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1. Introduction 

Machine fault prognosis and health management has received intensive studies for several 

decades, and various approaches have been taken, such as statistical signal processing, time-

frequency analysis, wavelet, and neural networks. Among of them, pattern recognition 

method provides a systematic approach to acquiring knowledge from fault samples. In fact, 

mechanical fault diagnosis is essentially a problem of pattern classification. 

Many pattern recognition methods have been studied and applied in machine condition 

monitoring and fault prognosis. Campbell proposed a linear programming approach to 

engine failure detection (Campbell&Bennett, 2001). In Ypma’s study, different learning 

methods, such as Independent Component Analysis, Self Organising Map, and Hidden 

Markov Models, were applied in fault feature extraction, novelty detection and dynamic 

fault recognition (Ypma, 2001). Ge et.al (2004)proposed a support vector machine based 

method for sheet metal stamping monitoring. Harkat et.al(2007) applied non-linear 

principal component analysis in sensor fault detection and isolation. Lei and Zuo (2009) 

implemented the Weighted k Nearest Neighbour algorithm to identify the gear crack 

level. 

However, the information of machine incipient fault is always weak and contaminated by 

strong noises, and there is always lack of fault samples to train the learning machine. 

Therefore, the key issue is how to select sensitive features from the dataset for machine 

incipient faults prognosis, which is related to feature selection and dimension reduction, 

and is very useful for fault classification. 

In most of medical and clinic applications, when the dimensionality of the data is high, for 
reducing computation complexity, some techniques might be used to project or embed the 
data into a lower dimensional space while retaining as much information as possible. 
Classical linear examples are Principal Component Analysis (PCA) (Jolliffe.2002) and 
Multi-Dimensional Scaling (MDS) (T. F. Cox & M. A. Cox, 2001). The coordinates of the 
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data points in the lower dimension space might be used as features or simply a mean to 
visualize the data.  

However, for common PHM(Prognostic and Health Management) applications, the 
dimensionality of the data is not as high as those in medical research, and the mapping 
techniques are mainly applied to reveal the correlation of features as to increase the 
accuracy of fault detection and identification. The selection of features also can avoid 
unnecessary sensors used in machine monitoring, considering the high cost maintaining. 
Nomikos and MacGregor(1994) firstly presented a PCA approach for monitoring batch 
process, the history information was linear projected onto a low-dimensional space that 
summarized the key characteristics of normal behaviour by both variable and their time 
histories. Considering that minor component discarded in PCA might contain important 
information on nonlinearities, a large amount of nonlinear methods were presented for the 
process monitoring and chemical process modelling (Dong & McAvoy,1996; Kaspar & 
Ray,1992; Sang et. al,2005), such as Kernal PCA (Schölkopf,1998). 

Non-linear dimensionality mapping methods are more frequently recognized as non-linear 
manifold learning methods. The manifold learning is the process of estimating a low-
dimensional underlying structure embedded in a collection of high-dimensional data( 
Tenenbaum et. al, 2000; Roweis & Saul, 2000). Instead of using Euclidian distance to 
measure samples’ similarity in input space, samples’ similarity in latent space is measured 
by their geodesic or short path distance. The deceptive close distance in the high-
dimensional input space can be corrected. 

Spectral clustering is a graph-theory-based manifold learning method, which can be used to 

dissect the graph and get the clusters for exploratory data analysis. Compared with the 

traditional algorithms such as k-means, spectral clustering has many fundamental 

advantages. It is more flexible, capturing a wider range of geometries, and it is very simple 

to implement and can be solved efficiently by standard linear algebra methods. It has been 

successfully deployed in numerous applications in areas such as computer vision, speech 

recognition, and robotics. Moreover, there is a substantial theoretical literature supporting 

spectral clustering (Kannan et.al,2004; Luxburg,2007,2008). 

In most PHM applications, multi-groups of data sets from different failure modes are 

frequently nonlinearly distributed and mixed in a high dimensional feature space. However, 

an “unfolded” feature space is expected as to differentiate these degradation patterns by a 

designed classifier. 

In this part, we first propose a spectral clustering based feature selection method used for 

machine fault feature extraction and evaluation, and then the samples with selected features 

are input into a density-adjustable spectral kernel based transductive support vector 

machine to train and to get the prognosis results. 

2. Spectral clustering feature selection 

2.1 Basics of graph theory 

Given a d-dimentsional data points {x1, . . ., xn}, and the similarity between all pairs of data 

points xi and xj is noted as wij. According to graph theory, the data points can be represented 
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by an undirected data graph G=(V,E). Each node in this graph represents a data point xi. 

Two nodes are connected if the similarity wij between the corresponding data xi and xj is 

positive or larger than a certain threshold, and the edge is weighted by wij. These data points 

can be divided into several groups such that points in the same group are similar and points 

in different groups are dissimilar to each other. 

2.2 Laplacian embedding 

BelKin(2003) indicated that Laplacian Eigenmaps used spectral techniques to perform 

dimensionality reduction. This technique relies on the basic assumption that the data lies in 

a low dimensional manifold in a high dimensional space. The Laplacian of the graph 

obtained from the data points may be viewed as an approximation to the Laplace-Beltrami 

operator defined on the manifold. The embedding maps for the data come from 

approximations to a natural map that is defined on the entire manifold.  

The popular Laplacian Embedding algorithm includes the following steps, as shown in 

Fig.1. 
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Fig. 1. The procedure of Laplacian Embedding Algorithm 

Step 1: The d-dimensional dataset is viewed as an undirected data graph [10] , G = (V, E) 

with node set V={x1,...,xn}. Every node in the graph is one point in d. An edge is used to 

link node i and node j, if they are close as ε–neighborhoods which means the distance 

between nodes Xi and Xj satisfying i j  X X , or if node Xi is among n nearest neighbors 

of Xj or Xj is among n nearest neighbors of Xi.  

Step 2: Each edge between two nodes Xi and Xj carries a non-negative weight wij≥0. The 

weighted adjacency matrix of the graph is the matrix { }, , 1,...,ijw i j n W . There are 

different methods to configure the weight matrix. For example, the most common is 
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The degree of a node Xi  V is defined as  
1

n
i ijd w . The degree matrix D is defined as the 

diagonal matrix with {d1, d2,…,dn} on its diagonal. The un-normalized graph Laplacian 

matrix is defined by Luxburg(2007) as:  L = D - W .  

Step 3: The Laplacian Eigenmap (on normalized Laplacian matrix) is computed by spectral 

decomposition for eigenvectors problem of Ly = Dy. The image of Xi under the embedding 

is converted into the lower dimensional space m, given by ordered eigenvalues: {y1(i), 
y2(i),..., ym(i)}. This decomposition provides significant information about the graph and 
distribution of all points. It has been proven experimentally that the inner natural groups of 
dataset are recovered by mapping the original dataset into the space spanned by 
eigenvectors of the Laplacian matrix(Belkin & Niyogi,2003).  

2.3 Supervised feature selection criterion by Laplacian scores 

Given a graph G, the Laplacian matrix L of G is a linear operator on any feature vector from 
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The equation quantifies how much the feature vector is consistent with the structure of the 
G locally. For the instances closer to each other, the features that have similar value for them 
are contributes more on the dissimilarity matrix that is consistent with data structure. The 
flatter the feature value is over all instances, the smaller the value of the equation. However, 
instead of the feature consistency only considering instances with small distance, a complete 
definition of feature consistency with the data structure is clarified as the following: 

Definition 1: (feature local consistency with data graph) 

Given data graph G= (V, E) (V={X1,...,Xn},E={Wij}), the feature f is a locally consistent variant 

of G at level h (0<h<1) for a clustering C over G. If for every cluster Ck of C, there is  
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And  max( )kh h  is defined as feature consistency index. 

The definition is a ratio between inner and intra cluster variation caused by the individual 

feature. Perfect clustering expects less variance inter-cluster and the inverse for intra-

clusters. If the feature f contributes to better clustering, the nominator tends to be smaller 

and denominator is larger. Therefore kh  is expected to be smaller. The feature consistency 

index h indicates the features’s weakest separablility for clustering C  

In terms of graph theory, similar criterion can be formulated based on Eq.(4), and configure 

data graph G with following similarity measurement, 

 
(1) 1 ,

0 otherwise
k k
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Where (1)
ijw  is the similarity measurement of samples within-class, and 

(2)
ijw that of 

samples between-class. Then the sequence of instances can be reordered to make the 

adjacency matrix carry closer instances along its diagonal.  
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As proved by He et.al (2006), Laplacian score of r-th feature is as the follows: 
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The two Laplacian score (1)
rL  and (2)

rL  have same absolute value of denominators. If there 

exists clustering C={C1,…, Cp } over data graph G, the nominators are as the following  

 (1) 2

1 ,

1 1
( )

2

pT
r r ri rjk i j k

k

x x
n 

  f L f   (11) 
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k k
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Combining Eq.(4) and Eq.(11), there is 
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Comparing Eq.(12) with Eq.(13), it can be obtained 
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k k
r r
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T (1)

r r
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r

Lf L f
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Therefore, from Eq.(14), instead of the feature consistency index in Definition 1, the ratio of 
two Laplacian scores can also be considered as equivalent estimation of feature consistency. 

They are over the data graph with the configuration of (2)W and (1)W . If the feature is 

consistent with these data graphs, term of (1)
rL  should be smaller and (2)

rL  be larger. 

Therefore, from graph theory perspective, the supervised feature selection criterion by 
Laplacian score can be defined as follows 

 
(1)

(2)
r

r r

m   
T (1)

r r
T (2)

r

Lf L f

f L f L
 (15) 

Based on the criterion, the feature can be ranked, and a simple searching engine can be 
defined to select appropriate number of features from the list. 

3. Spectral kernel transductive support vector machine 

3.1 Density-adjustable spectral clustering 

Commonly, the weight of the edge in a Graph is defined by the Euclid distance between the 
two nodes, and it works very well with the linear data.  

But for nonlinear data, such as two clusters shown in Fig.2, data points a and c belong to the 
same cluster, and the Euclid distance between points a and b is less than that between points 
a and c. Therefore, it is necessary to measure the similarity of data points in a different way, 
which can zoom out the path length of those passing through low density area, and zoom in 
those not. Then the minimum path can be obtained to replace the Euclid distance. It is very 
useful for machine failure prognosis, because there always exists nonlinear when machine 
anomaly occurring. Chapelle et.al (2005) proposed a density-sensitive distance based on a 
density-adjustable path length definition as follows, 
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Fig. 2. Scatter Plot of two clusters based on Density-adjustable spectral clustering 

 =
( , )

( , ) 1i jdist x x
i jl x x     (16) 

Where ( , )i jdist x x is the Euclid distance between data xi and data xj, and   is the density 

adjustble factor( 1  ). This definition is satisfied with the cluster assumption, and can be 

used to describe the consistency of data structure by adjusting the factor   to zoom out or 

in the length between the two data points. Therefore, the similarity of the data point xi and xj 
can be expressed as following, 

 0

1
( , )

( ( , )) 1
i j

i j

s x x
dsp l x x




 (17) 

Where ( ( , ))i jdsp l x x  is denoted as the minimum distance between data xi and xj, which is 

the shortest path based on density adjustment.  

3.2 Transductive support vector machine 

Support vector machine is one of supervised learning methods based on statistical learning 
theory (Vapnik, 1998). Instead of Empirical Risk Minimization (ERM), Structural Risk 
Minimization (SRM) is an inductive principle for model selection used for learning from 
finite training data sets, which enhances the generalization ability of the SVM. The key to 
SVM is the “kernel tricks”, by which the nonlinear map can be realized from low 
dimensional space to high dimensional space. Therefore, the nonlinear classification task in 
low dimensional space can be converted to a linear classification, which can be solved by 
finding a best hyperplane in the high dimensional space. 

Considering of 2-class data points, there are many hyperplanes that might classify the data. 
The best hyperplane is the one that represents the largest margin between the two classes, 
and the distance from this hyperplane to the nearest data point on each side is maximized. 
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Fig. 3. The Linear Hyperplane of Support Vector Machine 

As shown in Fig.3, the data points of Class A are denoted as ‘�’, the others of Class B as ‘□’, 

and the data points circled by ‘○’ represented support vectors. These data x in the input 

space are separated by the best hyperplane H  

 y( ) 0x b  w  (18) 

with the maximal geometric margin 

 =2/
2

( )w w  (19) 

here ‘· ‘ denotes the dot product and w is normal vector to the hyperplane, and b is offset 

from the hyperplane to the margin.  

The plane H1 and H2 are also the hyperplanes where the nearest data points to ‘H’ are 

located. H1 can be expressed as y( ) 1x b  w  and H2 y( ) 1x b   w respectively. It 

reveals that finding the best hyperplane means minimizing the 
2

2w . There are three 

widely used kernel function as following, 

Polynomial Kernel:    , , 1
d

K x y x y    , 

Gaussian Kernel:   2 2, exp( )K x y x y     , 

Hyperbolic:    , tanh ,K x y v x y c    . 

As for Transductive Support Vector Machine (TSVM), it is one of semi-supervised learning 

methods, which can combine the labelled data with amounts of unlabelled data co-training. 

TSVM uses an idea of maximizing separation between labelled and unlabelled data (Vapnik, 

1998). It solves 
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2 * *

0 0

1
min :

2

l k

i j
i j

w C C 
 

    (20) 

1. . : : ( ) 1l
i i i is t y w x b      , *

1 : ( ) 1k
j j j jy w x b       

1 : 0l
i i  , *

1 : 0k
j j   

Where C  and *C are the penalty factors corresponding to labeled and unlabeled data, 

i and *
j  are the slack factors respectively, l is the number of labeled data and k that of 

unlabeled. These parameters are set by user, and they allow trading off margin size against 
misclassifying training samples or excluding test samples. 

3.3 Density-adjustable spectral kernel based TSVM 

Combine the ideas of density-adjustable spectral clustering (Chapelle & Zien,2005) and 

TSVM, we can get the density-adjustable spectral kernel based TSVM algorithm, called 

DSTSVM. The data is pre-processed by density-adjustable spectral decomposition, and the 

processed data is input into the TSVM which is trained by gradient descent on a Gaussian 

kernel, then the data is classified. The implementation of the DSTSVM algorithm is as 

following, 

Input: n-dimension data X{X1,…,Xm} (some labelled and others unlabelled) 

Parameter: density-adjustable factor  , penalty factor C  and kernel width  of the 

Gaussian kernel. (Set by user) 

Output:  The label of unlabelled data and the correctness of classification 

Step.1 Calculate the Euclid distance matrix S of data X 

Step.2 Calculate the shortest path matrix S0 according to the Eq.16 

Step.3 Construct the Graph G based on data matrix S0. Define the similarity of between 

nodes as 
2

0 ( , )/2i js x x
ijw e

 , and then the degree diagonal matrix can be denoted as 

( , ) ijD i i w . 

Step.4 Calculate the Laplacian matrix (-1/2) (-1/2)L=D WD solve the Eigen-decomposition and 

rearrange the eigenvalue 1{ , , }n  and corresponding eigenvector {U1,...,Un} in descent 

order. 

Step.5 Select the first r nonnegative eigenvectors according to  1 1
85%

r n
i ji j
 

 
  . 

Step.6 Get the new data set as 1/2

r rY=U Λ 1{y , ,y }m  

Step.7 Train the TSVM by gradient descent using the newdata and then get the classification 
result. 
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4. Case study 

To demonstrate that the proposed feature selection method and DSTSVM classifier are 
effective in machine failure prognosis, we applied the methods in feed axis faults feature 
selection and classification. 

4.1 Experiments 

Feed axis is one of critical components in a high-precision numerical control machine tool,  

which always working in conditions such as high speed, heavy duty and large travel 

distance. This would augment the degradation of mechanical parts such as bearings, ball 

nuts and so on. From a preventive maintenance perspective, autonomous fault detection 

and feed axis health assessment could reduce the possibility of causing more severe damage 

and downtime to machine tool.  

TechSolve Inc. collaborated with the NSF Intelligent Maintenance System Center (IMS) to 

investigate intelligent maintenance techniques for autonomous feed axis failure diagnosis 

and health assessment. For the investigation, designed experiments were conducted on a 

feed axis test-bed built by TechSolve. Multiple seeded failures were tested on the system 

such as axis front and back ball nut misalignment, bearing misalignment and so on (Siegal 

et.al, 2011). 13 channels (bearing and ball nut accelerometers, temperature and speed; motor 

power; encode position and so on) data were collected from the test-bed over a period of 

approximate 6 months. Since all the tests were designed to carry certain failures under 

different working conditions, the collected information was labeled in terms of the four 

condition indices including the test index, the load, ball nuts condition, and bearing 

condition. 

 

Mode Test 
index 

Table 
Load 

BallNut 
Misalignment 

Bearing 
Misalignment 

Time 

1   (Health) 1 0 0 0 2010-10-20 

2 300 0 0 2010-10-22 

2   (Failure1) 3 300 0 0.007 2010-11-09 

4 0 0 0.007 2010-11-22 

3   (Failure2) 5 0 0.007 0 2010-11-29 

6 300 0.007 0 2010-12-01 

4   (Failure1 and 
Failure2) 

7 300 0.007 0.007 2010-12-02 

8 0 0.007 0.007 2010-12-03 

Table 1. Eight working conditions of Four modes (Health, Bearing misalignment, Ballnut 
misalignment, and Combination) 

4.2 Feature selection and fault classification  

The samples were collected under 4 modes, which were Health, Failure 1(Bearing 

misalignment 0.007μm), Failure 2 (Ballnut misalignment 0.007μm), and Mode 4 (Failure 1 
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accompanied with Failure 2). Every mode had two working conditions with load at 0 and 

300Kw, and 25 samples at every condition. As for each sample, there were 154 features 

which contain 117 vibration features (RMS, kurtosis, crest factor at different time periods, 

and average energy of selected frequency bands) and 37 other features (torque, temperature, 

position error, and power at different time periods). Therefore, there were totally 200 154-D 

samples used for investigation. 

All the features were evaluated and ranked by Laplacian score using the proposed feature 

selection criterion. Among 154 features, there were 22 features selected which can reflect the 

data structure well with the best classification performance, which was shown in Fig.4. 
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Fig. 4. Features selection based on Laplacian scores 

Therefore, the input data dimension can be reduced from 154-D to 22-D. Selecting 25 

labelled samples randomly from those 50 22-D samples within every class (totally 100 

samples), and the remained 100 samples were regarded as unlabelled ones. Then all these 

labelled and unlabelled samples were input into the DSTSVM classifier for co-training. This 

process was repeated for 10 times, and then through 5-fold cross validation, we predicted 

that which class should the unlabelled samples belong to.  

For testing the performance of designed DSTSVM classifier, we reduced the labelled 

samples to 20 and 10 respectively, and then repeated the procedure above. To verify the 

effectiveness and correctness, the result was compared with those using SVM (supervised) 

and TSVM (semi-supervised). 

The 10th classification results using the data (10 labelled samples VS 40 unlabelled each 

class) were shown in Fig.5, Fig. 6, and Fig. 7 respectively.  
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Fig. 5. The Learning result of DSTSVM 
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Fig. 6. The Learning result of SVM 
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Fig. 7. The Learning result of TSVM 

All of the classifiers were trained on Gaussian kernel, and the kernel width   was set as the 

optimal value corresponding to the different classifiers. There are two parameters  and 

 influencing the DSTSVM classification, and the density adjustable factor  reflects the 

data similarity measure, which also affects the Kernel function. In terms of the classification 

correctness, we can choose the optimal group of these two parameters (  , ). The 

comparison results under different labelled samples were listed in Table.2. 

 

 DSTSVM SVM TSVM 

Labelled 
vs 
Unlabelled  

Kernel width & 
density factor 
 (σ,ρ) 

Ave 
Correctness 
(%) 

Kernel 
width 
σ 

Ave 
Correctness 
(%) 

Kernel 
width 
σ 

Ave 
Correctness 
(%) 

(25vs25)*4 θ0.75,2χ 91.90 0.5 91.80 0.55 82.50 

(20vs30)*4 θ0.75,2χ 90.92 0.5 90.42 0.55 83.33 

(10vs40)*4 θ0.75,2χ 90.25 0.5 88.88 0.55 85.63 

Table 2. The parameters and the average correctness of three classifiers 

In Table.2, the average correctness means the average of 10 testing process by 5-fold CV. It 

can be observed that the proposed method outperforms the TSVM and equals to the 

supervised SVM under different labelled samples. Moreover, when the labelled data was 

reduced to 10 samples, it performed better than SVM, which was very meaningful to 

practical machine failure prognosis applications.  
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5. Conclusion 

The proposed feature selection method can capture the structures of the input data, reduce 
the dimension of the data and expedite the computation process. More importantly, the 
classification result is also improved by this feature selection method. Compared with 
traditional supervised SVM learning and the TSVM semi-supervised learning method, the 
proposed DSTSVM performed better. Experiment results demonstrate that the proposed 
DSTSVM method is effective and capable of classifying incipient failures. It has great 
potential for machine fault prognosis in practice. Based on the current work, the proposed 
approach can be used to quantify and assure the sufficiency of the data for prognostics 
applications. 

In total, the spectral clustering based method was proposed to evaluate data and to select 
sensitive features for prognostics, furthermore the spectral kernel based TSVM classifier was 
also proved to be effective in PHM applications. 
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