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Continuous-Time Smoothing 
 

 
6.1 Introduction 
The previously-described minimum-mean-square-error and minimum-variance filtering 
solutions operate on measurements up to the current time. If some processing delay can be 
tolerated then improved estimation performance can be realised through the use of 
smoothers. There are three state-space smoothing technique categories, namely, fixed-point, 
fixed-lag and fixed-interval smoothing. Fixed-point smoothing refers to estimating some 
linear combination of states at a previous instant in time. In the case of fixed-lag smoothing, 
a fixed time delay is assumed between the measurement and on-line estimation processes. 
Fixed-interval smoothing is for retrospective data analysis, where measurements recorded 
over an interval are used to obtain the improved estimates. Compared to filtering, 
smoothing has a higher implementation cost, as it has increased memory and calculation 
requirements.    

A large number of smoothing solutions have been reported since Wiener’s and Kalman’s 
development of the optimal filtering results – see the early surveys [1] – [2]. The minimum-
variance fixed-point and fixed-lag smoother solutions are well known. Two fixed-interval 
smoother solutions, namely the maximum-likelihood smoother developed by Rauch, Tung 
and Striebel [3], and the two-filter Fraser-Potter formula [4], have been in widespread use 
since the 1960s. However, the minimum-variance fixed-interval smoother is not well known. 
This smoother is simply a time-varying state-space generalisation of the optimal Wiener 
solution. 

The main approaches for continuous-time fixed-point, fixed-lag and fixed-interval 
smoothing are canvassed here. It is assumed throughout that the underlying noise processes 
are zero mean and uncorrelated. Nonzero means and correlated processes can be handled 
using the approaches of Chapters 3 and 4. It is also assumed here that the noise statistics and 
state-space model parameters are known precisely. Note that techniques for estimating 
parameters and accommodating uncertainty are addressed subsequently. 

Some prerequisite concepts, namely time-varying adjoint systems, backwards differential 
equations, Riccati equation comparison and the continuous-time maximum-likelihood 
method are covered in Section 6.2. Section 6.3 outlines a derivation of the fixed-point 
smoother by Meditch [5]. The fixed-lag smoother reported by Sage et al [6] and Moore [7], is 
the subject of Section 6.4. Section 6.5 deals with the Rauch-Tung-Striebel [3], Fraser-Potter [4] 
and minimum-variance fixed-interval smoother solutions [8] - [10]. As before, the approach 

                                                                 

“Life has got a habit of not standing hitched. You got to ride it like you find it. You got to change with 
it. If a day goes by that don’t change some of your old notions for new ones, that is just about like trying 
to milk a dead cow.” Woodrow Wilson Guthrie 
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here is to accompany the developments, where appropriate, with proofs about performance 
being attained. Smoothing is not a panacea for all ills. If the measurement noise is negligible 
then smoothing (and filtering) may be superfluous. Conversely, if measurement noise 
obliterates the signals then data recovery may not be possible. Therefore, estimator 
performance is often discussed in terms of the prevailing signal-to-noise ratio. 
 

6.2 Prerequisites 
 

6.2.1 Time-varying Adjoint Systems 
Since fixed-interval smoothers employ backward processes, it is pertinent to introduce the 
adjoint of a time-varying continuous-time system. Let :  p  → q  denote a linear time-
varying system  

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 

( ) ( ) ( ) ( ) ( )y t C t x t D t w t  , 

(1) 

(2) 

operating on the interval [0, T]. Let w denote the set of w(t) over all time t, that is, w = {w(t), t 
 [0, T]}. Similarly, let y =  w  denote {y(t), t  [0, T]}. The adjoint of  , denoted by 

:  H q  →  p , is the unique linear system satisfying 

<y,  w> =< H y, w> (3)  

for all y  q  and w   p . 

Lemma 1: The adjoint  H  of the system   described by (1) – (2), with x(t0) = 0, having the 
realisation 

( ) ( ) ( ) ( ) ( )T Tt A t t C t u t    , 

( ) ( ) ( ) ( ) ( )T Tz t B t t D t u t  , 

(4) 

(5) 

with ( ) 0T  , satisfies (3). 

The proof follows mutatis mutandis from that of Lemma 1 of Chapter 3 and is set out in [11]. 
The original system (1) – (2) needs to be integrated forwards in time, whereas the adjoint 
system (4) – (5) needs to be integrated backwards in time. Some important properties of 
backward systems are discussed in the next section. The simplification D(t) = 0 is assumed 
below unless stated otherwise. 
 

6.2.2 Backwards Differential Equations 
The adjoint state evolution (4) is rewritten as 

( ) ( ) ( ) ( ) ( )T Tt A t t C t u t    . (6)  

                                                                 

“The simple faith in progress is not a conviction belonging to strength, but one belonging to 
acquiescence and hence to weakness.” Norbert Wiener 

  

The negative sign of the derivative within (6) indicates that this differential equation 
proceeds backwards in time. The corresponding state transition matrix is defined below. 

Lemma 2: The differential equation (6) has the solution 

0
0 0( ) ( , ) ( ) ( , ) ( ) ( )

tH H T

t
t t t t s t C s u s ds     , (7) 

where the adjoint state transition matrix, 0( , )H t t , satisfies 

0
0 0

( , )( , ) ( ) ( , )
H

H T Hd t tt t A t t t
dt


     , (8) 

with boundary condition 

( , )H t t  = I. (9) 

Proof: Following the proof of Lemma 1 of Chapter 3, by differentiating (7) and substituting (4) – (5), 
it is easily verified that (7) is a solution of (6).                                                                                      ฀  

The Lyapunov equation corresponding to (6) is described next because it is required in the 
development of backwards Riccati equations. 

Lemma 3: In respect of the backwards differential equation (6), assume that u(t) is a zero-mean white 
process with E{u(t)uT(τ)} = U(t)δ(t – τ) that is uncorrelated with 0( )t , namely, 0{ ( ) ( )}TE u t t  = 0. 

Then the covariances P(t, τ) = { ( ) ( )}TE t t   and ( , )P t   = { ( ) ( )}TdE t t
dt

   satisfy the Lyapunov 

differential equation 

( , ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( )T TP t A t P t P t A t C t U t C t      .                (10)  

Proof: The backwards Lyapunov differential equation (10) can be obtained by using (6) and (7) 

within { ( ) ( )}TdE t t
dt

   = { ( ) ( )TE t t   + ( ) ( )}T k    (see the proof of Lemma 2 in Chapter 3).         ฀ 

 

6.2.3 Comparison of Riccati Equations 
The following Riccati Equation comparison theorem is required subsequently to compare 
the performance of filters and smoothers. 

Theorem 1 (Riccati Equation Comparison Theorem) [12], [8]: Let P1(t) ≥ 0 and P2(t) ≥ 0 denote 
solutions of the Riccati differential equations 

1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t S t P t B t Q t B t B t Q t B t      (11)  

and 

                                                                 

“Progress always involves risk; you can’t steal second base and keep your foot on first base.” Frederick 
James Wilcox 
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“Progress always involves risk; you can’t steal second base and keep your foot on first base.” Frederick 
James Wilcox 

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future122

  

2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t S t P t B t Q t B t B t Q t B t      (12)  

with S1(t) = 1
1 1 1( ) ( ) ( )TC t R t C t , S2(t) = 1

2 2 2( ) ( ) ( )TC t R t C t , where A1(t), B1(t), C1(t), Q1(t) ≥ 0, R1(t) ≥ 
0, A2(t), B2(t), C2(t), Q2(t) ≥ 0 and R2(t) ≥ 0 are of appropriate dimensions. If 

(i) P1(t0) ≥ P2(t0) for a t0 ≥ 0 and 

(ii) 1 1

1 1

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 ≥ 2 2

2 2

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 for all t ≥ t0. 

Then  

P1(t) ≥ P2(t) (13) 

for all t ≥ t0. 

Proof: Condition (i) of the theorem is the initial step of an induction argument. For the induction 
step, denote 3( )P t  = 1( )P t  − 2 ( )P t , P3(t) = P1(t) − P2(t) and ( )A t    1 ( )

TA t  + 1 2( ) ( )S t P t  − 

1 30.5 ( ) ( )S t P t . Then 

         1 1 2 2
3 3 3 2

1 1 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
T

t t

Q t A t Q t A t I
P t A t P t P t A t I P t

A t S t A t S t P t
      

                   
  

which together with condition (ii) yields  

3 3 3( ) ( ) ( ) ( ) ( )TP t A t P t P t A t  . (14)  

Lemma  5 of Chapter 3 and (14) imply 3( )P t  ≥ 0 and the claim (13) follows.                                       ฀ 
 

6.2.4 The Maximum-Likelihood Method 
Rauch, Tung and Streibel famously derived their fixed-interval smoother [3] using a 
maximum-likelihood technique which is outlined as follows. Let x(t) ~ ( ,  Rxx) denote a 
continuous random variable having a Gaussian (or normal) distribution within mean E{x(t)} 
= μ and covariance E{(x(t) – μ)(x(t) – μ)T} = Rxx. The continuous-time Gaussian probability 
density function of x(t)  n  is defined by 

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

p x t x t R x t
R

 


    , (15)  

in which |Rxx| denotes the determinant of Rxx.  The probability that the continuous random 
variable x(t) with a given probability density function p(x(t)) lies within an interval [a, b] is 
given by the likelihood function (which is also known as the cumulative distribution 
function) 

                                                                 

“The price of doing the same old thing is far higher than the price of change.” William Jefferson (Bill) 
Clinton 

  

( ( ) ) ( ( ))
b

a
P a x t b p x t dx    . (16)  

The Gaussian likelihood function for x(t) is calculated from (15) and (16) as  

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

f x t x t R x t dx
R

 


 


    . (17)  

It is often more convenient to work with the log-probability density function 
1/ 2/ 2 1log ( ( )) log (2 ) 0.5( ( ) ) ( )n T

xx xxp x t R x t R x dx        (18)  

and the log-likelihood function 

1/ 2/ 2 1log ( ( )) log (2 ) 0.5 ( ( ) ) ( ) .n T
xx xxf x t R x t R x dx  

 


      (19)  

Suppose that a given record of x(t) is assumed to be belong to a Gaussian distribution that is 
a function of an unknown quantity θ. A statistical approach for estimating the unknown θ is 
the method of maximum likelihood. This typically involves finding an estimate ̂  that 
either maximises the log-probability density function 

ˆ arg max log ( | ( ))p x t


   (20)  

or maximises the log-likelihood function 

ˆ arg max log ( | ( ))f x t


  . (21)  

So-called maximum likelihood estimates can be found by setting either log ( | ( ))p x t





 or 

log ( | ( ))f x t





 to zero and solving for the unknown θ. Continuous-time maximum 

likelihood estimation is illustrated by the two examples that follow. 

Example 1. Consider the first-order autoregressive system 

0( ) ( ) ( )x t a x t w t   , (22)  

where ( )x t  = ( )dx t
dt

, w(t) is a zero-mean Gaussian process and a0 is unknown. It follows 

from (22) that ( )x t   ~ 0( ( ),a x t  2 )w , namely,  

 2 2
0/ 2 0

1( ( )) exp 0.5( ( ) ( ))
(2 )

T

wn
w

f x t x t a x t dt
 

    . (23)  

                                                                 

“Faced with the choice between changing one’s mind and proving that there is no need to do so, almost 
everyone gets busy on the proof.” John Kenneth Galbraith 

www.intechopen.com



Continuous-Time Smoothing 123
  

2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t S t P t B t Q t B t B t Q t B t      (12)  

with S1(t) = 1
1 1 1( ) ( ) ( )TC t R t C t , S2(t) = 1

2 2 2( ) ( ) ( )TC t R t C t , where A1(t), B1(t), C1(t), Q1(t) ≥ 0, R1(t) ≥ 
0, A2(t), B2(t), C2(t), Q2(t) ≥ 0 and R2(t) ≥ 0 are of appropriate dimensions. If 

(i) P1(t0) ≥ P2(t0) for a t0 ≥ 0 and 

(ii) 1 1

1 1

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 ≥ 2 2

2 2

( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

 for all t ≥ t0. 

Then  

P1(t) ≥ P2(t) (13) 

for all t ≥ t0. 

Proof: Condition (i) of the theorem is the initial step of an induction argument. For the induction 
step, denote 3( )P t  = 1( )P t  − 2 ( )P t , P3(t) = P1(t) − P2(t) and ( )A t    1 ( )

TA t  + 1 2( ) ( )S t P t  − 

1 30.5 ( ) ( )S t P t . Then 

         1 1 2 2
3 3 3 2

1 1 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
T

t t

Q t A t Q t A t I
P t A t P t P t A t I P t

A t S t A t S t P t
      

                   
  

which together with condition (ii) yields  

3 3 3( ) ( ) ( ) ( ) ( )TP t A t P t P t A t  . (14)  

Lemma  5 of Chapter 3 and (14) imply 3( )P t  ≥ 0 and the claim (13) follows.                                       ฀ 
 

6.2.4 The Maximum-Likelihood Method 
Rauch, Tung and Streibel famously derived their fixed-interval smoother [3] using a 
maximum-likelihood technique which is outlined as follows. Let x(t) ~ ( ,  Rxx) denote a 
continuous random variable having a Gaussian (or normal) distribution within mean E{x(t)} 
= μ and covariance E{(x(t) – μ)(x(t) – μ)T} = Rxx. The continuous-time Gaussian probability 
density function of x(t)  n  is defined by 

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

p x t x t R x t
R

 


    , (15)  

in which |Rxx| denotes the determinant of Rxx.  The probability that the continuous random 
variable x(t) with a given probability density function p(x(t)) lies within an interval [a, b] is 
given by the likelihood function (which is also known as the cumulative distribution 
function) 

                                                                 

“The price of doing the same old thing is far higher than the price of change.” William Jefferson (Bill) 
Clinton 

  

( ( ) ) ( ( ))
b

a
P a x t b p x t dx    . (16)  

The Gaussian likelihood function for x(t) is calculated from (15) and (16) as  

 1
1/ 2/ 2

1( ( )) exp 0.5( ( ) ) ( ( ) )
(2 )

T
xxn

xx

f x t x t R x t dx
R

 


 


    . (17)  

It is often more convenient to work with the log-probability density function 
1/ 2/ 2 1log ( ( )) log (2 ) 0.5( ( ) ) ( )n T

xx xxp x t R x t R x dx        (18)  

and the log-likelihood function 

1/ 2/ 2 1log ( ( )) log (2 ) 0.5 ( ( ) ) ( ) .n T
xx xxf x t R x t R x dx  

 


      (19)  

Suppose that a given record of x(t) is assumed to be belong to a Gaussian distribution that is 
a function of an unknown quantity θ. A statistical approach for estimating the unknown θ is 
the method of maximum likelihood. This typically involves finding an estimate ̂  that 
either maximises the log-probability density function 

ˆ arg max log ( | ( ))p x t


   (20)  

or maximises the log-likelihood function 

ˆ arg max log ( | ( ))f x t


  . (21)  

So-called maximum likelihood estimates can be found by setting either log ( | ( ))p x t





 or 

log ( | ( ))f x t





 to zero and solving for the unknown θ. Continuous-time maximum 

likelihood estimation is illustrated by the two examples that follow. 

Example 1. Consider the first-order autoregressive system 

0( ) ( ) ( )x t a x t w t   , (22)  

where ( )x t  = ( )dx t
dt

, w(t) is a zero-mean Gaussian process and a0 is unknown. It follows 

from (22) that ( )x t   ~ 0( ( ),a x t  2 )w , namely,  

 2 2
0/ 2 0

1( ( )) exp 0.5( ( ) ( ))
(2 )

T

wn
w

f x t x t a x t dt
 

    . (23)  

                                                                 

“Faced with the choice between changing one’s mind and proving that there is no need to do so, almost 
everyone gets busy on the proof.” John Kenneth Galbraith 
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Taking the logarithm of both sides gives 

/ 2 2 2
00

log ( ( )) log (2 ) 0.5 ( ( ) ( ))
Tn

w wf x t x t a x t dt        . (24)  

Setting 
0

log ( ( ))f x t
a





 = 0 results in 00

( ( ) ( )) ( )
T

x t a x t x t dt   = 0 and hence 

  1
2

0 0 0
ˆ ( ( ) ( ) ( )

T T
a x t dt x t x t dt



     . (25)  

Example 2. Consider the third-order autoregressive system 

2 1 0( ) ( ) ( ) ( ) ( )x t a x t a x t a x t w t       (26)  

where ( )x t  = 
3

3

( )d x t
dt

 and ( )x t  = 
2

2

( )d x t
dt

. The above system can be written in a controllable 

canonical form as 

1 2 1 0 1

2 2

3 3

( ) ( ) ( )
( ) 1 0 0 ( ) 0
( ) 0 1 0 ( ) 0

x t a a a x t w t
x t x t
x t x t

         
               
              





. (27)  

Assuming 1( )x t  ~ 2 1 1 2 0 3( ( ) ( ) ( ),a x t a x t a x t    2 )w , taking logarithms, setting to zero the 
partial derivatives with respect to the unknown coefficients, and rearranging yields 

1
2
3 2 3 1 3 1 30 0 0 0

0
2

1 2 3 2 2 1 1 20 0 0 0

2 2
1 3 2 1 1 1 10 0 0 0

ˆ
ˆ
ˆ

T T T T

T T T T

T T T T

x dt x x dt x x dt x x dt
a
a x x dt x dt x x dt x x dt
a

x x dt x x dt x dt x x dt


   
    
           
         
   

   
   
   







, (28)  

in which state time dependence is omitted for brevity. 
 

6.3 Fixed-Point Smoothing 
 

6.3.1 Problem Definition 
In continuous-time fixed-point smoothing, it is desired to calculate state estimates at one 
particular time of interest, τ, 0 ≤ τ ≤ t, from measurements z(t) over the interval t  [0, T]. For 
example, suppose that a continuous measurement stream of a tennis ball’s trajectory is 
available and it is desired to determine whether it bounced within the court boundary. In 
this case, a fixed-point smoother could be employed to estimate the ball position at the time 
of the bounce from the past and future measurements.  

                                                                 

“When a distinguished but elderly scientist states that something is possible, he is almost certainly 
right. When he states that something is impossible, he is probably wrong.” Arthur Charles Clarke 

  

A solution for the continuous-time fixed-point smoothing problem can be developed from 
first principles, for example, see [5] -  [6]. However, it is recognised in [13] that a simpler 
solution derivation follows by transforming the smoothing problem into a filtering problem 
that possesses an augmented state. Following the nomenclature of [14], consider an 

augmented state vector having two components, namely, x(a)(t) = 
( )
( )

x t
t

 
 
 

. The first 

component, x(t)  n , is the state of the system ( )x t  = A(t)x(t) + B(t)w(t) and y(t) = C(t)x(t). 
The second component, ( ) t   n , equals x(t) at time t = τ, that is, ( ) t  = x(τ). The 
corresponding signal model may be written as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )a a a ax t A t x t B t w t   

( ) ( )( ) ( ) ( ) ( )a az t C t x t v t  , 

(29) 

(30) 

where A(a) = 
( ) 0
0 ( )t

A t
A t

 
 
 

, B(a)(t) = 
( )
( )t

B t
B t

 
 
 

 and C(a)(t) = [C(t)  0], in which 

1 if
0 ift

t
t







  
 is the Kronecker delta function. Note that the simplifications A(a) = 

( ) 0
0 0

A t 
 
 

 and B(a)(t) = 
( )
0

B t 
 
 

 arise for t > τ. The smoothing objective is to produce an 

estimate ˆ( )t  of ( ) t  from the measurements z(t) over t  [0, T].  
 

6.3.2 Solution Derivation 
Employing the Kalman-Bucy filter recursions for the system (29) – (30) results in  

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )a a a a ax t A t x t K t z t C t x t t    
                              ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )a a a a aA t K t C t x t K t z t   , 

(31)  

where 
( ) ( ) ( ) 1( ) ( )( ) ( ) ( )a a a TK t P t C t R t , (32)  

in which P(a)(t)   2 2 n n  is to be found. Consider the partitioning ( ) ( )aK t  = 
( )
( )

K t
K t
 
 
 

, then 

for t  > τ, (31) may be written as 

ˆ( | ) ˆ( ) ( ) ( ) 0 ( )( | )
( )ˆ ( ) ( ) 0 ( )( )( )

x t t A t K t C t K tx t t
z t

K t C t K ttt 

       
              

. (33)  

                                                                 

“Don’t be afraid to take a big step if one is indicated. You can’t cross a chasm in two small jumps.” 
David Lloyd George 
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Taking the logarithm of both sides gives 

/ 2 2 2
00

log ( ( )) log (2 ) 0.5 ( ( ) ( ))
Tn

w wf x t x t a x t dt        . (24)  

Setting 
0

log ( ( ))f x t
a





 = 0 results in 00

( ( ) ( )) ( )
T

x t a x t x t dt   = 0 and hence 

  1
2

0 0 0
ˆ ( ( ) ( ) ( )

T T
a x t dt x t x t dt



     . (25)  

Example 2. Consider the third-order autoregressive system 

2 1 0( ) ( ) ( ) ( ) ( )x t a x t a x t a x t w t       (26)  

where ( )x t  = 
3

3

( )d x t
dt

 and ( )x t  = 
2

2

( )d x t
dt

. The above system can be written in a controllable 

canonical form as 

1 2 1 0 1

2 2

3 3

( ) ( ) ( )
( ) 1 0 0 ( ) 0
( ) 0 1 0 ( ) 0

x t a a a x t w t
x t x t
x t x t

         
               
              





. (27)  

Assuming 1( )x t  ~ 2 1 1 2 0 3( ( ) ( ) ( ),a x t a x t a x t    2 )w , taking logarithms, setting to zero the 
partial derivatives with respect to the unknown coefficients, and rearranging yields 

1
2
3 2 3 1 3 1 30 0 0 0

0
2

1 2 3 2 2 1 1 20 0 0 0

2 2
1 3 2 1 1 1 10 0 0 0

ˆ
ˆ
ˆ

T T T T

T T T T

T T T T

x dt x x dt x x dt x x dt
a
a x x dt x dt x x dt x x dt
a

x x dt x x dt x dt x x dt


   
    
           
         
   

   
   
   







, (28)  

in which state time dependence is omitted for brevity. 
 

6.3 Fixed-Point Smoothing 
 

6.3.1 Problem Definition 
In continuous-time fixed-point smoothing, it is desired to calculate state estimates at one 
particular time of interest, τ, 0 ≤ τ ≤ t, from measurements z(t) over the interval t  [0, T]. For 
example, suppose that a continuous measurement stream of a tennis ball’s trajectory is 
available and it is desired to determine whether it bounced within the court boundary. In 
this case, a fixed-point smoother could be employed to estimate the ball position at the time 
of the bounce from the past and future measurements.  

                                                                 

“When a distinguished but elderly scientist states that something is possible, he is almost certainly 
right. When he states that something is impossible, he is probably wrong.” Arthur Charles Clarke 

  

A solution for the continuous-time fixed-point smoothing problem can be developed from 
first principles, for example, see [5] -  [6]. However, it is recognised in [13] that a simpler 
solution derivation follows by transforming the smoothing problem into a filtering problem 
that possesses an augmented state. Following the nomenclature of [14], consider an 

augmented state vector having two components, namely, x(a)(t) = 
( )
( )

x t
t

 
 
 

. The first 

component, x(t)  n , is the state of the system ( )x t  = A(t)x(t) + B(t)w(t) and y(t) = C(t)x(t). 
The second component, ( ) t   n , equals x(t) at time t = τ, that is, ( ) t  = x(τ). The 
corresponding signal model may be written as  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )a a a ax t A t x t B t w t   

( ) ( )( ) ( ) ( ) ( )a az t C t x t v t  , 

(29) 

(30) 

where A(a) = 
( ) 0
0 ( )t

A t
A t

 
 
 

, B(a)(t) = 
( )
( )t

B t
B t

 
 
 

 and C(a)(t) = [C(t)  0], in which 

1 if
0 ift

t
t







  
 is the Kronecker delta function. Note that the simplifications A(a) = 

( ) 0
0 0

A t 
 
 

 and B(a)(t) = 
( )
0

B t 
 
 

 arise for t > τ. The smoothing objective is to produce an 

estimate ˆ( )t  of ( ) t  from the measurements z(t) over t  [0, T].  
 

6.3.2 Solution Derivation 
Employing the Kalman-Bucy filter recursions for the system (29) – (30) results in  

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )a a a a ax t A t x t K t z t C t x t t    
                              ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )a a a a aA t K t C t x t K t z t   , 

(31)  

where 
( ) ( ) ( ) 1( ) ( )( ) ( ) ( )a a a TK t P t C t R t , (32)  

in which P(a)(t)   2 2 n n  is to be found. Consider the partitioning ( ) ( )aK t  = 
( )
( )

K t
K t
 
 
 

, then 

for t  > τ, (31) may be written as 

ˆ( | ) ˆ( ) ( ) ( ) 0 ( )( | )
( )ˆ ( ) ( ) 0 ( )( )( )

x t t A t K t C t K tx t t
z t

K t C t K ttt 

       
              

. (33)  

                                                                 

“Don’t be afraid to take a big step if one is indicated. You can’t cross a chasm in two small jumps.” 
David Lloyd George 

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future126

  

Define the augmented error state as ( ) ( )ax t  = ( ) ( )ax t  − ( )ˆ ( )ax t , that is,  

ˆ( | )( | ) ( )
ˆ( )( ) ( )

x t tx t t x t
t t  

    
      

       


 . (34)  

 Differentiating (34) and using z(t) = ( ) ( | )C t x t t + v(t) gives 

                     ˆ( | ) ( | )( | )
0 ˆ( ) ( )

x t t x t tx t t

t t 

                  

 
 

 

                              ( | )( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) 0 0 ( ) ( )( )

x t tA t K t C t B t K t w t
K t C t K t v tt

       
               


 . 

(35)  

Denote P(a)(t) = ( ) ( )
( ) ( )

TP t t
t t

 
 
  

, where P(t) = E{[x(t) − ˆ( | )][( ( )x t t x t − ˆ( | )] }Tx t t , ( )t  = {[ ( )E t  

− ˆ( )][ ( )t t  − ˆ( )] }Tt  and ( )t  = {[ ( )E t  − ˆ( )][ ( )t x t − ˆ( | )] }Tx t t . Applying Lemma 2 of 
Chapter 3 to (35) yields the Lyapunov differential equation 

( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 ( ) ( ) ( ) ( ) 0 0( ) ( )

T T T T T T T TA t K t C tP t t P t t P t t A t C t K t C t K t
K t C t t t t tt t

             
                        

 


 

                           ( ) ( ) ( ) 0 ( ) 0
0 ( ) 0 ( ) ( ) ( )

T

T T

B t K t Q t B t
K t R t K t K t

    
            

. 

Simplifying the above differential equation yields 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    , 

 ( ) ( ) ( ) ( ) ( )T T Tt t A t C t K t    , 

1( ) ( ) ( ) ( ) ( ) ( )T Tt t C t R t C t t    . 

(36) 

(37) 

(38) 

Equations(37) – (38) can be initialised with 

( ) ( )P   . (39)  

 Thus, the fixed-point smoother estimate is given by 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , (40)  

                                                                 

“If you don’t like change, you’re going to like irrelevance even less.” General Eric Shinseki 

  

which is initialised with ˆ( )   = ˆ( )x  . Alternative derivations of (40) are presented in [5], [8], 
[15]. The smoother (40) and its associated error covariances (36) – (38) are also discussed in 
[16], [17]. 
 

6.3.3 Performance 
It can be seen that the right-hand-side of the smoother error covariance (38) is non-positive 
and therefore Ω(t) must be monotonically decreasing. That is, the smoothed estimates 
improve with time. However, since the right-hand-side of (36) varies inversely with R(t), the 
improvement reduces with decreasing signal-to-noise ratio. It is shown below the fixed-
point smoother improves on the performance of the minimum-variance filter. 

Lemma 4: In respect of the fixed-point smoother (40),  

( ) ( )P t t  . (41)  

Proof: The initialisation (39) accords with condition (i) of Theorem 1. Condition (ii) of the theorem is 
satisfied since 

1

1

( ) ( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( ) 0 0

T

T T

Q t A t C t R t C t
A t C t R t C t





   
      

 

and hence the claim (41) follows.                                                                                                            ฀ 
 

6.4 Fixed-Lag Smoothing 
 

6.4.1 Problem Definition 
For continuous-time estimation problems, as usual, it assumed that the observations are 
modelled by ( )x t  = A(t)x(t) + B(t)w(t), z(t) = C(t)x(t) + v(t), with { ( ) ( )}TE w t w   = ( ) ( )Q t t   
and { ( ) ( )}TE v t v   = ( ) ( )R t t  . In fixed-lag smoothing, it is desired to calculate state 
estimates at a fixed time lag behind the current measurements. That is, smoothed state 
estimates, ˆ( | )x t t  , are desired at time t, given data at time t + τ, where τ is a prescribed 
lag. In particular, fixed-lag smoother estimates are sought which minimise E{[x(t) − 
ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t  . It is found in [18] that the smoother yields practically all the 

improvement over the minimum-variance filter when the smoothing lag equals several time 
constants associated with the minimum-variance filter for the problem. 
 

6.4.2 Solution Derivation 
Previously, augmented signal models together with the application of the standard Kalman 
filter recursions were used to obtain the smoother results. However, as noted in [19], it is 
difficult to derive the optimal continuous-time fixed-lag smoother in this way because an 
ideal delay operator cannot easily be included within an asymptotically stable state-space 
system. Consequently, an alternate derivation based on that in [6] is outlined in the 

                                                                 

“Change is like putting lipstick on a bulldog. The bulldog’s appearance hasn’t improved, but now it’s 
really angry.” Rosbeth Moss Kanter 
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Define the augmented error state as ( ) ( )ax t  = ( ) ( )ax t  − ( )ˆ ( )ax t , that is,  

ˆ( | )( | ) ( )
ˆ( )( ) ( )

x t tx t t x t
t t  

    
      

       


 . (34)  

 Differentiating (34) and using z(t) = ( ) ( | )C t x t t + v(t) gives 

                     ˆ( | ) ( | )( | )
0 ˆ( ) ( )

x t t x t tx t t

t t 

                  

 
 

 

                              ( | )( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) 0 0 ( ) ( )( )

x t tA t K t C t B t K t w t
K t C t K t v tt

       
               


 . 

(35)  

Denote P(a)(t) = ( ) ( )
( ) ( )

TP t t
t t

 
 
  

, where P(t) = E{[x(t) − ˆ( | )][( ( )x t t x t − ˆ( | )] }Tx t t , ( )t  = {[ ( )E t  

− ˆ( )][ ( )t t  − ˆ( )] }Tt  and ( )t  = {[ ( )E t  − ˆ( )][ ( )t x t − ˆ( | )] }Tx t t . Applying Lemma 2 of 
Chapter 3 to (35) yields the Lyapunov differential equation 

( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 ( ) ( ) ( ) ( ) 0 0( ) ( )

T T T T T T T TA t K t C tP t t P t t P t t A t C t K t C t K t
K t C t t t t tt t

             
                        

 


 

                           ( ) ( ) ( ) 0 ( ) 0
0 ( ) 0 ( ) ( ) ( )

T

T T

B t K t Q t B t
K t R t K t K t

    
            

. 

Simplifying the above differential equation yields 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    , 

 ( ) ( ) ( ) ( ) ( )T T Tt t A t C t K t    , 

1( ) ( ) ( ) ( ) ( ) ( )T Tt t C t R t C t t    . 

(36) 

(37) 

(38) 

Equations(37) – (38) can be initialised with 

( ) ( )P   . (39)  

 Thus, the fixed-point smoother estimate is given by 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , (40)  

                                                                 

“If you don’t like change, you’re going to like irrelevance even less.” General Eric Shinseki 

  

which is initialised with ˆ( )   = ˆ( )x  . Alternative derivations of (40) are presented in [5], [8], 
[15]. The smoother (40) and its associated error covariances (36) – (38) are also discussed in 
[16], [17]. 
 

6.3.3 Performance 
It can be seen that the right-hand-side of the smoother error covariance (38) is non-positive 
and therefore Ω(t) must be monotonically decreasing. That is, the smoothed estimates 
improve with time. However, since the right-hand-side of (36) varies inversely with R(t), the 
improvement reduces with decreasing signal-to-noise ratio. It is shown below the fixed-
point smoother improves on the performance of the minimum-variance filter. 

Lemma 4: In respect of the fixed-point smoother (40),  

( ) ( )P t t  . (41)  

Proof: The initialisation (39) accords with condition (i) of Theorem 1. Condition (ii) of the theorem is 
satisfied since 

1

1

( ) ( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( ) 0 0

T

T T

Q t A t C t R t C t
A t C t R t C t





   
      

 

and hence the claim (41) follows.                                                                                                            ฀ 
 

6.4 Fixed-Lag Smoothing 
 

6.4.1 Problem Definition 
For continuous-time estimation problems, as usual, it assumed that the observations are 
modelled by ( )x t  = A(t)x(t) + B(t)w(t), z(t) = C(t)x(t) + v(t), with { ( ) ( )}TE w t w   = ( ) ( )Q t t   
and { ( ) ( )}TE v t v   = ( ) ( )R t t  . In fixed-lag smoothing, it is desired to calculate state 
estimates at a fixed time lag behind the current measurements. That is, smoothed state 
estimates, ˆ( | )x t t  , are desired at time t, given data at time t + τ, where τ is a prescribed 
lag. In particular, fixed-lag smoother estimates are sought which minimise E{[x(t) − 
ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t  . It is found in [18] that the smoother yields practically all the 

improvement over the minimum-variance filter when the smoothing lag equals several time 
constants associated with the minimum-variance filter for the problem. 
 

6.4.2 Solution Derivation 
Previously, augmented signal models together with the application of the standard Kalman 
filter recursions were used to obtain the smoother results. However, as noted in [19], it is 
difficult to derive the optimal continuous-time fixed-lag smoother in this way because an 
ideal delay operator cannot easily be included within an asymptotically stable state-space 
system. Consequently, an alternate derivation based on that in [6] is outlined in the 

                                                                 

“Change is like putting lipstick on a bulldog. The bulldog’s appearance hasn’t improved, but now it’s 
really angry.” Rosbeth Moss Kanter 
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following. Recall that the gain of the minimum-variance filter is calculated as K(t) = 
1( ) ( ) ( )TP t C t R t , where P(t) is the solution of the Riccati equation (3.36). Let ( , )t  denote 

the transition matrix of the filter error system ( | )x t t  = (A(t) – ( ) ( )) ( | )K t C t x t t  + ( ) ( )B t w t − 
( ) ( )K t v t , that is,  

 ( , ) ( ) ( ) ( ) ( , )t s A K C t s       (42)  

and ( , )s s  = I. It is assumed in [6], [17], [18], [20] that a smoothed estimate ˆ( | )x t t   of x(t) 
is obtained as 

ˆ ˆ( | ) ( ) ( ) ( , )x t t x t P t t     , (43)  

where 

 1 ˆ( , ) ( , ) ( ) ( ) ( ) ( ) ( | )
t T T

t
t t t C R z C x d


         

     . (44)  

The formula (43) appears in the development of fixed interval smoothers [21] - [22], in which 
case ξ(t) is often called an adjoint variable. From the use of Leibniz’ rule, that is, 

( ) ( )

( ) ( )

( ) ( )( , ) ( , ( )) ( , ( )) ( , )
b t b t

a t a t

d db t da tf t s ds f t b t f t a t f t s ds
dt dt dt t


  

  , 

it can be found that 

 1 ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) | )T Tt t t C t R t z t C t x t t                    

                      1 ˆ( ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( , )TTC t R t z t C t x t t A t K t C t t t      . 

(45)  

Differentiating  (43) with respect to t gives 

ˆ ˆ( | ) ( | ) ( ) ( , ) ( ) ( , )x t t x t t P t t P t t           . (46)  

Substituting ( , )t   =  1 ˆ ˆ( ) ( | ) ( | )P t x t t x t t    and expressions for ˆ( )x t , ( )P t , ( , )t t   
into (43) yields the fixed–lag smoother differential equation 

     1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t t A t x t t B t Q t B t P t x t t x t t          

                1 ˆ( ) ( , ) ( ) ( ) ( ) ( ) ( | )T TP t t t C t R t z t C t x t t                . 
(47)  

 

 

 

                                                                 

“An important scientific innovation rarely makes its way by gradually winning over and converting its 
opponents: What does happen is that the opponents gradually die out.” Max Karl Ernst Ludwig Planck 

  

6.4.3 Performance 
Lemma 5 [18]: 

P(t) – E{[x(t) − ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t   > 0. (48)  

Proof. It is argued from the references of [18] for the fixed-lag smoothed estimate that 

1ˆ ˆ{[ ( ) ( | )][ ( ) ( | )] } ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( )T T T

t
E x t x t t x t x t t P t P t s t C s R s C s s t ds P t


              (49)  

Thus, (48) follows by inspection of (49).                                                                                                ฀ 

That is to say, the minimum-variance filter error covariance is greater than fixed-lag 
smoother error covariance. It is also argued in [18] that (48) implies the error covariance 
decreases monotonically with the smoother lag τ. 
 

6.5 Fixed-Interval Smoothing 
 

6.5.1 Problem Definition 
Many data analyses occur off-line. In medical diagnosis for example, reviews of ultra-sound 
or CAT scan images are delayed after the time of measurement. In principle, smoothing 
could be employed instead of filtering for improving the quality of an image sequence. 

Fixed-lag smoothers are elegant – they can provide a small performance improvement over 
filters at moderate increase in implementation cost. The best performance arises when the 
lag is sufficiently large, at the expense of increased complexity. Thus, the designer needs to 
trade off performance, calculation cost and delay. 

Fixed-interval smoothers are a brute-force solution for estimation problems. They provide 
improved performance without having to fine tune a smoothing lag, at the cost of 
approximately twice the filter calculation complexity. Fixed interval smoothers involve two 
passes. Typically, a forward process operates on the measurements. Then a backward 
system operates on the results of the forward process. 

The plants are again assumed to have state-space realisations of the form ( )x t  = A(t)x(t) + 
B(t)w(t) and y(t) = C(t)x(t) + D(t)w(t). Smoothers are considered which operate on 
measurements z(t) = y(t) + v(t) over a fixed interval t  [0, T]. The performance criteria 
depend on the quantity being estimated, viz.,  

 in input estimation, the objective is to calculate a ˆ ( | )w t T  that minimises E{[w(t) − 
ˆ ( | )][ ( )w t T w t  − ˆ ( | )] }Tw t T ; 

 in state estimation, ˆ( | )x t T  is calculated which achieves the minimum E{[x(t) − 
ˆ( | )][ ( )x t T x t  − ˆ( | )] }Tx t T ; and 

 in output estimation, ˆ( | )y t T  is produced such that E{[y(t) − ˆ( | )][ ( )y t T y t  − 
ˆ ( | )] }Ty t T  is minimised. 

                                                                 

“If you want to truly understand something, try to change it.” Kurt Lewin 
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following. Recall that the gain of the minimum-variance filter is calculated as K(t) = 
1( ) ( ) ( )TP t C t R t , where P(t) is the solution of the Riccati equation (3.36). Let ( , )t  denote 

the transition matrix of the filter error system ( | )x t t  = (A(t) – ( ) ( )) ( | )K t C t x t t  + ( ) ( )B t w t − 
( ) ( )K t v t , that is,  

 ( , ) ( ) ( ) ( ) ( , )t s A K C t s       (42)  

and ( , )s s  = I. It is assumed in [6], [17], [18], [20] that a smoothed estimate ˆ( | )x t t   of x(t) 
is obtained as 

ˆ ˆ( | ) ( ) ( ) ( , )x t t x t P t t     , (43)  

where 

 1 ˆ( , ) ( , ) ( ) ( ) ( ) ( ) ( | )
t T T

t
t t t C R z C x d


         

     . (44)  

The formula (43) appears in the development of fixed interval smoothers [21] - [22], in which 
case ξ(t) is often called an adjoint variable. From the use of Leibniz’ rule, that is, 

( ) ( )

( ) ( )

( ) ( )( , ) ( , ( )) ( , ( )) ( , )
b t b t

a t a t

d db t da tf t s ds f t b t f t a t f t s ds
dt dt dt t


  

  , 

it can be found that 

 1 ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) | )T Tt t t C t R t z t C t x t t                    

                      1 ˆ( ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( , )TTC t R t z t C t x t t A t K t C t t t      . 

(45)  

Differentiating  (43) with respect to t gives 

ˆ ˆ( | ) ( | ) ( ) ( , ) ( ) ( , )x t t x t t P t t P t t           . (46)  

Substituting ( , )t   =  1 ˆ ˆ( ) ( | ) ( | )P t x t t x t t    and expressions for ˆ( )x t , ( )P t , ( , )t t   
into (43) yields the fixed–lag smoother differential equation 

     1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t t A t x t t B t Q t B t P t x t t x t t          

                1 ˆ( ) ( , ) ( ) ( ) ( ) ( ) ( | )T TP t t t C t R t z t C t x t t                . 
(47)  
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6.4.3 Performance 
Lemma 5 [18]: 

P(t) – E{[x(t) − ˆ( | )][ ( )x t t x t  − ˆ( | )] }Tx t t   > 0. (48)  

Proof. It is argued from the references of [18] for the fixed-lag smoothed estimate that 

1ˆ ˆ{[ ( ) ( | )][ ( ) ( | )] } ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( )T T T

t
E x t x t t x t x t t P t P t s t C s R s C s s t ds P t


              (49)  

Thus, (48) follows by inspection of (49).                                                                                                ฀ 

That is to say, the minimum-variance filter error covariance is greater than fixed-lag 
smoother error covariance. It is also argued in [18] that (48) implies the error covariance 
decreases monotonically with the smoother lag τ. 
 

6.5 Fixed-Interval Smoothing 
 

6.5.1 Problem Definition 
Many data analyses occur off-line. In medical diagnosis for example, reviews of ultra-sound 
or CAT scan images are delayed after the time of measurement. In principle, smoothing 
could be employed instead of filtering for improving the quality of an image sequence. 

Fixed-lag smoothers are elegant – they can provide a small performance improvement over 
filters at moderate increase in implementation cost. The best performance arises when the 
lag is sufficiently large, at the expense of increased complexity. Thus, the designer needs to 
trade off performance, calculation cost and delay. 

Fixed-interval smoothers are a brute-force solution for estimation problems. They provide 
improved performance without having to fine tune a smoothing lag, at the cost of 
approximately twice the filter calculation complexity. Fixed interval smoothers involve two 
passes. Typically, a forward process operates on the measurements. Then a backward 
system operates on the results of the forward process. 

The plants are again assumed to have state-space realisations of the form ( )x t  = A(t)x(t) + 
B(t)w(t) and y(t) = C(t)x(t) + D(t)w(t). Smoothers are considered which operate on 
measurements z(t) = y(t) + v(t) over a fixed interval t  [0, T]. The performance criteria 
depend on the quantity being estimated, viz.,  

 in input estimation, the objective is to calculate a ˆ ( | )w t T  that minimises E{[w(t) − 
ˆ ( | )][ ( )w t T w t  − ˆ ( | )] }Tw t T ; 

 in state estimation, ˆ( | )x t T  is calculated which achieves the minimum E{[x(t) − 
ˆ( | )][ ( )x t T x t  − ˆ( | )] }Tx t T ; and 

 in output estimation, ˆ( | )y t T  is produced such that E{[y(t) − ˆ( | )][ ( )y t T y t  − 
ˆ ( | )] }Ty t T  is minimised. 
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This section focuses on three continuous-time fixed-interval smoother formulations; the 
maximum-likelihood smoother derived by Rauch, Tung and Streibel [3], the Fraser-Potter 
smoother [4] and a generalisation of Wiener’s optimal unrealisable solution [8] – [10]. Some 
additional historical background to [3] – [4] is described within [1], [2], [17]. 

6.5.2 The Maximum Likelihood Smoother 
 

6.5.2.1 Solution Derivation 
Rauch, Tung and Streibel [3] employed the maximum-likelihood method to develop a 
discrete-time smoother for state estimation and then used a limiting argument to obtain a 
continuous-time version. A brief outline of this derivation is set out here. Suppose that a 
record of filtered estimates, ˆ( | )x   , is available over a fixed interval τ  [0, T]. Let ˆ( | )x T  
denote smoothed state estimates at time 0 ≤ τ ≤ T to be evolved backwards in time from 
filtered states ˆ( | )x   . The smoother development is based on two assumptions. First, it is 

assumed that ˆ( | )x T   is normally distributed with mean ˆ( ) ( | )A x T   and covariance 

B(τ)Q(τ)BT(τ), that is,  ˆ( | )x T   ~ ˆ( ( ) ( | ),A x T   B(τ)Q(τ)BT(τ)). The probability density 

function of ˆ( | )x T   is 

1/ 2/ 2

1ˆ ˆ( ( | ) | ( | ))
(2 ) ( ) ( ) ( )n T

p x T x T
B Q B

 
   

   

                    1ˆ ˆ ˆ ˆexp 0.5( ( | ) ( ) ( | )) ( ( ) ( ) ( )) ( ( | ) ( ) ( | ))T Tx T A x T B Q B x T A x T                

Second, it is assumed that ˆ( | )x T  is normally distributed with mean ˆ( | )x    and covariance 
P(τ), namely, ˆ( | )x T  ~ ˆ( ( | )N x   , P(τ)). The corresponding probability density function is 

 1
1/ 2/ 2

1ˆ ˆ ˆ ˆ ˆ ˆ( ( | ) | ( | )) exp 0.5( ( | ) ( | )) ( )( ( | ) ( | ))
(2 ) ( )

T
n

p x T x x T x P t x T x
P

        
 

     . 

From the approach of [3] and the further details in [6], 

0 = 
ˆ ˆ ˆ ˆlog ( ( | ) | ( | )) ( ( | ) | ( | ))

ˆ( | )
p x T x T p x T x

x T
    


 




 

                                            = 
ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x T x T
x T
 


 



 + 

ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x t T x t t
x t T




 

results in 

1 1ˆ ˆ( ( | ) ( ) ( | )) ˆ ˆ ˆ ˆ0 ( ( ) ( ) ( )) ( ( | ) ( ) ( | )) ( )( ( | ) ( | ))
ˆ( | )

T
Tx T A x T B Q B x T A x T P x t T x

x T
           


   

    


  . 

                                                                 

“The soft-minded man always fears change. He feels security in the status quo, and he has an almost 
morbid fear of the new. For him, the greatest pain is the pain of a new idea.” Martin Luther King Jr. 

  

 

Hence, the solution is given by 

 ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( | )x T A x T G x T x          , (50)  
where  

1ˆ ˆ( ( | ) ( ) ( | ))( ) ( ) ( ) ( ) ( )
ˆ( | )

T
T x T A x TG B Q B P

x T
      


  

 



 (51)  

is the smoother gain. Suppose that ˆ( | )x T , A(τ), B(τ), Q(τ), P−1(τ) are sampled at integer k 
multiples of Ts and are constant during the sampling interval. Using the Euler 

approximation ˆ( | )sx kT T   = 
ˆ ˆ(( 1) | ) ( | )s s

s

x k T T x kT T
T

  , the sampled gain may be written as 

1 1( ) ( ) ( ) ( )( ) ( )T
s s s s s s sG kT B kT T Q kT B kT I AT P kT   . (52)  

Recognising that 1 ( )s sT Q kT  = Q(τ), see [23], and taking the limit as Ts → 0 and yields 

1( ) ( ) ( ) ( ) ( )TG B Q B P     . (53)  

To summarise, the above fixed-interval smoother is realised by the following two-pass 
procedure. 

(i) In the first pass, the (forward) Kalman-Bucy filter operates on measurements z(τ) to 
obtain state estimates ˆ( | )x   .  

(ii) In the second pass, the differential equation (50) operates on the filtered state 
estimates ˆ( | )x    to obtain smoothed state estimates ˆ( | )x T . Equation (50) is 
integrated backwards in time from the initial condition ˆ( | )x T  = ˆ( | )x    at τ = T. 

Alternative derivations of this smoother appear in [6], [20], [23], [24].  
 

6.5.2.2 Alternative Form  
For the purpose of developing an alternate form of the above smoother found in the 
literature, consider a fictitious forward version of (50), namely, 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t T A t x t T B t Q t B t P t x t T x t t    
                     ˆ( ) ( | ) ( ) ( ) ( ) ( | )TA t x t T B t Q t B t t T  , 

(54)  

where 
1 ˆ ˆ( | ) ( )( ( | ) ( | ))t T P t x t T x t t    (55)  

                                                                 

“There is a certain relief in change, even though it be from bad to worse. As I have often found in 
travelling in a stagecoach that it is often a comfort to shift one’s position, and be bruised in a new 
place.” Washington Irving 
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This section focuses on three continuous-time fixed-interval smoother formulations; the 
maximum-likelihood smoother derived by Rauch, Tung and Streibel [3], the Fraser-Potter 
smoother [4] and a generalisation of Wiener’s optimal unrealisable solution [8] – [10]. Some 
additional historical background to [3] – [4] is described within [1], [2], [17]. 

6.5.2 The Maximum Likelihood Smoother 
 

6.5.2.1 Solution Derivation 
Rauch, Tung and Streibel [3] employed the maximum-likelihood method to develop a 
discrete-time smoother for state estimation and then used a limiting argument to obtain a 
continuous-time version. A brief outline of this derivation is set out here. Suppose that a 
record of filtered estimates, ˆ( | )x   , is available over a fixed interval τ  [0, T]. Let ˆ( | )x T  
denote smoothed state estimates at time 0 ≤ τ ≤ T to be evolved backwards in time from 
filtered states ˆ( | )x   . The smoother development is based on two assumptions. First, it is 

assumed that ˆ( | )x T   is normally distributed with mean ˆ( ) ( | )A x T   and covariance 

B(τ)Q(τ)BT(τ), that is,  ˆ( | )x T   ~ ˆ( ( ) ( | ),A x T   B(τ)Q(τ)BT(τ)). The probability density 

function of ˆ( | )x T   is 

1/ 2/ 2

1ˆ ˆ( ( | ) | ( | ))
(2 ) ( ) ( ) ( )n T

p x T x T
B Q B

 
   

   

                    1ˆ ˆ ˆ ˆexp 0.5( ( | ) ( ) ( | )) ( ( ) ( ) ( )) ( ( | ) ( ) ( | ))T Tx T A x T B Q B x T A x T                

Second, it is assumed that ˆ( | )x T  is normally distributed with mean ˆ( | )x    and covariance 
P(τ), namely, ˆ( | )x T  ~ ˆ( ( | )N x   , P(τ)). The corresponding probability density function is 

 1
1/ 2/ 2

1ˆ ˆ ˆ ˆ ˆ ˆ( ( | ) | ( | )) exp 0.5( ( | ) ( | )) ( )( ( | ) ( | ))
(2 ) ( )

T
n

p x T x x T x P t x T x
P

        
 

     . 

From the approach of [3] and the further details in [6], 

0 = 
ˆ ˆ ˆ ˆlog ( ( | ) | ( | )) ( ( | ) | ( | ))

ˆ( | )
p x T x T p x T x

x T
    


 




 

                                            = 
ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x T x T
x T
 


 



 + 

ˆ ˆlog ( ( | ) | ( | ))
ˆ( | )

p x t T x t t
x t T




 

results in 

1 1ˆ ˆ( ( | ) ( ) ( | )) ˆ ˆ ˆ ˆ0 ( ( ) ( ) ( )) ( ( | ) ( ) ( | )) ( )( ( | ) ( | ))
ˆ( | )

T
Tx T A x T B Q B x T A x T P x t T x

x T
           


   

    


  . 

                                                                 

“The soft-minded man always fears change. He feels security in the status quo, and he has an almost 
morbid fear of the new. For him, the greatest pain is the pain of a new idea.” Martin Luther King Jr. 

  

 

Hence, the solution is given by 

 ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( | )x T A x T G x T x          , (50)  
where  

1ˆ ˆ( ( | ) ( ) ( | ))( ) ( ) ( ) ( ) ( )
ˆ( | )

T
T x T A x TG B Q B P

x T
      


  

 



 (51)  

is the smoother gain. Suppose that ˆ( | )x T , A(τ), B(τ), Q(τ), P−1(τ) are sampled at integer k 
multiples of Ts and are constant during the sampling interval. Using the Euler 

approximation ˆ( | )sx kT T   = 
ˆ ˆ(( 1) | ) ( | )s s

s

x k T T x kT T
T

  , the sampled gain may be written as 

1 1( ) ( ) ( ) ( )( ) ( )T
s s s s s s sG kT B kT T Q kT B kT I AT P kT   . (52)  

Recognising that 1 ( )s sT Q kT  = Q(τ), see [23], and taking the limit as Ts → 0 and yields 

1( ) ( ) ( ) ( ) ( )TG B Q B P     . (53)  

To summarise, the above fixed-interval smoother is realised by the following two-pass 
procedure. 

(i) In the first pass, the (forward) Kalman-Bucy filter operates on measurements z(τ) to 
obtain state estimates ˆ( | )x   .  

(ii) In the second pass, the differential equation (50) operates on the filtered state 
estimates ˆ( | )x    to obtain smoothed state estimates ˆ( | )x T . Equation (50) is 
integrated backwards in time from the initial condition ˆ( | )x T  = ˆ( | )x    at τ = T. 

Alternative derivations of this smoother appear in [6], [20], [23], [24].  
 

6.5.2.2 Alternative Form  
For the purpose of developing an alternate form of the above smoother found in the 
literature, consider a fictitious forward version of (50), namely, 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t T A t x t T B t Q t B t P t x t T x t t    
                     ˆ( ) ( | ) ( ) ( ) ( ) ( | )TA t x t T B t Q t B t t T  , 

(54)  

where 
1 ˆ ˆ( | ) ( )( ( | ) ( | ))t T P t x t T x t t    (55)  

                                                                 

“There is a certain relief in change, even though it be from bad to worse. As I have often found in 
travelling in a stagecoach that it is often a comfort to shift one’s position, and be bruised in a new 
place.” Washington Irving 
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is an auxiliary variable. An expression for the evolution of ( | )t T  is now developed. 
Writing (55) as  

ˆ ˆ( | ) ( | ) ( ) ( | )x T x t t P t t T    (56)  

and taking the time differential results in 

ˆ ˆ( | ) ( | ) ( ) ( | ) ( ) ( | )x t T x t t P t t T P t t T       . (57)  

Substituting ˆ( | )x t t  = ˆ( ) ( | )A t x t t  + 1( ) ( ) ( ( )TP t C t R z t  − ˆ( ) ( | ))C t x t t  into (57) yields  

1 1( ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T TP t t T P t C t R C t P t C t R z t A t P t t B t Q t B t P t t          (58) 

Using ˆ( | )x t t  = ˆ( | )x t T  – ( ) ( | )P t t T , ( ) ( )TP t A t  = ( ) ( )A t P t  – 1( ) ( ) ( ) ( ) ( ) ( | )TP t C t R t C t P t t T  
+ ( ) ( ) ( )TB t Q t B t  –  ( )P t  within (58) and rearranging gives 

1 1ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( ) ( )T T Tt T C t R t C t x t T A t t C t R t z t       . (59)  

The filter (54) and smoother (57) may be collected together as 

11

ˆˆ 0( | )( | ) ( ) ( ) ( ) ( )
( ) ( ) ( )( | )( ) ( ) ( ) ( )( | )

T

TT T

x t Tx t T A t B t Q t B t
C t R t z tt TC t R t C t A tt T 



       
              




. (60)  

Equation (60) is known as the Hamiltonian form of the Rauch-Tung-Striebel smoother [17].  
 

6.5.2.3 Performance 
In order to develop an expression for the smoothed error state, consider the backwards 
signal model 

( ) ( ) ( ) ( ) ( )x A x B w       . (61) 

Subtracting (50) from (61) results in 

ˆ ˆ ˆ( ) ( | ) ( ( ) ( ))( ( ) ( | )) ( )( ( ) ( | )) ( ) ( )x x T A G x x T G x x B w                   . (62) 

Let ( | )x T  = ( )x   − ˆ( | )x T  denote the smoothed error state and ( | )x    = ( )x   − ˆ( | )x    
denote the filtered error state. Then the differential equation (62) can simply be written as 

( | ) ( ( ) ( ))( ( | ) ( ) ( | ) ( ) ( )x T A G x T G x B w               , (63) 

where ( | )x T   = ˆ( ( | )x T   ˆ( ))x   . Applying Lemma 3 to (63) and using ˆ{ ( | )E x   , 
( )}Tw   = 0 gives 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T TT A G T T A G B Q B                 , (64) 

                                                                 

“That which comes into the world to disturb nothing deserves neither respect nor patience.” Rene Char 

  

where ( | )T  = ˆ{ ( | )E x T , ˆ ( | )}Tx T  is the smoother error covariance and ( | )T  = 
( | )d T
d



 . The smoother error covariance differential equation (64) is solved backwards in 

time from the initial condition 

( | ) ( | )T P t t   (65) 

at t = T, where ( | )P t t  is the solution of the Riccati differential equation 

( ) ( ( ) ( ) ( )) ( ) ( )( ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )T T T T TP t A t K t C t P t P t A t C t K t K t R t K t B t Q t B t       

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TA t P t P t A t K t R t K t B t Q t B t                                                            (66) 

It is shown below that this smoother outperforms the minimum-variance filter. For the 
purpose of comparing the solutions of forward Riccati equations, consider a fictitious 
forward version of (64), namely, 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T Tt T A t G t t T t T A t G t B t Q t B t         (67) 

initialised with 

0 0 0( | ) ( | ) 0t T P t t   . (68) 

Lemma 6: In respect of the fixed-interval smoother (50),  

( | ) ( | )P t t t T  . (69)  

Proof: The initialisation (68) satisfies condition (i) of Theorem 1. Condition (ii) of the theorem is met 
since 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 0 ( ) ( ) 0

T T T

T T T T T

B t Q t B t K t R t K t A t K t C t B t Q t B t A t G t
A t C t K t A t G t

      
   

    
 

for all t ≥ t0 and hence the claim (69) follows.                                                                                        ฀        
 

6.5.3 The Fraser-Potter Smoother 
The Central Limit Theorem states that the mean of a sufficiently large sample of 
independent identically distributed random variables will be approximately normally 
distributed [25]. The same is true of partial sums of random variables. The Central Limit 
Theorem is illustrated by the first part of the following lemma. A useful generalisation 
appears in the second part of the lemma. 

Lemma 7: Suppose that y1, y2, …, yn are independent random variables and W1, W2, … Wn are 
independent positive definite weighting matrices. Let  μ = E{y}, u = y1 + y2 + … + yn and 

v = (W1y1 + W2y2 + … + Wnyn) (W1 + W2 + … Wn)-1. (70) 

                                                                 

“Today every invention is received with a cry of triumph which soon turns into a cry of fear.” Bertolt 
Brecht 
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is an auxiliary variable. An expression for the evolution of ( | )t T  is now developed. 
Writing (55) as  

ˆ ˆ( | ) ( | ) ( ) ( | )x T x t t P t t T    (56)  

and taking the time differential results in 

ˆ ˆ( | ) ( | ) ( ) ( | ) ( ) ( | )x t T x t t P t t T P t t T       . (57)  

Substituting ˆ( | )x t t  = ˆ( ) ( | )A t x t t  + 1( ) ( ) ( ( )TP t C t R z t  − ˆ( ) ( | ))C t x t t  into (57) yields  

1 1( ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T TP t t T P t C t R C t P t C t R z t A t P t t B t Q t B t P t t          (58) 

Using ˆ( | )x t t  = ˆ( | )x t T  – ( ) ( | )P t t T , ( ) ( )TP t A t  = ( ) ( )A t P t  – 1( ) ( ) ( ) ( ) ( ) ( | )TP t C t R t C t P t t T  
+ ( ) ( ) ( )TB t Q t B t  –  ( )P t  within (58) and rearranging gives 

1 1ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( ) ( )T T Tt T C t R t C t x t T A t t C t R t z t       . (59)  

The filter (54) and smoother (57) may be collected together as 

11

ˆˆ 0( | )( | ) ( ) ( ) ( ) ( )
( ) ( ) ( )( | )( ) ( ) ( ) ( )( | )

T

TT T

x t Tx t T A t B t Q t B t
C t R t z tt TC t R t C t A tt T 



       
              




. (60)  

Equation (60) is known as the Hamiltonian form of the Rauch-Tung-Striebel smoother [17].  
 

6.5.2.3 Performance 
In order to develop an expression for the smoothed error state, consider the backwards 
signal model 

( ) ( ) ( ) ( ) ( )x A x B w       . (61) 

Subtracting (50) from (61) results in 

ˆ ˆ ˆ( ) ( | ) ( ( ) ( ))( ( ) ( | )) ( )( ( ) ( | )) ( ) ( )x x T A G x x T G x x B w                   . (62) 

Let ( | )x T  = ( )x   − ˆ( | )x T  denote the smoothed error state and ( | )x    = ( )x   − ˆ( | )x    
denote the filtered error state. Then the differential equation (62) can simply be written as 

( | ) ( ( ) ( ))( ( | ) ( ) ( | ) ( ) ( )x T A G x T G x B w               , (63) 

where ( | )x T   = ˆ( ( | )x T   ˆ( ))x   . Applying Lemma 3 to (63) and using ˆ{ ( | )E x   , 
( )}Tw   = 0 gives 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T TT A G T T A G B Q B                 , (64) 

                                                                 

“That which comes into the world to disturb nothing deserves neither respect nor patience.” Rene Char 

  

where ( | )T  = ˆ{ ( | )E x T , ˆ ( | )}Tx T  is the smoother error covariance and ( | )T  = 
( | )d T
d



 . The smoother error covariance differential equation (64) is solved backwards in 

time from the initial condition 

( | ) ( | )T P t t   (65) 

at t = T, where ( | )P t t  is the solution of the Riccati differential equation 
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        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TA t P t P t A t K t R t K t B t Q t B t                                                            (66) 

It is shown below that this smoother outperforms the minimum-variance filter. For the 
purpose of comparing the solutions of forward Riccati equations, consider a fictitious 
forward version of (64), namely, 

( | ) ( ( ) ( )) ( | ) ( | )( ( ) ( )) ( ) ( ) ( )T Tt T A t G t t T t T A t G t B t Q t B t         (67) 

initialised with 

0 0 0( | ) ( | ) 0t T P t t   . (68) 

Lemma 6: In respect of the fixed-interval smoother (50),  

( | ) ( | )P t t t T  . (69)  

Proof: The initialisation (68) satisfies condition (i) of Theorem 1. Condition (ii) of the theorem is met 
since 
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T T T

T T T T T

B t Q t B t K t R t K t A t K t C t B t Q t B t A t G t
A t C t K t A t G t

      
   
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for all t ≥ t0 and hence the claim (69) follows.                                                                                        ฀        
 

6.5.3 The Fraser-Potter Smoother 
The Central Limit Theorem states that the mean of a sufficiently large sample of 
independent identically distributed random variables will be approximately normally 
distributed [25]. The same is true of partial sums of random variables. The Central Limit 
Theorem is illustrated by the first part of the following lemma. A useful generalisation 
appears in the second part of the lemma. 

Lemma 7: Suppose that y1, y2, …, yn are independent random variables and W1, W2, … Wn are 
independent positive definite weighting matrices. Let  μ = E{y}, u = y1 + y2 + … + yn and 

v = (W1y1 + W2y2 + … + Wnyn) (W1 + W2 + … Wn)-1. (70) 
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(i) If yi ~ ( ,  R), i = 1 to n, then u ~ ( ,n nR ); 
(ii) If yi ~ (0,  I), i = 1 to n, then v ~ (0,  I). 

Proof:  

(i) E{u} = E{y1} + E(y2) + … + E{yn} = nμ. E{(u − μ)(u − μ)T} =  E{(y1 − μ)(y1 − μ)T} + E{(y2 
− μ)(y2 − μ)T} + … + E{(yn − μ)(yn − μ)T} = nR. 

(ii) E{v} = W1(W1 + W2 + … + Wn)-1E{y1} + W2(W1 + W2 + … + Wn)-1E(y2) + … + Wn(W1 + 
W2 + … Wn)-1E{yn}) = 0. E{vvT} = 1{( TE W  + 2

TW  + … + 1
1 1 1 1 1) (T T T

nW W y y W W  + 2W  + 
… 1) }NW   + 1{( TE W  + 2

TW  + … + 1
2 2 2 2 1) (T T T

nW W y y W W  + 2W  + … 1) }NW    + … + 
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TW  + … + 1

1) (T T T
n n n n nW W y y W W  + 2W  + … 1) }NW   = 1( TW  + 2

TW  + … + 
1

1 1) (T T
nW W W  + 2 2

TW W  + … 1)(T
n nW W W  + 2W  + … 1)nW   = I.                                  ฀ 

Fraser and Potter reported a smoother in 1969 [4] that combined state estimates from 
forward and backward filters using a formula similar to (70) truncated at n = 2. The inverses 
of the forward and backward error covariances, which are indicative of the quality of the 
respective estimates, were used as weighting matrices. The combined filter and Fraser-
Potter smoother equations are  

1ˆ ˆ ˆ( | ) ( ) ( | ) ( | ) ( ) ( )( ( ) ( ) ( | ))Tx t t A t x t t P t t C t R t z t C t x t t   , 

1( | ) ( ) ( | ) ( | ) ( ) ( )( ( ) ( ) ( | ))Tt t A t t t t t C t R t z t C t t t       , 

1 1 1 1 1ˆ ˆ( | ) ( ( | ) ( | )) ( ( | ) ( | ) ( | ) ( | ))x t T P t t t t P t t x t t t t t t         , 

(71) 

(72) 

(73) 

where ( | )P t t  is the solution of the forward Riccati equation ( | )P t t  = ( ) ( | )A t P t t  + 
( | ) ( )TP t t A t  − 1( | ) ( ) ( ) ( ) ( | )TP t t C t R t C t P t t  + ( ) ( ) ( )TB t Q t B t  and ( | )t t  is the solution of the 
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1( | ) ( ) ( ) ( ) ( | )Tt t C t R t C t t t   + ( ) ( ) ( )TB t Q t B t . 

It can be seen from (72) that the backward state estimates, ζ(t), are obtained by simply 
running a Kalman filter over the time-reversed measurements. Fraser and Potter’s approach 
is pragmatic: when the data is noisy, a linear combination of two filtered estimates is likely 
to be better than one filter alone. However, this two-filter approach to smoothing is ad hoc 
and is not a minimum-mean-square-error design. 

 

                                                                 

“If there is dissatisfaction with the status quo, good. If there is ferment, so much the better. If there is 
restlessness, I am pleased. Then let there be ideas, and hard thought, and hard work.” Hubert Horatio 
Humphrey. 

  

6.5.4 The Minimum-Variance Smoother 
 

6.5.4.1 Problem Definition 
The previously described smoothers are focussed on state estimation. A different signal 
estimation problem shown in Fig. 1 is considered here. Suppose that observations z = y + v 
are available, where y2 = w is the output of a linear time-varying system and v is 
measurement noise. A solution   is desired which produces estimates 1ŷ  of a second 
reference system y1 =w in such a way to meet a performance objective. Let e = y1 – 1ŷ  
denote the output estimation error. The optimum minimum-variance filter can be obtained 
by finding the solution that minimises 

2

Tee . Here, in the case of smoothing, the 

performance objective is to minimise 
2

Hee .  

 
 
 
 
 
 

Figure 1. The general estimation problem. The objective is to produce estimates 1ŷ  of y1 
from measurements z. 
 

6.5.4.2 Optimal Unrealisable Solutions 
The minimum-variance smoother is a more recent innovation [8] - [10] and arises by 
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It can be seen from (72) that the backward state estimates, ζ(t), are obtained by simply 
running a Kalman filter over the time-reversed measurements. Fraser and Potter’s approach 
is pragmatic: when the data is noisy, a linear combination of two filtered estimates is likely 
to be better than one filter alone. However, this two-filter approach to smoothing is ad hoc 
and is not a minimum-mean-square-error design. 
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denote the output estimation error. The optimum minimum-variance filter can be obtained 
by finding the solution that minimises 

2

Tee . Here, in the case of smoothing, the 

performance objective is to minimise 
2

Hee .  

 
 
 
 
 
 

Figure 1. The general estimation problem. The objective is to produce estimates 1ŷ  of y1 
from measurements z. 
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1ŷz
  

  



v



www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future136

  

in which the time-dependence of Q(t) and R(t) is omitted for notational brevity. Suppose 
that Δ: p  → p  is causal, namely Δ and its inverse,  Δ−1, are bounded systems that proceed 
forward in time. The system Δ is known as a Wiener-Hopf factor. 
 

Lemma 8: Assume that the Wiener-Hopf factor inverse, Δ-1, exists over t  [0, T]. Then the smoother 
solution 

1
1 2

H HQ        
                                      1

1 2 ( )H HQ     
              1

1 2 2 2( )H HQ Q R      . 

(76)  

minimises 
2

Hee  = 
2

H
ei ei . 

Proof: It follows from (74) that H
ei ei  =  1 2

HQ   −  1 2
H HQ    −  2 1

HQ   + H H  . 
Completing the square leads to H

ei ei  = 1 1
H

ei ei   + 2 2
H

ei ei  , where 

2 2 1 2 1 2( )( )H H H H H H
ei ei Q Q                (77)  

and 
1

1 1 1 1 1 2 2 1( )H H H H H
ei ei Q Q Q          . (78)  

By inspection of (77), the solution (76) achieves 

2 2 2

H
ei ei  =0. (79)  

Since 1 1 2

H
ei ei   excludes the estimator solution  , this quantity defines the lower bound for 

2

H
ei ei .                                                                                                                                               ฀ 

Example 3. Consider the output estimation case where 1  = 2  and 

1
2 2 2 2( )H H

OE Q Q R       , (80) 

which is of order n4 complexity. Using 2 2
HQ   = H  − R leads to the n2-order solution 

1  HOE I R ( ) .  (81) 

                                                                 

“Whatever has been done before will be done again. There is nothing new under the sun.” Ecclesiastes 
1:9 

  

It is interesting to note from (81) and 
1

1 1 2 2 2 2 2 2 2 2( )H H H H H
ei ei Q Q Q R Q             (82)  

that 
0

lim
R

I


  and 
0

lim 0H
ei eiR

 . That is, output estimation is superfluous when 

measurement noise is absent. Let { }H
ei ei    = 1 1{ }H

ei ei    +  2 2{ }H
ei ei    denote the causal 

part of H
ei ei  . It is shown below that minimum-variance filter solution can be found using 

the above completing-the squares technique and taking causal parts.  

Lemma 9: The filter solution 

1
1 2{ } { }H HQ  

       
        1

1 2{ }H HQ  
     

(83)   

minimises 
2

{ }Hee   = 
2

{ }H
ei ei  , provided that the inverses exist. 

Proof: It follows from (77) that 

2 2 1 2 1 2{ } {( )( ) }H H H H H H
ei ei Q Q 

               . (84)  

By inspection of (84), the solution (83) achieves 

2 2 2
{ }H

ei ei   = 0. (85) ฀ 

It is worth pausing at this juncture to comment on the significance of the above results. 
 The formulation (76) is an optimal solution for the time-varying smoother problem 

since it can be seen from (79) that it achieves the best-possible performance.  
 Similarly, (83) is termed an optimal solution because it achieves the best-possible 

filter performance (85).  
 By inspection of (79) and (85) it follows that the minimum-variance smoother 

outperforms the minimum-variance filter. 
 In general, these optimal solutions are not very practical because of the difficulty in 

realising an exact Wiener-Hopf factor.  

Practical smoother (and filter) solutions that make use of an approximate Wiener-Hopf 
factor are described below. 
 

6.5.4.3 Optimal Realisable Solutions 
 

Output Estimation 
The Wiener-Hopf factor is modelled on the structure of the spectral factor which is 
described Section 3.4.4. Suppose that R(t) > 0 for all t  [0, T] and there exist R1/2(t)  > 0 such 

                                                                 

“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in its 
success, than to take the lead in the introduction of a new order of things.” Niccolo Di Bernado dei 
Machiavelli 
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in which the time-dependence of Q(t) and R(t) is omitted for notational brevity. Suppose 
that Δ: p  → p  is causal, namely Δ and its inverse,  Δ−1, are bounded systems that proceed 
forward in time. The system Δ is known as a Wiener-Hopf factor. 
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that R(t) = R1/2(t) R1/2(t). An approximate Wiener-Hopf factor ˆ :  p  →  p  is defined by the 
system 

1/ 2

1/ 2

( ) ( )( ) ( ) ( )
( ) ( )( ) ( )

x t x tA t K t R t
t z tC t R t

    
     

    


, (86) 

where K(t) = 1( ) ( ) ( )TP t C t R t  is the Kalman gain in which P(t) is the solution of the Riccati 
differential equation 

1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t A t P t P t A t P t C t R t C t P t B t Q t B t    . (87)  

The output estimation smoother (81) can be approximated as 

1  HOE I R ˆ ˆ( )  

                                                             1    ˆ ˆHI R . 

 (88) 

An approximate Wiener-Hopf factor inverse, 1ˆ  , within (88) is obtained from (86) and the 
Matrix Inversion Lemma, namely,  

1/ 2 1/ 2

( ) ( ) ( ) ( ) ( )ˆ( )
( ) ( ) ( ) ( )( )

A t K t C t K t x tx t
R t C t R t z tt  

     
           


, (89) 

where ˆ( )x t   n  is an estimate of the state within 1ˆ  . From Lemma 1, the adjoint of 1ˆ  , 

which is denoted by ˆ H , has the realisation 

1/ 2

1/ 2

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

T T T T

T

tA t C t K t C t R tt
tK t R tt








      
     

     


. (90) 

where ( )t    p  is an estimate of the state within ˆ H . Thus, the smoother (88) is realised 
by (89), (90) and 

ˆ( | ) ( ) ( ) ( )y t T z t R t t  . (91) 

Procedure 1. The above output estimator can be implemented via the following three steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t). 
Step 2. In lieu of the adjoint system (90), operate (89) on the time-reversed transpose of 

α(t). Then take the time-reversed transpose of the result to obtain β(t). 
Step 3. Calculate the smoothed output estimate from (91).  

                                                                 

“If I have a thousand ideas and only one turns out to be good, I am satisfied.” Alfred Bernhard Nobel 

  

Example 4. Consider an estimation problem parameterised by a = – 1, b = 2 , c = 1, d = 0, 
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Filtering 

The causal part { }OE  of the minimum-variance smoother (88) is given by  

1 
    ˆ ˆ{ } { }HOE I R  

                                                             1 2 1   / ˆI RR  

                                                  1 2 1  / ˆI R . 

(92) 

Employing (89) within (92) leads to the standard minimum-variance filter, namely, 

ˆ ˆ( | ) ( ( ) ( ) ( )) ( | ) ( ) ( )x t t A t K t C t x t t K t z t    
ˆ ˆ( | ) ( ) ( | )y t t C t x t t . 

(93) 

(94) 

Input Estimation 

As discussed in Chapters 1 and 2, input estimates can be found using 1  = I, and 

substituting ̂  for Δ within (76) yields the solution 

1 1 1 1
2 2
        ˆ ˆ ˆ ˆ( )H H

IE Q Q   . (95) 
As expected, the low-measurement-noise-asymptote of this equaliser is given by 

1
20




lim IER

  . That is, at high signal-to-noise-ratios the equaliser approaches 1
2
 , provided 

the inverse exists. 

The development of a differential equation for the smoothed input estimate, ˆ ( | )w t T , makes 
use of the following formula [27] for the cascade of two systems. Suppose that two linear 

                                                                 

“Ten geographers who think the world is flat will tend to reinforce each others errors….Only a sailor 
can set them straight.” John Ralston Saul 

www.intechopen.com



Continuous-Time Smoothing 139
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systems 1  and 2  have state-space parameters  1 1

1 1

A B
C D
 
 
 

 and 2 2

2 2

A B
C D
 
 
 

, respectively. 

Then 2 1   is parameterised by 
1 1

2 1 2 2 1

2 1 2 2 1

0A B
B C A B D
D C C D D

 
 
 
  

. It follows that ˆ ( | )w t T  = ̂ ( )H HQ t  

is realised by 

1/ 2

1/ 2

1/ 2

( ) ( ) ( ) ( ) 0 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T

T T T T

T T T T

t A t C t K t C t R t t
t C t K t A t C t R t t

w t T Q t D t K t Q t B t Q t D t R t t

 
 









       
            
         



 . (96) 

in which ( )t   n  is an auxiliary state. 

Procedure 2. Input estimates can be calculated via the following two steps. 
Step 1. Operate 1ˆ   on the measurements z(t) using (89) to obtain α(t).  
Step 2. In lieu of (96), operate the adjoint of (96) on the time-reversed transpose of α(t). 

Then take the time-reversed transpose of the result.  
 

State Estimation 

Smoothed state estimates can be obtained by defining the reference system 1  within (76) 
as 

ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | )x t T A t x t T B t w t T  . (97)  

That is, a smoother for state estimation is given by (89), (96) and (97). In frequency-domain 
estimation problems, minimum-order solutions are found by exploiting pole-zero 
cancellations, see Example 1.13 of Chapter 1. Here in the time-domain, (89), (96), (97) is not a 
minimum-order solution and some numerical model order reduction may be required.  

Suppose that C(t) is of rank n and D(t) = 0. In this special case, an n2-order solution for state 
estimation can be obtained from (91) and 

#ˆ ˆ( | ) ( ) ( | )x t T C t y t T , (98)  

where 

  1# ( ) ( ) ( ) ( )T TC t C t C t C t


  (99) 

denotes the Moore-Penrose pseudoinverse. 

 
                                                                 

“In questions of science, the authority of a thousand is not worth the humble reasoning of a single 
individual.” Galileo Galilei 

  

6.5.4.4 Performance 
An analysis of minimum-variance smoother performance requires an identity which is 
described after introducing some additional notation. Let α = 0 w  denote the output of 
linear time-varying system having the realisation  

( ) ( ) ( ) ( )x t A t x t w t   

( ) ( )t x t  , 

(100) 

(101) 

where w(t)  n  and A(t)  n n . By inspection of (100) – (101), the output of the inverse 
system w = 1

0 y  is given by 

( ) ( ) ( ) ( )w t t A t t   . (102)  

Similarly, let β = 0
Hu  denote the output of the adjoint system 0

H , which from Lemma 1 
has the realisation 

( ) ( ) ( ) ( )Tt A t t u t     

( ) ( )t t  . 

(103) 

(104) 

It follows that the output of the inverse system u = 0
H  is given by  

( ) ( ) ( ) ( )Tu t t A t t    . (105)  

The following identity is required in the characterisation of smoother performance 
1

0 0( ) ( ) ( ) ( ) ( ) ( )T HP t A t A t P t P t P t      , (106)  

where P(t) is an arbitrary matrix of compatible dimensions. The above equation can be 
verified by using (102) and (105) within (106). Using the above notation, the exact Wiener-
Hopf factor satisfies 

0 0  ( ) ( ) ( ) ( ) ( ) ( )H T H TC t B t Q t B t C t R t  . (107)  

It is observed below that the approximate Wiener-Hopf factor (86) approaches the exact 
Wiener Hopf-factor whenever the problem is locally stationary, that is, whenever A(t), B(t), 
C(t), Q(t) and R(t) change sufficiently slowly, so that ( )P t  of (87) approaches the zero 
matrix. 

Lemma 10 [8]: In respect of the signal model (1) – (2) with D(t) = 0, E{w(t)} = E{v(t)} = 0, 
E{w(t)wT(t)} = Q(t), E{v(t)vT(t)} = R(t), E{w(t)vT(t)} = 0 and the quantities defined above, 

0 0    H H H TC t P t C tˆ ˆ ( ) ( ) ( )  . (108) 
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Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1 2
0

/( ) ( ) ( )C t K t R t  + 1 2R t/ ( ) . 

It is easily shown that Hˆ ˆ  = 0 0
( ) ( HC t P   + 1

0
 P  + 0( ) ( ) ( )) ( )T H TK t R t K t C t  and using (106) 

gives Hˆ ˆ  = 0( ) ( ( ) ( ) ( )TC t B t Q t B t    0
( ) ( )H TP t C t  + R(t). The result follows by comparing 

ˆ ˆ H  and (107).                                                                                                                                      □ 

Consequently, the minimum-variance smoother (88) achieves the best-possible estimator 
performance, namely 2 2 2

H
ei ei   = 0, whenever the problem is locally stationary. 

Lemma 11 [8]: The output estimation smoother (88) satisfies 

1 1
2 0 0

      H H H T
ei R t C t P t C t( )[( ) ( ( ) ( ) ( )) ]   . (109) 

Proof: Substituting (88) into (77) yields 

1 1
2

     ˆ ˆ( )[( ) ( ) ]H H
ei R t . (110) 

The result is now immediate from (108) and (110).                                                                               □ 

Conditions for the convergence of the Riccati difference equation solution (87) and hence the 
asymptotic optimality of the smoother (88) are set out below. 

Lemma 12 [8]: Let S(t) =CT(t)R−1(t)C(t). If( i) there exist solutions P(t) ≥ P(t+δt) of (87) for a t > δt 
> 0; and 

   (ii) 
( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

≥
( ) ( )
( ) ( )

t t
T

t t

Q t A t
A t S t

 
 

  
    

 
(111) 

for all t > δt then 

2 2 2
0


lim H

ei eit
  . (112) 

Proof: Conditions (i) and (ii) together with Theorem 1 imply P(t) ≥ P(t+δt) for all t > δt  and 


lim ( )

t
P t  = 0. The claim (112) is now immediate from Lemma 11.                                                     □ 

 

6.5.5 Performance Comparison 
The following scalar time-invariant examples compare the performance of the minimum-
variance filter (92), maximum-likelihood smoother (50), Fraser-Potter smoother (73) and 
minimum-variance smoother (88) under Gaussian and nongaussian noise conditions. 

Example 5 [9]. Suppose that A = – 1 and B = C = Q = 1. Simulations were conducted using T 
= 100 s, dt = 1 ms and 1000 realisations of Gaussian noise processes. The mean-square-error 
(MSE) exhibited by the filter and smoothers as a function of the input signal-to-noise ratio 
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(SNR) is shown in Fig. 2. As expected, it can be seen that the smoothers outperform the 
filter. Although the minimum-variance smoother exhibits the lowest mean-square error, the 
performance benefit diminishes at high signal-to-noise ratios. 
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Example 6 [9]. Suppose instead that the process noise is the unity-variance deterministic 
signal w(t) = 1 

sin( )sin( ) tt , where 2 sin( )t  denotes the sample variance of sin(t). The results of 
simulations employing the sinusoidal process noise and Gaussian measurement noise are 
shown in Fig. 3. Once again, the smoothers exhibit better performance than the filter. It can 
be seen that the minimum-variance smoother provides the best mean-square-error 
performance. The minimum-variance smoother appears to be less perturbed by nongaussian 
noises because it does not rely on assumptions about the underlying distributions. 
 

6.6 Conclusion 
The fixed-point smoother produces state estimates at some previous point in time,  that is, 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , 

where Σ(t) is the smoother error covariance. 

In fixed-lag smoothing, state estimates are calculated at a fixed time delay τ behind  the 
current measurements. This smoother has the form 

 1ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( ) ( ) ( | ) ( | )Tx t t A t x t t B t Q t B t P t x t t x t t          

                                               1 ˆ( ) ( , ) ( ) ( ) ( ) ( ) ( )T TP t t t C t R t z t C t x t              ,   

where Ф(t + τ, t) is the transition matrix of the minimum-variance filter. 
                                                                 

“He who rejects change is the architect of decay. The only human institution which rejects progress is 
the cemetery.” James Harold Wilson 

Figure 2. MSE versus SNR for Example 4: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother and 
(iv) minimum-variance filter.  

Figure 3. MSE versus SNR for Example 5: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother 
and (iv) minimum-variance filter.  
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Proof: The approximate Wiener-Hopf factor may be written as ̂  = 1 2
0

/( ) ( ) ( )C t K t R t  + 1 2R t/ ( ) . 

It is easily shown that Hˆ ˆ  = 0 0
( ) ( HC t P   + 1

0
 P  + 0( ) ( ) ( )) ( )T H TK t R t K t C t  and using (106) 

gives Hˆ ˆ  = 0( ) ( ( ) ( ) ( )TC t B t Q t B t    0
( ) ( )H TP t C t  + R(t). The result follows by comparing 

ˆ ˆ H  and (107).                                                                                                                                      □ 

Consequently, the minimum-variance smoother (88) achieves the best-possible estimator 
performance, namely 2 2 2

H
ei ei   = 0, whenever the problem is locally stationary. 

Lemma 11 [8]: The output estimation smoother (88) satisfies 

1 1
2 0 0

      H H H T
ei R t C t P t C t( )[( ) ( ( ) ( ) ( )) ]   . (109) 

Proof: Substituting (88) into (77) yields 

1 1
2

     ˆ ˆ( )[( ) ( ) ]H H
ei R t . (110) 

The result is now immediate from (108) and (110).                                                                               □ 

Conditions for the convergence of the Riccati difference equation solution (87) and hence the 
asymptotic optimality of the smoother (88) are set out below. 

Lemma 12 [8]: Let S(t) =CT(t)R−1(t)C(t). If( i) there exist solutions P(t) ≥ P(t+δt) of (87) for a t > δt 
> 0; and 

   (ii) 
( ) ( )
( ) ( )T

Q t A t
A t S t
 
  

≥
( ) ( )
( ) ( )

t t
T

t t

Q t A t
A t S t

 
 

  
    

 
(111) 

for all t > δt then 

2 2 2
0


lim H

ei eit
  . (112) 

Proof: Conditions (i) and (ii) together with Theorem 1 imply P(t) ≥ P(t+δt) for all t > δt  and 


lim ( )

t
P t  = 0. The claim (112) is now immediate from Lemma 11.                                                     □ 

 

6.5.5 Performance Comparison 
The following scalar time-invariant examples compare the performance of the minimum-
variance filter (92), maximum-likelihood smoother (50), Fraser-Potter smoother (73) and 
minimum-variance smoother (88) under Gaussian and nongaussian noise conditions. 

Example 5 [9]. Suppose that A = – 1 and B = C = Q = 1. Simulations were conducted using T 
= 100 s, dt = 1 ms and 1000 realisations of Gaussian noise processes. The mean-square-error 
(MSE) exhibited by the filter and smoothers as a function of the input signal-to-noise ratio 

                                                                 

“The definition of insanity is doing the same thing over and over again and expecting different results.” 
Albert Einstein 

  

(SNR) is shown in Fig. 2. As expected, it can be seen that the smoothers outperform the 
filter. Although the minimum-variance smoother exhibits the lowest mean-square error, the 
performance benefit diminishes at high signal-to-noise ratios. 
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sin( )sin( ) tt , where 2 sin( )t  denotes the sample variance of sin(t). The results of 
simulations employing the sinusoidal process noise and Gaussian measurement noise are 
shown in Fig. 3. Once again, the smoothers exhibit better performance than the filter. It can 
be seen that the minimum-variance smoother provides the best mean-square-error 
performance. The minimum-variance smoother appears to be less perturbed by nongaussian 
noises because it does not rely on assumptions about the underlying distributions. 
 

6.6 Conclusion 
The fixed-point smoother produces state estimates at some previous point in time,  that is, 

 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( | )Tt t C t R t z t C t x t t    , 

where Σ(t) is the smoother error covariance. 

In fixed-lag smoothing, state estimates are calculated at a fixed time delay τ behind  the 
current measurements. This smoother has the form 
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where Ф(t + τ, t) is the transition matrix of the minimum-variance filter. 
                                                                 

“He who rejects change is the architect of decay. The only human institution which rejects progress is 
the cemetery.” James Harold Wilson 

Figure 2. MSE versus SNR for Example 4: (i) 
minimum-variance smoother, (ii) Fraser-Potter 
smoother, (iii) maximum-likelihood smoother and 
(iv) minimum-variance filter.  
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smoother, (iii) maximum-likelihood smoother 
and (iv) minimum-variance filter.  
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Three common fixed-interval smoothers are listed in Table 1, which are for retrospective (or 
off-line) data analysis. The Rauch-Tung-Streibel (RTS) smoother and Fraser-Potter (FP) 
smoother are minimum-order solutions. The RTS smoother differential equation evolves 
backward in time, in which ( )G   = 1( ) ( ) ( ) ( )TB Q B P     is the smoothing gain. The FP 
smoother employs a linear combination of forward state estimates and backward state 
estimates obtained by running a filter over the time-reversed measurements. The optimum 
minimum-variance solution, in which ( )A t  = ( ) ( ) ( )A t K t C t , where K(t) is the predictor 
gain, involves a cascade of forward and adjoint predictions. It can be seen that the optimum 
minimum-variance smoother is the most complex and so any performance benefits need to 
be reconciled with the increased calculation cost.  

 ASSUMPTIONS MAIN RESULTS 
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E{w(t)} = E{v(t)} = 0. 
E{w(t)wT(t)} = Q(t) > 0 
and E{v(t)vT(t)} = R(t) > 
0 are known. A(t), B(t) 
and C(t) are known. 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t   
( ) ( ) ( )y t C t x t  
( ) ( ) ( )z t y t v t   

RT
S 

sm
oo
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er

 Assumes that the 
filtered and smoothed 
states are normally 
distributed. ˆ( | )x t t  
previously calculated by 
Kalman filter.  

 ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( | )x T A x T G x T x           

 

FP
 

sm
oo

th
er

 ˆ( | )x t t  previously 
calculated by Kalman 
filter. 

       1 1 1ˆ( | ) ( ( | ) ( | ))x t T P t t t t      
                 1 1ˆ( ( | ) ( | ) ( | ) ( | ))P t t x t t t t t t     
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1/ 2 1/ 2

ˆ( )ˆ ( ) ( )( )
( )( ) ( ) ( )( )

x tA t K tx t
z tR t C t R tt  

     
     

      

  

1/ 2

1/ 2

( )( ) ( ) ( ) ( )
( )( ) ( ) ( )

T T

T

tt A t C t R t
tt K t R t








      
     

        

  

ˆ( | ) ( ) ( ) ( )y t T z t R t t   

Table 1. Continuous-time fixed-interval smoothers. 

The output estimation error covariance for the general estimation problem can be written as 
H

ei ei  = 1 1
H

ei ei   + 2 2
H

ei ei  , where 1 1
H

ei ei   specifies a lower performance bound and 

                                                                 

“Remember a dead fish can float downstream but it takes a live one to swim upstream.” William Claude 
Fields 

  

2 2
H

ei ei   is a function of the estimator solution. The optimal smoother solution achieves 

2 2 2
{ }H

ei ei    = 0 and provides the best mean-square-error performance, provided of course 

that the problem assumptions are correct. The minimum-variance smoother solution also 
attains best-possible performance whenever the problem is locally stationary, that is, when 
A(t), B(t), C(t), Q(t) and R(t) change sufficiently slowly. 
 

6.7 Problems 
Problem 1. Write down augmented state-space matrices A(a)(t), B(a)(t) and C(a)(t) for the 
continuous-time fixed-point smoother problem. 
(i) Substitute the above matrices into ( ) ( )aP t  = ( ) ( )( ) ( )a aA t P t  + ( ) ( )( )( ) ( )a a TP t A t  − 

( ) ( ) 1 ( ) ( )( )( ) ( ) ( ) ( ) ( )a a T a aP t C t R t C t P t  + ( ) ( )( ) ( )( ( ))a a TB t Q t B t  to obtain the component 
Riccati differential equations. 

(ii)  Develop expressions for the continuous-time fixed-point smoother estimate and the 
smoother gain. 

Problem 2. The Hamiltonian equations (60) were derived from the forward version of the 
maximum likelihood smoother (54). Derive the alternative form  

11

ˆˆ 0( | )( | ) ( ) ( ) ( ) ( )
( ) ( ) ( )( | )( ) ( ) ( ) ( )( | )

T

TT T

x t Tx t T A t B t Q t B t
C t R t z tt TC t R t C t A tt T 



       
        

      




. 

from the backward smoother (50). Hint: use the backward Kalman-Bucy filter and the 
backward Riccati equation.  

Problem 3. It is shown in [6] and [17] that the intermediate variable within the Hamiltonian 
equations (60) is given by 

1 ˆ( | ) ( , ) ( ) ( )( ( ) ( ) ( | ))
T T T

t
t T s t C s R s z s C s x s s ds    , 

where ( , )T s t  is the transition matrix of the Kalman-Bucy filter. Use the above equation to 
derive 

1 1ˆ( | ) ( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( ) ( )T T Tt T C t R t C t x t T A t t C t R t z t       . 

Problem 4. Show that the adjoint of system having state space parameters  
( ) ( )
( ) ( )

A t B t
C t D t
 
 
 

 is 

parameterised by 
( ) ( )
( ) ( )

T T

T T

A t C t
B t D t

  
 
 

.  

                                                                 

“It is not the strongest of the species that survive, nor the most intelligent, but the most responsive to 
change.” Charles Robert Darwin 
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smoother are minimum-order solutions. The RTS smoother differential equation evolves 
backward in time, in which ( )G   = 1( ) ( ) ( ) ( )TB Q B P     is the smoothing gain. The FP 
smoother employs a linear combination of forward state estimates and backward state 
estimates obtained by running a filter over the time-reversed measurements. The optimum 
minimum-variance solution, in which ( )A t  = ( ) ( ) ( )A t K t C t , where K(t) is the predictor 
gain, involves a cascade of forward and adjoint predictions. It can be seen that the optimum 
minimum-variance smoother is the most complex and so any performance benefits need to 
be reconciled with the increased calculation cost.  
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The output estimation error covariance for the general estimation problem can be written as 
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H
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ei ei   specifies a lower performance bound and 
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ei ei   is a function of the estimator solution. The optimal smoother solution achieves 

2 2 2
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ei ei    = 0 and provides the best mean-square-error performance, provided of course 

that the problem assumptions are correct. The minimum-variance smoother solution also 
attains best-possible performance whenever the problem is locally stationary, that is, when 
A(t), B(t), C(t), Q(t) and R(t) change sufficiently slowly. 
 

6.7 Problems 
Problem 1. Write down augmented state-space matrices A(a)(t), B(a)(t) and C(a)(t) for the 
continuous-time fixed-point smoother problem. 
(i) Substitute the above matrices into ( ) ( )aP t  = ( ) ( )( ) ( )a aA t P t  + ( ) ( )( )( ) ( )a a TP t A t  − 

( ) ( ) 1 ( ) ( )( )( ) ( ) ( ) ( ) ( )a a T a aP t C t R t C t P t  + ( ) ( )( ) ( )( ( ))a a TB t Q t B t  to obtain the component 
Riccati differential equations. 

(ii)  Develop expressions for the continuous-time fixed-point smoother estimate and the 
smoother gain. 

Problem 2. The Hamiltonian equations (60) were derived from the forward version of the 
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from the backward smoother (50). Hint: use the backward Kalman-Bucy filter and the 
backward Riccati equation.  

Problem 3. It is shown in [6] and [17] that the intermediate variable within the Hamiltonian 
equations (60) is given by 
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t
t T s t C s R s z s C s x s s ds    , 
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Problem 5. Suppose 0  is a system parameterised by 
( )

0
A t I

I
 
 
 

, show that ( ) ( )TP t A t  -  

( ) ( )A t P t  = 0( ) HP t   + 1
0 ( )P t . 

Problem 6. The optimum minimum-variance smoother was developed by finding the 
solution that minimises 2 2 2

Hy y  . Use the same completing-the-square approach to find the 

optimum minimum-variance filter. (Hint: Find the solution that minimises 2 2 2

Ty y  .) 

Problem 7 [9]. Derive the output estimation minimum-variance filter by finding a solution 
Let  a   , b = 1, c    and d = 0 denote the time-invariant state-space parameters of the 
plant  . Denote the error covariance, gain of the Kalman filter and gain of the maximum-
likelihood smoother by p, k and g, respectively. Show that 

H1(s) =  k(s–a+kc)-1, 

H2(s) =  cgk(–s–a+g)-1(s–a+kc)-1, 

H3(s) =  kc(–a + kc)(s a + kc)-1(–s –a + kc)-1, 

H4(s) = ((–a + kc)2 – (–a + kc – k)2)(s – a + kc)-1(–s –a + kc)-1     

are the transfer functions of the Kalman filter, maximum-likelihood smoother, the Fraser-
Potter smoother and the minimum variance smoother, respectively.  

Problem 8.  

(i) Develop a state-space formulation of an approximate Wiener-Hopf factor for the 
case when the plant includes a nonzero direct feedthrough matrix (that is, D(t) ≠ 0). 

(ii) Use the matrix inversion lemma to obtain the inverse of the approximate Wiener-
Hopf factor for the minimum-variance smoother. 

 

6.8 Glossary  
 

p(x(t)) Probability density function of a continuous random variable x(t). 

( ) ~ ( , )xxx t R  The random variable x(t) has a normal distribution with mean μ 
and covariance Rxx. 

f(x(t)) Cumulative distribution function or likelihood function of x(t). 

ˆ( | )x t t   Estimate of x(t) at time t given data at fixed time lag τ. 

ˆ( | )x t T  Estimate of x(t) at time t given data over a fixed interval T. 

ˆ ( | )w t T  Estimate of w(t) at time t given data over a fixed interval T. 

 

                                                                 

“Once a new technology rolls over you, if you’re not part of the steamroller, you’re part of the road.” 
Stewart Brand 

  

G(t) Gain of the minimum-variance smoother developed by Rauch, 
Tung and Striebel. 

 

ei  A linear system that operates on the inputs i = 
TT Tv w    and 

generates the output estimation error e. 
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Problem 5. Suppose 0  is a system parameterised by 
( )

0
A t I

I
 
 
 

, show that ( ) ( )TP t A t  -  

( ) ( )A t P t  = 0( ) HP t   + 1
0 ( )P t . 

Problem 6. The optimum minimum-variance smoother was developed by finding the 
solution that minimises 2 2 2

Hy y  . Use the same completing-the-square approach to find the 

optimum minimum-variance filter. (Hint: Find the solution that minimises 2 2 2

Ty y  .) 
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H3(s) =  kc(–a + kc)(s a + kc)-1(–s –a + kc)-1, 

H4(s) = ((–a + kc)2 – (–a + kc – k)2)(s – a + kc)-1(–s –a + kc)-1     

are the transfer functions of the Kalman filter, maximum-likelihood smoother, the Fraser-
Potter smoother and the minimum variance smoother, respectively.  

Problem 8.  
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ˆ( | )x t T  Estimate of x(t) at time t given data over a fixed interval T. 

ˆ ( | )w t T  Estimate of w(t) at time t given data over a fixed interval T. 
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