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10.1 Introduction 
The Kalman filter is widely used for linear estimation problems where its behaviour is well-
understood. Under prescribed conditions, the estimated states are unbiased and stability is 
guaranteed. Many real-world problems are nonlinear which requires amendments to linear 
solutions. If the nonlinear models can be expressed in a state-space setting then the Kalman 
filter may find utility by applying linearisations at each time step. Linearising means finding 
tangents to the curves of interest about the current estimates, so that the standard filter 
recursions can be employed in tandem to produce predictions for the next step. This 
approach is known as extended Kalman filtering – see [1] – [5].     

Extended Kalman filters (EKFs) revert to optimal Kalman filters when the problems become 
linear. Thus, EKFs can yield approximate minimum-variance estimates. However, there are 
no accompanying performance guarantees and they fall into the try-at-your-own-risk 
category. Indeed, Anderson and Moore [3] caution that the EKF “can be satisfactory on 
occasions”. A number of compounding factors can cause performance degradation. The 
approximate linearisations may be crude and are carried out about estimated states (as 
opposed to true states). Observability problems occur when the variables do not map onto 
each other, giving rise to discontinuities within estimated state trajectories. Singularities 
within functions can result in non-positive solutions to the design Riccati equations and lead 
to instabilities.  

The discussion includes suggestions for performance improvement and is organised as 
follows. The next section begins with Taylor series expansions, which are prerequisites for 
linearisation. First, second and third-order EKFs are then derived. EKFs tend be prone to 
instability and a way of enforcing stability is to masquerade the design Riccati equation by a 
faux version. This faux algebraic Riccati equation technique [6] – [10] is presented in Section 
10.3. In Section 10.4, the higher order terms discarded by an EKF are treated as uncertainties. 
It is shown that a robust EKF arises by solving a scaled H∞ problem in lieu of one possessing 
uncertainties. Nonlinear smoother procedures can be designed similarly. The use of fixed-
lag and Rauch-Tung-Striebel smoothers may be preferable from a complexity perspective. 
However, the approximate minimum-variance and robust smoothers, which are presented 
in Section 10.5, revert to optimal solutions when the nonlinearities and uncertainties 
diminish. Another way of guaranteeing stability is to by imposing constraints and one such 
approach is discussed in Section 10.6. 

                                                                 

“It is the mark of an instructed mind to rest satisfied with the degree of precision to which the nature of 
the subject admits and not to seek exactness when only an approximation of the truth is possible.” 
Aristotle 
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10.2 Extended Kalman Filtering 
 

10.2.1 Taylor Series Expansion 
A nonlinear function ( ) :  n

ka x  having n continuous derivatives may be expanded as a 
Taylor series about a point x0 
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is called a Hessian matrix. 
 

10.2.2 Nonlinear Signal Models 
Consider nonlinear systems having state-space representations of the form 

1 ( ) ( )k k k k k kx a x b x w   , 

( )k k ky c x , 

(2) 

(3) 

where ak(.), bk(.) and ck(.) are continuous differentiable functions. For a scalar function, 
( ) :ka x   , its Taylor series about x = x0 may be written as 

                                                                 

“In the real world, nothing happens at the right place at the right time. It is the job of journalists and 
historians to correct that.” Samuel Langhorne Clemens aka. Mark Twain 
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Similarly, Taylor series for ( ) :kb x    and ( ) :kc x    about x = x0 are 

0 0

2
2

0 0 0 2

1( ) ( ) ( ) ( )
2

k k
k k

x x x x

b bb x b x x x x x
x x

 

 
    

 
 

                                          
0 0

3
3

0 03

1 1( ) ( )
6 !

n
nk k

n
x x x x

b bx x x x
x n x

 

 
    

 
 , 

(5) 

and 

     
0 0

2
2

0 0 0 2

1( ) ( ) ( ) ( )
2

k k
k k

x x x x

c cc x c x x x x x
x x

 

 
    

 
 

                                          
0 0

3
3

0 03

1 1( ) ( )
6 !

n
nk k

n
x x x x

c cx x x x
x n x

 

 
    

 
 , 

(6) 

respectively. 
 

10.2.3 First-Order Extended Kalman Filter 
Suppose that filtered estimates /ˆ k kx  of xk are desired given observations 

( )k k k kz c x v  , (7) 

where vk is a measurement noise sequence. A first-order EKF for the above problem is 
developed below. Following the approach within [3], the nonlinear system (2) – (3) is 
approximated by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(8) 

(9)  

where Ak, Bk, Ck, k and πk are found from suitable truncations of the Taylor series for each 
nonlinearity. From Chapter 4, a filter for the above model is given by 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx x L z C x      , 

1/ /ˆ ˆk k k k k kx A x    , 

(10) 
(11) 

                                                                 

“You will always define events in a manner which will validate your agreement with reality.” Steve 
Anthony Maraboli 
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where Lk = 1
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on optimal filtering, the recursions (14) – (15) are either called a first-order EKF or simply an 
EKF, see [1] – [5]. Two higher order versions are developed below. 
 

10.2.4 Second-Order Extended Kalman Filter 
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“People take the longest possible paths, digress to numerous dead ends, and make all kinds of mistakes. 
Then historians come along and write summaries of this messy, nonlinear process and make it appear 
like a simple straight line.” Dean L. Kamen 
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10.2.5 Third-Order Extended Kalman Filter 
Higher order EKFs can be realised just as elegantly as its predecessors. Retaining up to 
third-order terms within (1) results in 
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“It might be a good idea if the various countries of the world would occasionally swap history books, 
just to see what other people are doing with the same set of facts.” William E. Vaughan 
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10.2.4 Second-Order Extended Kalman Filter 
Truncating the series (1) after the second-order term and observing that /ˆ( )T T

k kx x   is a 
scalar yields 

/ /
/ / / /ˆ ˆ

1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2k k k k

T T T
k k k k k k k k k k k kx x x x

a x a x x x a x x a x x
 

         , 

                    
/ /

/ / /ˆ ˆ

1ˆ ˆ( ) ( )
2k k k k

T T
k k k k k k k k kx x x x

a x x x a P a
 

        

                    k k kA x   , 

(16) 

                                                                 

“People take the longest possible paths, digress to numerous dead ends, and make all kinds of mistakes. 
Then historians come along and write summaries of this messy, nonlinear process and make it appear 
like a simple straight line.” Dean L. Kamen 

  

where Ak = 
/ˆ( )

k k
k x x

a x


  and k = /ˆ( )k k ka x  – /ˆk k kA x  + 
/

/ ˆ

1
2 k k

T
k k k x x

P a


  . Similarly for the 

system output,  

/ 1
/ 1 / 1 ˆ

ˆ ˆ( ) ( ) ( )
k k

T
k k k k k k k k x x

c x c x x x c


  
   

/ 1
/ 1 / 1ˆ

1 ˆ ˆ( ) ( )
2 k k

T T
k k k k k k kx x

x x c x x


 
      

              
/ 1 / 1
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1ˆ ˆ( ) ( )
2k k k k

T T
k k k k k k k k k kx x x x

c x x x c P c
 

   
        

              k k kC x   , 

(17) 

where Ck = 
/ 1ˆ( )



k k

k x x
c x  and πk = / 1ˆ( )k k kc x   – / 1ˆk k kC x   + 

/ 1
/ 1 ˆ

1
2 k k

T
k k k x x

P c


 
  . Substituting for 

k and πk into the filtering and prediction recursions (10) – (11) yields the second-order EKF 

/ 1
/ / 1 / 1 / 1 ˆ

1ˆ ˆ ˆ( )
2 k k

T
k k k k k k k k k k k k x x

x x L z c x P c


   

       
 

, 

/
1/ / / ˆ

1ˆ ˆ( )
2 k k

T
k k k k k k k k x x

x a x P a 
    . 

(18) 

 
(19) 

The above form is described in [2]. The further simplifications 
/

/ ˆk k

T
k k k x x

P a


   ≈ 

 
/

/ ˆk k

T
k k k x x

tr P a


   and 
/ 1

/ 1 ˆk k

T
k k k x x

P c


 
   ≈  

/ 1
/ 1 ˆk k

T
k k k x x

tr P c


 
   are assumed in [4], [5].  

 

10.2.5 Third-Order Extended Kalman Filter 
Higher order EKFs can be realised just as elegantly as its predecessors. Retaining up to 
third-order terms within (1) results in 

                         
/ /

/ / /ˆ ˆ

1ˆ ˆ( ) ( ) ( )
2k k k k

T
k k k k k k k k k kx x x x

a x a x x x a P a
 

        

                                     
//

/ / ˆˆ

1 ˆ( )
6 k kk k

T
k k k k k k k x xx x

P a x x a


      

                                   k k kA x   , 

(20) 

where 

/ /
/ˆ ˆ

1( )
6k k k k

T
k k k k kx x x x

A a x P a
 

      (21) 

                                                                 

“It might be a good idea if the various countries of the world would occasionally swap history books, 
just to see what other people are doing with the same set of facts.” William E. Vaughan 
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and k = /ˆ( )k k ka x  – /ˆk k kA x  + 
/

/ ˆ

1
2 k k

T
k k k x x

P a


  . Similarly, for the output nonlinearity it is 

assumed that 

                                
/ 1 / 1

/ 1 / 1 / 1ˆ ˆ

1ˆ ˆ( ) ( ) ( )
2k k k k

T
k k k k k k k k k k kx x x x

c x c x x x c P c
 

   
        

                                              
/ 1/ 1

/ 1 / 1 ˆˆ

1 ˆ( )
6 k kk k

T
k k k k k k k x xx x

P c x x c


  
      

                                           k k kC x   , 

(22) 

where 

/ 1 / 1
/ 1ˆ ˆ

1( )
6k k k k

T
k k k k kx x x x

C c x P c
 

 
      (23) 

and πk = / 1ˆ( )k k kc x   – / 1ˆk k kC x   + 
/ 1

/ 1 ˆ

1
6 k k

T
k k k x x

P c


 
  . The resulting third-order EKF is defined 

by (18) – (19) in which the gain is now calculated using (21) and (23). 

Example 1. Consider a linear state evolution xk+1 = Axk + wk, with A = 0.5, wk   , Q = 0.05, a 
nonlinear output mapping yk = sin(xk) and noisy observations zk = yk + vk, vk   . The first-
order EKF for this problem is given by 

/ / 1 / 1ˆ ˆ ˆ( sin( ))k k k k k k k kx x L z x    , 

1/ /ˆ ˆk k k kx Ax  , 

where Lk = 1
/ 1

T
k k k kP C 

  , k  = / 1
T

k k k kC P C  + kR , Ck = / 1ˆcos( )k kx  , /k kP  = / 1k kP   – 

/ 1 / 1(T T
k k k k k k kP C C P C   + 1

/ 1)k k k kR C P
  and 1/k kP   = /

T
k k k kA P A  + kQ . The filtering step within the 

second-order EKF is amended to 

/ / 1 / 1 / 1 / 1ˆ ˆ ˆ ˆ( sin( ) sin( ) / 2)k k k k k k k k k k k kx x L z x x P       . 

The modified output linearisation for the third-order EKF is 

/ 1 / 1 / 1ˆ ˆcos( ) sin( ) / 6k k k k k k kC x x P    . 

Simulations were conducted in which the signal-to-noise-ratio was varied from 20 dB to 40 dB 
for N = 200,000 realisations of Gaussian noise sequences. The mean-square-errors exhibited by 
the first, second and third-order EKFs are plotted in Fig. 1. The figure demonstrates that 
including higher-order Taylor series terms within the filter can provide small performance 
improvements but the benefit diminishes with increasing measurement noise. 

                                                                 

“No two people see the external world in exactly the same way. To every separate person a thing is 
what he thinks it is – in other words, not a thing, but a think.” Penelope Fitzgerald 
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Figure 1. Mean-square-error (MSE) versus signal-to-noise-ratio (SNR) for Example 1: first-order EKF 
(solid line), second-order EKF (dashed line) and third-order EKF (dotted-crossed line). 
 

10.3 The Faux Algebraic Riccati Equation Technique 
 

10.3.1 A Nonlinear Observer 
The previously-described Extended-Kalman filters arise by linearising the signal model 
about the current state estimate and using the linear Kalman filter to predict the next 
estimate. This attempts to produce a locally optimal filter, however, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique [6] – [10] seeks to improve on EKF 
performance by trading off approximate optimality for stability. The familiar structure of 
the EKF is retained but stability is achieved by selecting a positive definite solution to a faux 
Riccati equation for the gain design.  

Assume that data is generated by the following signal model comprising a stable, linear 
state evolution together with a nonlinear output mapping 

1k k kx Ax Bw   , 

( )k k k kz c x v  , 

(24) 

(25) 

where the components of ck(.) are assumed to be continuous differentiable functions. 
Suppose that it is desired to calculate estimates of the states from the measurements. A 
nonlinear observer may be constructed having the form 

1/ / 1ˆ ˆ ˆ( ( ))k k k k k k kx Ax g z c x    , (26) 

where gk(.) is a gain function to be designed. From (24) – (26), the state prediction error is 
given by 

                                                                 

“The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, 
observing the effects of the stone upon himself.” Bertrand Arthur William Russell 
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k k k x x

P a


  . Similarly, for the output nonlinearity it is 
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by (18) – (19) in which the gain is now calculated using (21) and (23). 

Example 1. Consider a linear state evolution xk+1 = Axk + wk, with A = 0.5, wk   , Q = 0.05, a 
nonlinear output mapping yk = sin(xk) and noisy observations zk = yk + vk, vk   . The first-
order EKF for this problem is given by 
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k k k kA P A  + kQ . The filtering step within the 

second-order EKF is amended to 
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The modified output linearisation for the third-order EKF is 

/ 1 / 1 / 1ˆ ˆcos( ) sin( ) / 6k k k k k k kC x x P    . 

Simulations were conducted in which the signal-to-noise-ratio was varied from 20 dB to 40 dB 
for N = 200,000 realisations of Gaussian noise sequences. The mean-square-errors exhibited by 
the first, second and third-order EKFs are plotted in Fig. 1. The figure demonstrates that 
including higher-order Taylor series terms within the filter can provide small performance 
improvements but the benefit diminishes with increasing measurement noise. 

                                                                 

“No two people see the external world in exactly the same way. To every separate person a thing is 
what he thinks it is – in other words, not a thing, but a think.” Penelope Fitzgerald 
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Figure 1. Mean-square-error (MSE) versus signal-to-noise-ratio (SNR) for Example 1: first-order EKF 
(solid line), second-order EKF (dashed line) and third-order EKF (dotted-crossed line). 
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10.3.1 A Nonlinear Observer 
The previously-described Extended-Kalman filters arise by linearising the signal model 
about the current state estimate and using the linear Kalman filter to predict the next 
estimate. This attempts to produce a locally optimal filter, however, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique [6] – [10] seeks to improve on EKF 
performance by trading off approximate optimality for stability. The familiar structure of 
the EKF is retained but stability is achieved by selecting a positive definite solution to a faux 
Riccati equation for the gain design.  

Assume that data is generated by the following signal model comprising a stable, linear 
state evolution together with a nonlinear output mapping 

1k k kx Ax Bw   , 

( )k k k kz c x v  , 

(24) 

(25) 

where the components of ck(.) are assumed to be continuous differentiable functions. 
Suppose that it is desired to calculate estimates of the states from the measurements. A 
nonlinear observer may be constructed having the form 

1/ / 1ˆ ˆ ˆ( ( ))k k k k k k kx Ax g z c x    , (26) 

where gk(.) is a gain function to be designed. From (24) – (26), the state prediction error is 
given by 

                                                                 

“The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, 
observing the effects of the stone upon himself.” Bertrand Arthur William Russell 
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1/ / 1 ( )k k k k k k kx Ax g w     , (27) 

where kx  = xk – / 1ˆ k kx   and εk = zk – / 1ˆ( )k kc x  . The Taylor series expansion of ck(.) to first order 
terms leads to εk ≈ / 1k k kC x 

  + vk, where Ck = 
/ 1ˆ( )

k k
k x x

c x


 . The objective here is to design gk(εk) 

to be a linear function of / 1k kx   to first order terms. It will be shown that for certain classes of 
problems, this objective can be achieved by a suitable choice of a linear bounded matrix 
function of the states Dk, resulting in the time-varying gain function gk(εk) = KkDkεk, where Kk 
is a gain matrix of appropriate dimension. For example, consider xk  n and zk  m , 
which yield εk  m and Ck  m n . Suppose that a linearisation Dk   p m  can be found so 
that kC  = DkCk    p m  possesses approximately constant terms. Then the locally linearised 
error (27) may be written as 

1/ / 1( )k k k k k k k k k kx A K C x K D v w      . (28) 

If  ( )i A  < 1, i = 1 … n, and if the pair ( , )kA C  is completely observable, then the 

asymptotic stability of (28) can be guaranteed by selecting the gain such that ( )i k kA K C   < 

1. A method for selecting the gain is described below. 
 

10.3.2 Gain Selection 
From (28), an approximate equation for the error covariance Pk/k-1 = / 1 / 1{ }T

k k k kE x x 
   is 

     1/ / 1( ) ( )T T T
k k k k k k k k k k k kP A K C P A K C K D RD K Q      , (29) 

which can be written as 

1
/ / 1 / 1 / 1 / 1( )T T T

k k k k k k k k k k k k k k k kP P P C C P C D RD C P
      , 

1/ /k k k kP AP A Q   . 

(30) 

(31) 

In an EKF for the above problem, the gain is obtained by solving the above Riccati difference 
equation and calculating 

1
/ 1 / 1( )T T T

k k k k k k k k k kK P C C P C D RD 
   . (32) 

The faux algebraic Riccati equation approach [6] – [10] is motivated by connections between 
Riccati difference equation and algebraic Riccati equation solutions. Indeed, it is noted for 
some nonlinear problems that the gains can converge to a steady-state matrix [3]. This 
technique is also known as ‘covariance setting’. Following the approach of [10], the Riccati 
difference equation (30) may be masqueraded by the faux algebraic Riccati equation 

1( )T T T
k k k k k k k k k k kC C C D RD C        . (33) 

                                                                 

“The universe as we know it is a joint product of the observer and the observed.” Pierre Teilhard De 
Chardin 

  

That is, rather than solve (30), an arbitrary positive definite solution k is assumed instead 
and then the gain at each time k is calculated from (31) – (32) using k in place of  Pk/k-1.  
 

10.3.3 Tracking Multiple Signals 
Consider the problem of tracking two frequency or phase modulated signals which may be 
modelled by equation (34), where (1)

ka , (2)
ka , (1)

k , (2)
k , (1)

k , (2)
k , (1)

a , (2)
a , (1)

 , (2)
     

and (1)
kw , … (6)

kw     are zero-mean, uncorrelated, white processes with covariance Q = 
diag( (1)

2
w ,…, ( 6 )

2
w ). The states ( )i

ka , ( )i
k  and ( )i

k , i = 1, 2, represent the signals’ 
instantaneous amplitude, frequency and phase components, respectively. 

(1) (1) (1)(1)
1

(1) (1) (2)(1)
1

(1) (1) (3
1

(2)(2) (2)
1

(2)(2) (2)
1

(2) (2)
1

00 0 0 0
00 0 00
01 1 0 00

0 0 0 00
0 0 00 0
0 0 1 10 0

k k ka

k k k

k k k

ak k

k k

k k

a a w
w
w

a a






 
 


 

 













    
    
    
    
     
    
    
    
        

)

(4)

(5)

(6)

k

k

k

w
w
w

 
 
 
 
 
 
 
 
  

. (34) 

Let  

(1) (1) (1) (1)

(2) (1) (1) (2)

(3) (2) (2) (3)

(4) (2) (2) (4)

cos
sin
cos
sin

k k k k

k k k k

k k k k

k k k k

z a v
z a v
z a v
z a v






     
     
           
     
          

 (35) 

denote the complex baseband observations, where (1)
kv , …, (4)

kv     are zero-mean, 
uncorrelated, white processes with covariance R = (1)

2( vdiag  ,…, ( 4 )
2 )v . Expanding the 

prediction error to linear terms yields Ck = (1)[ kC  (2) ]kC , where  

( ) ( ) ( )
/ 1 / 1 / 1( )

( ) ( ) ( )
/ 1 / 1 / 1

ˆ ˆˆcos sin0
ˆ ˆ0 ˆsin cos

i i i
k k k k k ki

k i i i
k k k k k k

a
C

a

 

 
  

  

 
 
  

. 

This form suggests the choice 
(1)

(2)
k

k
k

D
D

D
 

  
 

, where  

( ) ( )
/ 1 / 1( )

( ) ( ) ( ) ( )
/ 1 / 1 / 1 / 1

ˆ ˆcos sin
ˆ ˆˆ ˆsin / cos /

i i
k k k ki

k i i i i
k k k k k k k k

D
a a

 

 
 

   

 
 
  
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“If you haven't found something strange during the day, it hasn't been much of a day.” John Archibald 
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1/ / 1 ( )k k k k k k kx Ax g w     , (27) 

where kx  = xk – / 1ˆ k kx   and εk = zk – / 1ˆ( )k kc x  . The Taylor series expansion of ck(.) to first order 
terms leads to εk ≈ / 1k k kC x 

  + vk, where Ck = 
/ 1ˆ( )

k k
k x x

c x


 . The objective here is to design gk(εk) 

to be a linear function of / 1k kx   to first order terms. It will be shown that for certain classes of 
problems, this objective can be achieved by a suitable choice of a linear bounded matrix 
function of the states Dk, resulting in the time-varying gain function gk(εk) = KkDkεk, where Kk 
is a gain matrix of appropriate dimension. For example, consider xk  n and zk  m , 
which yield εk  m and Ck  m n . Suppose that a linearisation Dk   p m  can be found so 
that kC  = DkCk    p m  possesses approximately constant terms. Then the locally linearised 
error (27) may be written as 

1/ / 1( )k k k k k k k k k kx A K C x K D v w      . (28) 

If  ( )i A  < 1, i = 1 … n, and if the pair ( , )kA C  is completely observable, then the 

asymptotic stability of (28) can be guaranteed by selecting the gain such that ( )i k kA K C   < 

1. A method for selecting the gain is described below. 
 

10.3.2 Gain Selection 
From (28), an approximate equation for the error covariance Pk/k-1 = / 1 / 1{ }T

k k k kE x x 
   is 

     1/ / 1( ) ( )T T T
k k k k k k k k k k k kP A K C P A K C K D RD K Q      , (29) 

which can be written as 

1
/ / 1 / 1 / 1 / 1( )T T T

k k k k k k k k k k k k k k k kP P P C C P C D RD C P
      , 

1/ /k k k kP AP A Q   . 

(30) 

(31) 

In an EKF for the above problem, the gain is obtained by solving the above Riccati difference 
equation and calculating 

1
/ 1 / 1( )T T T

k k k k k k k k k kK P C C P C D RD 
   . (32) 

The faux algebraic Riccati equation approach [6] – [10] is motivated by connections between 
Riccati difference equation and algebraic Riccati equation solutions. Indeed, it is noted for 
some nonlinear problems that the gains can converge to a steady-state matrix [3]. This 
technique is also known as ‘covariance setting’. Following the approach of [10], the Riccati 
difference equation (30) may be masqueraded by the faux algebraic Riccati equation 

1( )T T T
k k k k k k k k k k kC C C D RD C        . (33) 
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That is, rather than solve (30), an arbitrary positive definite solution k is assumed instead 
and then the gain at each time k is calculated from (31) – (32) using k in place of  Pk/k-1.  
 

10.3.3 Tracking Multiple Signals 
Consider the problem of tracking two frequency or phase modulated signals which may be 
modelled by equation (34), where (1)
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k , (1)
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a , (1)

 , (2)
     

and (1)
kw , … (6)

kw     are zero-mean, uncorrelated, white processes with covariance Q = 
diag( (1)

2
w ,…, ( 6 )

2
w ). The states ( )i

ka , ( )i
k  and ( )i

k , i = 1, 2, represent the signals’ 
instantaneous amplitude, frequency and phase components, respectively. 
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denote the complex baseband observations, where (1)
kv , …, (4)

kv     are zero-mean, 
uncorrelated, white processes with covariance R = (1)

2( vdiag  ,…, ( 4 )
2 )v . Expanding the 

prediction error to linear terms yields Ck = (1)[ kC  (2) ]kC , where  
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In the multiple signal case, the linearization kC  = DkCk does not result in perfect decoupling. 

While the diagonal blocks reduce to ( , )i i
kC  = 

1 0 0
0 0 1
 
 
 

, the off-diagonal blocks are  

( , )i j
kC  = 

( ) ( )( )( )( )
/ 1 / 1 / 1/ 1 / 1

( )
( )( ) ( )( )/ 1

/ 1 / 1 / 1 / 1( ) ( )
/ 1 / 1

ˆ ˆˆ ˆ ˆ sin( )cos( ) 0
ˆ1 ˆ ˆ ˆ ˆ0cos( ) cos( )ˆ ˆ

j jiji
k k k k k kk k k k
j

ji jik k
k k k k k k k ki i

k k k k

a
a

a a

  

   

   


   

 

 
 
    
 

. 

Assuming a symmetric positive definite solution to (33) of the form k = 
0 0

0
0

a
k

k k

k k

 

 

 
 

  
   

, 

with a
k , k

 , k
 , k

     and choosing the gains according to (32) yields Kk = 
0

0
0

a
k

k

k

K
K
K





 
 
 
 
 

, 

where a
kK  = (a a

k k   + 2 1)v  , kK  = (k k
    + 2 2 1

/ˆ )v k ka    and kK  = (k k
    + 2 2 1

/ˆ )v k ka   . The 
nonlinear observer then becomes 

( ) ( ) (1) ( ) (2) ( ) 2 1
/ / 1 / 1 / 1

ˆ ˆˆ ˆ ( cos sin )( )i i a i i a
k k k k k k k k k k k k va a z z   

        , 

( ) ( ) (1) ( ) (2) ( ) ( ) 2 ( ) 1
/ / 1 / 1 / 1 / 1 / 1

ˆ ˆˆ ˆ ˆ( cos sin )( / )i i i i i i
k k k k k k k k k k k k k k v k kz z a a      

          , 

( ) ( ) (1) ( ) (2) ( ) ( ) 2 ( ) 1
/ / 1 / 1 / 1 / 1 / 1

ˆ ˆ ˆ ˆ ˆ( cos sin )( / )i i i i i i
k k k k k k k k k k k k k k v k kz z a a      

          . 
 

10.3.4 Stability Conditions 
In order to establish conditions for the error system (28) to be asymptotically stable, the 

problem is recast in a passivity framework as follows. Let w = 

(1)

(2)

( )

k

k

m
k

w
w

w

 
 
 
 
 
  


, e = 

(1)

(2)

( )

k

k

m
k

e
e

e

 
 
 
 
 
  


  m . 

Consider the configuration of Fig. 2, in which there is a cascade of a stable linear system  
and a nonlinear function matrix γ(.) acting on e. It follows from the figure that 

e = w – γ(e). (36) 

Let f  denote a forward difference operator with f ke  = ( )i
ke  – ( )

1
i

ke  . It is assumed that (.) 
satisfies some sector conditions which may be interpreted as bounds existing on the slope of 
the components of (.); see Theorem 14, p. 7 of [11].   
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Lemma 1 [10]: Consider the system (36), where w, e  m . Suppose that (.) consists of m identical, 
noninteracting nonlinearities, with ( )( )i

ke  monotonically increasing in the sector [0,],  ≥ 0,   
 , that is,  

0 ≤ ( ) ( )( ) /i i
k ke e  ≤  (37) 

for all ( )i
ke    , ( )i

ke  ≠ 0. Assume that  is a causal, stable, finite-gain, time-invariant map m   
m , having a z-transform G(z), which is bounded on the unit circle. Let I denote an m m  identity 
matrix.  Suppose that for some q > 0, q   , there exists a    , such that 

1( ( ) ( ) ) , ,fG z q G z I e e e e      (38) 

for all ( )i
ke    . Under these conditions w  2  implies e, ( )( )i

ke  2 . 

Proof: From (36), f w  = f e  + ( ) ( )f G z e  and w + fq w  = (G(z) + ( )fq G z  +  I -1) γ(e) + e 
– I -1γ(e)+ e – I -1γ(e)  + fq e . Then 

1, ( ) ( ), ( ) ), ( )f fw q w e e I e e q e e           

                                      1( ( ) ( ) ) ( ), ( )fG z q G z I e e      . 
(39) 

Consider the first term on the right hand side of (39).  Since the ( )e  consists of noninteracting 

nonlinearities, ( ),e e  = ( ) ( )

1
( ),

m
i i

i
e e


  and 1 ( ), ( )e I e e    = ( )

1

m
i

i
e


  – ( ) 1 ( )( ) ,i ie I e    ≥ 0. 

Using the approach of [11] together with the sector conditions on the identical noninteracting 
nonlinearities (37), it can be shown that expanding out the second term of (39) yields , ( )f e e  ≥ 
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Figure 2. Nonlinear error system configuration. Figure 3. Stable gain space for Example 2. 
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Consider the configuration of Fig. 2, in which there is a cascade of a stable linear system  
and a nonlinear function matrix γ(.) acting on e. It follows from the figure that 

e = w – γ(e). (36) 

Let f  denote a forward difference operator with f ke  = ( )i
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satisfies some sector conditions which may be interpreted as bounds existing on the slope of 
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0. Using 
2f w  ≤ 2

2
w  (from p. 192 of [11]), the Schwartz inequality and the triangle inequality, 

it can be shown that 

, ( )w q w e   ≤ 
2

(1 2 )q w . (40) 

It follows from (38) – (40) that 2

2
( )e  ≤ (1 + 1

2
2 )q w  ; hence ( )( )i

ke  2 . Since the gain of G(z) 

is finite, it also follows that ( )( ) ( )i
kG z e   2 .                                                                                      ฀ 

If G(z) is stable and bounded on the unit circle, then the test condition (38) becomes 
1 1

min{ ( )( ( ) ( )) }HI q I z I G z G z        , (41) 

see pp. 175 and 194 of [11]. 
 

10.3.5 Applications 
Example 2 [10]. Consider a unity-amplitude frequency modulated (FM) signal modelled as 
k+1 = k + wk, k+1 = k + k, (1)

kz  = cos(k) + (1)
kv  and (2)

kz  = sin(k) + (2)
kv . The error system 

for an FM demodulator may be written as 
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for gains K1, K2    to be designed. In view of the form (36), the above error system is 
reformatted as 
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where γ(x) = x – sin(x). The z-transform of the linear part of (43) is G(z) = (K2z + K2 + K1 ) 
(z2 + (K2 – 1 – )z + K1 + 1 –  K2)-1. The nonlinearity satisfies the sector condition (37) for  
= 1.22. Candidate gains may be assessed by checking that G(z) is stable and the test 
condition (41). The stable gain space calculated for the case of  = 0.9 is plotted in Fig. 3. 
The gains are required to lie within the shaded region of the plot for the error system (42) to 
be asymptotically stable. 
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Figure 4. Demodulation performance for Example 
2: (i) EKF and (ii) Nonlinear observer. 

Figure 5. Demodulation performance for Example 
3: (i) EKF and (ii) Nonlinear observer. 

A speech utterance, namely, the phrase “Matlab is number one”, was sampled at 8 kHz and 
used to synthesize a unity-amplitude FM signal. An EKF demodulator was constructed for 
the above model with 2

w  = 0.02. In a nonlinear observer design it was found that suitable 

parameter choices were k = 
0.001 0.08
0.08 0.7

 
 
 

. The nonlinear observer gains were censored at 

each time k according to the stable gain space of Fig. 3. The results of a simulation study 
using 100 realisations of Gaussian measurement noise sequences are shown in Fig. 4. The 
figure demonstrates that enforcing stability can be beneficial at low SNR, at the cost of 
degraded high-SNR performance. 

Example 3 [10]. Suppose that there are two superimposed FM signals present in the same 
frequency channel. Neglecting observation noise, a suitable approximation of the 
demodulator error system in the form (36) is given by  
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where A = diag(A(1), A(1)), A(1) = 
0

1 1
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 
 

, C  = 
0 1 0 0
0 0 0 1
 
 
 

. The linear part of (44) may be 

written as G(z) = (C zI  – (A – 1))k kK C K . Two 8-kHz speech utterances, “Matlab is number 
one” and “Number one is Matlab”, centred at ±0.25 rad/s, were used to synthesize two 
superimposed unity-amplitude FM signals. Simulations were conducted using 100 
realisations of Gaussian measurement noise sequences. The test condition (41) was 
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superimposed unity-amplitude FM signals. Simulations were conducted using 100 
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evaluated at each time k for the above parameter values with β = 1.2, q = 0.001, δ = 0.82 and 
used to censor the gains. The resulting co-channel demodulation performance is shown in 
Fig. 5. It can be seen that the nonlinear observer significantly outperforms the EKF at high 
SNR.  

Two mechanisms have been observed for occurrence of outliers or faults within the co-
channel demodulators. Firstly errors can occur in the state attribution, that is, there is correct 
tracking of some component speech message segments but the tracks are inconsistently 
associated with the individual signals. This is illustrated by the example frequency estimate 
tracks shown in Figs. 6 and 7. The solid and dashed lines in the figures indicate two sample 
co-channel frequency tracks. Secondly, the phase unwrapping can be erroneous so that the 
frequency tracks bear no resemblance to the underlying messages.  These faults can occur 
without any significant deterioration in the error residual.  
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Figure 6. Sample EKF frequency tracks for Example 3. Figure 7. Sample Nonlinear observer frequency 

tracks for Example 3. 

The EKF demodulator is observed to be increasingly fault prone at higher SNR. This arises 
because lower SNR designs possess narrower bandwidths and so are less sensitive to nearby 
frequency components. The figures also illustrate the trade-off between stability and 
optimality. In particular, it can be seen from Fig. 6, that the sample EKF speech estimates 
exhibit faults in the state attribution.  This contrasts with Fig. 7, where the nonlinear 
observer’s estimates exhibit stable state attribution at the cost of degraded speech fidelity.  
 

10.4 Robust Extended Kalman Filtering 
 

10.4.1 Nonlinear Problem Statement 
Consider again the nonlinear, discrete-time signal model (2), (7). It is shown below that the 
H∞ techniques of Chapter 9 can be used to recast nonlinear filtering problems into a model 
uncertainty setting. The following discussion attends to state estimation, that is, C1,k = I is 
assumed within the problem and solution presented in Section 9.3.2. 
                                                                 

“You have enemies? Good. That means you’ve stood up for something, sometime in your life.” Winston 
Churchill 

  

The Taylor series expansions of the nonlinear functions ak(.), bk(.) and ck(.) about filtered and 
predicted estimates /ˆ k kx  and / 1ˆ k kx   may be written as 
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where 1(.) , 2 (.) , 3(.)  are uncertainties that account for the higher order terms, /k kx = xk – 

/ˆ k kx  and / 1k kx  = xk – / 1ˆ k kx  . It is assumed that 1(.) , 2 (.)  and 3(.)  are continuous 
operators mapping 2 2  , with H∞ norms bounded by δ1, δ2 and δ3, respectively. 

Substituting (45) – (47) into the nonlinear system (2), (7) gives the linearised system 
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Note that the first-order EKF for the above system arises by setting the uncertainties 1(.) , 
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10.4.2 Robust Solution 
Following the approach in Chapter 9, instead of addressing the problem (48) – (49) which 
possesses uncertainties, an auxiliary H∞ problem is defined as 

1k k k k k k kx A x B w s     , 

k k k k k kz C x v t    , 

(55) 
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evaluated at each time k for the above parameter values with β = 1.2, q = 0.001, δ = 0.82 and 
used to censor the gains. The resulting co-channel demodulation performance is shown in 
Fig. 5. It can be seen that the nonlinear observer significantly outperforms the EKF at high 
SNR.  

Two mechanisms have been observed for occurrence of outliers or faults within the co-
channel demodulators. Firstly errors can occur in the state attribution, that is, there is correct 
tracking of some component speech message segments but the tracks are inconsistently 
associated with the individual signals. This is illustrated by the example frequency estimate 
tracks shown in Figs. 6 and 7. The solid and dashed lines in the figures indicate two sample 
co-channel frequency tracks. Secondly, the phase unwrapping can be erroneous so that the 
frequency tracks bear no resemblance to the underlying messages.  These faults can occur 
without any significant deterioration in the error residual.  
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/ /ˆk k k k kx x x  , (57) 

where sk = 1 /( )k kx   + 2 /( )k k kx w   and tk = 3 /k kx   ≈ 3 / 1k kx    are additional exogenous inputs 
satisfying 

2
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2

2kt  ≤ 22
3 / 2k kx   ≤ 22
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another problem in which wk and vk are scaled in lieu of the additional inputs sk and rk. The 
scaled H∞ problem is defined by 

1k k k k w k kx A x B c w     , 

k k k v k kz C x c v    , 

/ /ˆk k k k kx x x  , 

(60) 

(61) 

(62) 

where cw, cv    are to be found. 
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The robust first-order extended Kalman filter for state estimation is given by (50) – (52), 
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Figure 8. Histogram of demodulator mean-square-error for Example 4: (i) first-order EKF (solid line) 
and first-order robust EKF (dotted line). 

Example 4 [12]. Suppose that an FM signal is generated by17 

1k k kw     , 

1 arctan( )k k k      , 

(1) (1)cos( )k k kz v  , 

(2) (2)sin( )k k kz v  . 

(65) 

(66) 

(67) 

(68) 

The objective is to construct an FM demodulator that produces estimates of the frequency 
message ωk from the noisy in-phase and quadrature measurements (1)

kz  and (2)
kz , 

respectively. Simulations were conducted with μω = 0.9, μ = 0.99 and (1)
2
v  = ( 2)

2
v  = 0.001. It 

was found for 2
w   < 0.1, where the state behaviour is almost linear, a robust EKF does not 
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Figure 8. Histogram of demodulator mean-square-error for Example 4: (i) first-order EKF (solid line) 
and first-order robust EKF (dotted line). 
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1 arctan( )k k k      , 

(1) (1)cos( )k k kz v  , 

(2) (2)sin( )k k kz v  . 

(65) 

(66) 

(67) 

(68) 

The objective is to construct an FM demodulator that produces estimates of the frequency 
message ωk from the noisy in-phase and quadrature measurements (1)

kz  and (2)
kz , 

respectively. Simulations were conducted with μω = 0.9, μ = 0.99 and (1)
2
v  = ( 2)
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was found for 2
w   < 0.1, where the state behaviour is almost linear, a robust EKF does not 
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improve on the EKF. However, when 2
w  = 1, the problem is substantially nonlinear and a 

performance benefit can be observed. A robust EKF demodulator was designed with 

xk = k
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, 

δ1 = 0.1, δ2 = 4.5 and δ3 = 0.001. It was found that γ = 1.38 was sufficient for Pk/k-1 of the above 
Riccati difference equation to always be positive definite. A histogram of the observed 
frequency estimation error is shown in Fig. 8, which demonstrates that the robust 
demodulator provides improved mean-square-error performance. For sufficiently large 2

w , 
the output of the above model will resemble a digital signal, in which case a detector may 
outperform a demodulator. 
 

10.5 Nonlinear Smoothing 
 

10.5.1 Approximate Minimum-Variance Smoother 
Consider again a nonlinear estimation problem where xk+1 = ak(xk) + Bkwk, zk = ck(xk) + vk, with 
xk   , in which the nonlinearities ak(.), ck(.) are assumed to be smooth, differentiable 
functions of appropriate dimension. The linearisations akin to Extended Kalman filtering 
may be applied within the smoothers described in Chapter 7 in the pursuit of performance 
improvement. The fixed-lag, Fraser-Potter and Rauch-Tung-Striebel smoother recursions are 
easier to apply as they are less complex. The application of the minimum-variance smoother 
can yield approximately optimal estimates when the problem becomes linear, provided that 
the underlying assumptions are correct. 

Procedure 1. An approximate minimum-variance smoother for output estimation can be 
implemented via the following three-step procedure. 

Step 1. Operate  
1/ 2

/ 1ˆ( ( ))k k k k k kz c x    , 

/ / 1 / 1ˆ ˆ ˆ( ( ))k k k k k k k k kx x L z c x    , 

1/ /ˆ ˆ( )k k k k kx a x  , 

(69) 
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(71) 
on the measurement zk, where Lk = 1

/ 1
T

k k k kP C 
  ,  

k  = / 1
T

k k k kC P C  + kR , 

/k kP  = / 1k kP   – 1
/ 1 / 1

T
k k k k k k kP C C P

  , 

1/k kP   = /
T

k k k kA P A  + T
k k kB Q B , 

Ak = 
/ˆk k

k

x x

a
x





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
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. 

(72) 
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Step 2. Operate (69) – (71) on the time-reversed transpose of αk. Then take the time-
reversed transpose of the result to obtain βk. 

Step 3. Calculate the smoothed output estimate from  

/ˆ k N k k ky z R   . (73) 
 

10.5.2 Robust Smoother 
From the arguments within Chapter 9, a smoother that is robust to uncertain wk and vk can 
be realised by replacing the error covariance correction (72) by 
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within Procedure 1. As discussed in Chapter 9, a search for a minimum γ such that 
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10.5.3 Application 

Returning to the problem of demodulating a unity-amplitude FM signal, let xk = k

k
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, B = 1 0   , (1) (1)cos( )k k kz v  , (2) (2)sin( )k k kz v  , where ωk, k, zk and vk 

denote the instantaneous frequency message, instantaneous phase, complex observations 
and measurement noise respectively. A zero-mean voiced speech utterance “a e i o u” was 
sampled at 8 kHz, for which estimates ˆ  = 0.97 and 2ˆw  = 0.053 were obtained using an 
expectation maximization algorithm. An FM discriminator output [13], 
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serves as a benchmark and as an auxiliary frequency measurement for the above smoother.  

The innovations within Steps 1 and 2 are given by 
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respectively. A unity-amplitude FM signal was synthesized using  
μ = 0.99 and the SNR was varied in 1.5 dB steps from 3 dB to 15 dB.  The mean-square 
errors were calculated over 200 realisations of Gaussian measurement noise and are shown 
in Fig. 9. It can be seen from the figure, that at 7.5 dB SNR, the first-order EKF improves on 
the FM discriminator MSE by about 12 dB. The improvement arises because the EKF 
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improve on the EKF. However, when 2
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δ1 = 0.1, δ2 = 4.5 and δ3 = 0.001. It was found that γ = 1.38 was sufficient for Pk/k-1 of the above 
Riccati difference equation to always be positive definite. A histogram of the observed 
frequency estimation error is shown in Fig. 8, which demonstrates that the robust 
demodulator provides improved mean-square-error performance. For sufficiently large 2

w , 
the output of the above model will resemble a digital signal, in which case a detector may 
outperform a demodulator. 
 

10.5 Nonlinear Smoothing 
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xk   , in which the nonlinearities ak(.), ck(.) are assumed to be smooth, differentiable 
functions of appropriate dimension. The linearisations akin to Extended Kalman filtering 
may be applied within the smoothers described in Chapter 7 in the pursuit of performance 
improvement. The fixed-lag, Fraser-Potter and Rauch-Tung-Striebel smoother recursions are 
easier to apply as they are less complex. The application of the minimum-variance smoother 
can yield approximately optimal estimates when the problem becomes linear, provided that 
the underlying assumptions are correct. 
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Step 2. Operate (69) – (71) on the time-reversed transpose of αk. Then take the time-
reversed transpose of the result to obtain βk. 

Step 3. Calculate the smoothed output estimate from  

/ˆ k N k k ky z R   . (73) 
 

10.5.2 Robust Smoother 
From the arguments within Chapter 9, a smoother that is robust to uncertain wk and vk can 
be realised by replacing the error covariance correction (72) by 
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respectively. A unity-amplitude FM signal was synthesized using  
μ = 0.99 and the SNR was varied in 1.5 dB steps from 3 dB to 15 dB.  The mean-square 
errors were calculated over 200 realisations of Gaussian measurement noise and are shown 
in Fig. 9. It can be seen from the figure, that at 7.5 dB SNR, the first-order EKF improves on 
the FM discriminator MSE by about 12 dB. The improvement arises because the EKF 
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demodulator exploits the signal model whereas the FM discriminator does not. The figure 
shows that the approximate minimum-variance smoother further reduces the MSE by about 
2 dB, which illustrates the advantage of exploiting all the data in the time interval. In the 
robust designs, searches for minimum values of γ were conducted such that the 
corresponding Riccati difference equation solutions were positive definite over each noise 
realisation. It can be seen from the figure at 7.5 dB SNR that the robust EKF provides about a 
1 dB performance improvement compared to the EKF, whereas the approximate minimum-
variance smoother and the robust smoother performance are indistinguishable. 

This nonlinear example illustrates once again that smoothers can outperform filters. Since a 
first-order speech model is used and the Taylor series are truncated after the first-order 
terms, some model uncertainty is present, and so the robust designs demonstrate a marginal 
improvement over the EKF. 
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Figure 9. FM demodulation performance comparison: (i) FM discriminator (crosses), (ii) first-order EKF 
(dotted line), (iii) Robust EKF (dashed line), (iv) approximate minimum-variance smoother and robust 
smoother (solid line).21 
 

10.6 Constrained Filtering and Smoothing 
 

10.6.1 Background 
Constraints often appear within navigation problems. For example, vehicle trajectories are 
typically constrained by road, tunnel and bridge boundaries. Similarly, indoor pedestrian 
trajectories are constrained by walls and doors. However, as constraints are not easily 
described within state-space frameworks, many techniques for constrained filtering and 
smoothing are reported in the literature. An early technique for constrained filtering 
involves augmenting the measurement vector with perfect observations [14]. The 
application of the perfect-measurement approach to filtering and fixed-interval smoothing is 
described in [15].  
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Constraints can be applied to state estimates, see [16], where a positivity constraint is used 
within a Kalman filter and a fixed-lag smoother. Three different state equality constraint 
approaches, namely, maximum-probability, mean-square and projection methods are 
described in [17]. Under prescribed conditions, the perfect-measurement and projection 
approaches are equivalent [5], [18], which is identical to applying linear constraints within a 
form of recursive least squares. 

In the state equality constrained methods [5], [16] – [18], a constrained estimate can be 
calculated from a Kalman filter’s unconstrained estimate at each time step. Constraint 
information could also be embedded within nonlinear models for use with EKFs. A simpler, 
low-computation-cost technique that avoids EKF stablity problems and suits real-time 
implementation is described in [19]. In particular, an on-line procedure is proposed that 
involves using nonlinear functions to censor the measurements and subsequently applying 
the minimum-variance filter recursions. An off-line procedure for retrospective analyses is 
also described, where the minimum-variance fixed-interval smoother recursions are applied 
to the censored measurements. In contrast to the afore-mentioned techniques, which employ 
constraint matrices and vectors, here constraint information is represented by an exogenous 
input process. This approach uses the Bounded Real Lemma which enables the 
nonlinearities to be designed so that the filtered and smoothed estimates satisfy a 
performance criterion. 22 
 

10.6.2 Problem Statement 
The ensuing discussion concerns odd and even functions which are defined as follows. A 
function go of X is said to be odd if go(– X) = – go(X). A function fe of X is said to be even if 
fe(– X) = fe(X). The product of go and fe is an odd function since go(– X) fe(– X) = – go(X) fe(X).  

Problems are considered where stochastic random variables are subjected to inequality 
constraints. Therefore, nonlinear censoring functions are introduced whose outputs are 
constrained to lie within prescribed bounds. Let β  p  and : p

og   → p  denote a 

constraint vector and an odd function of a random variable X  p  about its expected value 
E{X}, respectively. Define the censoring function 

( ) { } ( , )og X E X g X   , (75) 

where 

if { }
( , ) { } if { }

if { }
o

X E X
g X X E X X E X

X E X

 
  

 

 
     
    

. (76) 
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demodulator exploits the signal model whereas the FM discriminator does not. The figure 
shows that the approximate minimum-variance smoother further reduces the MSE by about 
2 dB, which illustrates the advantage of exploiting all the data in the time interval. In the 
robust designs, searches for minimum values of γ were conducted such that the 
corresponding Riccati difference equation solutions were positive definite over each noise 
realisation. It can be seen from the figure at 7.5 dB SNR that the robust EKF provides about a 
1 dB performance improvement compared to the EKF, whereas the approximate minimum-
variance smoother and the robust smoother performance are indistinguishable. 

This nonlinear example illustrates once again that smoothers can outperform filters. Since a 
first-order speech model is used and the Taylor series are truncated after the first-order 
terms, some model uncertainty is present, and so the robust designs demonstrate a marginal 
improvement over the EKF. 
 

4 6 8 10 12 14

5

10

15

SNR,  dB

M
S

E
, d

B

(i)

(ii), (iii)

(iv)

 
Figure 9. FM demodulation performance comparison: (i) FM discriminator (crosses), (ii) first-order EKF 
(dotted line), (iii) Robust EKF (dashed line), (iv) approximate minimum-variance smoother and robust 
smoother (solid line).21 
 

10.6 Constrained Filtering and Smoothing 
 

10.6.1 Background 
Constraints often appear within navigation problems. For example, vehicle trajectories are 
typically constrained by road, tunnel and bridge boundaries. Similarly, indoor pedestrian 
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involves augmenting the measurement vector with perfect observations [14]. The 
application of the perfect-measurement approach to filtering and fixed-interval smoothing is 
described in [15].  
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to the censored measurements. In contrast to the afore-mentioned techniques, which employ 
constraint matrices and vectors, here constraint information is represented by an exogenous 
input process. This approach uses the Bounded Real Lemma which enables the 
nonlinearities to be designed so that the filtered and smoothed estimates satisfy a 
performance criterion. 22 
 

10.6.2 Problem Statement 
The ensuing discussion concerns odd and even functions which are defined as follows. A 
function go of X is said to be odd if go(– X) = – go(X). A function fe of X is said to be even if 
fe(– X) = fe(X). The product of go and fe is an odd function since go(– X) fe(– X) = – go(X) fe(X).  

Problems are considered where stochastic random variables are subjected to inequality 
constraints. Therefore, nonlinear censoring functions are introduced whose outputs are 
constrained to lie within prescribed bounds. Let β  p  and : p

og   → p  denote a 

constraint vector and an odd function of a random variable X  p  about its expected value 
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By inspection of (75) – (76), g(X) is constrained within E{X} ± β. Suppose that the probability 
density function of X about E{X} is even, that is, is symmetric about E{X}. Under these 
conditions, the expected value of g(X) is given by 

{ ( )} ( ) ( )eE g X g x f x dx



   

                                              { } ( ) ( , ) ( )e o eE X f x dx g x f x dx
 

 
    

                                              { }E X . 

(77) 

since ( )ef x dx


  = 1 and the product ( , ) ( )o eg x f x  is odd.  

Thus, a constraining process can be modelled by a nonlinear function. Equation (77) states 
that g(X) is unbiased, provided that go(X,β) and fX(X) are odd and even functions about E{X}, 
respectively. In the analysis and examples that follow, attention is confined to systems 
having zero-mean inputs, states and outputs, in which case the censoring functions are also 
centred on zero, that is, E{X} = 0.23 

Let wk  = 1, ,

T

k m kw w     m  represent a stochastic white input process having an even 

probability density function, with { } 0kE w  , { }T
j k k jkE w w Q  , in which jk  denotes the 

Kronecker delta function. Suppose that the states of a system  : m  → p are realised by 

1k k k k kx A x B w   , (78) 

where Ak  n n  and Bk  n m . Since wk is zero-mean, it follows that linear combinations 
of the states are also zero-mean. Suppose also that the system outputs, yk, are generated by 

1, 1, 1,

, , ,

( , )

( , )

k o k k k

k

p k o p k k p k

y g C x
y

y g C x





   
   

    
   
   

  , (79) 

where Cj,k is the jth row of Ck   p m , θk  = 1,[ k  … , ]T
p k   p  is an input constraint process 

and , ,( , )o j k k j kg C x  , j = 1, … p, is an odd censoring function centred on zero. The outputs yj,k 
are constrained to lie within ,j k , that is,  

, , ,j k j k j ky    . (80) 

For example, if the system outputs represent the trajectories of pedestrians within a building 
then the constraint process could include knowledge about wall, floor and ceiling positions. 

                                                                 

23 “It was not easy for a person brought up in the ways of classical thermodynamics to come around to 
the idea that gain of entropy eventually is nothing more nor less than loss of information.” Gilbert 
Newton Lewis  

  

Similarly, a vehicle trajectory constraint process could include information about building 
and road boundaries. 

Assume that observations zk = yk + vk are available, where vk  p  is a stochastic, white 
measurement noise process having an even probability density function, with { } 0kE v  , 

{ } 0kE v  , ,{ }T
j k k j kE v v R   and { } 0T

j kE w v  . It is convenient to define the stacked vectors y 

  1[ Ty  … ]T T
Ny  and θ   1[ T  … ]T T

N . It follows that 

2 2

22
y  . (81) 

Thus, the energy of the system’s output is bounded from above by the energy of the 
constraint process. 24 

The minimum-variance filter and smoother which produce estimates of a linear system’s 
output, minimise the mean square error. Here, it is desired to calculate estimates that trade 
off minimum mean-square-error performance and achieve 

2 2

22
ŷ  . (82) 

 

Note that (80) implies (81) but the converse is not true. Although estimates ,ˆ j ky  of ,j ky  satisfying 

, , ,ˆ   j k j k j ky  are desirable, the procedures described below only ensure that (82) is satisfied. 
 

10.6.3 Constrained Filtering 
A procedure is proposed in which a linear filter  : p p   is used to calculate estimates ŷ  
from zero-mean measurements zk that are constrained using an odd censoring function to 
obtain 
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
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    
   
   

  , (83) 

which satisfy 
2 22
2 2

z   . (84) 

where z    1[ Tz  … ]T T
Nz , for a positive γ    to be designed. This design problem is 

depicted in Fig. 10. 
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Thus, a constraining process can be modelled by a nonlinear function. Equation (77) states 
that g(X) is unbiased, provided that go(X,β) and fX(X) are odd and even functions about E{X}, 
respectively. In the analysis and examples that follow, attention is confined to systems 
having zero-mean inputs, states and outputs, in which case the censoring functions are also 
centred on zero, that is, E{X} = 0.23 
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are constrained to lie within ,j k , that is,  
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For example, if the system outputs represent the trajectories of pedestrians within a building 
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and road boundaries. 
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output, minimise the mean square error. Here, it is desired to calculate estimates that trade 
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Figure 10. The constrained filtering design problem. The task is to design a scalar γ so that the outputs 
of a filter  operating on the censored zero-mean measurements 1,[ T

kz  … , ]
T T
p kz  produce output 

estimates 1,ˆ[
T

ky  … ,ˆ ]T T
p ky , which trade off mean square error performance and achieve 

2 2

22
ŷ  . 

Censoring the measurements is suggested as a low-implementation-cost approach to 
constrained filtering. Design constraints are sought for the measurement censoring functions 
so that the outputs of a subsequent filter satisfy the performance objective (82). The recursions 
akin to the minimum-variance filter are applied to calculate predicted and filtered state 
estimates from the constrained measurements kz  at time k. That is, the output mapping Ck is 
retained within the linear filter design even though nonlinearities are present with (83). The 
predicted states, filtered states and output estimates are respectively obtained as 

1/ / 1ˆ ˆ( )k k k k k k k k kx A K C x K z    , 

/ / 1ˆ ˆ( )k k k k k k k kx I L C x L z   , 

/ /ˆ ˆk k k k ky C x , 

(85) 

(86) 

(87) 
where Lk = / 1 / 1(T T

k k k k k k kP C C P C   + 1)kR  , Kk = AkLk, and / 1k kP   = / 1
T
k kP   > 0 is obtained from 

/k kP  = / 1k kP   – / 1 / 1(T T
k k k k k k kP C C P C   + 1

/ 1)k k k kR C P
 , 1/k kP   = /

T
k k k kA P A  + T

k k kB Q B . Nonzero-
mean sequences can be accommodated using deterministic inputs as described in Chapter 
4. Since a nonlinear system output (79) and a nonlinear measurement (83) are assumed, 
the estimates calculated from (85) – (87) are not optimal. Some properties that are 
exhibited by these estimates are described below.26 

Lemma 3 [19]: In respect of the filter (85) – (87) which operates on the constrained measurements 
(83), suppose the following: 

(i) the probability density functions associated with wk and vk are even; 
(ii) the nonlinear functions within (79) and (83) are odd; and 
(iii) the filter is initialized with 0 / 0x̂  = 0{ }E x .  

Then the following applies: 
(i) the predicted state estimates, 1/ˆ k kx  , are unbiased; 
(ii) the corrected state estimates, /ˆ k kx , are unbiased; and 
(iii) the output estimates, /ˆ k ky , are unbiased. 

                                                                 

26“A mind that is stretched by a new idea can never go back to its original dimensions.” Oliver Wendell 
Holmes 

  

Proof: (i) Condition (iii) implies 1/ 0{ }E x  = 0, which is the initialization step of an induction 
argument. It follows from (85) that 

1/ / 1ˆ ˆ( ) ( ) ( )k k k k k k k k k k k k k k k kx A K C x K C x v K z C x v        . (88) 

Subtracting (88) from (78) gives 1/k kx 
  = ( kA  –  / 1)k k k kK C x 

   – k kB w  – k kK v  – (k kK z  – k kC x  – 
)kv  and therefore 

1/ / 1{ } ( ) { } { } { } { }k k k k k k k k k k k k k k k kE x A K C E x B E w K E v K E z C x v         . (89) 

From above assumptions, the second and third terms on the right-hand-side of (89) are zero. The 
property (77) implies { }kE z  = { }kE z  = { k kE C x + }kv  and so { }k k k kE z C x v   is zero. The first 
term on the right-hand-side of (89) pertains to the unconstrained Kalman filter and is zero by 
induction. Thus, 1/{ }k kE x 

  = 0.  

(ii) Condition (iii) again serves as an induction assumption. It follows from (86) that 

/ / 1 / 1ˆ ˆ ˆ( ) ( )k k k k k k k k k k k k k k k kx x L C x v C x L z C x v        . (90) 

Substituting kx  = 1 1k kA x   + 1 1k kB w   into (90) yields /k kx  = (I − 1 1/ 1)k k k k kL C A x  
  + (I − 

1 1)k k k kL C B w   − k kL v  − (k kL z  − k kC x  − )kv  and /{ }k kE x  = 1 1/ 1( ) { }k k k k kI L C A E x     = 

1( )k k kI L C A   … 1 1 0 0 / 0( ) { }I L C A E x  . Hence, /{ }k kE x  = 0 by induction. 

(iii) Defining /k ky  = ky  − /ˆ k ky  = ky  + (k kC x  − /ˆ )k kx  − k kC x  = /k k kC x  +  ky  − k kC x  and using 
(77) leads to /{ }k kE y  = /{ }k k kC E x  + { }k k kE y C x  =  /{ }k k kC E x  = 0 under condition (iii).              ฀ 

Recall that the Bounded Real Lemma (see Lemma 7 of Chapter 9) specifies a bound for a 
ratio of a system’s output and input energies. This lemma is used to find a design for γ 
within (83) as described below. 

Lemma 4 [19]: Consider the filter (85) – (87) which operates on the constrained measurements 
(83). Let kA  = k k kA K C , kB  = kK , kC  = ( )k k kC I L C  and kD  = k kC L  denote the state-space 
parameters of the filter. Suppose for a given γ2 > 0, that a solution kM  = T

kM  > 0  exists over k  
[1, N] for the Riccati Difference equation resulting from the application of the Bounded Real 

Lemma to the system k k

k k

A B
C D
 
 
 

. Then the design γ = γ2 within (83) results in the performance 

objective (82) being satisfied. 

Proof: For the application of the Bounded Real Lemma to the filter (85) – (87), the existence of a 

solution kM  = T
kM  > 0 for the associated Riccati difference equation ensures that 2

2
ŷ  ≤ 22

2 2
z  

− 0 0 0
Tx M x  ≤ 22

2 2
z , which together with (84) leads to (82).                                                          ฀ 

It is argued below that the proposed filtering procedure is asymptotically stable.  
                                                                 

“All truth passes through three stages: First, it is ridiculed; Second, it is violently opposed; and Third, it 
is accepted as self-evident.” Arthur Schopenhauer 
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Figure 10. The constrained filtering design problem. The task is to design a scalar γ so that the outputs 
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p ky , which trade off mean square error performance and achieve 
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Censoring the measurements is suggested as a low-implementation-cost approach to 
constrained filtering. Design constraints are sought for the measurement censoring functions 
so that the outputs of a subsequent filter satisfy the performance objective (82). The recursions 
akin to the minimum-variance filter are applied to calculate predicted and filtered state 
estimates from the constrained measurements kz  at time k. That is, the output mapping Ck is 
retained within the linear filter design even though nonlinearities are present with (83). The 
predicted states, filtered states and output estimates are respectively obtained as 
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T
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/k kP  = / 1k kP   – / 1 / 1(T T
k k k k k k kP C C P C   + 1
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T
k k k kA P A  + T

k k kB Q B . Nonzero-
mean sequences can be accommodated using deterministic inputs as described in Chapter 
4. Since a nonlinear system output (79) and a nonlinear measurement (83) are assumed, 
the estimates calculated from (85) – (87) are not optimal. Some properties that are 
exhibited by these estimates are described below.26 
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(i) the probability density functions associated with wk and vk are even; 
(ii) the nonlinear functions within (79) and (83) are odd; and 
(iii) the filter is initialized with 0 / 0x̂  = 0{ }E x .  

Then the following applies: 
(i) the predicted state estimates, 1/ˆ k kx  , are unbiased; 
(ii) the corrected state estimates, /ˆ k kx , are unbiased; and 
(iii) the output estimates, /ˆ k ky , are unbiased. 

                                                                 

26“A mind that is stretched by a new idea can never go back to its original dimensions.” Oliver Wendell 
Holmes 

  

Proof: (i) Condition (iii) implies 1/ 0{ }E x  = 0, which is the initialization step of an induction 
argument. It follows from (85) that 
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(83). Let kA  = k k kA K C , kB  = kK , kC  = ( )k k kC I L C  and kD  = k kC L  denote the state-space 
parameters of the filter. Suppose for a given γ2 > 0, that a solution kM  = T

kM  > 0  exists over k  
[1, N] for the Riccati Difference equation resulting from the application of the Bounded Real 

Lemma to the system k k
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. Then the design γ = γ2 within (83) results in the performance 

objective (82) being satisfied. 

Proof: For the application of the Bounded Real Lemma to the filter (85) – (87), the existence of a 

solution kM  = T
kM  > 0 for the associated Riccati difference equation ensures that 2
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ŷ  ≤ 22
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It is argued below that the proposed filtering procedure is asymptotically stable.  
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Lemma 5 [19]: Define the filter output estimation error as y  = y   ŷ . Under the conditions of 
Lemma 4, y   2 . 

Proof: It follows from y  = y   ŷ  that 
2

y    
2

y  + 
2

ŷ , which together with (10) and the 

result of Lemma 4 yields 
2

y    
2

2  , thus the claim follows.                                                     ฀ 
 

10.6.4 Constrained Smoothing 
In the sequel, it is proposed that the minimum-variance fixed-interval smoother 
recursions operate on the censored measurements kz  to produce output estimates /ˆ k Ny  of 
yk .  

Lemma 6 [19]: In respect of the minimum-variance smoother recursions that operate on the 
censored measurements kz , under the conditions of Lemma 3, the smoothed estimates, /ˆ k Ny , are 
unbiased. 

The proof follows mutatis mutandis from the approach within the proofs of Lemma 5 of 
Chapter 7 and Lemma 3. An analogous result to Lemma 5 is now stated. 

Lemma 7 [19]: Define the smoother output estimation error as y  = y   ŷ . Under the conditions 
of Lemma 3, y   2 .  

The proof follows mutatis mutandis from that of Lemma 5. Two illustrative examples are 
set out below. A GPS and inertial navigation system integration application is detailed in  
[19]. 

Example 5 [19]. Consider the saturating nonlinearity29 

                        1 1( , ) 2 arctan (2 )og X X     . (91) 

which is a continuous approximation of (76) that satisfies ( , )og X   ≤   and ( , )odg X
dX

  = 

1  +  12 2( ) (2 )X 
  ≈ 1 when 2 2( ) (2 )X    << 1. Data was generated from (78), (79), (91), 

where A = 
0.9 0
0 0.9

 
 
 

, B = C = 
1 0
0 1
 
 
 

, Gaussian, white, zero-mean processes with Q = R = 

0.01 0
0 0.01

 
 
 

. The constraint vector within (80) was chosen to be fixed, namely, θk = 
0.5
0.5
 
 
 

, 

k  [1, 105]. The limits of the observed distribution of estimates, /ˆ k ky  = 1, /

2, /

ˆ
ˆ

k k

k k

y
y
 
 
  

, arising by 

                                                                 

29“Everything we know is only some kind of approximation, because we know that we do not know all 
the laws yet. Therefore, things must be learned only to be unlearned again or, more likely, to be 
corrected.” Richard Phillips Feynman 

  

operating the minimum-variance filter recursions on the raw data zk = yk + vk are indicated 
by the outer black region of Fig. 11. It can be seen that the filter outputs do not satisfy the 
performance objective (82), which motivates the pursuit of constrained techniques. A 
minimum value of γ2 = 1.24 was found for the solutions of the Riccati difference equation 
mentioned specified within Lemma 4 to be positive definite. The filter (85) – (87) was 

applied to the censored measurements kz  = 1,

2,

k

k

z
z
 
 
 

 = 
1

1, 1,
1

2, 2,

( , )
( , )

o k k

o k k

g z
g z

 
 





 
 
  

 using (91). The limits 

of the observed distribution of the constrained filter estimates are indicated by the inner 
white region of Fig. 11. The figure shows that the constrained filter estimates satisfy (82), 
which illustrates Lemma 5.  

Example 6 [19]. Measurements were similarly synthesized using the parameters of 
Example 5 to demonstrate constrained fixed-interval smoother performance. A minimum 
value of γ2 = 5.6 was found for the solutions of the Riccati difference equation mentioned 
within Lemma 4 to be positive definite. The superimposed distributions of the 
unconstrained and constrained smoothers are respectively indicated by the inner and 
outer black regions of Fig. 12. It can be seen by inspection of the figure that the constrained 
smoother estimates meets (80), where as those produced by the standard smoother do not. 30 

  

 

 

 

 

                                                                 

30“An expert is a man who has made all the mistakes which can be made in a very narrow field.” Niels 
Henrik David Bohr 

Figure 11.  Superimposed distributions of  filtered 
estimates for Example 4: unconstrained filter 
(outer black); and constrained filter (middle 
white). 

Figure 12.  Superimposed distributions of  smoothed 
estimates for Example 5: unconstrained smoother 
(outer black); and constrained smoother (middle 
white). 
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Lemma 5 [19]: Define the filter output estimation error as y  = y   ŷ . Under the conditions of 
Lemma 4, y   2 . 

Proof: It follows from y  = y   ŷ  that 
2

y    
2

y  + 
2

ŷ , which together with (10) and the 

result of Lemma 4 yields 
2

y    
2

2  , thus the claim follows.                                                     ฀ 
 

10.6.4 Constrained Smoothing 
In the sequel, it is proposed that the minimum-variance fixed-interval smoother 
recursions operate on the censored measurements kz  to produce output estimates /ˆ k Ny  of 
yk .  

Lemma 6 [19]: In respect of the minimum-variance smoother recursions that operate on the 
censored measurements kz , under the conditions of Lemma 3, the smoothed estimates, /ˆ k Ny , are 
unbiased. 

The proof follows mutatis mutandis from the approach within the proofs of Lemma 5 of 
Chapter 7 and Lemma 3. An analogous result to Lemma 5 is now stated. 

Lemma 7 [19]: Define the smoother output estimation error as y  = y   ŷ . Under the conditions 
of Lemma 3, y   2 .  

The proof follows mutatis mutandis from that of Lemma 5. Two illustrative examples are 
set out below. A GPS and inertial navigation system integration application is detailed in  
[19]. 

Example 5 [19]. Consider the saturating nonlinearity29 

                        1 1( , ) 2 arctan (2 )og X X     . (91) 

which is a continuous approximation of (76) that satisfies ( , )og X   ≤   and ( , )odg X
dX

  = 

1  +  12 2( ) (2 )X 
  ≈ 1 when 2 2( ) (2 )X    << 1. Data was generated from (78), (79), (91), 

where A = 
0.9 0
0 0.9

 
 
 

, B = C = 
1 0
0 1
 
 
 

, Gaussian, white, zero-mean processes with Q = R = 

0.01 0
0 0.01

 
 
 

. The constraint vector within (80) was chosen to be fixed, namely, θk = 
0.5
0.5
 
 
 

, 

k  [1, 105]. The limits of the observed distribution of estimates, /ˆ k ky  = 1, /
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ˆ
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 
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, arising by 

                                                                 

29“Everything we know is only some kind of approximation, because we know that we do not know all 
the laws yet. Therefore, things must be learned only to be unlearned again or, more likely, to be 
corrected.” Richard Phillips Feynman 

  

operating the minimum-variance filter recursions on the raw data zk = yk + vk are indicated 
by the outer black region of Fig. 11. It can be seen that the filter outputs do not satisfy the 
performance objective (82), which motivates the pursuit of constrained techniques. A 
minimum value of γ2 = 1.24 was found for the solutions of the Riccati difference equation 
mentioned specified within Lemma 4 to be positive definite. The filter (85) – (87) was 

applied to the censored measurements kz  = 1,
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of the observed distribution of the constrained filter estimates are indicated by the inner 
white region of Fig. 11. The figure shows that the constrained filter estimates satisfy (82), 
which illustrates Lemma 5.  

Example 6 [19]. Measurements were similarly synthesized using the parameters of 
Example 5 to demonstrate constrained fixed-interval smoother performance. A minimum 
value of γ2 = 5.6 was found for the solutions of the Riccati difference equation mentioned 
within Lemma 4 to be positive definite. The superimposed distributions of the 
unconstrained and constrained smoothers are respectively indicated by the inner and 
outer black regions of Fig. 12. It can be seen by inspection of the figure that the constrained 
smoother estimates meets (80), where as those produced by the standard smoother do not. 30 

  

 

 

 

 

                                                                 

30“An expert is a man who has made all the mistakes which can be made in a very narrow field.” Niels 
Henrik David Bohr 

Figure 11.  Superimposed distributions of  filtered 
estimates for Example 4: unconstrained filter 
(outer black); and constrained filter (middle 
white). 

Figure 12.  Superimposed distributions of  smoothed 
estimates for Example 5: unconstrained smoother 
(outer black); and constrained smoother (middle 
white). 
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The above examples involved searching for minimum value of γ2 for the existence of 
positive definite solutions for the Riccati equation alluded to within Lemma 4. The need 
for a search may not be apparent as stability is guaranteed whenever a positive definite 
solution for the associated Riccati equation exists. Searching for a minimum  γ2 is 
advocated because the use of an excessively large value can lead to a nonlinearity design 
that is conservative and exhibits poor mean-square-error performance. If a design is still 
too conservative then an empirical value, namely, γ2 = 1

22
ŷ z  , may need to be 

considered instead. 
 

10.7 Conclusion 
In this chapter it is assumed that nonlinear systems are of the form xk+1 = ak(xk) + bk(wk), yk 
= ck(xk), where ak(.), bk(.) and ck(.) are continuous differentiable functions. The EKF arises 
by linearising the model about conditional mean estimates and applying the standard 
filter recursions. The first, second and third-order EKFs simplified for the case of xk    
are summarised in Table 1. 

The EKF attempts to produce locally optimal estimates. However, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique trades off approximate optimality 
for stability. The familiar structure of the EKF is retained but stability is achieved by 
selecting a positive definite solution to a faux Riccati equation for the gain design. 

H∞ techniques can be used to recast nonlinear filtering applications into a model 
uncertainty problem. It is demonstrated with the aid of an example that a robust EKF can 
reduce the mean square error when the problem is sufficiently nonlinear. 

Linearised models may be applied within the previously-described smoothers in the 
pursuit of performance improvement. Nonlinear versions of the fixed-lag, Fraser-Potter 
and Rauch-Tung-Striebel smoothers are easier to implement as they are less complex. 
However, the application of the minimum-variance smoother can yield approximately 
optimal estimates when the problem becomes linear, provided that the underlying 
assumptions are correct. A smoother that is robust to input uncertainty is obtained by 
replacing the approximate error covariance correction with an H∞ version. The resulting 
robust nonlinear smoother can exhibit performance benefits when uncertainty is present. 

In some applications, it may be possible to censor a system’s inputs, states or outputs, 
rather than proceed with an EKF design. It has been shown that the use of a nonlinear 
censoring function to constrain input measurements leads to bounded filter and smoother 
estimation errors. 

 

 

 

                                                                 

“Most of what I learned as an entrepreneur was by trial and error.” Gordon Earl Moore 
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Table 1. Summary of first, second and third-order EKFs for the case of  xk   . 
 

10.8 Problems 
 

Problem 1. Use the following Taylor series expansion of f(x) 

0 0 0
1( ) ( ) ( ) ( )
1!

Tf x f x x x f x    0 0 0
1 ( ) ( )( )
2!

T Tx x f x x x      

                                        0 0 0 0
1 ( ) ( ) ( )( )
3!

T Tx x x x f x x x        

                                        0 0 0 0 0
1 ( ) ( ) ( ) ( )( ) ,
4!

T Tx x x x x x f x x x           

 

 

 

                                                                 

“The capacity to blunder slightly is the real marvel of DNA. Without this special attribute, we would 
still be anaerobic bacteria and there would be no music.” Lewis Thomas 
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The above examples involved searching for minimum value of γ2 for the existence of 
positive definite solutions for the Riccati equation alluded to within Lemma 4. The need 
for a search may not be apparent as stability is guaranteed whenever a positive definite 
solution for the associated Riccati equation exists. Searching for a minimum  γ2 is 
advocated because the use of an excessively large value can lead to a nonlinearity design 
that is conservative and exhibits poor mean-square-error performance. If a design is still 
too conservative then an empirical value, namely, γ2 = 1

22
ŷ z  , may need to be 

considered instead. 
 

10.7 Conclusion 
In this chapter it is assumed that nonlinear systems are of the form xk+1 = ak(xk) + bk(wk), yk 
= ck(xk), where ak(.), bk(.) and ck(.) are continuous differentiable functions. The EKF arises 
by linearising the model about conditional mean estimates and applying the standard 
filter recursions. The first, second and third-order EKFs simplified for the case of xk    
are summarised in Table 1. 

The EKF attempts to produce locally optimal estimates. However, it is not necessarily 
stable because the solutions of the underlying Riccati equations are not guaranteed to be 
positive definite. The faux algebraic Riccati technique trades off approximate optimality 
for stability. The familiar structure of the EKF is retained but stability is achieved by 
selecting a positive definite solution to a faux Riccati equation for the gain design. 

H∞ techniques can be used to recast nonlinear filtering applications into a model 
uncertainty problem. It is demonstrated with the aid of an example that a robust EKF can 
reduce the mean square error when the problem is sufficiently nonlinear. 

Linearised models may be applied within the previously-described smoothers in the 
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censoring function to constrain input measurements leads to bounded filter and smoother 
estimation errors. 

 

 

 

                                                                 

“Most of what I learned as an entrepreneur was by trial and error.” Gordon Earl Moore 
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Table 1. Summary of first, second and third-order EKFs for the case of  xk   . 
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“The capacity to blunder slightly is the real marvel of DNA. Without this special attribute, we would 
still be anaerobic bacteria and there would be no music.” Lewis Thomas 
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to find expressions for the coefficients αi within the functions below. 
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Problem 2. Consider a state estimation problem, where xk+1 = ak(xk) + Bkwk, yk = ck(xk), zk = yk 
+ vk, in which wk, xk, yk, vk, ak(.), Bk, ck(.)   . Derive the 

(i) first-order, 
(ii) second-order, 
(iii) third-order and  
(iv) fourth-order EKFs, 

assuming the required derivatives exist. 

Problem 3. Suppose that an FM signal is generated by ak+1 = aak + (1)
kw , k+1 = k + (2)

kw , 
k+1 = k + k, (1)

kz  = akcos(k) + (1)
kv  and (2)

kz  = aksin(k) + (2)
kv . Write down the recursions for  

(i) first-order and  
(ii) second-order 

EKF demodulators. 

                                                                 

“I am quite conscious that my speculations run quite beyond the bounds of true science.” Charles Robert 
Darwin 

  

Problem 4. (Continuous-time EKF) Assume that continuous-time signals may be modelled 
as ( )x t  = a(x(t)) + w(t), y(t) = c(x(t)), z(t) = y(t) + v(t), where E{w(t)wT(t)} = Q(t) and 
E{v(t)vT(t)} = R(t).  

(i) Show that approximate state estimates can be obtained from ˆ( )x t  = ˆ( ( ))a x t  + 
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(ii) Often signal models are described in the above continuous-time setting but 
sampled measurements zk of z(t) are available. Write down a hybrid 
continuous-discrete version of the EKF in corrector-predictor form. 

Problem 5. Consider a pendulum of length   that subtends an angle θ(t) with a vertical line 
through its pivot. The pendulum’s angular acceleration and measurements of its 

instantaneous horizontal position (from the vertical) may be modelled as 
2

2

( )
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d t
d t



 = 

sin( ( ))
g t 


 + w(t) and z(t) = sin( ( ))t  + v(t), respectively, where g is the gravitational 

constant, w(t) and v(t) are stochastic inputs. 

(i) Set out the pendulum’s equations of motion in a state-space form and write 
down the continuous-time EKF for estimating θ(t) from v(t). 

(ii) Use Euler’s first-order integration formula to discretise the above model and 
then detail the corresponding discrete-time EKF.   

 

10.9 Glossary 
 

f  The gradient of a function f, which is a row-vector of partial 
derivatives. 

T f   The Hessian of a function f, which is a matrix of partial derivatives. 

tr(Pk) The trace of a matrix Pk, which is the sum of its diagonal terms. 

FM Frequency modulation. 

f  The forward difference operator with f ke  = ( )i
ke  – ( )

1
i

ke  . 
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