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1. Introduction  

There has long been observed an inhibitive response by plant species to certain neighboring 
plants. The Greek philosopher and botanist, Theophrastus, noted this effect from cabbage as 
early as 300 BC (Willis 1985). Since that time, others have documented similar plant 
interactions. In 1937, Austrian botanist, Hans Molisch, described this phenomenon as 
allelopathy, which he determined to be the result of biochemical interactions between plants 
(Molisch 1937; Putnam and Duke 1978). When first described, allelopathy referred to both 
deleterious and beneficial interactions between species; since that time, however, allelopathy 
has been applied to only adverse plant interactions, rather than to both. First described by a 
Roman scholar during the first century, black walnut (Juglans nigra L.) has long served as the 
common example of allelopathic effects with its ability to inhibit growth of surrounding 
plants either through decaying leaves or nuts or from the tree itself (Weir et al. 2004). 
Researchers have continued to examine allelopathy and the mechanism for biochemical 
inhibition, which was initially scrutinized by many since differentiation between this effect 
and plant competition remained uncertain (Weir et al. 2004). Subsequent bioassays 
involving specific chemical compounds extracted from plants have confirmed that certain 
species do, in fact, produce biochemicals that can inhibit plant germination and growth in 
the absence of resource competition (Einhellig 1994a). 

With confirmation of allelopathy, many investigations have been conducted in order to 
determine how best to utilize this effect for possible weed control in agricultural settings 
(Khanh et al. 2005; Olofsdotter 2001; Weston 1996). The ability to inhibit weed growth 
through the implementation of cover crops into a crop rotation has been a focal point for 
this research for several reasons. In addition to weed suppression and control through 
allelopathy, as well as a mulching effect, cover crops provide substantial environmental 
benefits such as reduced erosion and water runoff (Price et al. 2006; Truman et al. 2003). 
Moreover, cover crops are readily available and easily adapted to many agricultural 
situations. Because of these many benefits, including natural weed suppression through 
allelopathy, the use of cover crops has become a vital component of sustainable agriculture 
systems, as well as organic production. 

Ensuring sufficient food and fiber production for future generations can be hampered by 

limited options for weed control, particularly in developing countries where yields are 
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reduced by up to 25% by weed competition. Identifying and describing sustainable weed 

control measures that can be implemented to reduce weed pressure in a number of settings 

can help safeguard the productivity of agriculture. Therefore, the objectives of this chapter 

are to describe the fundamentals of allelopathy and how to utilize allelopathic compounds 

for weed control through cover crop use. The chapter also highlights many of the identified 

biochemicals, their structures, and the respective cover crops in which they are found. 

Lastly, we describe the degree of allelopathic potential for a number of cover crops, as 

determined by laboratory testing. 

2. Production and release of allelopathic compounds  

Allelochemicals enter the environment from plants in a number of ways, such as plant 
degradation, volatilization, leaching from plant leaves, and from root exudation (Bertin et al. 
2003; Weir et al. 2004). During active plant growth, particularly in early growth stages or 
during periods of stress, root exudation, either through diffusion, ion channels, or vesicle 
transport, is the primary method for release of many organic and inorganic compounds into 
the rhizosphere (Battey and Blackbourn 1993; Uren 2000). These compounds serve a multitude 
of functions such as improving nutrient uptake, root lubrication, plant growth regulation, 
microorganism defense, and waste removal (Bertin et al. 2003; Fan et al. 1997; Uren 2000).  

A large proportion of identified allelochemicals are noted to be secondary compounds 

formed during photosynthetic processes (Einhellig 1994b; Swain 1977). Since many 

allelopathic chemicals appear to perform no primary metabolic functions, although some 

compounds such as cinnamic acid and salicylic acid do serve other functions within a plant, 

it is unclear at this point as to what regulates the release of these compounds (Einhellig 

1994a). Many environmental plant stressors have been observed to increase allelochemical 

release but not necessarily chemical production (Bertin et al. 2003; Inderjit and Weston 2003; 

Sterling et al. 1987). Plant stressors such as elevated temperature, reduced water availability, 

and herbivory may cause increased allelochemical release; however, a definitive correlation 

between environmental factors and allelopathic compounds has yet to be made (Bertin et al. 

2003; Pramanik et al. 2000). Continued research directed at isolating and identifying 

individual root exudates while manipulating environmental stress factors may help to 

increase our understanding of allelochemical release into the rhizosphere. 

3. Allelopathic compounds  

Many allelochemicals have been identified since experiments began to isolate and determine 
allelopathic potentials of plant compounds. Compounds that have been identified thus far 
include a variety of chemical classes such as phenolic acids, coumarins, benzoquinones, 
terpenoids, glucosinolates, and tannins (Chung et al. 2002; Putnam and Duke 1978; Seigler 
1996; Swain 1977; Vyvyan 2002). These and other allelochemicals are found in many plant 
species from woody to herbaceous plants, grasses and broadleaves, weeds and crops. There 
are many details left to be determined such as regulation and production stimuli and mode 
of action for inhibition. It is also not readily understood to what extent allelopathic 
compounds interact with each other and other chemical compounds within the rhizosphere 
to inhibit surrounding plants. The following sections present several of the structural classes 
of recognized allelochemicals as well as specific compounds within each group.  
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3.1 Phenolic acids 

Like most allelochemicals, phenolic acids are secondary plant compounds typified by a 
hydroxylated aromatic ring structure. To date, a number of phenolic acids have been 
determined to have allelopathic properties and have been measured in extracts from a 
variety of plant species (Figure 1). Species which have been noted to produce phenolic acids 
include: rice (Oryza sativa L.), wheat (Triticum aestivum L.), mango (Mangifera indica L.), and 
spotted knapweed (Centaurea stoebe L.) (Bais et al. 2003; Chung et al. 2002; El-Rokiek et al. 
2010; Fitter 2003). Many species, such as rice, contain multiple phenolic compounds along 
with other allelopathic compounds. In two studies, researchers isolated nine individual 
phenolic acids from rice hull extracts and 14 different phenolic acids from buffalograss 
[Buchloe dactyloides (Nutt.) Engelm] (Chung et al. 2002; Wu et al. 1998). At this time, 
however, it is not clear to what degree individual allelochemicals interact to produce plant 
inhibition. Some reports show a synergistic effect when allelochemicals are in a mixture, 
while other studies indicate decreased plant inhibition in the presence of a mixture when 
compared to individual chemical inhibition (Chung et al. 2002; Einhellig 1996). 

 

Fig. 1. Phenolic acids identified in many plant species, such as oat (Avena sativa L.) and rice 
(Oryza sativa L.), have been found to have allelopathic properties. 

Although modes of action for allelopathic chemicals are not readily understood for each 

identified allelochemical, phenolic acids have been the focus of many studies designed to 

establish the basis of their allelopathy (Putnam 1985). Early research with phenolic acids 

indicated that some phenolic acids could function though increasing cell membrane 

permeability, thus affecting ion transport and metabolism (Glass and Dunlop 1974). More 

recent studies report disruption of cell division and malformed cellular structures in plants 

    Caffeic acid    Coumaric acid  Vanillic acid 

   p-hydrobenzoic   Ferulic acid    Syringic acid
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exposed to phenolic acids (Li et al. 2010). Reduced respiration and reduced photosynthetic 

rates, due to decreased photosynthetic products such as chlorophyll, have also been 

reported in the presence of phenolic acids (Patterson 1981; Yu et al. 2003). Other studies 

have cited altered plant enzymatic functions, inhibited protein synthesis, and inactivated 

plant hormones as inhibitory mechanisms from these allelochemicals (Batish et al. 2008; Li et 

al. 2010). Each mechanism of plant inhibition can lead to the reduced growth and/or death 

of an exposed plant; however, it is likely multiple functions within a plant are being affected 

simultaneously due to the mixture of allelochemicals released from a plant species. Despite 

the extensive research with phenolic acids, target sites for allelochemical activity within 

affected plant species remain to be determined for many phenolic compounds.   

3.2 Glucosinolates 

Glucosinolates occur in many plant species, but are widely known to be produced by 
species within the Brassicaceae family (Figure 2) (Haramoto and Gallandt 2005; Malik et al. 
2008; Mithen 2001). Members of this family include: wild radish (Raphanus raphanistrum L.), 
white mustard (Sinapis alba L.), turnip (Brassica campestris L.), and rapeseed (Brassica napus 
L.). Glucosinolates, secondary metabolites containing sulfur and nitrogen, are enzymatically 
hydrolyzed by myrosinase in the presence of water to form isothiocynates, the active 
allelochemicals (Haramoto and Gallandt 2005; Norsworthy and Meehan 2005; Petersen et al. 
2001; Price et al. 2005). Previous research examining extracts from glucosinolate-producing 
plant species have shown inhibition of other species through reduced germination, reduced 
seedling emergence and reduced size, as well as delayed seed germination (Al-Khatib et al. 
1997; Brown and Morra 1996; Malik et al. 2008; Norsworthy et al. 2007; Wolf et al. 1984). 
Although specific modes of action have not been thoroughly investigated for each 
compound, it is evident that some plant species are able to tolerate these allelochemicals 
more readily than other species (Norsworthy and Meehan 2005). Some suggest that seed 
size variability plays a role in determining inhibitory effects of these allelochemicals; 
however, this may not be the only determinant for tolerance to these compounds (Haramoto 
and Gallandt 2005; Westoby et al. 1996). Future research with these allelopathic compounds 
will likely seek to answer this question, along with identifying the mode of action for plant 
inhibition, in order to utilize these compounds more effectively in agricultural production. 

3.3 Coumarins 

Coumarin compounds (Figure 3) are found in a range of plant species, particularly from the 
Apiaceae, Asteraceae and Fabaceae families (Razavi 2011).  Coumarins and their derivatives 
have been identified in plants such as lettuce (Lactuca sativa L.), wild oat (Avena sativa L.), 
sweet vernalgrass (Anthoxanthum odoratum L.), and a number of other species (Abenavoli et 
al. 2004; Razavi 2011). Like many other allelochemicals, coumarins have been found to 
inhibit plant growth by reduced seedling germination and reduced root and shoot growth, 
likely with interference in photosynthesis, respiration, nutrient uptake and metabolism 
(Abenavoli et al. 2001; Abenavoli et al. 2004; Razavi et al 2010; Yamamoto 2008).  

In addition to plant inhibition, biological activity of coumarins includes antibacterial, 
nematicidal, antifungal, and insecticidal activity; moreover, pharmacological activity of 
coumarins has been commonly noted in a number of instances with specific compounds 
functioning to reduce edema and inflammation (Casley-Smith and Casley-Smith 1992; Hoult 
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and Paya 1996; Maddi et al. 1992; Razavi 2011). The broad activity of these compounds has 
made pharmaceutical use difficult due to the potential for non-target activity. Although 
allelopathic research has yet to indicate that the broad spectrum activity of coumarins could 
limit future use of these compounds for weed control, this may require further investigation 
as research moves forward. 

 

Fig. 2. Glucosinolates, allelopathic compounds known to be produced by plants in the 
Brassicaceae family as well as other families, are produced in both the root and shoot 
regions of plants. 

  Gluconasturtin 

   Glucoiberin   Glucotropaeolin   Glucoraphenin 

    Sinigrin 

   Gluconapin   Glucobrassicin   Progoitrin 

   Neoglucobrassicin
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Fig. 3. Coumarins and their subgroups have been identified as allelopathic compounds in 
several plant families including Apiaceae and Fabaceae. 

3.4 Other allelopathic compounds 

Many other allelochemicals have been detected in a wide range of species; however, a few 

compounds have been more widely researched. Classes of allelochemicals under 

thorough investigation, such as the benzoxazinoids, heliannuols, and benzoquinones, 

offer potential benefits for weed control in agricultural systems (Figure 4) (Macias et al. 

2005; Vyvyan 2002). These classes, described briefly below, represent only a few of the 

many other compounds that may one day provide substantial weed suppression through 

allelopathy. 

Benzoxazinoid compounds, identified in cereal grains such as wheat and rye, include 

DIBOA [2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one] and DIMBOA [2,3-dihydroxy-7-

methoxy-(2H)-1,4-benzoxazin-3(4H)-one] (Burgos and Talbert 2000; Macias et al. 2005). 

These compounds are easily degraded into other allelopathic forms, BOA (2-

benzoxazolinone) and MBOA (7-methoxy-2-benzoxazolinone), within the soil and can 

diminish plant germination and growth (Barnes et al. 1987; Burgos and Talbert 2000). In 

light of the allelopathic properties of BOA and MBOA, it is now recognized that continued 

research efforts are needed to understand the role of breakdown products of initial 

allelochemicals in inhibiting plant growth (Macias et al. 2005). 

   Umbelliferone    Scopoletin    Scopolin 

   Imperatorin   Psoralen   Bergapten
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From the sunflower plant (Helianthus annuus L.), several compounds have been identified as 
being allelopathic (Leather 1983; Vyvyan 2002). The heliannuols are classified as phenolic 
sesquiterpenes and are noted for allelopathic as well as pharmacological activity (Vyvyan 
2002). In addition to having been isolated from the sunflower, similarly structured 
compounds have been detected in animal species as well (Harrison and Crews 1997). Most 
notable about heliannuolic compounds is their ability to suppress plant growth at relatively 
low concentrations. Although they have been shown to inhibit growth of many broadleaf 
weed species, heliannuols appear to have a stimulating effect upon monocotyleden species 
(Weidenhamer 1996; Vyvyan 2002). This aspect of heliannuol activity may prove difficult 
when developing weed control applications of these compounds. 

 

Fig. 4. Compounds, such as DIMBOA, heliannuol A, and sorgoleone, continue to be studied 
for their allelopathic properties.  

Benzoquinone compounds, primarily sorgoleone, isolated from sorghum [Sorghum bicolor 
(L.) Moench], have also been determined to be highly allelopathic (Netzly et al. 1998). 
Research with this compound indicates plant growth inhibition is achieved through 
disruption of photosynthesis as well as reduced chlorophyll development (Einhellig and 
Souza 1992). Like some other compounds, sorgoleone exhibits selective activity with 
inhibition of many germinating seedlings but little activity against certain species such as 
morningglory (Ipomoea spp.) (Nimbal et al. 1996). Research conducted with sorghum root 
exudates compares sorgoleone activity to that of the herbicide, diuron, but has many target 

       DIMBOA      Heliannuol A

          Sorgoleone
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sites (Nimbal et al. 1996; Rimando et al. 1998). Thus far, characteristics of sorgoleone show 
that it is a promising compound for development into a natural herbicide as an alternative 
to synthetic herbicides. 

4. Weed control through allelopathy 

Ongoing research into allelopathy seeks to better understand the mechanisms of allelopathy 
in order to make use of these naturally occurring weed suppressants within agricultural 
areas. Benefits offered by employing allelopathy as some form of weed control could aid in 
developing more sustainable agricultural systems for future generations (Einhellig 1994a). 
Current efforts focus primarily on natural herbicide production and cover crops. Although 
these concepts are being utilized to some degree, there remains a great deal of research to 
fully utilize the potential of allelopathy. 

The role of naturally derived compounds, or synthetically produced mimics, for use as 
pesticides has been widely adopted, particularly for insect control. Several plant derived 
compounds, such as pyrethrum, neem, and nicotine, are important chemicals for insect 
control in many areas (Isman 2006). Herbicide potentials of isolated plant extracts have been 
indicated by a number of researchers but to date, few have been marketed. Synthetic 
compounds, such as cinmethylin, and mesotrione, were developed based upon plant-
derived allelochemicals, but release of subsequent plant-based herbicides has lagged (Lee et 
al. 1997; Macias et al. 2004; Secor 1994; Vyvyan 2002). Slow production and release of 
herbicides developed in this manner are most likely attributed to limited understanding of 
the modes of action for many identified allelochemicals. To date, a number of 
allelochemicals have been isolated and investigated to develop natural herbicides with these 
compounds. Understanding the mode of action for plant inhibition may aid in the 
development of new products for the market.  

A great deal of research has been devoted to the use of cover crops for weed control. Until 
recently, however, the allelopathic potential of cover crops has received less attention due, 
in part, to the lack of knowledge about allelopathy in general. As the functions of 
allelopathic compounds are beginning to be understood, more focus is being given to the 
allelochemicals within cover crops. In agricultural settings, cover crops have been in use for 
a number of years as a ground cover to slow erosion and water runoff as well as to impede 
germination of weed seed by providing a physical barrier (Kaspar et al. 2001; Price et al. 
2008; Sarrantonio and Gallandt 2003). The growing need for sustainable agricultural systems 
has necessitated increased cover crop research to better utilize these covers for effective 
weed control. As a result, recent investigations have sought to understand the role of 
allelopathy for weed suppression within various cover crops (Burgos and Talbert 2000; 
Khanh et al. 2005; Price et al. 2008; Walters and Young 2008). 

5. Allelopathic potential of cover crops  

Determining allelopathic potential of exudates of plant species can be difficult and time 

consuming to complete. Bioassays are generally conducted to identify allelopathic 

properties of compounds in order to differentiate between allelopathy and mulching effects. 

Our research has focused on determining the extent of allelopathic effects of available cover 

crops on weed species as well as crop species. Extract-agar bioassays conducted with radish 
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(Raphanus sativus L.), an indicator species, and cotton (Gossypium hirsutum L.) established 

levels of inhibition for radicle elongation by extracts from cover crops, primarily legumes 

and cereal grains. 

Legume cover crops have the ability to fix atmospheric nitrogen that potentially provides a 

nitrogen source to the subsequent crop without the need for additional fertilizer 

applications (Balkcom et al. 2007; Hartwig and Ammon 2002). Legume species such as vetch 

(Vicia villosa Roth), clover (Trifolium spp.), black medic (Medicago lupulina L.), and winter pea 

(Pisum sativum L.) are typically used as cover crops in agricultural production in the United 

States (Figure 5) (SARE 2007). Other legume crops beginning to be researched as possible 

choices for cover crops are sunn hemp (Crotalaria juncea L.) and white lupin (Lupinus albus 

L.); however, their availability and use are not as widespread as the previously mentioned 

legumes. In addition to being a nitrogen source for primary crops, legume covers provide a 

weed control potential. Due to the rapid degradation of legume residue on the soil surface 

in comparison to cereal grain residue, weed control through a physical barrier may not last 

as long into the season as other cover crops. 

 

Fig. 5. Legume cover crops, such as white lupin (in mixture with black oats), provide weed 
suppression and nitrogen benefits to the subsequent cash crop. 

Determining allelopathic effects of legume cover crop extracts concluded that legume covers 

did inhibit radish and cotton radicle elongation; however, cotton root exhibited less 

inhibition than that of radish for all included crops (Price et al. 2008) (Figure 6). In our 

research, hairy vetch had the greatest inhibition while winter pea had the least effect on 

germinating seedlings. It is important to note that different varieties of cover crops are 
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available for use in agricultural systems and the varieties of one species may differ in level 

of allelopathy. Although under field conditions, allelopathic performance of these species 

may fluctuate, it is apparent that these cover crops can provide additional weed control 

measures over systems that do not include a cover crop.  

 

 

Fig. 6. Legume cover crops affect radicle elongation of different plant species to varying 
degrees.  

Cereal grain crops such as black oat (Avena strigosa Schreb), rye, triticale (X Triticosecale 

Wittmack), and wheat, are utilized frequently in conservation systems as cover crops with 

effective ground cover and weed suppression (Figure 7). Rye is a commonly used cereal cover 

crop due to its ability to be sown later in the season while maintaining successful growth and 

its biomass production capability. With increased biomass on the soil surface, weed 

suppression will be increased as well. Cereal crops will also decay more slowly than more 

herbaceous plant species and provide some ground cover, and allelochemical release, further 

into the growing season. Additionally, rye has been noted to be less affected by plant diseases 

than other cover crops, and aids in reducing insect pests within a system (Wingard 1996).  

Like legumes, cereal grain crop exudates in our study were able to significantly inhibit radicle 

elongation compared to the control (Figure 8). The disparity between radish and cotton radicle 

inhibition for each cover crop studied suggests that minimized interference with primary 

crops and increased weed suppression potential could be achieved with the use of cereal grain 

crops. These allelopathic effects, however, may be amplified or diminished depending on the 

field environment, plant stress levels, cover crop variety, and a number of other factors 

involved in determining allelochemical levels. Nevertheless, this research provides a base of 

allelopathic concentrations and impacts from various cover crops and may be an initial 

consideration when choosing a cover crop for inclusion in a system. 
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Fig. 7. Cotton growing in rolled black oat residue. Cereal grain cover crops, like black oat 
and rye, can be utilized to achieve a large quantity of plant residue on the soil surface. 

 

Fig. 8. Radish and cotton radicle elongation is reduced by cereal grain cover crops. 
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6. Conclusions  

The growing demand for sustainable agricultural systems requires that researchers 
reevaluate current production methods and inputs. To ensure continued productivity and 
potentially reduce synthetic herbicide requirements, allelopathy has become a focal point for 
research in the agricultural community. Although, many questions have yet to be resolved, 
the utilization of allelochemicals for weed suppression remains a promising avenue for 
reducing herbicide usage. Whether through the development of natural herbicides from 
isolated allelochemicals or through the application of cover crops with allelopathic 
properties, allelopathy will most likely be a factor in providing sustainable systems in the 
future.  
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