by
(n) = T M
var(n) = =%7——.
Zil\il €;

In several studies it is observed that the first few PCs generally account for more than 60% of
the variability (e.g., in Habeck et al. (2008); Markiewicz et al. (2009)). The percentage of the
cumulative variance explained is used by Fripp et al. (2008a) to compare different methods
for preprocessing of the data, e.g., spatial registration to different brain atlases.

4.2 Dimensionality reduction

In neuroimaging, the number of variables m (i.e., voxels of the whole-brain region) greatly
outnumbers the number of observations n (i.e., subjects included in the study). For this
reason, a dimensionality reduction of the data before further analysis, such as discrimination
or correlation (as in Pagani et al. (2009)), is commonly applied. PCA is well suited for this
purpose, as it reduces the variable space to a few dimensions only. It also helps to focus on

www.intechopen.com



Principal Component Analysis Applied to SPECT and PET Data of Dementia Patients — A Review 175

the main directions of variance within the data (i.e., the first few PCs) and treats unused PCs
corresponding to lower eigenvalues as noise in the data.

In each of the reviewed studies, only the first few principal components (PCs) are used to
represent the main variance of the data. In some cases, this is justified by execution of the
partial F-test as presented in Section 4.2.1(Markiewicz et al. (2009)), by calculation of the
cumulative variance explained by the PCs (e.g., Fripp et al. (2008a); Zuendorf et al. (2003),
see also Section 4.1) or by application of Akaike’s information criterion (Habeck et al. (2008);
Scarmeas et al. (2004), see also Section 4.2.2).

4.2.1 Partial F-test

The partial F-test measures which PCs add significant variance to the data (Markiewicz et al.
(2009)). In the beginning, the mean-centered data matrix X = X, is entered into a regression
model, and its residual sum of squares rss(1) is computed. In a first iteration, the first PC v;
is added to the model and prediction values for the original data matrix are calculated by
1 vlT Xstart. Then the residual sum of squares of the deviation matrix D = Xssgr — vlzf{Xsmﬁ
is calculated. In each of the following N — 1 iterations, D and the next PC are entered into the
model.

F-values and p-values for each iteration are calculated by

(rss(n) —rss(n+1))(N —n)

bn = rss(n+1) @

and

pn =1 fedf(F(n)), 3)
where fcdf denotes the F cumulative distribution function with numerator and denominator
degrees of freedom 1 and N —n — 1.
As the limiting factor for number of PCs, Markiewicz et al. (2009) propose p to be lower than
0.05, which is a standard level of significance.

4.2.2 Akaike’s information criterion

Similar to partial F-test, Akaike’s information criterion (AIC) determines the subset of PCs
which represents the best fitting model (Akaike (1974)).

AIC-values are calculated by
A = —2log(L) + 2K, 4)

where L denotes the maximum value of the log-likelihood function of the model and K the
number of estimable parameters (Burnham & Anderson (2002)). The model which scores the
smallest AIC-value A is considered to be the best fitting one. As AIC may be biased if the ratio
of sample size and number of parameters is too small (e.g., ¢ < 40), Sugiura (1978) proposes
a correction factor (AIC,):

2K(K+1)
n—K—-1" ©)
Burnham & Anderson (2002) recommend the usage of AIC, in any case, as AIC and AIC, are
similar for a sufficiently large ratio x.

AC:A‘I_

In Habeck et al. (2008), AIC-values A are calculated only for models generated by the first
six PCs (explaining more than 75% of all variance), and the best-fitting model with the lowest
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AlIC-value is chosen for subsequent analysis. However, it should be noted that the AIC does
not recognize if none of the models is suited to represent the population, i.e., the PCs entered
into the AIC need to be chosen carefully.

4.3 Discrimination methods

With regards to the early detection of AD, the discriminative power of PCA can be very
valuable. Discrimination should be trained on subjects with mild to moderate AD and
asymptomatic CTR, and afterwards be tested on MCI cases, thereby assessing the capability
to detect early AD cases among the data collected for the study.

Due to the orthogonality of all eigenvectors, each PC is uncorrelated with all preceding PCs
and therefore captures an independent feature of the dataset. As the main variance resides in
the first PCs, they depict prominent features of the data (provided that there are no outliers).
Hence, the PCs can be employed for the differentiation of groups within the dataset. Those
PCs which best discriminate the subjects can either be determined in a linear regression model
as presented in Section 4.3.1 (Habeck et al. (2008); Scarmeas et al. (2004)) or as in Section 4.3.2
by a leave-one-out approach (Fripp et al. (2008a)). If necessary, discrimination can be refined
turther, e.g., by Canonical variate analysis (Section 4.3.3) or Fisher’s discriminant analysis
(Section 4.3.5).

4.3.1 Linear regression

Linear regression is a subtype of general regression analysis and is widely used for
the identification of those independent variables, which relate strongly to the dependent
variable (e.g., group membership). After the successful completion of the regression, it can
furthermore be applied to predict the group membership of a newly added value.

The achieved PC-scores X of each subject are entered as independent variables into the linear
regression model y = Xb + €. The vector y of the subjects” group memberships, in this case
AD and CTR, contains the dependent variables.

It is common to use only a subset of all PCs (determined by significance tests or the amount of
variance they represent), but it should be noted that even a PC which captures little variance
might still be related to a dependent variable (Jolliffe (1982)).

The regression results in a linear combination of those PCs which achieve the best
differentiation of the two classes (e.g., Habeck et al. (2008); Scarmeas et al. (2004)).

If the dependent variables include more information than group membership (e.g., age or
existence of genetic risk factors), partial least squares (PLS) regression can be applied (see also
Section 4.3.4). This method generalizes PCA and multiple linear regression.

4.3.2 Leave-one-out resampling

In leave-one-out resampling, one subject is drawn from the underlying data sample per
iteration and subsequent analysis is applied. This measures the individual contribution of
each subject and can therefore be applied to sort out abnormal interference of particular
subjects where necessary.

In Fripp et al. (2008a), n — 1 out of n images are decomposed by PCA in each iteration. Then,
PC-scores of the subjects contained in the sample are plotted pairwise against each other.
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Those PCs which generally provide the best cluster and separation of the groups within
iterations are considered for further analysis.

4.3.3 Outline of canonical variate analysis

Canonical variate analysis (CVA) is another regression model considered to enhance the
discriminative strength of PCA in neuroimaging. Similarly to linear regression, it identifies
the best separation of groups depending on PC-scores. The first canonical variable (CV) is the
best of all possible linear combinations of PC-scores for differentiation of the groups and —
analogous to PCs — the following CVs are computed under the condition to be orthogonal to
all precedent CVs.

PCA is applied for dimensionality reduction and removal of noise (i.e., discarded PCs). The
within- and between-group sum-of-squares and crossproduct matrices W and B are computed
for the PC-scores of all subjects. Then the CVs, ie., the eigenvectors of W~1B, are linear
combinations of PC-scores and are sorted by their discriminative power (Borroni et al. (2006);
Kerrouche et al. (2006)). CV-scores of all subjects are calculated analogous to PC-scores.

4.3.4 Outline of partial least squares correlation and regression

As in PCA, the main element of partial least squares (PLS) methods is the SVD, which
is applied to the correlation matrix YXT (rather than the data matrix X containing the
mean-centered data, as in PCA). The independent variables are the mean-centered and
normalized voxel-values of all brain images stored in X, and the n vectors of dependent
variables for all subjects (also mean-centered and normalized) form the k x n matrix Y. SVD
of YXT produces VSUT, where S is a diagonal matrix containing singular values and U and
V' column-wise contain the left respectively right singular vectors. Analogous to PCA, it is
sufficient to compute only the first few columns of V. Then, the high-dimensional data of X is
reduced by T = XTU (ak.a. brain scores), and Y is reduced to YTV (a.k.a. behavior scores).

It depends on the intention of the study, in which way these results are further analysed and
applied. Krishnan et al. (2011) give an elaborate survey of the main PLS methods used in
neuroimaging as well as of practical implementations. Generally, they present two basic
approaches, i.e., PLS regression and PLS correlation. PLS regression is a generalization of
multiple linear regression and PCA (Abdi (2010)), and is used to predict behavior on the basis
of neuroimages, in this case PET or SPECT data. PLS correlation focuses on the analysis of
the relation between two groups within the dataset and can be subdivided into more specific
applications according to the design of the research.

4.3.5 Outline of linear and Fisher’s discriminant analysis

Similar to CVA, linear discriminant analysis (LDA) seeks discriminative directions of the
data rather than representative directions (as does PCA). It can be applied both to the
original mean-centered voxel-values contained in the data matrix X or in a second step after
performance of PCA to the PC-scores of all subjects. The latter approach is preferable when
dealing with high-dimensional data, as either the inverse of an m x m scatter matrix has to be
computed or a generalized eigenvalue decomposition of m x m matrices is required.

Fisher’s discriminant analysis (FDA) is a special application of LDA, without the constraints
of normal distributed groups and equal group covariance. It has lately been applied several
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times to diffentiate between subjects with AD and normal controls, e.g., in Markiewicz et al.
(2009; 2011a); Merhof et al. (2009; 2011).

The purpose of FDA is to maximize the ratio of the between- and the within-group scatter Sp
and Sy, thereby projecting the data into a one-dimensional subspace. This is achieved by the
projection vector w, i.e., the solution of the generalized eigenvalue problem S;vls BW = Aw
(Duda et al. (2001)). Subsequent classification can be computed with very limited effort by a
threshold or nearest-neighbor approach.

5. Derivation of robustness of the PCA

So far, PCA and its applications in neuroimaging were introduced, but not yet validated and
discussed. It is very important to assess the robustness of the PCA (and, where necessary,
subsequent procedures) before interpretation of the results, as instability and overtraining
may occur for various reasons. PCA is sensitive to conspicuous cases and it is therefore
recommended to inspect the resulting PCs before further analysis. In order to ensure that
no pathologically abnormal cases (outliers) remain in the training set, the T2-Hotelling test is
executed, e.g., by Pagani et al. (2009); Zuendorf et al. (2003) (see Section 5.1). Kerrouche et al.
(2006) also propose further measurement of the individual contribution of one observation to
each PC (see Section 5.2), to assess if the removal of one observation changes the outcome of
PCA significantly. Habeck et al. (2010) also observe that if the first PC contains more than 90%
of the variance to the data, it is very probable that the dataset X includes one or more outliers
(see Section 4.1).

By bootstrap resampling of the dataset and subsequent PCA the instability caused by removal
of a subset of subjects is measured (Markiewicz et al. (2009; 2011a); Merhof et al. (2011)) via
principal angles between PC-subspaces.

5.1 Hotelling’s T-square test

Hotelling’s T-square test is an adaption of the Student’s T-test to the multivariate case
(Hotelling (1931)). As the F-distribution is more prevalent, the T?-distribution is usually
transformed to (n-1)

n—

T~ B B ©)
where 1 denotes the number of subjects and p the number of PCs retained in the model.
Let y; denote the column vector of PC-scores of the ith subject, then its T2-value is obtained
by T? = y!y;. Zuendorf et al. (2003) propose a threshold of p < 0.01, and further assess
the validity of the T?-test by adding an abnormal case to a set of normal controls in 15
iterations. However, the T?-test can also be applied to a dataset containing two or more groups
(Kerrouche et al. (2006); Pagani et al. (2009)).

5.2 Contribution of subjects to PCs

The amount of the contribution ¢; ; of the ith subject to the jth PC is measured by

L yi())

n—1 ej

/ )

Ci,j =
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where n denotes the number of all subjects, y; the column vector of PC-scores of the ith subject
and e; the eigenvalue corresponding to the jth PC. An abnormally large value of ¢; ; indicates
that the removal of the ith subject might significantly change the results of PCA (Kerrouche
et al. (2006)).

5.3 Principal angles of PC-subspaces

In order to compare sets of PCs during resampling iterations, the use of principal angles
between PC-subspaces of a fixed dimension is proposed by Markiewicz et al. (2009). If the
largest principal angle between an original and resampled subspace is very small, the PCA
can be considered to be sufficiently independent of the underlying training set. Otherwise,
abnormal large principal angles can indicate that too many PCs (i.e., too much noise) are
included in the analysis, or that the sample was not selected carefully enough with respect to
outliers.

In bootstrap resampling, n subjects are drawn with replacement from the original training set
(Efron & Tibshirani (1993)). For better replication of the original set, AD and CTR cases are
stratified in the bootstrap sample (Markiewicz et al. (2009)).

For every sample, PCA is performed and the subspace spanned by the first i PCs is compared
to the i-dimensional PC-subspace of the original set. This is achieved by calculating the largest
principal angle between the two subspaces (Golub & van Van Loan (1996); Knyazev et al.
(2002)). For any number of PCs, the mean angle across all iterations is computed. Increased
angles indicate the destabilization of the PCA.

The same method can be applied with leave-one-out resampling, i.e., one subject of each group
is dropped in every iteration (Markiewicz et al. (2009)).

The computation of prinipal angles should be treated with caution, as round-off errors might
cause inaccurate estimates for small angles. A solution to this problem is proposed by
Knyazev et al. (2002), where a combined sine and cosine based approach is presented and
generalized.

6. Discussion

For analysis of SPECT and PET data, PCA is widely applied and commonly reported to deliver
stable and efficient results when used correctly. However, some limitations of PCA outlined in
Section 6.1 remain, which might interfere strongly with the outcome of the statistical analyses.
In some cases it might even be advisable to apply alternative methods to obtain more reliable
results. In Section 6.2, examples are given where the performance of PCA on neuroimaging
data was investigated and compared to other approaches.

6.1 Limitations of the PCA in neuroimaging

As PCA is based solely on the decomposition of the covariance matrix, the underlying data
must be dealt with carefully. The preprocessing of the images has a crucial impact on the
outcome of the analysis as pointed out by Fripp et al. (2008a), where PCA on ''C PiB PET data
proved to be sensitive to inaccuracies originating from non-rigid registration and intensity
normalization. On %" Tc-ECD SPECT, the classification accuracy of AD and CTR subjects via
PCA and subsequent FDA depends significantly on the data preprocessing method (Merhof
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et al. (2011)). Classification accuracy relies also on scanner type and reconstruction method
of FDG-PET, if the data is aquired from a more heterogeneous dataset, e.g., from the ADNI
database as in Markiewicz et al. (2011b).

Not only the preprocessing of the training set but also its composition is essential. This
includes the stratification of groups, the sample sizes and the absence of outliers as described
in Sections 6.1.1 and 6.1.2. Moreover, the number of PCs retained in the analysis is important
and depends on the purpose of the study (see Section 6.1.3).

6.1.1 Sample size

The selection of subjects suited for training is constrained by many premisses, such as age- and
gender-matched CTR cases, stage of AD, the absence of other neurodegenerative disorders
and the quality of the scan. It is also preferable for all images to be aquired by the same
scanner, as this improves comparability of the data. Therefore, most studies only include less
than 30 subjects of each group, except for Markiewicz et al. (2011b) where previous results on
a smaller and more homogeneously selected training set were validated on more than 160 AD
and CTR cases obtained from the ADNI database. ADNI provides generally accessible data
of patients diagnosed with AD or MCI and of normal controls collected from various clinical
sites (Mueller et al. (2005)).

An under-sized training set might cause the extraction of instable features (Markiewicz et al.
(2009)) resulting in overly optimistic results of subsequent analysis (Markiewicz et al. (2011a)).
This might be remedied by bootstrap resampling of the training set but must rely on the
assumption that the sample is representative of the population (Markiewicz et al. (2009)).

6.1.2 Sensitivity to outliers

As the covariance matrix is calculated empirically, the estimates of eigenvectors (PCs) are
heavily influenced by outliers, i.e., pathologically abnormal cases within the training dataset.
The variance caused by only one outlier may be captured within the first PC, which will
thereby not regard the variance within regular cases and dramatically change further results.
Approaches which substitute the original covariance matrix by a more robust estimate (e.g.,
in Debruyne & Hubert (2006)) exist, but these methods are not practical for datasets of high
dimensionality. For this reason, it is highly recommended to determine outliers by additional
testing when applying PCA to neuroimaging data.

6.1.3 Number of PCs

Although several approaches are presented in Section 4.2, the determination of how many and
which PCs are best suited to represent the original images remains subject to interpretation.
So far, much relies on the purpose of PCA and the further analysis of the data. An elaborate
overview over criteria for estimating the number of significant PCs and their application is
presented in Peres-Neto et al. (2005), and some of these apply to covariance matrices as well
as correlation matrices. The application of such methods can be ambivalent, as reviewed by
Franklin et al. (1995). In most studies, PCs are chosen according to their potential to explain
data and their impact on robustness. It is therefore advisable to determine the number of
retained PCs not only based on one criterion but also on the best possible trade-off between
the resulting accuracy and robustness.
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6.2 Comparison to similar methods

In Section 4, different extensions to PCA such as linear regression or canonical variate analysis
are presented, and also an outline of methods with similar properties or intentions as PCA
is given. The decision which of these methods is best to employ always depends on the
underlying research question, on the data available and the selected sample.

Sections 6.2.1 to 6.2.3 provide a review of the most important methods frequently applied to
neuroimaging data and compare them to results obtained from PCA.

6.2.1 Univariate analysis of heuroimaging data

Univariate analysis measures the voxel-by-voxel correlation between groups (e.g., by a
voxel-wise T-test in Habeck et al. (2008)) and thereby merely focuses on the identification of
significant shifts between voxel-values. In neuroimaging, univariate methods are commonly
used during image preprocessing, e.g., in Dukart et al. (2010) or Scarmeas et al. (2004) for
intensity normalization. Voxel-wise analysis can also be used for differentiation between
groups, but it is unanimously reported that multivariate approaches outperfom univariate
analysis in this matter, especially in the detection of early-onset cases of dementia (Habeck
et al. (2008); Scarmeas et al. (2004)). Another drawback of voxel-wise analysis is the sensitivity
regarding the preprocessing of the data, and even under the assumption that an optimized
normalization factor was applied, the interpretion of the results must be addressed in a
multivariate fashion (McCrory & Ford (1991)). In another approach, Higdon et al. (2004) tried
to apply a between-group T-test for dimensionality reduction, but this proved to be ineffective
and even deteriorated accuracy results.

On the other hand, multivariate analysis is found to be more robust as it considers the entire
covariance structure of the data (accounting for relations among regions) and withstands the
deviation of individual voxel-values (Borroni et al. (2006); Habeck et al. (2008)). It thereby
detects correlated alterations in a diseased brain, whereas univariate analysis might not be
able to recognize these differences.

6.2.2 Partial least squares

When examining very high-dimensional data, and especially for the discrimination into
groups within the dataset, PLS has been reported to perform better than PCA regarding the
classification accuracy (Higdon et al. (2004); Kemsley (1996)). This is rather self-evident, as
PCA does not take into account further behavioral data (e.g., neuropsychological data such as
Mini-Mental State Examination (MMSE) scores, age, years of education). If PLS is applied for
dimensionality reduction, Kemsley (1996) reports that fewer PLS dimensions than PCs were
required for a successful subsequent differentiation of the groups. This implies that PLS will
capture the most discriminative attributes of the subjects within the first dimensions, rather
than the representative directions generated by PCA.

Nevertheless, there are certain drawbacks in the application of PLS methods. PLS tends to
overfit the data, so the determination of the number of PLS dimensions kept in the analysis
is of decisive importance (Abdi (2010)). In addition, PLS may detect differences which are
not characteristic of the examined groups but were produced randomly by noise within the
underlying dataset (Kemsley (1996)). Furthermore, PLS only works under the assumption
that behavior relates linearly to neuroimaging data (McIntosh & Lobaugh (2004)).
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Overall, if allowances are made for these effects and significant behavioral data is available,
PLS can still be a favourable alternative to PCA.

6.2.3 Linear discriminant analysis

As explained above, performance of PCA (or any other dimensionality reduction method)
prior to LDA is preferable in neuroimaging due to the high dimensionality of the data and the
resulting expensive computation. To our knowlegde, LDA as described above in Section 4.3.5
has not yet been applied to discriminate AD from CTR using voxel-values of PET or SPECT
images of the whole-brain region, although McEvoy et al. (2009) utilize a stepwise approach
of LDA to identify brain regions significant for differentiation.

In other areas also dealing with high-dimensional data, such as object recognition in images,
LDA is usually considered to perform superior to PCA. But this is not necessarily the case
for small training sets, as pointed out by Martinez & Kak (2001). In the same study they also
observe PCA to be less biased than LDA, i.e., less constrained to the training set.

The overall good results regarding accuracy and robustness of the PCA-LDA or PCA-FDA
approach (e.g., as presented in Markiewicz et al. (2009)) also indicate, that a preceding PCA
does not impair the discriminant analysis.

7.Conclusion

PCA applied to SPECT or PET data is well suited to reduce the high dimensionality of the
original dataset containing voxel-values of the whole-brain region. It achieves best results
when data is transformed into a subspace spanned by a well-chosen subset of PCs that
represents the variability within all datasets and at the same time reduces noise and redundant
information. PCA can also be used successfully to train discrimination between AD and a set
of asymptomatic CTRs with the intention to enable an early detection of AD, or to provide a
stable and effective basis for the subsequent application of discriminant analysis.
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