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1. Introduction

Microarray technology has been advanced to the point at which the simultaneous monitoring

of gene expression on a genome scale is now possible. Microarray experiments often aim to

identify individual genes that are differentially expressed under distinct conditions, such as

between two or more phenotypes, cell lines, under different treatment types or diseased and

healthy subjects. Such experiments may be the first step towards inferring gene function and

constructing gene networks in systems biology.

The term ”gene expression profile” refers to the gene expression values on all arrays for

a given gene in different groups of arrays. Frequently, a summary statistic of the gene

expression values, such as the mean or the median, is also reported. Dot plots of the gene

expression measurements in subsets of arrays, and line plots of the summaries of gene

expression measurements are the most common plots used to display gene expression data

(See for example Chambers (1983) and references therein).

An ever increasing number of techniques are being applied to detect genes which have similar

expression profiles from microarray experiments. Techniques such clustering (Eisen et al.

(1998)), self organization map (Tamayo et al. (1999)) have been applied to the analysis of gene

expression data. Also we can found several applications on microarray analysis based on

distinct machine learning methods such as Gaussian processes (Chu et al. (2005); Zhao &

Cheung (2007)), Boosting (Dettling (2004)) and Random Forest (Diaz (2006)). It is useful to find

gene/sample clusters with similar gene expression patterns for interpreting the microarray

data.

However, due to the large number of genes involved it might be more effective to display these

data on a low dimensional plot. Recently, several authors have explored dimension reduction

techniques. Alter et al. (2000) analyzed microarray data using singular value decomposition

(SVD), Fellenberg et al. (2001) used correspondence analysis to visualize genes and tissues,

Pittelkow & Wilson (2003) and Park et al. (2008) used several variants of biplot methods as

a visualization tool for the analysis of microarray data. Visualizing gene expression may

facilitate the identification of genes with similar expression patterns.

Principal component analysis has a very long history and is known to very powerful for the

linear case. However, the sample space that many research problems are facing, especially the
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sample space of microarray data, are considered nonlinear in nature. One reason might be

that the interaction of the genes are not completely understood. Many biological pathways

are still beyond human comprehension. It is then quite naive to assume that the genes

should be connected in a linear fashion. Following this line of thought, research on nonlinear
dimensionality reduction for microarray gene expression data has increased (Zhenqiu et al.

(2005), Xuehua & Lan (2009) and references therein). Finding methods that can handle such

data is of great importance if as much information as possible is to be gleaned.

Kernel representation offers an alternative to nonlinear functions by projecting the data into a

high-dimensional feature space, which increases the computational power of linear learning

machines, (see for instance Shawe-Taylor & Cristianini (2004); Scholkopf & Smola (2002)).

Kernel methods enable us to construct different nonlinear versions of any algorithm which

can be expressed solely in terms of dot products, known as the kernel trick. Thus, kernel

algorithms avoid the explicit usage of the input variables in the statistical learning task. Kernel

machines can be used to implement several learning algorithms but they usually act as a

black-box with respect to the input variables. This could be a drawback in biplot displays in

which we pursue the simultaneous representation of samples and input variables.

In this work we develop a procedure for enrich the interpretability of Kernel PCA by adding

in the plot the representation of input variables. We used the radial basis kernel (Gaussian

kernel) in our implementation however, the procedure we have introduced is also applicable

in cases that may be more appropriated to use any other smooth kernel, for example the

Linear kernel which supplies standard PCA analysis. In particular, for each input variable

(gene) we can represent locally the direction of maximum variation of the gene expression. As
we describe below, our implementation enables us to extract the nonlinear features without

discarding the simultaneous display of input variables (genes) and samples (microarrays).

2. Kernel PCA methodology

KPCA is a nonlinear equivalent of classical PCA that uses methods inspired by statistical

learning theory. We describe shortly the KPCA method from Scholkopf et al. (1998).

Given a set of observations xi ∈ R
n, i = 1, . . . , m. Let us consider a dot product space F related

to the input space by a map φ : R
n → F which is possibly nonlinear. The feature space F could

have an arbitrarily large, and possibly infinite, dimension. Hereafter upper case characters are

used for elements of F, while lower case characters denote elements of R
n. We assume that

we are dealing with centered data ∑
m
i=1 φ(xi) = 0.

In F the covariance matrix takes the form

C =
1

m

m

∑
j=1

φ(xj)φ(xj)
⊺.

We have to find eigenvalues λ ≥ 0 and nonzero eigenvectors V ∈ F\{0} satisfying

CV = λV.

2 Principal Component Analysis – Multidisciplinary Applications
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As is well known all solutions V with λ �= 0 lie in the span of {φ(xi)}
m
i=1. This has two

consequences: first we may instead consider the set of equations

〈φ(xk), CV〉 = λ 〈φ(xk), V〉 , (1)

for all k = 1, . . . , m, and second there exist coefficients αi, i = 1, . . . , m such that

V =
m

∑
i=1

αiφ(xi). (2)

Combining (1) and (2) we get the dual representation of the eigenvalue problem

1

m

m

∑
i=1

αi

〈

φ(xk),
m

∑
j=1

φ(xj)
〈

φ(xj),φ(xi)
〉

〉

= λ
m

∑
i=1

αi 〈φ(xk),φ(xi)〉 ,

for all k = 1, . . . m. Defining a m × m matrix K by Kij :=
〈

φ(xi),φ(xj)
〉

, this reads

K2α = mλKα, (3)

where α denotes the column vector with entries α1, ..., αm. To find the solutions of (3), we

solve the dual eigenvalue problem

Kα = mλα, (4)

for nonzero eigenvalues. It can be shown that this yields all solutions of (3) that are of interest

for us. Let λ1 ≥ λ2 ≥ · · · ≥ λm the eigenvalues of K and α1, ...,αm the corresponding set of

eigenvectors, with λr being the last nonzero eigenvalue. We normalize α1, ...,αr by requiring

that the corresponding vectors in F be normalized
〈

Vk, Vk
〉

= 1, for all k = 1, ..., r. Taking

into account (2) and (4), we may rewrite the normalization condition for α1, ...,αr in this way

1 =
m

∑
i,j

αk
i αk

j

〈

φ(xi),φ(xj)
〉

=
m

∑
i,j

αk
i αk

j Kij =
〈

αk, Kαk
〉

= λk

〈

αk,αk
〉

. (5)

For the purpose of principal component extraction, we need to compute the projections onto

the eigenvectors Vk in F, k = 1, ..., r. Let y be a test point, with an image φ(y) in F. Then

〈

Vk,φ(y)
〉

=
m

∑
i=1

αk
i 〈φ(xi),φ(y)〉 , (6)

are the nonlinear principal component corresponding to φ.

2.1 Centering in feature space

For the sake of simplicity, we have made the assumption that the observations are centered.

This is easy to achieve in input space but harder in F, because we cannot explicitly compute

the mean of the mapped observations in F. There is, however, a way to do it.

3Kernel Methods for Dimensionality Reduction Applied to the «Omics» Data
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Given any φ and any set of observations x1, ..., xm, let us define

φ̄ :=
1

m

m

∑
i=1

φ(xi)

then, the points

φ̃(xi) = φ(xi)− φ̄ (7)

will be centered. Thus the assumption made above now hold, and we go on to define

covariance matrix and dot product matrix K̃ij =
〈

φ̃(xi), φ̃(xj)
〉

in F. We arrive at our already

familiar eigenvalue problem

mλ̃α̃ = K̃α̃, (8)

with α̃ being the expansion coefficients of an eigenvector (in F) in terms of the centered points

(7)

Ṽ =
m

∑
i=1

α̃iφ̃(xi). (9)

Because we do not have the centered data (7), we cannot compute K̃ explicitly, however we

can express it in terms of its noncentered counterpart K. In the following, we shall use Kij =
〈

φ(xi),φ(xj)
〉

. To compute K̃ij =
〈

φ̃(xi), φ̃(xj)
〉

, we have:

K̃ij =
〈

φ(xi)− φ̄,φ(xj)− φ̄
〉

= Kij −
1

m

m

∑
t=1

Kit −
1

m

m

∑
s=1

Ksj +
1

m2

m

∑
s,t=1

Kst.

Using the vector 1m = (1, ..., 1)⊺, we get the more compact expression

K̃ = K −
1

m
K1m1

⊺

m −
1

m
1m1T

mK +
1

m2
(1⊺mK1m)1m1

⊺

m.

We thus can compute K̃ from K and solve the eigenvalue problem (8). As in equation (5),

the solution α̃k, k = 1, ..., r, are normalized by normalizing the corresponding vector Ṽk in F,

which translates into λ̃k

〈

α̃k, α̃k
〉

= 1.

Consider a test point y. To find its coordinates we compute projections of centered φ-images

of y onto the eigenvectors of the covariance matrix of the centered points,

〈

φ̃(y), Ṽk
〉

=
〈

φ(y)− φ̄, Ṽk
〉

=
m

∑
i=1

α̃k
i 〈φ(y)− φ̄,φ(xi)− φ̄〉

=
m

∑
i=1

α̃k
i

(

〈φ(y),φ(xi)〉 − 〈φ̄,φ(xi)〉 − 〈φ(y), φ̄〉+ 〈φ̄, φ̄〉
)

=
m

∑
i=1

α̃k
i

{

K
(

y, xi)
)

−
1

m

m

∑
s=1

K
(

xs, xi)
)

−
1

m

m

∑
s=1

K
(

y, xs
)

+
1

m2

m

∑
s,t=1

K
(

xs, xt
)

}

.

4 Principal Component Analysis – Multidisciplinary Applications
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Introducing the vector

Z =
(

K(y, xi)
)

m×1
. (10)

Then,

( 〈

φ̃(y), Ṽk
〉 )

1×r
= Z⊺Ṽ −

1

m
1
⊺

mKṼ −
1

m
(Z⊺1m)1

⊺

mṼ +
1

m2
(1⊺mK1m)1

⊺

mṼ

= Z⊺

(

Im −
1

m
1m1

⊺

m

)

Ṽ −
1

m
1
⊺

mK
(

Im −
1

m
1m1

⊺

m

)

Ṽ

=
(

Z⊺ −
1

m
1
⊺

mK
)(

Im −
1

m
1m1

⊺

m

)

Ṽ, (11)

where Ṽ is a m × r matrix whose columns are the eigenvectors Ṽ1, ..., Ṽr .

Notice that the KPCA uses only implicitly the input variables since the algorithm formulates

the reduction of the dimension in the feature space through the kernel function evaluation.

Thus KPCA is usefulness for nonlinear feature extraction by reducing the dimension but not

to explain the selected features by means the input variables.

3. Adding input variable information into Kernel PCA

In order to get interpretability we add supplementary information into KPCA representation.

We have developed a procedure to project any given input variable onto the subspace spanned

by the eigenvectors (9).

We can consider that our observations are realizations of the random vector X = (X1, ..., Xn).
Then to represent the prominence of the input variable Xk in the KPCA. We take a set of points

of the form y = a + sek ∈ R
n where ek = (0, ..., 1, ..., 0) ∈ R

n, s ∈ R, where k-th component

is equal 1 and otherwise are 0. Then, we can compute the projections of the image of these

points φ(y) onto the subspace spanned by the eigenvectors (9).

Taking into account equation (11) the induced curve in the eigenspace expressed in matrix

form is given by the row vector:

σ(s)1×r =
(

Z
⊺

s −
1

m
1
⊺

mK
)(

Im −
1

m
1m1

⊺

m

)

Ṽ, (12)

where Zs is of the form (10).

In addition we can represent directions of maximum variation of σ(s) associated with the

variable Xk by projecting the tangent vector at s = 0. In matrix form, we have

dσ

ds

∣

∣

∣

s=0
=

dZ
⊺

s

ds

∣

∣

∣

s=0

(

Im −
1

m
1m1

⊺

m

)

Ṽ (13)

with
dZ

⊺

s

ds

∣

∣

∣

s=0
=

( dZ1
s

ds

∣

∣

∣

s=0
, ...,

dZm
s

ds

∣

∣

∣

s=0

)⊺

5Kernel Methods for Dimensionality Reduction Applied to the «Omics» Data
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and, with

dZi
s

ds

∣

∣

∣

s=0
=

dK(y, xi)

ds

∣

∣

∣

s=0

=
( m

∑
t=1

∂K(y, xi)

∂yt

dyt

ds

)∣

∣

∣

s=0

=
m

∑
t=1

∂K(y, xi)

∂yt

∣

∣

∣

y=a
δk

t =
∂K(y, xi)

∂yk

∣

∣

∣

y=a

where δk
t denotes the delta of Kronecker. In particular, let us consider the radial basis kernel:

k(x, z) = exp(−c ‖x − z‖2) with c > 0 a free parameter. Using above notation, we have

K(y, xi) = exp(−c ‖y − xi‖
2) = exp(−c

n

∑
t=1

(yi − xit)
2)

When we consider the set of points of the form y = a + sek ∈ R
n,

dZi
s

ds

∣

∣

∣

s=0
=

∂K(y, xi)

∂yk

∣

∣

∣

y=a

= −2cK(a, xi)(ak − xik)

In addition, if a = xβ (a training point) then

dZi
s

ds

∣

∣

∣

s=0
= −2cK(xβ, xi)(xβk − xik)

Thus, by applying equation (12) we can locally represent any given input variable in the KPCA

plot. Moreover, by using equation (13) we can represent the tangent vector associated with

any given input variable at each sample point. Therefore, we can plot a vector field over the

KPCA that points to the growing directions of the given variable.

We used the radial basis kernel in our implementation however the procedure we have

introduced is also applicable to any other smooth kernel, for instance the Linear kernel which

supplies standard PCA analysis.

4. Validation

In this section we illustrate our procedure with data from the leukemia data set of Golub et al.

(1999) and the lymphoma data set Alizadeh et al. (2000).

In these examples our aim is to validate our procedure for adding input variables information

into KPCA representation. We follow the following steps. First, in each data set, we build

a list of genes that are differentially expressed. This selection is based in accordance with

previous studies such as (Golub et al. (1999), Pittelkow & Wilson (2003), Reverter et al. (2010)).

In addition we compute the expression profile of each gene selected, this profile confirm the

evidence of differential expression.

6 Principal Component Analysis – Multidisciplinary Applications
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Second, we compute the curves through each sample point associated with each gene in the

list. These curves are given by the φ-image of points of the form:

y(s) = xi + sek

where xi is the 1 × n expression vector of the i-th sample, i = 1, ..., m, k denotes the index

in the expression matrix of the gene selected to be represented, ek = (0, ..., 1, ..., 0) is a 1 × n

vector with zeros except in the k-th. These curves describe locally the change of the sample xi

induced by the change of the gene expression.

Third, we project the tangent vector of each curve at s = 0, that is, at the sample points xi,

i = 1, ..., m, onto the KPCA subspace spanned by the eigenvectors (9). This representation

capture the direction of maximum variation induced in the samples when the expression of

gene increases.

By simultaneously displaying both the samples and the gene information on the same plot it is

possible both to visually detect genes which have similar profiles and to interpret this pattern

by reference to the sample groups.

4.1 Leukemia data sets

The leukemia data set is composed of 3051 gene expressions in three classes of leukemia:

19 cases of B-cell acute lymphoblastic leukemia (ALL), 8 cases of T-cell ALL and 11 cases

of acute myeloid leukemia (AML). Gene expression levels were measured using Affymetrix

high-density oligonucleotide arrays.

The data were preprocessed according to the protocol described in Dudoit et al. (2002).

In addition, we complete the preprocessing of the gene expression data with a microarray

standardization and gene centring.

In this example we perform the KPCA , as detailed in the previous section, we compute the

kernel matrix with using the radial basis kernel with c = 0.01, this value is set heuristically.

The resulting plot is given in Figure 1. It shows the projection onto the two leading kernel

principal components of microarrays. In this figure we can see that KPCA detect the group

structure in reduced dimension. AML, T-cell ALL and B-cell ALL are fully separated by

KPCA.

To validate our procedure we select a list of genes differentially expressed proposed by (Golub

et al. (1999), Pittelkow & Wilson (2003), Reverter et al. (2010)) and a list of genes that are not

differentially expressed. In particular, in Figures 2, 3, 4 and 5 we show the results in the case

of genes: X76223_s_at, X82240_rna1_at, Y00787_s_at and D50857_at, respectively.

The three first genes belong to the list of genes differentially expressed and the last gene is not

differentially expressed.

Figure 2 (top) shows the tangent vectors associated with X76223_s_at gene, attached at

each sample point. This vector field reveals upper expression towards T-cell cluster as is

expected from references above mentioned. This gene is well represented by the second

principal component. The length of the arrows indicate the strength of the gene on the sample

position despite the dimension reduction. Figure 2 (bottom) shows the expression profile of

7Kernel Methods for Dimensionality Reduction Applied to the «Omics» Data
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Fig. 1. Kernel PCA of Leukemia dataset.

X76223_s_at gene. We can observe that X76223_s_at gene is up regulated in T-cell class.

This profile is agree with our procedure because the direction in which the expression of the

X76223_s_at gene increases points to the T-cell cluster.

Figure 3 (top) shows the tangent vectors associated with X82240_rna1_at gene attached

at each sample point. This vector field reveals upper expression towards B-cell cluster as is
expected from references above mentioned. Figure 3 (bottom) shows the expression profile

of X82240_rna1_at gene. We can observe that X82240_rna1_at gene is up regulated

in B-cell class. This profile is agree with our procedure because the direction in which the

expression of the X82240_rna1_at gene increases points to the B-cell cluster.

Figure 4 (top) shows the tangent vectors associated with Y00787_s_at gene attached at

each sample point. This vector field reveals upper expression towards AML cluster as is

expected from references above mentioned. Figure 4 (bottom) shows the expression profile

of Y00787_s_at gene. We can observe that Y00787_s_at gene is up regulated in AML

class. This profile is agree with our procedure because the direction in which the expression

of the Y00787_s_at gene increases points to the AML cluster.

8 Principal Component Analysis – Multidisciplinary Applications
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Fig. 2. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with
X76223-s-at gene at each sample point. Vector field reveals upper expression towards T-cell
cluster. (Bottom) Expression profile of X76223-s-at gene confirms KPCA plot enriched with
tangent vectors representation.
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Fig. 3. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with
X82240-rna1-at gene at each sample point. Vector field reveals upper expression towards
B-cell cluster. (Bottom) Expression profile of X82240-rna1-at gene confirms KPCA plot
enriched with tangent vectors representation.
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Fig. 4. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with Y00787-sat
gene at each sample point. Vector field reveals upper expression towards AML cluster.
(Bottom) Expression profile of Y00787-sat gene confirms KPCA plot enriched with tangent
vectors representation..
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Figure 5 (top) shows the tangent vectors associated with D50857_at gene attached at each

sample point. This vector field shows no preferred direction to any of the three cell groups.

The arrows are of short length and variable direction in comparison with other genes showed

in previous Figures. Figure 5 (bottom) shows a flat expression profile of D50857_at gene.
This profile is agree with our procedure because any direction of expression of the D50857_at

gene is highlighted.

4.2 Lymphoma data sets

The lymphoma data set comes from a study of gene expression of three prevalent lymphoid

malignancies: B-cell chronic lymphocytic leukemia (B-CLL), follicular lymphoma (FL) and

diffuse large B-cell lymphoma (DLCL). Among 96 samples we took 62 samples 4026 genes in

three classes: 11 cases of B-CLL, 9 cases of FL and 42 cases of DLCL. Gene expression levels

were measured using 2-channel cDNA microarrays.

After preprocessing, all gene expression profiles were base 10 log-transformed and, in order

to prevent single arrays from dominating the analysis, standardized to zero mean and unit

variance. Finally, we complete the preprocessing of the gene expression data with gene

centring.

In this example we perform the KPCA , as detailed in the previous section, we compute the

kernel matrix with using the radial basis kernel with c = 0.01, this value is set heuristically.

The resulting plot is given in Figure 6. It shows the projection onto the two leading kernel

principal components of microarrays. In this figure we can see that KPCA detect the group

structure in reduced dimension. DLCL, FL and B-CLL are fully separated by KPCA.

To validate our procedure we select a list of genes differentially expressed proposed by

(Reverter et al. (2010)) and a list of genes that are not differentially expressed. In particular, in

Figures 7, 8, 9 and 10 we show the results in the case of genes: 139009, 1319066, 1352822

and 1338456, respectively. The three first genes belong to the list of genes differentially

expressed and the last gene is not differentially expressed.

Figure 7 (top) shows the tangent vectors associated with 139009 gene attached at each sample

point. This vector field reveals upper expression towards DLCL cluster as is expected from

references above mentioned. This gene is mainly represented by the first principal component.

The length of the arrows indicate the influence strength of the gene on the sample position

despite the dimension reduction. Figure 7 (bottom) shows the expression profile of 139009

gene. We can observe that 139009 gene is up regulated in DLCL cluster. This profile is

agree with our procedure because the direction in which the expression of the 139009 gene

increases points to the DLCL cluster.

Figure 8 (top) shows the tangent vectors associated with 1319066 gene attached at each

sample point. This vector field reveals upper expression towards FL cluster as is expected

from references above mentioned. This gene is mainly represented by the second principal

component. Figure 8 (bottom) shows the expression profile of 1319066 gene. We can observe

that 1319066 gene is up regulated in FL class. This profile is agree with our procedure

because the direction in which the expression of the 1319066 gene points to the FL cluster.
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Fig. 5. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with D50857-at
gene at each sample point. Vector field shows no preferred direction. (Bottom) Flat
Expression profile of D50857-at gene confirms KPCA plot enriched with tangent vectors
representation.
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Figure 9 (top) shows the tangent vectors associated with 1352822 gene attached at each

sample point. This vector field reveals upper expression towards B-CLL as is expected from

references above mentioned. Figure 9 (bottom) shows the expression profile of 1352822 gene.

We can observe that 1352822 gene is up regulated in B-CLL class. This profile is agree with

our procedure because the direction in which the expression of the 1352822 gene increases

points to the B-CLL cluster.

Figure 10 (top) shows the tangent vectors associated with 1338456 gene attached at each

sample point. This vector field shows no preferred direction to any of the three cell groups.

The arrows are of short length and variable direction in comparison with other genes showed

in previous Figures. Figure 10 (bottom) shows a flat expression profile of 1338456 gene. This

profile is agree with our procedure because any direction of expression of the 1338456 gene

is highlighted.
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Fig. 7. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with 139009
gene at each sample point. Vector field reveals upper expression towards DLCL cluster.
(Bottom) Expression profile of 139009 gene confirms KPCA plot enriched with tangent
vectors representation.
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Fig. 8. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with 1319066
gene at each sample point. Vector field reveals upper expression towards FL cluster. (Bottom)
Expression profile of 1319066 gene confirms KPCA plot enriched with tangent vectors
representation.
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gene at each sample point. Vector field reveals upper expression towards B-CLL cluster.
(Bottom) Expression profile of 1352822 gene confirms KPCA plot enriched with tangent
vectors representation.

17Kernel Methods for Dimensionality Reduction Applied to the «Omics» Data

www.intechopen.com



18 Will-be-set-by-IN-TECH

●

●

●

●

●
●

●

●

●●

●

2 0 2 4

2
1

0
1

2
3

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l 
C

o
m

p
o
n
e
n
t

●

DLCL

FL

B CLL

1338456

B CLL DLCL FL

1
.5

1
.0

0
.5

0
.0

0
.5

1
.0

Cluster 1338456

g
e
n
e

●

●

●
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expression profile of 1338456 gene confirms KPCA plot enriched with tangent vectors
representation.
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5. Conclusion

In this paper we propose an exploratory method based on Kernel PCA for elucidating

relationships between samples (microarrays) and variables (genes). Our approach show two

main properties: extraction of nonlinear features together with the preservation of the input

variables (genes) in the output display. The method described here is easy to implement

and facilitates the identification of genes which have a similar or reversed profiles. Our

results indicate that enrich the KPCA with supplementary input variable information is

complementary to other tools currently used for finding gene expression profiles, with the

advantage that it can capture the usual nonlinear nature of microarray data.
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