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Discrete-Time  
Minimum-Mean-Square-Error Filtering 

 
2.1 Introduction 
This chapter reviews the solutions for the discrete-time, linear stationary filtering problems 
that are attributed to Wiener [1] and Kolmogorov [2]. As in the continuous-time case, a 
model-based approach is employed. Here, a linear model is specified by the coefficients of 
the input and output difference equations. It is shown that the same coefficients appear in 
the system’s (frequency domain) transfer function. In other words, frequency domain model 
representations can be written down without background knowledge of z-transforms.  

In the 1960s and 1970s, continuous-time filters were implemented on analogue computers. 
This practice has been discontinued for two main reasons. First, analogue multipliers and op 
amp circuits exhibit poor performance whenever (temperature-sensitive) calibrations 
become out of date. Second, updated software releases are faster to turn around than 
hardware design iterations. Continuous-time filters are now routinely implemented using 
digital computers, provided that the signal sampling rates and data processing rates are 
sufficiently high. Alternatively, continuous-time model parameters may be converted into 
discrete-time and differential equations can be transformed into difference equations. The 
ensuing discrete-time filter solutions are then amenable to more economical 
implementation, namely, employing relatively lower processing rates. 

The discrete-time Wiener filtering problem is solved in the frequency domain. Once again, it 
is shown that the optimum minimum-mean-square-error solution is found by completing 
the square. The optimum solution is noncausal, which can only be implemented by forward 
and backward processes. This solution is actually a smoother and the optimum filter is 
found by taking the causal part. 

The developments rely on solving a spectral factorisation problem, which requires pole-zero 
cancellations. Therefore, some pertinent discrete-time concepts are introduced in Section 2.2 
prior to deriving the filtering results. The discussion of the prerequisite concepts is 
comparatively brief since it mirrors the continuous-time material introduced previously. In 
Section 2.3 it is shown that the structure of the filter solutions is unchanged – only the 
spectral factors are calculated differently. 

 

 

                                                                 

“If we value the pursuit of knowledge, we must be free to follow wherever that search may lead us. The 
free mind is not a barking dog, to be tethered on a ten foot-chain.” Adlai Ewing Stevenson Jr. 
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That is, the energy in the time domain equals the energy in the frequency domain. 
 

2.2.4 Polynomial Fraction Transfer Functions 
In the continuous-time case, a system’s differential equations lead to a transfer function in 
the Laplace transform variable. Here, in discrete-time, a system’s difference equations lead 
to a transfer function in the z-transform variable. Applying the z-transform to both sides of 
(2) yields the difference equation 
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is known as the transfer function of the system. It can be seen that knowledge of the system 
difference equation (2) is sufficient to identify its transfer function (8). 
 

2.2.5 Poles and Zeros 
The numerator and denominator polynomials of (8) can be factored into m and n linear 
factors, respectively, to give  
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The numerator of G(z) is zero when z = βi, i = 1 … m. These values of z are called the zeros of 
G(z). Zeros inside the unit circle are called minimum-phase whereas zeros outside the unit 

                                                                 

“There is no philosophy which is not founded upon knowledge of the phenomena, but to get any profit 
from this knowledge it is absolutely necessary to be a mathematician.” Daniel Bernoulli 

2.2 Prerequisites 
 

2.2.1 Spaces 
Discrete-time real-valued stochastic processes are denoted as T

kv  = 1,[ ,T
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n kv  and 
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n kw , where vi,k, wi,k   , i = 1, … n and k  (–∞, ∞). The vk and wk are 

said to belong to the space n . In this chapter, the vector w denotes the set of wk over all 
time k, that is, w = {wk, k  (–∞,∞)}. The inner product ,v w  of two discrete-time vector 
processes v and w is defined by 
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commonly known as energy of the signal w. The Lebesgue 2-space is denoted by 2  and is 
defined as the set of discrete-time processes having a finite 2-norm. Thus, w  2  means that 
the energy of w is bounded.  See [3] for more detailed discussions of spaces and norms. 
 

2.2.2 Discrete-time Polynomial Fraction Systems 
Consider a linear, time-invariant system   that operates on an input process wk    and 
produces an output process yk   , that is, :  →  . Suppose that the difference 
equation for this system is  

1 1 1 1 0...n k n n k n k ka y a y a y a y        1 1 1 1 0...m k m m k m k kb w b w b w b w         , (2) 
where a0, …, an and b0, …, bn are real-valued constant coefficients, with an ≠ 0 and zero initial 
conditions.  

Example 1. The difference equation yk = 0.1xk + 0.2 xk-1 + 0.3yk-1 specifies a system in which 
the coefficients are a0 = 1, a1 = – 0.3, b0 = 0.2 and b1 = 0.3. Note that yk is known as the current 
output and yk-1 is known as a past output. 
 

2.2.3 The Z-Transform of a Discrete-time Sequence 
The two-sided z-transform of a discrete-time process, yk, is denoted by Y(z) and is defined by 

( ) k
k

k
Y z y z






  , (3) 

where z = ejωt and j =  1 . Given a process yk with z-transform Y(z), yk can be calculated 
from Y(z) by taking the inverse z-transform of y(z),  

                                                                 

“To live effectively is to live with adequate information.” Norbert Wiener 
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Figure 1. Discrete-time state-space system. 
 

2.2.8 State-Space Realisation 
The state-space transfer function matrix (11) can be realised as a discrete-time system :m  

→  p  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(12) 
 

(13) 
where wk  m  is an input sequence, xk  n  is a state vector and yk   p  is an output. This 
system is depicted in Fig. 1. It is assumed that wk is a zero-mean, stationary process with 

{ }T
j kE w w  = jkQ , where 

1 if
0 ifjk

j k
j k




  
 is the Kronecker delta function. In most 

applications, discrete-time implementations are desired, however, the polynomial fraction 
transfer function or state-space transfer function parameters may be known in continuous-
time. Therefore, two methods for transforming continuous-time parameters to discrete-time 
are set out below. 
 

2.2.9 The Bilinear Approximation  
Transfer functions in the z-plane can be mapped exactly to the s-plane by substituting ssTz e , 
where s = jw and TS is the sampling period. Conversely, the substitution  
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(14) 

can be used to map s-plane transfer functions into the z-plane. The bilinear transform is a 
first order approximation to (14), namely,  

                                                                 

“I do not like it, and I am sorry I ever had anything to do with it.” Erwin Rudolf Josef Alexander 
Schrödinger 
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circle are called non-minimum phase. The denominator of G(z)  is zero when z = αi, i = 1 … 
n. These values of z are called the poles of G(z). 

Example 2.  Consider a system described by the difference equation yk + 0.3yk-1 + 0.04yk-2 = wk 
+ 0.5wk-1. It follows from (2) and (8) that the corresponding transfer function is given by  
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which possesses poles at z = 0.1, − 0.4 and zeros at z = 0, − 0.5.  
 

2.2.6 Polynomial Fraction Transfer Function Matrix  
In the single-input-single-output case, it is assumed that w(z), G(z) and y(z)   . In the 
multiple-input-multiple-output case, G(z) is a transfer function matrix. For example, 
suppose that w(z)  m , y(z)  p , then G(z)  p m , namely 
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where the components Gij(z) have the polynomial transfer function form within (8) or (9). 
 

2.2.7 State-Space Transfer Function Matrix  
The polynomial fraction transfer function matrix (10) can be written in the state-space 
representation 

1( ) ( )G z C zI A B D   , (11) 

where A  n n , B  n m , C   p n  and D   p p . 

Example 3.  For a state-space model with A = −0.5, B = C = 1 and D = 0, the transfer function 
is 1 1( ) ( 0.5)G z z   . 

Example 4.  For state-space parameters 
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C sA T
DA e , 

( 1) (( 1) )s
C s

s

k T A k T
D CkT

B e B d 
    . 

(23) 

(24) 

The τ within the definite integral (24) varies from kTs to (k+1)Ts. For a change of variable λ = 
(k+1)Ts – τ, the limits of integration become λ = Ts and λ = 0, which results in the 
simplification 

0
C

s

A
D CT

B e B d    

                                                               
0

s
C

T A
Ce B d   . 

(25) 

Denoting { }T
j kE w w  = D jkQ   and using (25) it can be shown that [4] 

0

s
C C

T A AT
D C C CQ e B Q B e d    .                                  (26) 

The exponential matrix is defined as 
2 2

2 !
C

N N
A t C C

C
A t A te I A t

N
     , (27)  

which leads to  
2 3 4( ) ( ) ( )

2! 3! 4!
C s C s C s

D C s
A T A T A TA I A T      , 

2 2 3 3 4

2! 3! 4!
C s C s C s

D s
A T A T A TB T     , 

(28) 

 

(29) 

2( )
2!

T T T
T C C C C C C C C s

D C C C s
A B Q B B Q B A TQ B Q B T 

   .                     (30) 

It is common practice ([4] – [6]) to truncate the above series after terms linear in Ts. Some 
higher order terms can be retained in applications where parameter accuracy is critical. 
Since the limit as N → ∞ of / !N

sT N  is 0, the above series are valid for any value of Ts. 
However, the sample period needs to be sufficiently small, otherwise the above 
discretisations will be erroneous. According to the Nyquist-Shannon sampling theorem, the 
sampling rate is required to be at least twice the highest frequency component of the 
continuous-time signal. In respect of (17), the output map may be written as 

( ) ( ) ( )s C s C sy kT C x kT D w kT   (31) 

                                                                 

“We are more easily persuaded, in general, by the reasons we ourselves discover than by those which 
are given to us by others.” Blaise Pascal 

2 1
1S

zs
T z

    
. (15) 

Example 5. Consider the continuous-time transfer function H(s) = (s + 2)-1 with TS = 2. 
Substituting (15) yields the discrete-time transfer function H(z) = (3z + 1)-1. The higher order 
terms within the series of (14) can be included to improve the accuracy of converting a 
continuous-time model to discrete time. 
 

2.2.10 Discretisation of Continuous-time Systems 
The discrete-time state-space parameters, denoted here by {AD, BD, CD, DD, QD, RD}, can be 
obtained by discretising the continuous-time system 

( ) ( ) ( )C Cx t A t B w t  , 

( ) ( ) ( )C Cy t C x t D w t  , 

( ) ( ) ( )z t y t v t  , 

(16) 

(17) 

(18) 

where { ( ) ( )}TE w t w   = ( )CQ t   and { ( ) ( )}TE v t v   = ( )CR t  . Premultiplying (16) by 

CA te  and recognising that  ( ( ))CA td e x t
dt

   = ( )CA te x t   – ( )CA t
Ce A x t  yields 

( ( )) ( )C CA t A t
C

d e x t e B w t
dt

  . (19)  

Integrating (19) results in 

0

0
0( ) ( ) ( )C C

tA t A t F
Ct

e x t e x t e B w d        (20)  
and hence 

0

0

( )
0( ) ( ) ( )C C

tA t t A t F
Ct

x t e x t e e B w d       

                                               0

0

( ) ( )
0( ) ( )C

tA t t F t
Ct

e x t e B w d       

(21) 

is a solution to the differential equation (16). Suppose that x(t) is available at integer k 
multiples of Ts. Assuming that w(t) is constant during the sampling interval and substituting 
t0 = kTs, t = (k+1)Ts into (21) yields 

( 1) (( 1) )(( 1) ) ( ) ( )s
C s C s

s

k TA T A k T
s s C skT

x k T e x kT e B d w kT 
      . (22)  

With the identifications xk = x(kTs) and wk = w(kTs) in (22), it can be seen that 
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It is common practice ([4] – [6]) to truncate the above series after terms linear in Ts. Some 
higher order terms can be retained in applications where parameter accuracy is critical. 
Since the limit as N → ∞ of / !N

sT N  is 0, the above series are valid for any value of Ts. 
However, the sample period needs to be sufficiently small, otherwise the above 
discretisations will be erroneous. According to the Nyquist-Shannon sampling theorem, the 
sampling rate is required to be at least twice the highest frequency component of the 
continuous-time signal. In respect of (17), the output map may be written as 

( ) ( ) ( )s C s C sy kT C x kT D w kT   (31) 
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Example 5. Consider the continuous-time transfer function H(s) = (s + 2)-1 with TS = 2. 
Substituting (15) yields the discrete-time transfer function H(z) = (3z + 1)-1. The higher order 
terms within the series of (14) can be included to improve the accuracy of converting a 
continuous-time model to discrete time. 
 

2.2.10 Discretisation of Continuous-time Systems 
The discrete-time state-space parameters, denoted here by {AD, BD, CD, DD, QD, RD}, can be 
obtained by discretising the continuous-time system 
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is a solution to the differential equation (16). Suppose that x(t) is available at integer k 
multiples of Ts. Assuming that w(t) is constant during the sampling interval and substituting 
t0 = kTs, t = (k+1)Ts into (21) yields 
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x k T e x kT e B d w kT 
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With the identifications xk = x(kTs) and wk = w(kTs) in (22), it can be seen that 
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Lemma 1 (State-space representation of an adjoint system): Suppose that a discrete-time linear 
time-invariant system   is described by  

1k k kx Ax Bw   , 

k k ky Cx Dw  , 

(35) 

(36) 

with x0 = 0. The adjoint H is the linear system having the realisation 

1
T T

k k kA C     , 
T T

k k kB D     , 

(37) 

(38) 
with 0T  . 

Proof: The system (35) – (36) can be written equivalently 

0( )( )
( )( )
tzI A B x t

y tC D w t
      

     
     

 (39) 

with x0 = 0.  Thus 

                    <y,  w> ,
zI A B x

C D w



      
      

     
 

                       1
1 1 1

( ) ( )
N N N

T T T
k k k k k k k k

k k k
x Ax Bw Cx Dw  

  

        

                         
1

,
T T

T T

xz I A C
wB D




     
           

 

                         ,  H w  

(40) 

 

 

 

 

(41) 

where H  is given by (37) – (38).                                                                                                        ฀ 

 

Thus, the adjoint of a discrete-time system having the parameters 
 
 
 

A B
C D

 is a system with 

parameters 
T T

T T

A C
B D

 
 
 

. Adjoint systems have the property ( )H H  =  . The adjoint of 

                                                                 

“There is something fascinating about science.  One gets such wholesale returns of conjecture out of 
such a trifling investment of fact.”  Samuel Langhorne Clemens aka. Mark Twain 

and thus  

D CC C , 
D CD D . 

(32) 

(33) 
Following the approach of [7], it is assumed that the continuous-time signals are integrated 
between samples, for example, the discretised measurement noise is 

( 1)1( ) ( )s

s

k T

s kT
s

v kT v d
T

 


  . Then the corresponding measurement noise covariance is  

( 1)

2

1 1s

s

k T

D C CkT
s s

R R d R
T T




  . (34)  

In some applications, such as inertial and satellite navigation [8], the underlying dynamic 
equations are in continuous-time, whereas the filters are implemented in discrete-time. In 
this case, any underlying continuous-time equations together with (28) – (30) can be 
calculated within a high rate foreground task, so that the discretised state-space parameters 
will be sufficiently accurate. The discrete-time filter recursions can then be executed within a 
lower rate background task.  
 

2.2.11 Asymptotic Stability 
Consider a discrete-time, linear, time-invariant system   that operates on an input process 
w and produces an output process y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  ℓ2, for any input w  ℓ2. Two equivalent conditions for 
  to be asymptotically stable are as follows. 

(i) The i eigenvalues of the system’s state matrix are inside the unit circle, that is, for Ai 
of (11), ( ) 1i A  . 

(ii) The i poles of the system’s transfer function are inside the unit circle, that is, for αi  
of (9), i  < 1. 

 

Example 6. A state-space system having A = - 0.5, B = C = 1 and D = 0 is stable, since λ(A) = 
0.5 is in the unit circle. Equivalently, the corresponding transfer function G(z) = (z + 0.5)-1 
has a pole at z = - 0.5 which is inside the unit circle and so the system is stable. 
 

2.2.12 Adjoint Systems 
Let  : p  → q  be a linear system operating on the interval [0, T]. Then :H q  →  p , 
the adjoint of  , is the unique linear system such that, for all α  q  and w   p , <α, 
 w> =< H α, w>.  The following derivation is a simplification of the time-varying version 
that appears in [9]. 

                                                                 

“Eighty percent of success is showing up.” (Woody) Allen Stewart Konigsberg 

www.intechopen.com



Discrete-Time Minimum-Mean-Square-Error Filtering 33

Lemma 1 (State-space representation of an adjoint system): Suppose that a discrete-time linear 
time-invariant system   is described by  
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k k ky Cx Dw  , 
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with x0 = 0. The adjoint H is the linear system having the realisation 

1
T T

k k kA C     , 
T T

k k kB D     , 

(37) 

(38) 
with 0T  . 

Proof: The system (35) – (36) can be written equivalently 

0( )( )
( )( )
tzI A B x t

y tC D w t
      

     
     

 (39) 

with x0 = 0.  Thus 

                    <y,  w> ,
zI A B x

C D w



      
      

     
 

                       1
1 1 1

( ) ( )
N N N

T T T
k k k k k k k k

k k k
x Ax Bw Cx Dw  

  

        

                         
1

,
T T

T T

xz I A C
wB D




     
           

 

                         ,  H w  

(40) 

 

 

 

 

(41) 
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In some applications, such as inertial and satellite navigation [8], the underlying dynamic 
equations are in continuous-time, whereas the filters are implemented in discrete-time. In 
this case, any underlying continuous-time equations together with (28) – (30) can be 
calculated within a high rate foreground task, so that the discretised state-space parameters 
will be sufficiently accurate. The discrete-time filter recursions can then be executed within a 
lower rate background task.  
 

2.2.11 Asymptotic Stability 
Consider a discrete-time, linear, time-invariant system   that operates on an input process 
w and produces an output process y. The system   is said to be asymptotically stable if the 
output remains bounded, that is, y  ℓ2, for any input w  ℓ2. Two equivalent conditions for 
  to be asymptotically stable are as follows. 

(i) The i eigenvalues of the system’s state matrix are inside the unit circle, that is, for Ai 
of (11), ( ) 1i A  . 

(ii) The i poles of the system’s transfer function are inside the unit circle, that is, for αi  
of (9), i  < 1. 

 

Example 6. A state-space system having A = - 0.5, B = C = 1 and D = 0 is stable, since λ(A) = 
0.5 is in the unit circle. Equivalently, the corresponding transfer function G(z) = (z + 0.5)-1 
has a pole at z = - 0.5 which is inside the unit circle and so the system is stable. 
 

2.2.12 Adjoint Systems 
Let  : p  → q  be a linear system operating on the interval [0, T]. Then :H q  →  p , 
the adjoint of  , is the unique linear system such that, for all α  q  and w   p , <α, 
 w> =< H α, w>.  The following derivation is a simplification of the time-varying version 
that appears in [9]. 
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Example 10. Suppose that it is desired to realise the system 2 1( ) ( ) ( )HG z G z G z , in which G1(z) 
= (z + 0.6)-1 1

2 ( ) (0.9 1)HG z z z   , that is, 1
2 ( ) ( 0.9)G z z   . This system can be realised using 

the processes shown in Fig. 2.  
 

 
 

Figure 2. Realising an unstable 2 1( ) ( ) ( )HG z G z G z . 
 

2.2.15 Power Spectral Density 
Consider again a linear, time-invariant system y =  w and its corresponding transfer 
function matrix G(z). Then ( )yy z , the power spectral density of y, is given by 

( ) ( )  H
yy z GQG z , (45) 

which has the property ( )yy z  = 1( )yy z . From Parseval’s Theorem (5), the average total 
energy of y(t) is given by  

2 2

2
( ) ( ) { ( ) ( )}

jwT

jwT

e T
yy ke

z dz y dk y t E y t y t


 
     , (46) 

which equals the area under the power spectral density curve. 
 

2.2.16 Spectral Factorisation 
To avoid confusion with the z-transform variable, denote the noisy measurements of y(z) = 
G(z)w(z) by 

( ) ( ) ( )u z y z v z  , (47) 

where v(z)   p  is the z-transform of an independent, zero-mean, stationary, white 
measurement noise process with { }T

j kE v v  =  jkR . Let  

( ) ( )H
uu z GQG z R    (48) 

denote the spectral density matrix of the measurements u(t). A discrete-time transfer 
function is said to be minimum phase if its zeros lies inside the unit circle. Conversely, 
transfer functions having outside-unit-circle-zeros are known as non-minimum phase. 

Suppose that Фuu(z) is a spectral density matrix of transfer functions possessing equal order 
numerator and denominator polynomials that do not have roots on the unit circle. Then the 
spectral factor matrix Δ(z) satisfies the following. 
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Time-
reverse 
transpose 

Time-
reverse 
transpose 

1 ( )y z

Y1(z) W(z) Y2(z) 
1( )G z  

2 ( )TG z
1

2 ( )TY z  1
1 ( )TY z  

the transfer function matrix G(z) is denoted as GH(z) and is defined by the transfer function 
matrix  

( )HG z    1( )TG z . (42) 

Example 7.  Suppose that a system   has the state-space parameters  A = - 0.5 and B = C = 
D = 1. From Lemma 1, an adjoint system has the state-space parameters A = −0.5, B = C = −1, 
D = 1 and the corresponding transfer function is GH(z) = 1 + (z-1 + 0.5)-1 = (3z + 2)(z + 2)-1, 
which is unstable and non-minimum-phase. Alternatively, the adjoint of G(z) = 1 + (z + 0.5)-1 
= (z + 1.5)(z + 0.5)-1  can be obtained using (42), namely, GH(z) = GT(z-1) = (3z + 2)(z + 2)-1. 
 

2.2.13 Causal  Systems 
A causal system is a system whose output depends exclusively on past and current inputs 
and outputs. 
 

Example 8. Consider xk+1 = 0.3xk + 0.4xk-1 + wk. Since the output xk+1 depends only on past 
states xk, xk-1, and past inputs wk, this system is causal. 
 

Example 9. Consider xk = 0.3xk+1 + 0.4xk + wk+1. Since the output xk depends on future outputs 
xk+1 and future wk+1 inputs, this system is non-causal.  
 

2.2.14 Realising Unstable System Components 
Unstable system components are termed unrealisable because their outputs are not in ℓ2, 
that is, they are unbounded. In other words, unstable systems cannot produce a useful 
output. However, an unstable causal component can be realised as a stable non-causal or 
backwards component. Consider the system   (35) – (36) in which the eigenvalues of A all 
lie outside the unit circle. In this case, a stable adjoint system β = H α can be realised by the 
following three-step procedure. 

(i) Time-reverse the input signal αk, that is, construct ατ, where τ = N - k is a time-to-go 
variable. 

(ii) Realise the stable system T  

1
T TA C       , 

T TB D      , 

(43) 

(44) 

with 0 T . 
(iii) Time-reverse the output signal  , that is, construct k . 

Thus if a system consists of a cascade of stable and unstable components, it can be realised 
by a combination of causal and non-causal components. This approach will be exploited in 
the realisation of smoothers subsequently. 
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Example 10. Suppose that it is desired to realise the system 2 1( ) ( ) ( )HG z G z G z , in which G1(z) 
= (z + 0.6)-1 1

2 ( ) (0.9 1)HG z z z   , that is, 1
2 ( ) ( 0.9)G z z   . This system can be realised using 

the processes shown in Fig. 2.  
 

 
 

Figure 2. Realising an unstable 2 1( ) ( ) ( )HG z G z G z . 
 

2.2.15 Power Spectral Density 
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function matrix G(z). Then ( )yy z , the power spectral density of y, is given by 

( ) ( )  H
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jwT

e T
yy ke

z dz y dk y t E y t y t
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 
     , (46) 

which equals the area under the power spectral density curve. 
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where v(z)   p  is the z-transform of an independent, zero-mean, stationary, white 
measurement noise process with { }T
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Example 9. Consider xk = 0.3xk+1 + 0.4xk + wk+1. Since the output xk depends on future outputs 
xk+1 and future wk+1 inputs, this system is non-causal.  
 

2.2.14 Realising Unstable System Components 
Unstable system components are termed unrealisable because their outputs are not in ℓ2, 
that is, they are unbounded. In other words, unstable systems cannot produce a useful 
output. However, an unstable causal component can be realised as a stable non-causal or 
backwards component. Consider the system   (35) – (36) in which the eigenvalues of A all 
lie outside the unit circle. In this case, a stable adjoint system β = H α can be realised by the 
following three-step procedure. 

(i) Time-reverse the input signal αk, that is, construct ατ, where τ = N - k is a time-to-go 
variable. 

(ii) Realise the stable system T  

1
T TA C       , 

T TB D      , 

(43) 

(44) 

with 0 T . 
(iii) Time-reverse the output signal  , that is, construct k . 

Thus if a system consists of a cascade of stable and unstable components, it can be realised 
by a combination of causal and non-causal components. This approach will be exploited in 
the realisation of smoothers subsequently. 
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transfer function is zero at z = 0. Thus, the non-causal part of G(z), denoted by {G(z)}− , is 
obtained as 

{G(z)}− = Goucp(z) − Goucp(0) (50) 
and the causal part of G(z), denoted by {G(z)}+ ,is whatever remains, that is,  

{G(z)}+ = G(z) − {G(z)}− 

                                                                    = c0 + Giucp(z) + Goucp(0). 

(51) 

Hence, the causal part of transfer function can be found by carrying out the following three 
steps. 

(i) If the transfer function is not strictly proper, that is, if the order of the numerator 
not less than the degree of the denominator, perform synthetic division to extract 
the constant term.  

(ii) Expand out the (strictly proper) transfer function into the sum of partial fractions 
(49). 

(iii) Obtain the causal part from (51), namely, take the sum of the constant term, the 
partial fractions with inside-unit-circle-poles and the partial fractions with outside-
unit-circle-poles evaluated at z = 0.  

 

Example 13. Consider the strictly proper transfer function G(z) = 2

3 3.2
2.6 1.2
z

z z


 
 = 

3 3.2
( 0.6)( 2)

z
z z


 

 = 1
0.6z 

 + 2
2z 

. It follows from (50) and (51) that {G(z)}− = 2
2z 

 − 1 = 

2
z

z



 and {G(z)}+ = 1
0.6z 

 + 1 = 1.6
0.6

z
z



, respectively. It is easily verified that G(z)   

{G(z)}+ + {G(z)}−. 

 

Example 14.  Consider the proper transfer function G(z) = 
2

2

2 8.2 5.6
2.6 1.2

z z
z z

 
 

. Carrying out 

synthetic division results in G(z) = 2 + 1
0.6z 

 + 2
2z 

. It follows from (50) and (51) that 

{G(z)}− = 2
2z 

 − 1 = 
2

z
z



 and {G(z)}+ = 1
0.6z 

 + 1 + 2 = 3 2.8
0.6

z
z



, respectively. 

 

 

                                                                 

“The beginning of knowledge is the discovery of something we do not understand.” Frank Patrick Herber 

(i) Δ(z) ΔH(z) = Фuu(z). 
(ii) Δ(z) is causal, that is, the poles of Δ(z) are inside the unit circle. 
(iii) Δ-1(z) is causal, that is, the zeros of Δ(z) which are the poles of Δ-1(z) are inside the 

unit circle.    

The problem of spectral factorisation within discrete-time Wiener filtering problems is 
studied in [10]. The roots of the transfer function polynomials need to be sorted into those 
inside the unit circle and those outside the unit circle. Spectral factors can be found using 
Levinson-Durbin and Schur algorithms, Cholesky decomposition, Riccati equation solution 
[11] and Newton-Raphson iteration [12]. 

Example 11.  Applying the Bilinear Transform (15) to the continuous-time low-pass plant 
G(s) = (s + 1)-1 for a sample frequency of 2 Hz yields G(z) = 0.2(z+1)(z-0.6)-1. With Q = R = 1, 

the measurement spectral density (48) is (1.08 0.517) ( 0.517 1.08)( )
( 0.6) ( 0.6 1.0)uu

z zz
z z
  

  
  

. By 

inspection, Δ(z) = (1.08z − 0.517)(z − 0.6)-1 has inside-unit-circle-poles and zeros that satisfy 
Δ(z)ΔH(z) = Фuu(z). 

Example 12.  Consider the high-pass plant G(z) = 4.98(z − 0.6)(z + 0.99)-1 and Q = R = 1. The 

spectral density is (5.39 2.58) ( 2.58 5.39)( )
( 0.99) (0.99 1.0)uu

z zz
z z

  
  

 
. Thus the stable, minimum phase 

spectral factor is Δ(z) = (5.39z − 2.58)(z + 0.99)-1, since it has inside-unit-circle-poles and 
zeros.  
 

2.2.17 Calculating Causal Parts 
Suppose that a discrete-time transfer function has the form 

G(z) = c0 + 
1, 1i

n
i

i a i

d
z a   +

1, 1j

m
j

jj b

e
z b    

                                               = c0 + Giucp(z) + Goucp(z),  

(49) 

where c0, di, ej    , Giucp(z) = 
1, 1i

n
i

i a i

d
z a    is the sum of partial fractions having inside-unit-

circle-poles and Goucp(z) = 
1, 1j

m
j

jj b

e
z b    is the sum of partial fractions having outside-unit-

circle-poles. Assume that the roots of G(z) are distinct and do not lie on the unit circle. In this 
case the partial fraction coefficients di and ei within (49) can be calculated from the 
numerator and denominator polynomials of G(z) via ( ) ( )

i
i i z a

d z a G z


   and 

( ) ( )
j

j j z b
e z b G z


  . Previously, in continuous-time, the convention was to define constants 

to be causal. This is consistent with ensuring that the non-causal part of the discrete-time 
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transfer function is zero at z = 0. Thus, the non-causal part of G(z), denoted by {G(z)}− , is 
obtained as 

{G(z)}− = Goucp(z) − Goucp(0) (50) 
and the causal part of G(z), denoted by {G(z)}+ ,is whatever remains, that is,  

{G(z)}+ = G(z) − {G(z)}− 

                                                                    = c0 + Giucp(z) + Goucp(0). 

(51) 

Hence, the causal part of transfer function can be found by carrying out the following three 
steps. 

(i) If the transfer function is not strictly proper, that is, if the order of the numerator 
not less than the degree of the denominator, perform synthetic division to extract 
the constant term.  

(ii) Expand out the (strictly proper) transfer function into the sum of partial fractions 
(49). 

(iii) Obtain the causal part from (51), namely, take the sum of the constant term, the 
partial fractions with inside-unit-circle-poles and the partial fractions with outside-
unit-circle-poles evaluated at z = 0.  

 

Example 13. Consider the strictly proper transfer function G(z) = 2
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, respectively. It is easily verified that G(z)   

{G(z)}+ + {G(z)}−. 

 

Example 14.  Consider the proper transfer function G(z) = 
2
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 
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. Carrying out 

synthetic division results in G(z) = 2 + 1
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. It follows from (50) and (51) that 

{G(z)}− = 2
2z 

 − 1 = 
2

z
z



 and {G(z)}+ = 1
0.6z 

 + 1 + 2 = 3 2.8
0.6

z
z



, respectively. 
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(i) Δ(z) ΔH(z) = Фuu(z). 
(ii) Δ(z) is causal, that is, the poles of Δ(z) are inside the unit circle. 
(iii) Δ-1(z) is causal, that is, the zeros of Δ(z) which are the poles of Δ-1(z) are inside the 

unit circle.    

The problem of spectral factorisation within discrete-time Wiener filtering problems is 
studied in [10]. The roots of the transfer function polynomials need to be sorted into those 
inside the unit circle and those outside the unit circle. Spectral factors can be found using 
Levinson-Durbin and Schur algorithms, Cholesky decomposition, Riccati equation solution 
[11] and Newton-Raphson iteration [12]. 

Example 11.  Applying the Bilinear Transform (15) to the continuous-time low-pass plant 
G(s) = (s + 1)-1 for a sample frequency of 2 Hz yields G(z) = 0.2(z+1)(z-0.6)-1. With Q = R = 1, 

the measurement spectral density (48) is (1.08 0.517) ( 0.517 1.08)( )
( 0.6) ( 0.6 1.0)uu

z zz
z z
  

  
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. By 

inspection, Δ(z) = (1.08z − 0.517)(z − 0.6)-1 has inside-unit-circle-poles and zeros that satisfy 
Δ(z)ΔH(z) = Фuu(z). 

Example 12.  Consider the high-pass plant G(z) = 4.98(z − 0.6)(z + 0.99)-1 and Q = R = 1. The 

spectral density is (5.39 2.58) ( 2.58 5.39)( )
( 0.99) (0.99 1.0)uu

z zz
z z

  
  

 
. Thus the stable, minimum phase 

spectral factor is Δ(z) = (5.39z − 2.58)(z + 0.99)-1, since it has inside-unit-circle-poles and 
zeros.  
 

2.2.17 Calculating Causal Parts 
Suppose that a discrete-time transfer function has the form 

G(z) = c0 + 
1, 1i

n
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i a i

d
z a   +

1, 1j

m
j

jj b

e
z b    

                                               = c0 + Giucp(z) + Goucp(z),  

(49) 

where c0, di, ej    , Giucp(z) = 
1, 1i

n
i

i a i

d
z a    is the sum of partial fractions having inside-unit-

circle-poles and Goucp(z) = 
1, 1j

m
j

jj b

e
z b    is the sum of partial fractions having outside-unit-

circle-poles. Assume that the roots of G(z) are distinct and do not lie on the unit circle. In this 
case the partial fraction coefficients di and ei within (49) can be calculated from the 
numerator and denominator polynomials of G(z) via ( ) ( )

i
i i z a

d z a G z


   and 

( ) ( )
j

j j z b
e z b G z


  . Previously, in continuous-time, the convention was to define constants 

to be causal. This is consistent with ensuring that the non-causal part of the discrete-time 
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2 1
2 1

0 ( )
( ) ( ) ( )

0 ( ) ( )

H

H H H

R H z
H z HG z G z

Q G H z G z
  

          
 

                 1 1 1 2 2 1( ) ( ) ( ) ( )H H H H H HG QG z G QG H z HG QG z H H z     , 

where 

2 2( ) ( )H Hz G QG z R    (56) 

is the spectral density matrix of the measurements. Completing the square within (55) yields 

1
1 1 1 2 2 1( ) ( ) ( ) ( )H H H H

ee z G QG z G QG G QG z     
                             + 1 2 1 2( ( ) ( ))( ( ) ( ))H H H H HH z G QG z H z G QG z       , 

(57) 

in which 1( ) ( ) ( )H Hz z    . It follows that the total energy of the error signal can be 
expressed as 

        1
1 1 1 2 2 1( ) ( ) ( ) ( )

jwT jwT

jwT jwT

e e H H H H
eee e

z dz G QG z G QG G QG z dz

 
      

                                        1 2 1 2( ( ) ( ))( ( ) ( ))
jwT

jwT

e H H H H H

e
H z G QG z H z G QG z dz 


       . 

(58) 

The first term on the right-hand-side of (58) is independent of H(z) and represents a lower 

bound of ( )
jwT

jwT

e

eee
z dz


 . The second term on the right-hand-side of (58) may be minimised 

by a judicious choice for H(z).  

Theorem 1: The optimal solution for the above linear time-invariant estimation problem with 
measurements (52) and error (53) is 

1
1 2( ) ( )H HH z G QG z    , (59) 

which minimises  ( )
jwT

jwT

e

eee
z dz


 . 

Proof: The result follows by setting 1 2( ) ( )H HH z G QG z    equal to the zero matrix within (58).   ฀ 

By Parseval’s theorem, the minimum mean-square-error solution (59) also minimises 
2

2
( )e z . The solution (59) is non-causal because the factor 1

2 ( ) ( )H HG z  possesses outside-
unit-circle poles. This optimal non-causal solution is actually a smoother, which can be 
realised by a combination of forward and backward processes.  

                                                                 

“I think anybody who doesn't think I'm smart enough to handle the job is underestimating.” George 
Walker Bush 

 

 

 

 

 
 
Figure 3. The general z-domain filtering problem. 
 

2.3 Minimum-Mean-Square-Error Filtering 
 

2.3.1 Filter Derivation 
This section derives the optimal non-causal minimum-mean-square-error solution for the 
problem configuration of Fig. 3. The derivation is identical to the continuous-time case 
which is presented in Chapter 1. It is assumed that the parameters of the stable transfer 
function G2(z) = C2(zI – A)-1B + D2 are known. Let Y2(z), W(z), V(z) and U(z) denote the z-
transform of a system’s output, process noise, measurement noise and observations, 
respectively. Then it follows from (47) that the z-transform of the measurements is 

U(z)   2 ( )Y z  + ( )V z . (52) 

Consider a fictitious reference system G1(z) = C1(zI – A)-1B + D1  as shown in Fig. 3. The 
problem is to design a filter transfer function H(z) to calculate estimates 1̂( )Y z  = H(z)U(z) of 

Y1(z) so that the energy ( ) ( )


 
j H

j
E z E z dz  of the estimation error 

E(z)   1̂( )Y z    Y1(z) (53) 
is minimised. It can be seen from Fig. 3 that the estimation error is generated by the system 

2 1

( )
( ) ( ) ( ) ( )

( )
V z

E z H z H G z G z
W z
 

     
 

. (54) 

The error power spectrum density matrix is given by the covariance of E(z), that is,  

( ) ( ) ( )H
ee z E z E z   (55) 

                                                                 

“I shall try to correct errors when shown to be errors; and I shall adopt new views so fast as they shall 
appear to be true views.” Abraham Lincoln 
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where 

2 2( ) ( )H Hz G QG z R    (56) 

is the spectral density matrix of the measurements. Completing the square within (55) yields 
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(57) 

in which 1( ) ( ) ( )H Hz z    . It follows that the total energy of the error signal can be 
expressed as 
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The first term on the right-hand-side of (58) is independent of H(z) and represents a lower 

bound of ( )
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eee
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 . The second term on the right-hand-side of (58) may be minimised 

by a judicious choice for H(z).  

Theorem 1: The optimal solution for the above linear time-invariant estimation problem with 
measurements (52) and error (53) is 
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jwT

jwT

e

eee
z dz


 . 

Proof: The result follows by setting 1 2( ) ( )H HH z G QG z    equal to the zero matrix within (58).   ฀ 

By Parseval’s theorem, the minimum mean-square-error solution (59) also minimises 
2

2
( )e z . The solution (59) is non-causal because the factor 1

2 ( ) ( )H HG z  possesses outside-
unit-circle poles. This optimal non-causal solution is actually a smoother, which can be 
realised by a combination of forward and backward processes.  

                                                                 

“I think anybody who doesn't think I'm smart enough to handle the job is underestimating.” George 
Walker Bush 

 

 

 

 

 
 
Figure 3. The general z-domain filtering problem. 
 

2.3 Minimum-Mean-Square-Error Filtering 
 

2.3.1 Filter Derivation 
This section derives the optimal non-causal minimum-mean-square-error solution for the 
problem configuration of Fig. 3. The derivation is identical to the continuous-time case 
which is presented in Chapter 1. It is assumed that the parameters of the stable transfer 
function G2(z) = C2(zI – A)-1B + D2 are known. Let Y2(z), W(z), V(z) and U(z) denote the z-
transform of a system’s output, process noise, measurement noise and observations, 
respectively. Then it follows from (47) that the z-transform of the measurements is 

U(z)   2 ( )Y z  + ( )V z . (52) 

Consider a fictitious reference system G1(z) = C1(zI – A)-1B + D1  as shown in Fig. 3. The 
problem is to design a filter transfer function H(z) to calculate estimates 1̂( )Y z  = H(z)U(z) of 

Y1(z) so that the energy ( ) ( )


 
j H

j
E z E z dz  of the estimation error 

E(z)   1̂( )Y z    Y1(z) (53) 
is minimised. It can be seen from Fig. 3 that the estimation error is generated by the system 

2 1

( )
( ) ( ) ( ) ( )

( )
V z

E z H z H G z G z
W z
 

     
 

. (54) 

The error power spectrum density matrix is given by the covariance of E(z), that is,  

( ) ( ) ( )H
ee z E z E z   (55) 

                                                                 

“I shall try to correct errors when shown to be errors; and I shall adopt new views so fast as they shall 
appear to be true views.” Abraham Lincoln 
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1( ) (0) ( )H
OEH z I R z     , (65) 

which eliminates the need for calculating causal parts. 

Example 15. Consider G2(z) = (z + 0.2)(z + 0.5)-1 together with R = Q = 1. The spectral factor is Δ(z) 
= (1.43z + 0.489)(z + 0.5)-1, which leads to 2 2 ( )H HG QG z  = (0.2z2 + 1.04z + 0.2)(0.489z2 + 1.67z + 
0.716)-1 and 2 2{ ( )}H HG QG z

  = (0.734z + 0.14)(z + 0.5)-1. Hence, from (63), HOE(z) = (0.513z + 
0.098)(z + 0.341)-1. The same solution can be calculated using Δ-H(0) = 0.698 within (65). 

When the measurement noise becomes negligibly small, the output estimator approaches a 
short circuit, that is,   

0, 0
lim ( )

jwT OE
R e

H z I
 

 , (66) 

The above observation can be verified by substituting R = 0 into (65). This asymptote is 
consistent with intuition, that is, when the measurements are perfect, output estimation will 
be superfluous. 

Example 16. Substituting R = 0.001 within Example 15 yields the filter H(z) = (0.999z + 0.2)(z 
+ 0.2)-1, which illustrates the low measurement noise asymptote (66).  
 

2.3.3 Input Estimation 
In input estimation or equalisation problems, G2(z) is known as the channel model and it is 
desired to estimate the input process w(t), as depicted in Fig. 5. The simplification of the 
optimum non-causal solution (59) for the case of G1(z) = I is 

1
2( ) ( )H H

IEH z QG z    , (67) 

Assume that: the channel model G2(z) is proper, that is, the order of the numerator is the 
same as the order of the denominator; and that the channel model G2(z) is stable and 
minimum phase, that is, its poles and zeros are inside the unit circle. The causal equaliser for 
proper, stable, minimum-phase channels is obtained by substituting G1(z) = I  into (60) 

         1
2( ) { } ( )H H

IEH z QG z 
    

                                                                 1
2 (0) (0) ( )H HQG z    . 

(68) 

Under the above assumptions, the causal equaliser may be written equivalently as 
1 1

2 2 2( ) { } ( )H H
IEH z G G QG z  

    

                                   1 1
2{ ( ) } ( )H HG R z  

      
                                   1 1

2 ( { } ( ))HG I R z  
     

(69) 

 
(70) 

                                                                 

“He who knows nothing is closer to the truth than he whose mind is filled with falsehoods and errors.” 
Thomas Jefferson. 

The transfer function matrix of the optimal causal solution or filter is obtained by setting the 
setting the causal part of 1 2( ) ( )H HH z G QG z    equal to the zero matrix, resulting in 

1{ ( ) ( )}H z z
  = 1

1 2{ ( ) }H HG QG 
 , that is 1( ) ( )H z z  = 1

1 2{ ( ) }H HG QG 
 , which implies 

 1 1
1 2( ) ( ) ( )H HH z G QG z 


   . (60) 

 

 
 
 
 
Figure 4. The z-domain output estimation problem. 
 

2.3.2 Output Estimation 
In output estimation, it is desired to estimate the output Y2(z) from the measurements U(z), 
in which case the reference system is the same as the generating system, as shown in Fig. 4. 
The optimal non-causal solution (59) with G1(z) = G2(z) becomes 

1
2 2( ) ( )   H H

OEH z G QG z . (61) 

Substituting 2 2 ( )HG QG z  = ( )H z  − R into (61) leads to the alternative form 

1( ) ( )( ) ( )H H
OEH z R z     

                                                        1( )    HI R z . 
(62) 

The solutions (61) and (62) are non-causal since GH(z) and Δ-H(z) are non-causal. The optimal 
smoother or non-causal filter for output estimation is obtained by substituting G1(z) = G2(z) 
into (60), namely, 

  1
2 2( ) ( )H H

OEH z G QG z 


   . (63) 

An alternative form arises by substituting GQGH(z) = ΔΔH(z) − R into (63), which results in 

1( ) { ( ) } ( )H
OEH z z R z 

      
                                                        1{ } ( )HI R z 

    .    

(64) 

In [10], it is recognised that {ΔH(z)}+ = lim ( )



z

z , which is equivalent to {ΔH(z)}+ = ΔH(0). It 

follows that 

                                                                 

“There is much pleasure to be gained from useless knowledge.” Bertrand Arthur William Russell 

 

 

HOE(z) 

 

G2(z) Σ 
W(z) 

 Σ 

+ 

+ 

_ + 

Y2(z) 

V(z) 

E(z) 

2
ˆ ( )Y z  U(z) 

www.intechopen.com



Discrete-Time Minimum-Mean-Square-Error Filtering 41
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which eliminates the need for calculating causal parts. 

Example 15. Consider G2(z) = (z + 0.2)(z + 0.5)-1 together with R = Q = 1. The spectral factor is Δ(z) 
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0.098)(z + 0.341)-1. The same solution can be calculated using Δ-H(0) = 0.698 within (65). 
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short circuit, that is,   
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The above observation can be verified by substituting R = 0 into (65). This asymptote is 
consistent with intuition, that is, when the measurements are perfect, output estimation will 
be superfluous. 

Example 16. Substituting R = 0.001 within Example 15 yields the filter H(z) = (0.999z + 0.2)(z 
+ 0.2)-1, which illustrates the low measurement noise asymptote (66).  
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same as the order of the denominator; and that the channel model G2(z) is stable and 
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proper, stable, minimum-phase channels is obtained by substituting G1(z) = I  into (60) 
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 ASSUMPTIONS MAIN RESULTS 
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E{wk} = E{W(z)} =  E{vk} = E{V(z)} = 
0. { }T

k kE w w  = E{W(z)WT(z)} = Q > 
0 and { }Tk kE v v  = E{V(z)VT(z)} = R > 
0 are known. A, B, C1, C2, D1 and 
D2 are known. G1(z) and G2(z) are 
stable, i.e., |λi(A)| < 1. 

 
1

1 1 1( ) ( )G z C zI A B D    

1
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2 2( ) ( )H Hz G QG z R    
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1 1

1 2( ) ( ) ( )H HH z G QG z     
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 1 1
1 2( ) ( ) ( )H HH z G QG z 


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Table 1. Main results for the discrete‐time general filtering problem. 
 

2.4 Conclusion 
Systems are written in the time-domain as difference equations 

1 1 1 1 0...       n k n n k n k ka y a y a y a y 1 1 1 1 0...m k m m k m k kb w b w b w b w         , 

which can expressed as polynomial transfer functions in the z-transform variable 

1 1
1 1 0

1 1
1 1 0

...( ) ( ) ( ) ( )
...

m m
m m

n n
n n

b z b z b z bY z W z G z W z
a z a z a z a

   


   


    
      

. 

It can be seen that knowledge of a system’s differential equation is sufficient to identify its 
transfer function. The optimal Wiener solution minimises the energy of the error and the 
mean-square-error and the main results are summarised in Table 1. The noncausal (or 
smoother) solution has unstable factors and can only be realised by a combination of 
forward and backward processes. 

It is noted that { ( )}H z   = lim ( )
z

z


  = (0)H , which can simplify calculating causal parts. For 

example, in output estimation problems where G1(z) = G2(z), the minimum-mean-square-

                                                                 

“Time is a great teacher, but unfortunately it kills all its pupils.” Louis Hector Berlioz 

                                   1 1
2 ( (0) ( ))HG I R z       

Thus, the equaliser is equivalent to a product of the channel inverse and the output 
estimator. It follows that when the measurement noise becomes negligibly small, the 
equaliser estimates the inverse of the system model, that is,   

1
20

lim ( ) ( )IER
H z G z


 , (71) 

The above observation follows by substituting R = 0 into (69). In other words, if the channel 
model is invertible and signal to noise ratio is sufficiently high, the equaliser will estimate 
w(t). When measurement noise is present then the solution trades off channel inversion and 
filtering. In the high measurement noise case, the equaliser approaches an open circuit, that 
is,   

0, 0
lim ( ) 0

jwT IE
Q e

H z
 

 . (72) 

The above observation can be verified by substituting ΔΔH = R into (70). Thus, when the 
equalisation problem is dominated by measurement noise, the estimation error is minimised 
by ignoring the data. 

 

 

 

 

 

 

Figure 5. The z-domain input estimation problem. 

Example 17.  Consider the high-pass plant G2(s) = 100(s + 0.1)(s + 10)-1 . Application of the 
bilinear transform for a sample frequency of 2 Hz yields G2(z) = (29.2857z − 27.8571)(z + 
0.4286)-1. With Q = 1 and R = 0.001, the spectral factor is Δ(z) = (29.2861z + − 27.8568)(z + 
0.4286)-1. From (67), HIE(z) = (z + 0.4286)(29.2861z − 27.8568)-1, which is high-pass and 
illustrates (71). 

Example 18. Applying the bilinear transform for a sample frequency of 2 Hz to the low-pass 
plant G2(z) = (s + 10)(s + 0.1)-1 results in G2(z) = (3.4146z − 1.4634)(z − 0.9512)-1. With Q = 1 
and R = 0.001, the spectral factor is Δ(z) = (3.4151z +1.4629)(z − 0.9512)-1. From (67), HIE(z) = 
(z − 0.9512)(3.4156z + 1.4631)-1, which is low pass and is consistent with (71). 

 

 

 
                                                                 

“They say that time changes things, but you actually have to change them yourself.” Andy Warhol 
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“They say that time changes things, but you actually have to change them yourself.” Andy Warhol 
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Problem 4. In respect of the input estimation problem with G(z) = (z − β)(z − α)-1 , α = – 0.9, 
β = – 0.1 and Q=1, verify the following.  

(a) R = 10 yields H(z) = (z + 0.1)(11.5988z + 1.9000)-1. 
(b) R = 1 yields H(z) = (z + 0.1)(2.4040z + 1.0000)-1. 
(b) R = 0.1 yields H(z) = (z + 0.1)(1.2468z + 0.9100)-1. 
(d) R = 0.01 yields H(z) = (z + 0.1)(1.0381z + 0.9010)-1. 
(e) R = 0.001 yields H(z) = (z + 0.1)(1.043z + 0.9001)-1. 
 

2.6 Glossary  
The following terms have been introduced within this section. 

k The integer-valued time variable. For example, k  (-∞, ∞) and k  (0, 
∞) denote −∞ < k < ∞ and 0 ≤ k < ∞, respectively. 

wk n  A discrete-time, real-valued, n-element stochastic input signal. 
w The set of wk over a prescribed interval. 

: p →q  A linear system that operates on a p-element input signal and 
produces a q-element output signal.  

y w  The output of a linear system   that operates on an input signal w.  
A, B, C, D Time-invariant state space matrices of appropriate dimension. The 

system   is assumed to have the realisation xk+1 = Axk + Bwk,  yk = Cxk 
+ Dwk in which wk is known as the process noise or input signal. 

vk A stationary stochastic measurement noise signal. 
δjk The Kronecker delta function. 
Q and R Time-invariant covariance matrices of stochastic signals wk and vk, 

respectively. 
Y(z) The z-transform of a continuous-time signal yk. 
G(z) The transfer function matrix of the system  . For example, the 

transfer function matrix of the system xk+1 = Axk + Bwk,  yk = Cxk + Dwk 
is given by G(z) = C(zI − A)−1B + D. 

,v w  The inner product of two discrete-time signals v and w which is 

defined by , T
k k

k
v w v w





  . 

2
w  The 2-norm of the discrete-time signal w which is defined by 

2
w  = 

,w w  = T
k k

k

w w



 . 

2  The set of continuous-time signals having finite 2-norm, which is 
known as the Lebesgue 2-space (see [3]). 
 
 
 

                                                                 

“If your result needs a statistician then you should design a better experiment.” Baron Ernest Rutherford 

error solution is HOE(z) = I – 1(0) ( )HR z   . In the single-input-single-output case, when the 
measurement noise becomes negligible, the output estimator approaches a short circuit. 
Conversely, when the single-input-single-output problem is dominated by measurement 
noise, the output estimator approaches an open circuit. 

In input estimation problems, G1(z) = I. If the channel model is invertible, the optimal causal 
equaliser is given by HIE(z) 1

2( ) (0) (0) ( )H H
IEH z QG z    . When the measurement noise 

becomes negligible, that is, 1
2( ) ( )Hz G z  , the optimal equaliser approaches the channel 

inverse. Conversely, when the problem is dominated by measurement noise, the equaliser 
approaches an open circuit. 
 

2.5 Problems 
Problem 1. Consider the error spectral density matrix 

1 1
1 2 1 2( ) [ ( ) ][ ( ) ] ( )H H H H H

ee z H G QG H G QG z         1
1 1 1 2 2 1[ ( ) ]( )H H H HG QG G QG G QG z   . 

(a) Derive the optimal non-causal solution. 
(b) Derive the optimal causal filter from (a).  
(c) Derive the optimal non-causal output estimator. 
(d) Derive the optimal causal filter from (c). 
(e) Derive the optimal non-causal input estimator. 
(f) Derive the optimal causal equaliser assuming that the channel inverse exists. 

Problem 2. Derive the asymptotes for the following single-input-single-output estimation 
problems.  

(a) Non-causal output estimation at R = 0. 
(b) Non-causal output estimation at Q = 0. 
(c) Causal output estimation at R = 0. 
(d) Causal output estimation at Q = 0. 
(e) Non-causal input estimation at R = 0. 
(f) Non-causal input estimation at Q = 0. 
(g) Causal input estimation at R = 0. 
(h) Causal input estimation at Q = 0. 

Problem 3. In respect of the output estimation problem with G(z) = (z − β)(z − α)-1 , α = – 0.3, 
β = – 0.5 and Q=1, verify the following.  

(a) R = 10 yields H(z) = (0.0948z + 0.0272)(z + 0.4798)-1. 
(b) R = 1 yields H(z) = (0.5059z + 0.1482)(z + 0.3953)-1. 
(c) R = 0.1 yields H(z) = (0.90941z + 0.2717)(z + 0.3170)-1. 
(d) R = 0.01 yields H(z) = (0.9901z + 0.2969)(z + 0.3018)-1. 
(e) R = 0.001 yields H(z) = (0.9990z + 0.2997)(z + 0.3002)-1. 

                                                                 

“If I have ever made any valuable discoveries, it has been owing more to patient attention, that to any 
other talent.” Isaac Newton 
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“One of the greatest discoveries a man makes, one of his greatest surprises, is to find he can do what he 
was afraid he couldn’t.” Henry Ford 

Asymptotic 
stability 

A linear discrete-time system   is said to be asymptotically stable if 
its output y  2  for any w  2 . If the real parts of the state matrix 
eigenvalues are inside the unit circle or equivalently if the real part of 
transfer function’s poles are inside the unit circle then the system is 
stable. 

Ts Sample period. 
H  The adjoint of  . The adjoint of a system having the state-space 

parameters {A, B, C, D} is a system parameterised by { AT, –CT, –BT, 
DT}. 

GH(z) The adjoint (or Hermitian transpose) of the transfer function matrix 
G(z). 

Фee(z) The spectral density matrix of the measurements e. 
Δ(z) The spectral factor of Фuu(z) which satisfies ΔΔH(z) = GQGH(z) + R. For 

brevity denote Δ-H(z)  = (ΔH)-1 (z). 
G–1(z) The inverse of the transfer function matrix G(z). 
G–H(z) The inverse of the adjoint transfer function matrix GH(z). 
{G(z)}+ The causal part of the transfer function matrix G(z). 
H(z) Transfer function matrix of the minimum mean-square-error solution. 
HOE(z) Transfer function matrix of the minimum mean-square-error solution 

specialised for output estimation. 
HIE(z) Transfer function matrix of the minimum mean-square-error solution 

specialised for input estimation. 
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