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4.1 Introduction 
Kalman filters are employed wherever it is desired to recover data from the noise in an 
optimal way, such as satellite orbit estimation, aircraft guidance, radar, communication 
systems, navigation, medical diagnosis and finance. Continuous-time problems that possess 
differential equations may be easier to describe in a state-space framework, however, the 
filters have higher implementation costs because an additional integration step and higher 
sampling rates are required. Conversely, although discrete-time state-space models may be 
less intuitive, the ensuing filter difference equations can be realised immediately. 
The discrete-time Kalman filter calculates predicted states via the linear recursion 

1/ 1/ 1/ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , 

where the predictor gain, Kk, is a function of the noise statistics and the model parameters. 
The above formula was reported by Rudolf E. Kalman in the 1960s [1], [2]. He has since 
received many awards and prizes, including the National Medal of Science, which was 
presented to him by President Barack Obama in 2009. 

The Kalman filter calculations are simple and well-established. A possibly troublesome 
obstacle is expressing problems at hand within a state-space framework. This chapter 
derives the main discrete-time results to provide familiarity with state-space techniques and 
filter application. The continuous-time and discrete-time minimum-square-error Wiener 
filters were derived using a completing-the-square approach in Chapters 1 and 2, 
respectively. Similarly for time-varying continuous-time signal models, the derivation of the 
minimum-variance Kalman filter, presented in Chapter 3, relied on a least-mean-square (or 
conditional-mean) formula. This formula is used again in the solution of the discrete-time 
prediction and filtering problems. Predictions can be used when the measurements are 
irregularly spaced or missing at the cost of increased mean-square-error. 

This chapter develops the prediction and filtering results for the case where the problem is 
nonstationary or time-varying. It is routinely assumed that the process and measurement 
noises are zero mean and uncorrelated. Nonzero mean cases can be accommodated by 
including deterministic inputs within the state prediction and filter output updates. 
Correlated noises can be handled by adding a term within the predictor gain and the 
underlying Riccati equation. The same approach is employed when the signal model 
                                                                 

“Man will occasionally stumble over the truth, but most of the time he will pick himself up and 
continue on.” Winston Leonard Spencer-Churchill 
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possesses a direct-feedthrough term. A simplification of the generalised regulator problem 
from control theory is presented, from which the solutions of output estimation, input 
estimation (or equalisation), state estimation and mixed filtering problems follow 
immediately. 

 

 

 

 

 

 

Figure 1. The discrete-time system   operates on the input signal wk  m  and produces 
the output yk   p . 
 

4.2 The Time-varying Signal Model 
A discrete-time time-varying system : m  →  p  is assumed to have the state-space 
representation 

1k k k k kx A x B w   , 

k k k k ky C x D w  , 

(1) 

(2) 

where Ak  n n , Bk  n m , Ck   p n  and Dk   p p  over a finite interval k   [0, N]. The 
wk is a stochastic white process with 

{ }kE w  = 0, { }T
j kE w w  = k jkQ  , (3)  

in which 
1 if
0 ifjk

j k
j k




  
 is the Kronecker delta function. This system is depicted in Fig. 1, 

in which z-1 is the unit delay operator. It is interesting to note that, at time k the current state 

xk = Ak-1xk-1 + Bk-1wk-1, (4)  
does not involve wk. That is, unlike continuous-time systems, here there is a one-step delay 
between the input and output sequences. The simpler case of Dk = 0, namely, 

yk = Ckxk, (5) 
is again considered prior to the inclusion of a nonzero Dk. 

                                                                 

“Rudy Kalman applied the state-space model to the filtering problem, basically the same problem 
discussed by Wiener. The results were astonishing. The solution was recursive, and the fact that the 
estimates could use only the past of the observations posed no difficulties.” Jan. C. Willems 
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4.3 The State Prediction Problem 
Suppose that observations of (5) are available, that is, 

zk = yk + vk, (6)  
where vk is a white measurement noise process with 

E{vk} = 0, { }T
j kE v v  = Rkδjk and { }T

j kE w v =0.  (7)  
 

 
 
 
 

 

Figure 2. The state prediction problem. The objective is to design a predictor   which 
operates on the measurements and produces state estimates such that the variance of the 
error residual ek/k-1 is minimised. 

It is noted above for the state recursion (4), there is a one-step delay between the current 
state and the input process. Similarly, it is expected that there will be one-step delay 
between the current state estimate and the input measurement. Consequently, it is 
customary to denote / 1ˆ k kx   as the state estimate at time k, given measurements at time k – 1. 
The / 1ˆ k kx   is also known as the one-step-ahead state prediction. The objective here is to 
design a predictor   that operates on the measurements zk and produces an estimate, 

/ 1ˆ k ky   = / 1ˆk k kC x  , of yk = Ckyk, so that the covariance, / 1 / 1{ }T
k k k kE e e  , of the error residual, ek/k-1 

= yk – / 1ˆ k ky  , is minimised. This problem is depicted in Fig. 2 
 

4.4 The Discrete-time Conditional Mean Estimate 
The predictor derivation that follows relies on the discrete-time version of the conditional-
mean or least-mean-square estimate derived in Chapter 3, which is set out as follows. 
Consider a stochastic vector [ ]TT T

k k   having means and covariances 

k

k

E


 

          
      

 (8)  

 

 

                                                                 

“Prediction is very difficult, especially if it’s about the future.” Niels Henrik David Bohr 




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
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wk yk 
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zk 
/ 1ˆ k ky   

/ 1 / 1ˆk k k k ke y y    
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estimation (or equalisation), state estimation and mixed filtering problems follow 
immediately. 
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4.4 The Discrete-time Conditional Mean Estimate 
The predictor derivation that follows relies on the discrete-time version of the conditional-
mean or least-mean-square estimate derived in Chapter 3, which is set out as follows. 
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“Prediction is very difficult, especially if it’s about the future.” Niels Henrik David Bohr 





  ∑ 




  ∑ 








wk yk 

vk 

zk 
/ 1ˆ k ky   

/ 1 / 1ˆk k k k ke y y    

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future78

  

and 

k k k k

k k k k

k T T
k k

k

E    

   


 



                      
. (9)  

respectively, where 
k k k k

T
      . An estimate of  k  given k , denoted by { | }k kE   , which 

minimises ( kE   − { | })(k k kE     − { | })T
k kE   , is given by 

1{ | } ( )
k k k kk k kE             . (10)  

The above formula is developed in [3] and established for Gaussian distributions in [4]. A 
derivation is requested in the problems. If αk and βk are scalars then (10) degenerates to the 
linear regression formula as is demonstrated below.  

Example 1 (Linear regression [5]). The least-squares estimate ˆk  = ka  + b of k  given data 

αk, βk    over [1, N], can be found by minimising the performance objective J = 
1

1 (
N

k
kN



  – 

2ˆ )  = 
1

1 (
N

k
kN



  – ka  – 2)b . Setting dJ

db
 = 0 yields b = a  . Setting dJ

da
 = 0, substituting 

for b and using the definitions (8) – (9), results in a = 1
k k k k   

  . 
 

4.5 Minimum-Variance Prediction 
It follows from (1), (6), together with the assumptions E{wk} = 0, E{vk} = 0, that E{xk+1} = 
E{Akxk}  and E{zk} = E{Ckxk}. It is assumed that similar results hold in the case of predicted 
state estimates, that is,  

1 / 1

/ 1

ˆ ˆ
ˆ

k k k k

k k k k

x A x
E

z C x
 



          
     

. (11)  

Substituting (11) into (10) and denoting 1/ˆ k kx   = 1ˆ{ | }k kE x z  yields the predicted state 

1/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , (12)  

where Kk   1
1ˆ{ } { }T T

k k k kE x z E z z 
  is known as the predictor gain, which is designed in the next 

section. Thus, the optimal one-step-ahead predictor follows immediately from the least-
mean-square (or conditional mean) formula. A more detailed derivation appears in [4]. The 
structure of the optimal predictor is shown in Fig. 3. It can be seen from the figure that   
produces estimates / 1ˆ k ky   = / 1ˆk k kC x   from the measurements zk. 

 

                                                                 

“I admired Bohr very much. We had long talks together, long talks in which Bohr did practically all the 
talking.” Paul Adrien Maurice Dirac  

  

 

 

 

 
 

 

Figure 3. The optimal one-step-ahead predictor which produces estimates 1/ˆ
k kx  of  xk+1  

given measurements zk. 

Let / 1k kx 
  = xk – / 1ˆ k kx   denote the state prediction error. It is shown below that the 

expectation of the prediction error is zero, that is, the predicted state estimate is unbiased. 

Lemma 1: Suppose that  0 / 0x̂  = x0, then 

1/{ }k kE x 
  = 0 (13)  

for all k  [0, N]. 

Proof: The condition 0 / 0x̂  = x0 is equivalent to 0 / 0x  = 0, which is the initialisation step for an 
induction argument. Subtracting (12) from (1) gives 

1/ / 1( )k k k k k k k k k k kx A K C x B w K v       (14) 

and therefore 

1/ / 1{ } ( ) { } { } { }k k k k k k k k k k kE x A K C E x B E w K E v      . (15)  

From assumptions (3) and (7), the last two terms of the right-hand-side of (15) are zero. Thus, (13) 
follows by induction.                                                                                                                              ฀ 
 

4.6 Design of the Predictor Gain 
It is shown below that the optimum predictor gain is that which minimises the prediction 
error covariance / 1 / 1{ }T

k k k kE x x 
  . 

Lemma 2: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exist 
solutions / 1k kP   = / 1

T
k kP   ≥ 0 to the Riccati difference equation 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A B Q B A P C C P C R C P A
        , (16)  

over [0, N], then the predictor gain 
1

/ 1 / 1( )T T
k k k k k k k k k kK A P C C P C R 

   , (17)  

within (12) minimises  / 1k kP   = / 1 / 1{ }T
k k k kE x x 

  . 

                                                                 

“When it comes to the future, there are three kinds of people: those who let it happen, those who make 
it happen, and those who wondered what happened.” John M. Richardson Jr. 



  

Ck 

 

Ak 

 

Kk 
1/ˆk kx 

Σ 



/ 1ˆ
k k k kz C x

/ 1 / 1ˆ ˆk k k k ky C x 

/ 1ˆk kx 

─ 

  z-1 
kz

Σ 

www.intechopen.com



Discrete-Time Minimum-Variance Prediction and Filtering 79
  

and 

k k k k

k k k k

k T T
k k

k

E    

   


 



                      
. (9)  

respectively, where 
k k k k

T
      . An estimate of  k  given k , denoted by { | }k kE   , which 

minimises ( kE   − { | })(k k kE     − { | })T
k kE   , is given by 

1{ | } ( )
k k k kk k kE             . (10)  

The above formula is developed in [3] and established for Gaussian distributions in [4]. A 
derivation is requested in the problems. If αk and βk are scalars then (10) degenerates to the 
linear regression formula as is demonstrated below.  

Example 1 (Linear regression [5]). The least-squares estimate ˆk  = ka  + b of k  given data 

αk, βk    over [1, N], can be found by minimising the performance objective J = 
1

1 (
N

k
kN



  – 

2ˆ )  = 
1

1 (
N

k
kN



  – ka  – 2)b . Setting dJ

db
 = 0 yields b = a  . Setting dJ

da
 = 0, substituting 

for b and using the definitions (8) – (9), results in a = 1
k k k k   

  . 
 

4.5 Minimum-Variance Prediction 
It follows from (1), (6), together with the assumptions E{wk} = 0, E{vk} = 0, that E{xk+1} = 
E{Akxk}  and E{zk} = E{Ckxk}. It is assumed that similar results hold in the case of predicted 
state estimates, that is,  

1 / 1

/ 1

ˆ ˆ
ˆ

k k k k

k k k k

x A x
E

z C x
 



          
     

. (11)  

Substituting (11) into (10) and denoting 1/ˆ k kx   = 1ˆ{ | }k kE x z  yields the predicted state 

1/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx A x K z C x     , (12)  

where Kk   1
1ˆ{ } { }T T

k k k kE x z E z z 
  is known as the predictor gain, which is designed in the next 

section. Thus, the optimal one-step-ahead predictor follows immediately from the least-
mean-square (or conditional mean) formula. A more detailed derivation appears in [4]. The 
structure of the optimal predictor is shown in Fig. 3. It can be seen from the figure that   
produces estimates / 1ˆ k ky   = / 1ˆk k kC x   from the measurements zk. 

 

                                                                 

“I admired Bohr very much. We had long talks together, long talks in which Bohr did practically all the 
talking.” Paul Adrien Maurice Dirac  

  

 

 

 

 
 

 

Figure 3. The optimal one-step-ahead predictor which produces estimates 1/ˆ
k kx  of  xk+1  

given measurements zk. 

Let / 1k kx 
  = xk – / 1ˆ k kx   denote the state prediction error. It is shown below that the 

expectation of the prediction error is zero, that is, the predicted state estimate is unbiased. 

Lemma 1: Suppose that  0 / 0x̂  = x0, then 

1/{ }k kE x 
  = 0 (13)  

for all k  [0, N]. 

Proof: The condition 0 / 0x̂  = x0 is equivalent to 0 / 0x  = 0, which is the initialisation step for an 
induction argument. Subtracting (12) from (1) gives 

1/ / 1( )k k k k k k k k k k kx A K C x B w K v       (14) 

and therefore 

1/ / 1{ } ( ) { } { } { }k k k k k k k k k k kE x A K C E x B E w K E v      . (15)  

From assumptions (3) and (7), the last two terms of the right-hand-side of (15) are zero. Thus, (13) 
follows by induction.                                                                                                                              ฀ 
 

4.6 Design of the Predictor Gain 
It is shown below that the optimum predictor gain is that which minimises the prediction 
error covariance / 1 / 1{ }T

k k k kE x x 
  . 

Lemma 2: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exist 
solutions / 1k kP   = / 1

T
k kP   ≥ 0 to the Riccati difference equation 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A B Q B A P C C P C R C P A
        , (16)  

over [0, N], then the predictor gain 
1

/ 1 / 1( )T T
k k k k k k k k k kK A P C C P C R 

   , (17)  

within (12) minimises  / 1k kP   = / 1 / 1{ }T
k k k kE x x 

  . 

                                                                 

“When it comes to the future, there are three kinds of people: those who let it happen, those who make 
it happen, and those who wondered what happened.” John M. Richardson Jr. 



  

Ck 

 

Ak 

 

Kk 
1/ˆk kx 

Σ 



/ 1ˆ
k k k kz C x

/ 1 / 1ˆ ˆk k k k ky C x 

/ 1ˆk kx 

─ 

  z-1 
kz

Σ 

www.intechopen.com



Smoothing, Filtering and Prediction:
Estimating the Past, Present and Future80

  

Proof: Constructing 1/k kP     1/ 1/{ }T
k k k kE x x 

   using (3), (7), (14), / 1{ }T
k k kE x w

  = 0 and / 1{ }T
k k kE x v

  
= 0 yields 

1/ / 1( ) ( )     T T T
k k k k k k k k k k k k k k k kP A K C P A K C B Q B K R K , (18)  

which can be rearranged to give 
1

1/ / 1 / 1 / 1 / 1( )T T T T T
k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    , 

(19)  

By inspection of (19), the predictor gain (17) minimises 1/k kP  .                                                         ฀ 
 

4.7 Minimum-Variance Filtering 
It can be seen from (12) that the predicted state estimate / 1ˆ k kx   is calculated using the 
previous measurement zk-1 as opposed to the current data zk. A state estimate, given the data 
at time k, which is known as the filtered state, can similarly be obtained using the linear least 
squares or conditional-mean formula. In Lemma 1 it was shown that the predicted state 
estimate is unbiased. Therefore, it is assumed that the expected value of the filtered state 
equals the expected value of the predicted state, namely, 

/ / 1

/ 1

ˆ ˆ
ˆ

k k k k

k k k k

x x
E

z C x




          
     

. (20) 

Substituting (20) into (10) and denoting /ˆ k kx  = ˆ{ | }k kE x z  yields the filtered estimate 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , (21)  

where Lk = 1ˆ{ } { }T T
k k k kE x z E z z   is known as the filter gain, which is designed subsequently. Let 

/k kx  = xk – /ˆ k kx  denote the filtered state error. It is shown below that the expectation of the 
filtered error is zero, that is, the filtered state estimate is unbiased. 

Lemma 3: Suppose that  0 / 0x̂  = x0, then 

/{ }k kE x  = 0 (22)  

for all k  [0, N].  

 

 

                                                                 

“To be creative you have to contribute something different from what you've done before. Your results 
need not be original to the world; few results truly meet that criterion. In fact, most results are built on 
the work of others.” Lynne C. Levesque 

  

Proof: Following the approach of [6], combining (4) - (6) results in zk = CkAk-1xk-1 + CkBk-1wk-1 + vk, 
which together with (21) yields 

/ 1 1/ 1 1 1( ) ( )k k k k k k k k k k k k kx I L C A x I L C B w L v          . (23)  

From (23) and the assumptions (3), (7), it follows that 

/ 1 1/ 1{ } ( ) { }k k k k k k kE x I L C A E x      
                                    1 1 1 0 0 / 0( ) ( ) { }k k kI L C A I L C A E x    . 

(24)  

Hence, with the initial condition 0 / 0x̂  = x0, /{ }k kE x  = 0.                                                                     ฀ 
 

4.8 Design of the Filter Gain 
It is shown below that the optimum filter gain is that which minimises the covariance 

/ /{ }T
k k k kE x x  , where /k kx  = xk – /ˆ k kx  is the filter error. 

Lemma 4: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exists a 
solution /k kP  = /

T
k kP  ≥ 0 to the Riccati difference equation 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
      , (25)  

over [0, N], then the filter gain 
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

   , (26)  
within (21) minimises  /k kP    / /{ }T

k k k kE x x  . 

Proof: Subtracting /ˆ k kx  from xk yields /k kx  = xk –  /ˆ k kx  = xk − / 1ˆ k kx  − (k kL Cx  + vk − / 1ˆ )k kCx  , that is,  

/ / 1( )k k k k k k k kx I L C x L v     (27)  

and 
/ / 1( ) ( )T T

k k k k k k k k k k kP I L C P I L C L R L    , (28)  

which can be rearranged as7 
1

/ / 1 / 1 / 1 / 1( )T T
k k k k k k k k k k k k k k kP P P C C P C R C P

       

     1 1
/ 1 / 1 / 1 / 1 / 1( ( ) )( )( ( ) )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kL P C C P C R C P C R L P C C P C R 
              (29) 

By inspection of (29), the filter gain (26) minimises /k kP .                                                                   ฀ 

Example 2 (Data Fusion). Consider a filtering problem in which there are two measurements of 

the same state variable (possibly from different sensors), namely Ak, Bk, Qk   , Ck = 
1
1
 
 
 

 and Rk 

= 1,

2,

0
0

k

k

R
R

 
 
 

, with R1,k, R2,k   . Let Pk/k-1 denote the solution of the Riccati difference equation 

(25). By applying Cramer’s rule within (26) it can be found that the filter gain is given by 

                                                                 

“A professor is one who can speak on any subject - for precisely fifty minutes.” Norbert Wiener 
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Proof: Constructing 1/k kP     1/ 1/{ }T
k k k kE x x 

   using (3), (7), (14), / 1{ }T
k k kE x w

  = 0 and / 1{ }T
k k kE x v

  
= 0 yields 

1/ / 1( ) ( )     T T T
k k k k k k k k k k k k k k k kP A K C P A K C B Q B K R K , (18)  

which can be rearranged to give 
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                         1
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                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    , 

(19)  

By inspection of (19), the predictor gain (17) minimises 1/k kP  .                                                         ฀ 
 

4.7 Minimum-Variance Filtering 
It can be seen from (12) that the predicted state estimate / 1ˆ k kx   is calculated using the 
previous measurement zk-1 as opposed to the current data zk. A state estimate, given the data 
at time k, which is known as the filtered state, can similarly be obtained using the linear least 
squares or conditional-mean formula. In Lemma 1 it was shown that the predicted state 
estimate is unbiased. Therefore, it is assumed that the expected value of the filtered state 
equals the expected value of the predicted state, namely, 

/ / 1

/ 1

ˆ ˆ
ˆ

k k k k

k k k k

x x
E

z C x




          
     

. (20) 

Substituting (20) into (10) and denoting /ˆ k kx  = ˆ{ | }k kE x z  yields the filtered estimate 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , (21)  

where Lk = 1ˆ{ } { }T T
k k k kE x z E z z   is known as the filter gain, which is designed subsequently. Let 

/k kx  = xk – /ˆ k kx  denote the filtered state error. It is shown below that the expectation of the 
filtered error is zero, that is, the filtered state estimate is unbiased. 

Lemma 3: Suppose that  0 / 0x̂  = x0, then 

/{ }k kE x  = 0 (22)  

for all k  [0, N].  
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need not be original to the world; few results truly meet that criterion. In fact, most results are built on 
the work of others.” Lynne C. Levesque 

  

Proof: Following the approach of [6], combining (4) - (6) results in zk = CkAk-1xk-1 + CkBk-1wk-1 + vk, 
which together with (21) yields 

/ 1 1/ 1 1 1( ) ( )k k k k k k k k k k k k kx I L C A x I L C B w L v          . (23)  

From (23) and the assumptions (3), (7), it follows that 

/ 1 1/ 1{ } ( ) { }k k k k k k kE x I L C A E x      
                                    1 1 1 0 0 / 0( ) ( ) { }k k kI L C A I L C A E x    . 

(24)  

Hence, with the initial condition 0 / 0x̂  = x0, /{ }k kE x  = 0.                                                                     ฀ 
 

4.8 Design of the Filter Gain 
It is shown below that the optimum filter gain is that which minimises the covariance 

/ /{ }T
k k k kE x x  , where /k kx  = xk – /ˆ k kx  is the filter error. 

Lemma 4: In respect of the estimation problem defined by (1), (3), (5) - (7), suppose there exists a 
solution /k kP  = /

T
k kP  ≥ 0 to the Riccati difference equation 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
      , (25)  

over [0, N], then the filter gain 
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

   , (26)  
within (21) minimises  /k kP    / /{ }T

k k k kE x x  . 

Proof: Subtracting /ˆ k kx  from xk yields /k kx  = xk –  /ˆ k kx  = xk − / 1ˆ k kx  − (k kL Cx  + vk − / 1ˆ )k kCx  , that is,  

/ / 1( )k k k k k k k kx I L C x L v     (27)  

and 
/ / 1( ) ( )T T

k k k k k k k k k k kP I L C P I L C L R L    , (28)  

which can be rearranged as7 
1

/ / 1 / 1 / 1 / 1( )T T
k k k k k k k k k k k k k k kP P P C C P C R C P

       

     1 1
/ 1 / 1 / 1 / 1 / 1( ( ) )( )( ( ) )T T T T T T

k k k k k k k k k k k k k k k k k k k k k k kL P C C P C R C P C R L P C C P C R 
              (29) 

By inspection of (29), the filter gain (26) minimises /k kP .                                                                   ฀ 

Example 2 (Data Fusion). Consider a filtering problem in which there are two measurements of 

the same state variable (possibly from different sensors), namely Ak, Bk, Qk   , Ck = 
1
1
 
 
 

 and Rk 

= 1,

2,

0
0

k

k

R
R

 
 
 

, with R1,k, R2,k   . Let Pk/k-1 denote the solution of the Riccati difference equation 

(25). By applying Cramer’s rule within (26) it can be found that the filter gain is given by 
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2, / 1 1, / 1

2, / 1 1, / 1 1, 2, 2, / 1 1, / 1 1, 2,

k k k k k k
k

k k k k k k k k k k k k k k k k

R P R P
L

R P R P R R R P R P R R
 

   

 
  

     
, 

from which it follows that 
1, 2,0 0

lim 1 0
k k

kR R
L

 
     and 

2, 1,0 0
lim 0 1

k k
kR R

L
 

    . That is, when the 

first measurement is noise free, the filter ignores the second measurement and vice versa. 
Thus, the Kalman filter weights the data according to the prevailing measurement qualities. 
 

4.9 The Predictor-Corrector Form 
The Kalman filter may be written in the following predictor-corrector form. The corrected 
(or filtered) error covariances and states are respectively given  by 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
       

                                      1
/ 1 / 1( )T T

k k k k k k k k kP L C P C R L
     

                                      / 1( )k k k kI L C P   , 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x     

                                                    / 1ˆ( )k k k k k kI L C x L z   , 

(30)  

 

 

 

(31) 
where Lk = / 1 / 1(T T

k k k k k k kP C C P C   + Rk)-1. Equation (31) is also known as the measurement 
update. The predicted state and error covariances are respectively given by 

1/ /ˆ ˆk k k k kx A x   
                                                                   / 1ˆ( )k k k k k k kA K C x K z   , 

                        1/ /
T T

k k k k k k k k kP A P A B Q B   , 

(32)  

 
(33) 

where Kk = / 1 / 1(T T
k k k k k k k kA P C C P C  + Rk)-1. It can be seen from (31) that the corrected estimate, 

/ˆ k kx , is obtained using measurements up to time k. This contrasts with the prediction at time 
k + 1 in (32), which is based on all previous measurements. The output estimate is given by 

/ /ˆ ˆk k k k ky C x  

                                                    / 1 / 1ˆ ˆ( )k k k k k k k k kC x C L z C x     

                                                    / 1ˆ( )k k k k k k k kC I L C x C L z   . 

(34)  

                                                                 

“Before the advent of the Kalman filter, most mathematical work was based on Norbert Wiener's ideas, 
but the 'Wiener filtering' had proved difficult to apply. Kalman's approach, based on the use of state 
space techniques and a recursive least-squares algorithm, opened up many new theoretical and 
practical possibilities. The impact of Kalman filtering on all areas of applied mathematics, engineering, 
and sciences has been tremendous.” Eduardo Daniel Sontag  

  

4.10 The A Posteriori Filter  
The above predictor-corrector form is used in the construction of extended Kalman filters 
for nonlinear estimation problems (see Chapter 10). When state predictions are not explicitly 
required, the following one-line recursion for the filtered state can be employed. 
Substituting / 1ˆ k kx   = 1 1/ 1ˆk k kA x    into /ˆ k kx  = / 1ˆ( )k k k kI L C x  + Lkzk yields /ˆ k kx  = (I – 

1 1/ 1ˆ)k k k k kL C A x    + Lkzk. Hence, the output estimator may be written as 

1/ 1/ 1

/

ˆ ˆ( )
ˆ

k k k kk k k k

kk k k

I L C A Lx x
Cy z

      
    
    

, (35)  

This form is called the a posteriori filter within [7], [8] and [9]. The absence of a direct feed-
through matrix above reduces the complexity of the robust filter designs described in [7], [8] 
and [9]. 
 

4.11 The Information Form 
Algebraically equivalent recursions of the Kalman filter can be obtained by propagating a 
so-called corrected information state 

1
/ / /ˆ ˆk k k k k kx P x , (36)  

and a predicted information state 
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
   . (37)  

The expression 
1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA          , (38)  

which is variously known as the Matrix Inversion Lemma, the Sherman-Morrison formula 
and Woodbury’s identity, is used to derive the  information filter, see [3], [4], [11], [14] and 
[15]. To confirm the above identity, premultiply both sides of (38) by 1( )A BD C  to obtain 

1 1 1 1 1 1 1 1 1 1( ) ( )I I BCDA B C DA B DA BCDA B C DA B DA                

                        1 1 1 1 1 1 1( ) ( )I BCDA B I CDA B C DA B DA            

                1 1 1 1 1 1 1 1( ) ( )I BCDA BC C DA B C DA B DA            , 
 

 

                                                                 

“I have been aware from the outset that the deep analysis of something which is now called Kalman 
filtering was of major importance. But even with this immodesty I did not quite anticipate all the 
reactions to this work.” Rudolf Emil Kalman 

 

www.intechopen.com



Discrete-Time Minimum-Variance Prediction and Filtering 83
  

2, / 1 1, / 1

2, / 1 1, / 1 1, 2, 2, / 1 1, / 1 1, 2,

k k k k k k
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k k k k k k k k k k k k k k k k

R P R P
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   

 
  

     
, 

from which it follows that 
1, 2,0 0

lim 1 0
k k

kR R
L

 
     and 

2, 1,0 0
lim 0 1

k k
kR R

L
 

    . That is, when the 

first measurement is noise free, the filter ignores the second measurement and vice versa. 
Thus, the Kalman filter weights the data according to the prevailing measurement qualities. 
 

4.9 The Predictor-Corrector Form 
The Kalman filter may be written in the following predictor-corrector form. The corrected 
(or filtered) error covariances and states are respectively given  by 

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P C C P C R C P
       

                                      1
/ 1 / 1( )T T

k k k k k k k k kP L C P C R L
     

                                      / 1( )k k k kI L C P   , 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x     

                                                    / 1ˆ( )k k k k k kI L C x L z   , 

(30)  

 

 

 

(31) 
where Lk = / 1 / 1(T T

k k k k k k kP C C P C   + Rk)-1. Equation (31) is also known as the measurement 
update. The predicted state and error covariances are respectively given by 

1/ /ˆ ˆk k k k kx A x   
                                                                   / 1ˆ( )k k k k k k kA K C x K z   , 

                        1/ /
T T

k k k k k k k k kP A P A B Q B   , 

(32)  

 
(33) 

where Kk = / 1 / 1(T T
k k k k k k k kA P C C P C  + Rk)-1. It can be seen from (31) that the corrected estimate, 

/ˆ k kx , is obtained using measurements up to time k. This contrasts with the prediction at time 
k + 1 in (32), which is based on all previous measurements. The output estimate is given by 

/ /ˆ ˆk k k k ky C x  

                                                    / 1 / 1ˆ ˆ( )k k k k k k k k kC x C L z C x     

                                                    / 1ˆ( )k k k k k k k kC I L C x C L z   . 

(34)  

                                                                 

“Before the advent of the Kalman filter, most mathematical work was based on Norbert Wiener's ideas, 
but the 'Wiener filtering' had proved difficult to apply. Kalman's approach, based on the use of state 
space techniques and a recursive least-squares algorithm, opened up many new theoretical and 
practical possibilities. The impact of Kalman filtering on all areas of applied mathematics, engineering, 
and sciences has been tremendous.” Eduardo Daniel Sontag  

  

4.10 The A Posteriori Filter  
The above predictor-corrector form is used in the construction of extended Kalman filters 
for nonlinear estimation problems (see Chapter 10). When state predictions are not explicitly 
required, the following one-line recursion for the filtered state can be employed. 
Substituting / 1ˆ k kx   = 1 1/ 1ˆk k kA x    into /ˆ k kx  = / 1ˆ( )k k k kI L C x  + Lkzk yields /ˆ k kx  = (I – 

1 1/ 1ˆ)k k k k kL C A x    + Lkzk. Hence, the output estimator may be written as 

1/ 1/ 1

/

ˆ ˆ( )
ˆ

k k k kk k k k

kk k k

I L C A Lx x
Cy z

      
    
    

, (35)  

This form is called the a posteriori filter within [7], [8] and [9]. The absence of a direct feed-
through matrix above reduces the complexity of the robust filter designs described in [7], [8] 
and [9]. 
 

4.11 The Information Form 
Algebraically equivalent recursions of the Kalman filter can be obtained by propagating a 
so-called corrected information state 

1
/ / /ˆ ˆk k k k k kx P x , (36)  

and a predicted information state 
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
   . (37)  

The expression 
1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA          , (38)  

which is variously known as the Matrix Inversion Lemma, the Sherman-Morrison formula 
and Woodbury’s identity, is used to derive the  information filter, see [3], [4], [11], [14] and 
[15]. To confirm the above identity, premultiply both sides of (38) by 1( )A BD C  to obtain 

1 1 1 1 1 1 1 1 1 1( ) ( )I I BCDA B C DA B DA BCDA B C DA B DA                

                        1 1 1 1 1 1 1( ) ( )I BCDA B I CDA B C DA B DA            

                1 1 1 1 1 1 1 1( ) ( )I BCDA BC C DA B C DA B DA            , 
 

 

                                                                 

“I have been aware from the outset that the deep analysis of something which is now called Kalman 
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from which the result follows. From the above Matrix Inversion Lemma and (30) it follows 
that 

1 1 1
/ / 1 / 1 / 1 / 1( ( ) )T T

k k k k k k k k k k k k k k kP P P C C P C R C P  
       

                                  1 1
/ 1

T
k k k k kP C R C 

  , 

(39)  

assuming that 1
/ 1k kP
  and 1

kR  exist. An expression for 1
1/k kP

  can be obtained from the 
Matrix Inversion Lemma and (33), namely, 

1 1
1/ /( )T T

k k k k k k k k kP A P A B Q B 
    

                                                      1 1( )T
k k k kF B Q B   , 

(40)  

where Fk = 1
/( )T

k k k kA P A    = 1 1
/

T
k k k kA P A   , which gives 

1 1 1
1/ ( ( ) )T T

k k k k k k k k k kP I F B B F B Q B F  
    .  (41)  

Another useful identity is 
1 1 1 1( ) ( )A BCD BC A I BCDA BC       

                                                               1 1 1( )A B I CDA B C     

                                                               1 1 1 1( )A B C DA B     . 

(42)  

From (42) and (39), the filter gain can be expressed as  
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

    

                                                1 1 1 1
/ 1( )T T

k k k k k k kP C R C C R   
   

                                                1
/

T
k k k kP C R . 

(43)  

Premultiplying (39) by /k kP  and rearranging gives 

1
/ / 1k k k k k kI L C P P

  . (44)  

It follows from (31), (36) and (44) that the corrected information state is given by 

1
/ / /ˆ ˆk k k k k kx P x  

                                          1 1
/ / 1 /ˆ( )k k k k k k k k k kP I L C x P L z 

    

                                          1
/ 1ˆ T

k k k k kx C R z
  . 

(45) 

 
                                                                 

“Information is the oxygen of the modern age. It seeps through the walls topped by barbed wire, it 
wafts across the electrified borders.” Ronald Wilson Reagan 

  

The predicted information state follows from (37), (41) and the definition of Fk, namely,  
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
    

                                                                1
1/ /ˆk k k k kP A x

  

                                                                1 1
/ˆ( ( ) )T T

k k k k k k k k k k kI F B B F B Q B F A x     

                                                                1 1
/ˆ( ( ) )T T T

k k k k k k k k k kI F B B F B Q B A x     . 

(46)  

Recall from Lemma 1 and Lemma 3 that 1/ˆ{ }k k kE x x   = 0 and /ˆ{ }k k kE x x  = 0, provided 

0 / 0x̂  = x0. Similarly, with 0 / 0x̂  = 1
0 / 0 0P x , it follows that 1/ 1/ˆ{ }k k k k kE x P x   = 0 and 

/ /ˆ{ }k k k k kE x P x  = 0. That is, the information states (scaled by the appropriate covariances) 
will be unbiased, provided that the filter is suitably initialised. The calculation cost and 
potential for numerical instability can influence decisions on whether to implement the 
predictor-corrector form (30) - (33) or the information form (39) - (46) of the Kalman filter. 
The filters have similar complexity, both require a p × p matrix inverse in the measurement 
updates (31) and (45). However, inverting the measurement covariance matrix for the 
information filter may be troublesome when the measurement noise is negligible. 
 

4.12 Comparison with Recursive Least Squares 
The recursive least squares (RLS) algorithm is equivalent to the Kalman filter designed with 
the simplifications Ak = I and Bk = 0; see the derivations within [10], [11]. For convenience, 
consider a more general RLS algorithm that retains the correct Ak but relies on the simplifying 
assumption Bk = 0. Under these conditions, denote the RLS algorithm’s predictor gain by 

1
/ 1 / 1( )T T

k k k k k k k k k kK A P C C P C R 
   , (47)  

where / 1k kP   is obtained from the Riccati difference equation 

                1
1/ / 1 / 1 / 1 / 1( )T T T T

k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A
       . (48)  

It is argued below that the cost of the above model simplification is an increase in mean-
square-error. 

Lemma 5: Let 1/k kP   denote the predicted error covariance within (33) for the optimal filter. Under 

the above conditions, the predicted error covariance, / 1k kP  , exhibited by the RLS algorithm satisfies 

/ 1 / 1k k k kP P  . (49)  
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from which the result follows. From the above Matrix Inversion Lemma and (30) it follows 
that 

1 1 1
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       

                                  1 1
/ 1

T
k k k k kP C R C 

  , 

(39)  

assuming that 1
/ 1k kP
  and 1

kR  exist. An expression for 1
1/k kP

  can be obtained from the 
Matrix Inversion Lemma and (33), namely, 

1 1
1/ /( )T T

k k k k k k k k kP A P A B Q B 
    

                                                      1 1( )T
k k k kF B Q B   , 

(40)  

where Fk = 1
/( )T

k k k kA P A    = 1 1
/

T
k k k kA P A   , which gives 

1 1 1
1/ ( ( ) )T T

k k k k k k k k k kP I F B B F B Q B F  
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(42)  

From (42) and (39), the filter gain can be expressed as  
1

/ 1 / 1( )T T
k k k k k k k k kL P C C P C R 

    

                                                1 1 1 1
/ 1( )T T

k k k k k k kP C R C C R   
   

                                                1
/

T
k k k kP C R . 

(43)  

Premultiplying (39) by /k kP  and rearranging gives 

1
/ / 1k k k k k kI L C P P

  . (44)  

It follows from (31), (36) and (44) that the corrected information state is given by 

1
/ / /ˆ ˆk k k k k kx P x  

                                          1 1
/ / 1 /ˆ( )k k k k k k k k k kP I L C x P L z 

    

                                          1
/ 1ˆ T

k k k k kx C R z
  . 

(45) 

 
                                                                 

“Information is the oxygen of the modern age. It seeps through the walls topped by barbed wire, it 
wafts across the electrified borders.” Ronald Wilson Reagan 

  

The predicted information state follows from (37), (41) and the definition of Fk, namely,  
1

1/ 1/ 1/ˆ ˆk k k k k kx P x
    

                                                                1
1/ /ˆk k k k kP A x

  

                                                                1 1
/ˆ( ( ) )T T

k k k k k k k k k k kI F B B F B Q B F A x     

                                                                1 1
/ˆ( ( ) )T T T

k k k k k k k k k kI F B B F B Q B A x     . 

(46)  

Recall from Lemma 1 and Lemma 3 that 1/ˆ{ }k k kE x x   = 0 and /ˆ{ }k k kE x x  = 0, provided 

0 / 0x̂  = x0. Similarly, with 0 / 0x̂  = 1
0 / 0 0P x , it follows that 1/ 1/ˆ{ }k k k k kE x P x   = 0 and 

/ /ˆ{ }k k k k kE x P x  = 0. That is, the information states (scaled by the appropriate covariances) 
will be unbiased, provided that the filter is suitably initialised. The calculation cost and 
potential for numerical instability can influence decisions on whether to implement the 
predictor-corrector form (30) - (33) or the information form (39) - (46) of the Kalman filter. 
The filters have similar complexity, both require a p × p matrix inverse in the measurement 
updates (31) and (45). However, inverting the measurement covariance matrix for the 
information filter may be troublesome when the measurement noise is negligible. 
 

4.12 Comparison with Recursive Least Squares 
The recursive least squares (RLS) algorithm is equivalent to the Kalman filter designed with 
the simplifications Ak = I and Bk = 0; see the derivations within [10], [11]. For convenience, 
consider a more general RLS algorithm that retains the correct Ak but relies on the simplifying 
assumption Bk = 0. Under these conditions, denote the RLS algorithm’s predictor gain by 

1
/ 1 / 1( )T T

k k k k k k k k k kK A P C C P C R 
   , (47)  

where / 1k kP   is obtained from the Riccati difference equation 

                1
1/ / 1 / 1 / 1 / 1( )T T T T

k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A
       . (48)  

It is argued below that the cost of the above model simplification is an increase in mean-
square-error. 

Lemma 5: Let 1/k kP   denote the predicted error covariance within (33) for the optimal filter. Under 

the above conditions, the predicted error covariance, / 1k kP  , exhibited by the RLS algorithm satisfies 

/ 1 / 1k k k kP P  . (49)  
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Proof: From the approach of Lemma 2, the RLS algorithm’s predicted error covariance is given by 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    . 

(50)  

The last term on the right-hand-side of (50) is nonzero since the above RLS algorithm relies on the 
erroneous assumption T

k k kB Q B = 0. Therefore (49) follows.                                                                   ฀ 
 

4.13 Repeated Predictions 
When there are gaps in the data record, or the data is irregularly spaced, state predictions can 
be calculated an arbitrary number of steps ahead. The one-step-ahead prediction is given by 
(32). The two, three and j-step-ahead predictions, given data at time k, are calculated as 

2 / 1 1/ˆ ˆk k k k kx A x    

3 / 2 2 /ˆ ˆk k k k kx A x    

  

/ 1 1/ˆ ˆk j k k j k j kx A x     , 

(51) 

(52) 

 

(53) 

see also [4], [12]. The corresponding predicted error covariances are given by 

2 / 1 1/ 1 1 1 1
T T

k k k k k k k k kP A P A B Q B         

3 / 2 2 / 2 2 2 2
T T

k k k k k k k k kP A P A B Q B         

  

/ 1 1/ 1 1 1 1
T T

k j k k j k j k k j k j k j k jP A P A B Q B              . 

(54) 

(55) 

 
(56)  

Another way to handle missing measurements at time i is to set Ci = 0, which leads to the 
same predicted states and error covariances. However, the cost of relying on repeated 
predictions is an increased mean-square-error which is demonstrated below. 

Lemma 6: 
(i) /k kP  ≤ / 1k kP  . 
(ii) Suppose that 

T T
k k k k kA A B Q B I   (57)  

for all k  [0, N], then /k j kP    ≥  1/k j kP     for all (j+k)  [0, N] .  

                                                                 

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tones, 
computers in the future may have only 1,000 vacuum tubes and perhaps weigh 1.5 tons.” Popular 
Mechanics, 1949 

Proof:  

(i) The claim follows by inspection of (30) since 1 1 1/ 2 1 1 1( )T T
k k k k k k kL C P C R L        ≥ 0. 

Thus, the filter outperforms the one-step-ahead predictor. 
(ii) For 1/k j kP    ≥ 0, condition (57) yields 1 1/ 1

T
k j k j k k jA P A       + 1 1 1

T
k j k j k jB Q B       ≥ 

1/k j kP    which together with (56) results in /k j kP    ≥  1/k j kP   .                                ฀ 
 

Example 3. Consider a filtering problem where A = 0.9 and B = C = Q = R = 1, for which AAT 
+ BQBT = 1.81 > 1. The predicted error covariances, /k j kP  , j = 1 … 10, are plotted in Fig. 4. 
The monotonically increasing sequence of error variances shown in the figure demonstrates 
that degraded performance occurs during repeated predictions. Fig. 5 shows some sample 
trajectories of the model output (dotted line), filter output (crosses) and predictions (circles) 
assuming that z3 … z8 are unavailable. It can be seen from the figure that the prediction error 
increases with time k, which illustrates Lemma 6. 
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Figure 4.  Predicted error variances for Example 3. Figure 5.  Sample trajectories for Example 3: yk 

(dotted line), /ˆ k ky  (crosses) and /ˆ k j ky   (circles). 

 

4.14 Accommodating Deterministic Inputs 
Suppose that the signal model is described by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(58) 

(59)  

where µk and πk are deterministic inputs (such as known non-zero means). The 
modifications to the Kalman recursions can be found by assuming 1/ˆ k kx   = /ˆk k kA x  + μk and 

/ 1ˆ k ky   = / 1ˆk k kC x   + πk. The filtered and predicted states are then given by 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k k kx x L z C x       (60)   
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Proof: From the approach of Lemma 2, the RLS algorithm’s predicted error covariance is given by 

1
1/ / 1 / 1 / 1 / 1( )T T T T T

k k k k k k k k k k k k k k k k k k k k k kP A P A A P C C P C R C P A B Q B
         

                         1
/ 1 / 1 / 1( ( ) )( )T T T

k k k k k k k k k k k k k k kK A P C C P C R C P C R
       

                         1
/ 1 / 1( ( ) )T T T

k k k k k k k k k kK A P C C P C R 
    . 

(50)  

The last term on the right-hand-side of (50) is nonzero since the above RLS algorithm relies on the 
erroneous assumption T

k k kB Q B = 0. Therefore (49) follows.                                                                   ฀ 
 

4.13 Repeated Predictions 
When there are gaps in the data record, or the data is irregularly spaced, state predictions can 
be calculated an arbitrary number of steps ahead. The one-step-ahead prediction is given by 
(32). The two, three and j-step-ahead predictions, given data at time k, are calculated as 
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3 / 2 2 /ˆ ˆk k k k kx A x    
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/ 1 1/ˆ ˆk j k k j k j kx A x     , 

(51) 

(52) 

 

(53) 

see also [4], [12]. The corresponding predicted error covariances are given by 
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/ 1 1/ 1 1 1 1
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(56)  

Another way to handle missing measurements at time i is to set Ci = 0, which leads to the 
same predicted states and error covariances. However, the cost of relying on repeated 
predictions is an increased mean-square-error which is demonstrated below. 

Lemma 6: 
(i) /k kP  ≤ / 1k kP  . 
(ii) Suppose that 

T T
k k k k kA A B Q B I   (57)  

for all k  [0, N], then /k j kP    ≥  1/k j kP     for all (j+k)  [0, N] .  

                                                                 

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tones, 
computers in the future may have only 1,000 vacuum tubes and perhaps weigh 1.5 tons.” Popular 
Mechanics, 1949 

Proof:  

(i) The claim follows by inspection of (30) since 1 1 1/ 2 1 1 1( )T T
k k k k k k kL C P C R L        ≥ 0. 

Thus, the filter outperforms the one-step-ahead predictor. 
(ii) For 1/k j kP    ≥ 0, condition (57) yields 1 1/ 1

T
k j k j k k jA P A       + 1 1 1

T
k j k j k jB Q B       ≥ 

1/k j kP    which together with (56) results in /k j kP    ≥  1/k j kP   .                                ฀ 
 

Example 3. Consider a filtering problem where A = 0.9 and B = C = Q = R = 1, for which AAT 
+ BQBT = 1.81 > 1. The predicted error covariances, /k j kP  , j = 1 … 10, are plotted in Fig. 4. 
The monotonically increasing sequence of error variances shown in the figure demonstrates 
that degraded performance occurs during repeated predictions. Fig. 5 shows some sample 
trajectories of the model output (dotted line), filter output (crosses) and predictions (circles) 
assuming that z3 … z8 are unavailable. It can be seen from the figure that the prediction error 
increases with time k, which illustrates Lemma 6. 
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Figure 4.  Predicted error variances for Example 3. Figure 5.  Sample trajectories for Example 3: yk 

(dotted line), /ˆ k ky  (crosses) and /ˆ k j ky   (circles). 

 

4.14 Accommodating Deterministic Inputs 
Suppose that the signal model is described by 

1k k k k k kx A x B w     , 

k k k ky C x   , 

(58) 

(59)  

where µk and πk are deterministic inputs (such as known non-zero means). The 
modifications to the Kalman recursions can be found by assuming 1/ˆ k kx   = /ˆk k kA x  + μk and 

/ 1ˆ k ky   = / 1ˆk k kC x   + πk. The filtered and predicted states are then given by 
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Figure 6. Measurements (dotted line) and filtered states (solid line) for Example 4. 

Example 4. Consider a filtering problem where A = diag(0.1, 0.1), B = C = diag(1, 1), Q = R = 

diag(0.001, 0.001), with µk = 
sin(2 )
cos(3 )

k
k

 
 
 

. The filtered states calculated from (60) are shown in 

Fig. 6. The resulting Lissajous figure illustrates that states having nonzero means can be 
modelled using deterministic inputs. 
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4.15 Correlated Process and Measurement Noises 
Consider the case where the process and measurement noises are correlated 
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. (66)  

The generalisation of the optimal filter that takes the above into account was published by 
Kalman in 1963 [2]. The expressions for the state prediction 
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As before, the optimum predictor gain is that which minimises the prediction error 
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Expanding (72) and denoting / 1k kP   = / 1 / 1{ }T
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By inspection of (73), the predictor gain (71) minimises 1/k kP  .                                                           ฀ 

Thus, the predictor gain is calculated differently when wk and vk are correlated. The 
calculation of the filtered state and filtered error covariance are unchanged, viz.  
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where 
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k k k k k k k k kL P C C P C R 

   . (76)  

However, / 1k kP   is now obtained from the Riccati difference equation (70). 
 

4.16 Including a Direct-Feedthrough Matrix 
Suppose now that the signal model possesses a direct-feedthrough matrix, Dk, namely 

1k k k k kx A x B w   , 

k k k k ky C x D w  . 
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Let the observations be denoted by 
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where k k k kv D w v  , under the assumptions (3) and (7). It follows that 
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. (80)  

The approach of the previous section may be used to obtain the minimum-variance 
predictor for the above system. Using (80) within Lemma 7 yields the predictor gain 
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4.17 Solution of the General Filtering Problem 
The general filtering problem is shown in Fig. 7, in which it is desired to develop a filter   
that operates on noisy measurements of   and estimates the output of  . Frequency 
domain solutions for time-invariant systems were developed in Chapters 1 and 2. Here, for 
the time-varying case, it is assumed that the system   has the state-space realisation 

1k k k k kx A x B w   , 

2, 2, 2,k k k k ky C x D w  . 
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Figure 7. The general filtering problem. The objective is to estimate the output of   from 
noisy measurements of  . 

Suppose that the system   has the realisation (84) and 

1, 1, 1,k k k k ky C x D w  . (86) 

The objective is to produce estimates 1, /ˆ k ky  of 1,ky  from the measurements 

2,k k k kz C x v  , (87)  
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where 2,k k k kv D w v  , so that the variance of the estimation error, 

/ 1, 1, /ˆk k k k ke y y  , (88)  

is minimised. The predicted state follows immediately from the results of the previous 
sections, namely, 
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                                                  2, / 1ˆ( )k k k k k k kA K C x K z    

(89)  

where 
1

/ 1 2, 2,( )T T
k k k k k k k k kK A P C B Q D 
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and 

2, / 1 2, 2, 2,
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(93)  

is sought, where Lk is a filter gain to be designed. Subtracting (93) from (86) gives 

                                         / 1, 1, /ˆk k k k ke y y   

                                                1, 2, / 1 1,( ) k
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(94)  

It is shown below that an optimum filter gain can be found by minimising the output error 
covariance / /{ }T

k k k kE e e . 

Lemma 8: In respect of the estimation problem defined by (84) - (88), the output estimate 1, /ˆ k ky  with 
the filter gain 
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The filter gain (95) has been generalised to include arbitrary C1,k, D1,k, and D2,k. For state 
estimation, C2 = I and D2 = 0, in which case (95) reverts to the simpler form (26). The 
problem (84) – (88) can be written compactly in the following generalised regulator 
framework from control theory [13].  
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in which / 1k kP   is the solution of the Riccati difference equation 
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The application of the solution (99) – (100) to output estimation, input estimation (or 
equalisation), state estimation and mixed filtering problems is demonstrated in the example 
below.  

 
 
 
 

 

Figure 8. The mixed filtering and equalisation problem considered in Example 5. The 
objective is to estimate the output of the plant   which has been corrupted by the channel 

  and the measurement noise vk. 

Example 5.  

(i) For output estimation problems, where C1,k = C2,k and D1,k = D2,k, the predictor 
gain (101) and filter gain (102) are identical to the previously derived (90) and 
(95), respectively. 

(ii) For state estimation problems, set C1,k = I and D1,k = 0. 
(iii) For equalisation problems, set C1,k = 0 and D1,k = I. 
(iv) Consider a mixed filtering and equalisation problem depicted in Fig. 8, where 

the output of the plant   has been corrupted by the channel  . Assume 

that   has the realisation 1, 1 1, 1, 1,
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the cascaded system     (see Problem 7), the minimum-variance solution 

can be found by setting Ak = 2, 2, 1,
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C1,1,k = 1, 0kC   , C2,1,k = 2, 2, 1,k k kC D C   , D1,1,k = 1,0 kD    and D2,1,k = 

2, 1,k kI D D   . 
 

4.18 Hybrid Continuous-Discrete Filtering 
Often a system’s dynamics evolve continuously but measurements can only be observed in 
discrete time increments. This problem is modelled in [20] as 

( ) ( ) ( ) ( ) ( )x t A t x t B t w t  , 

k k k kz C x v  , 

(104) 

(105) 

where E{w(t)} = 0, E{w(t)wT(τ)} = Q(t)δ(t – τ), E{vk} = 0, { }T
j kE v v  = Rkδjk and xk = x(kTs), in 

which Ts is the sampling interval. Following the approach of [20], state estimates can be 
obtained from a hybrid of continuous-time and discrete-time filtering equations. The 
predicted states and error covariances are obtained from 

ˆ ˆ( ) ( ) ( )x t A t x t , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP t A t P t P t A t B t Q t B t   . 

(106) 

(107) 

Define / 1ˆ k kx   = ˆ( )x t  and Pk/k-1 = P(t) at t = kTs. The corrected states and error covariances are 
given by 

/ / 1 / 1ˆ ˆ ˆ( )k k k k k k k k kx x L z C x    , 

/ / 1( )k k k k k kP I L C P   , 

(108) 

(109) 

where Lk = 1
/ 1 / 1( )T T

k k k k k k k kP C C P C R 
   . The above filter is a linear system having jumps at the 

discrete observation times. The states evolve according to the continuous-time dynamics 
(106) in-between the sampling instants. This filter is applied in [20] for recovery of cardiac 
dynamics from medical image sequences. 
 

4.19 Conclusion 
A linear, time-varying system   is assumed to have the realisation xk+1 = Akxk + Bkwk and 
y2,k = C2,kxk + D2,kwk. In the general filtering problem, it is desired to estimate the output of a 
second reference system   which is modelled as y1,k = C1,kxk + D1,kwk. The Kalman filter 
which estimates y1,k from the measurements zk = y2,k + vk at time k is listed in Table 1.  
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If the state-space parameters are known exactly then this filter minimises the predicted and 
corrected error covariances {( kE x  − / 1ˆ )(k k kx x  − / 1ˆ ) }T

k kx   and {( kE x  − /ˆ )(k k kx x  − /ˆ ) }T
k kx , 

respectively. When there are gaps in the data record, or the data is irregularly spaced, state 
predictions can be calculated an arbitrary number of steps ahead, at the cost of increased 
mean-square-error. 
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Table 1.1. Main results for the general filtering problem. 

The filtering solution is specialised to output estimation with C1,k = C2,k and D1,k = D2,k. 

In the case of input estimation (or equalisation), C1,k = 0  and D1,k = I, which results in /ˆ k kw  = 

2, / 1ˆk k k kL C x   + Lkzk, where the filter gain is instead calculated as Lk = 2, 2, / 1 2,(T T
k k k k k kQ D C P C  + 

1
2, 2, )T

k k k kD Q D R  . 

For problems where C1,k = I (state estimation) and D1,k = D2,k = 0, the filtered state calculation 
simplifies to /ˆ k kx  = (I – 2, / 1ˆ)k k k kL C x   + Lkzk, where / 1ˆ k kx   = 1/ 1ˆk k kA x    and Lk = 

                                                                 

“Heavier-than-air flying machines are impossible. ” Baron William Thomson Kelvin 

  

/ 1 2, 2, / 1 2,(T T
k k k k k k kP C C P C   + 1)kR  . This predictor-corrector form is used to obtain robust, hybrid 

and extended Kalman filters. When the predicted states are not explicitly required, the state 
corrections can be calculated from the one-line recursion /ˆ k kx  = (I – 2, 1 1/ 1ˆ)   k k k k kL C A x  + Lkzk. 

If the simplifications Bk = D2,k = 0 are assumed and the pair (Ak, C2,k) is retained, the Kalman 
filter degenerates to the RLS algorithm. However, the cost of this model simplification is an 
increase in mean-square-error. 
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respectively. When there are gaps in the data record, or the data is irregularly spaced, state 
predictions can be calculated an arbitrary number of steps ahead, at the cost of increased 
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The filtering solution is specialised to output estimation with C1,k = C2,k and D1,k = D2,k. 
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For problems where C1,k = I (state estimation) and D1,k = D2,k = 0, the filtered state calculation 
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k k k k k k kP C C P C   + 1)kR  . This predictor-corrector form is used to obtain robust, hybrid 

and extended Kalman filters. When the predicted states are not explicitly required, the state 
corrections can be calculated from the one-line recursion /ˆ k kx  = (I – 2, 1 1/ 1ˆ)   k k k k kL C A x  + Lkzk. 

If the simplifications Bk = D2,k = 0 are assumed and the pair (Ak, C2,k) is retained, the Kalman 
filter degenerates to the RLS algorithm. However, the cost of this model simplification is an 
increase in mean-square-error. 
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where K(tk) = P(tk)C(tk)R-1(tk). (Hint: Introduce the quantities Ak = (I + A(tk))Δt, B(tk) = Bk, C(tk) 

= Ck, /k kP , Q(tk) = Qk/Δt, R(tk) = RkΔt, ˆ( )kx t  = /ˆ k kx , ( )kP t  = /k kP , ˆ( )kx t  = / 1/ 1
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 and Δt = tk – tk-1.)  

Problem 5. Derive the two-step-ahead predicted error covariance 2 /k kP   = 1 1/ 1
T

k k k kA P A    + 

1 1 1
T

k k kB Q B   . 

Problem 6. Verify that the Riccati difference equation 1/k kP   = / 1
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k k k kA P A  − / 1( T
k k k kK C P C  + 

) T
k kR K  + T

k k kB Q B , where kK  = / 1( k k k kA P C  + / 1)( T
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= ( kA  − / 1) (k k k k kK C P A  − )T
k kK C  + T

k k kK R K  + T
k k kB Q B  − T

k k kB S K  − T
k k kK S B . 

Problem 7 [16]. Suppose that the systems y1,k =  wk and y2,k =  wk have the state-space  
realisations  
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Show that the system y3,k =     wk is  given by25 

1, 1, 1,
1, 1

2, 1, 2, 2, 1, 2,
3,
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. 

 

4.21 Glossary  
In addition to the notation listed in Section 2.6, the following nomenclature has been used herein. 

  A system that is assumed to have the realisation xk+1 = Akxk + Bkwk and 
yk = Ckxk + Dkwk where Ak, Bk, Ck and Dk are time-varying matrices of 
appropriate dimension. 

Qk, Rk Time-varying covariance matrices of stochastic signals wk and vk, 
respectively. 

H  Adjoint of  . The adjoint of a system having the state-space 
parameters {Ak, Bk, Ck, Dk} is a system parameterised by { T

kA , 
T
kC , T

kB , T
kD }. 

/ˆ k kx  Filtered estimate of the state xk given measurements at time k. 

/k kx  Filtered state estimation error which is defined by /k kx  = xk – /ˆ k kx . 
Pk/k Corrected error covariance matrix at time k given measurements at 

time k. 
                                                                 

“What sir, would you make a ship sail against the wind and currents by lighting a bonfire under her 
deck? I pray you excuse me. I have no time to listen to such nonsense.”  Napoléon Bonaparte 

  

Lk Time-varying filter gain matrix. 
1/ˆ k kx   Predicted estimate of the state xk+1 given measurements at time k. 

1/k kx 
  Predicted state estimation error which is defined by 1/k kx 

  = xk+1 – 

1/ˆ k kx  . 
Pk+1/k Predicted error covariance matrix at time k + 1 given measurements at 

time k. 
Kk Time-varying predictor gain matrix. 
RLS Recursive Least Squares. 
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Problem 7 [16]. Suppose that the systems y1,k =  wk and y2,k =  wk have the state-space  
realisations  

1, 1 1, 1, 1,

1, 1, 1,

k k k k

k k k k

x A B x
y C D w

     
     

    
 and 2, 1 2, 2, 2,

2, 2, 2,

k k k k

k k k k

x A B x
y C D w

     
     

    
. 

Show that the system y3,k =     wk is  given by25 

1, 1, 1,
1, 1

2, 1, 2, 2, 1, 2,
3,

2, 1, 2, 2, 1,

0k k k
k

k k k k k k
k

k k k k k k

A B x
x

B C A B D x
y

D C C D D w



   
          
       

. 

 

4.21 Glossary  
In addition to the notation listed in Section 2.6, the following nomenclature has been used herein. 

  A system that is assumed to have the realisation xk+1 = Akxk + Bkwk and 
yk = Ckxk + Dkwk where Ak, Bk, Ck and Dk are time-varying matrices of 
appropriate dimension. 

Qk, Rk Time-varying covariance matrices of stochastic signals wk and vk, 
respectively. 

H  Adjoint of  . The adjoint of a system having the state-space 
parameters {Ak, Bk, Ck, Dk} is a system parameterised by { T

kA , 
T
kC , T

kB , T
kD }. 

/ˆ k kx  Filtered estimate of the state xk given measurements at time k. 

/k kx  Filtered state estimation error which is defined by /k kx  = xk – /ˆ k kx . 
Pk/k Corrected error covariance matrix at time k given measurements at 

time k. 
                                                                 

“What sir, would you make a ship sail against the wind and currents by lighting a bonfire under her 
deck? I pray you excuse me. I have no time to listen to such nonsense.”  Napoléon Bonaparte 

  

Lk Time-varying filter gain matrix. 
1/ˆ k kx   Predicted estimate of the state xk+1 given measurements at time k. 

1/k kx 
  Predicted state estimation error which is defined by 1/k kx 

  = xk+1 – 

1/ˆ k kx  . 
Pk+1/k Predicted error covariance matrix at time k + 1 given measurements at 

time k. 
Kk Time-varying predictor gain matrix. 
RLS Recursive Least Squares. 
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