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Symbolic Determination of  
Jacobian and Hessian Matrices 

 and Sensitivities of Active Linear Networks 
 by Using Chan-Mai Signal-Flow Graphs 

Georgi A. Nenov 
Higher School of Transport “T. Kableshkov”, Sofia, 

 Bulgaria 

1. Introduction 

Every network synthesis procedure normally includes a first-order or (more rarely) second-

order network sensitivity analysis. The main problem here is the evaluation of the 

corresponding first- or second-order derivatives of network functions with respect to the 

circuit element values. These derivatives form the network Jacobian (J) and Hessian (H) 

matrices, respectively. A variety of methods exist for such an evaluation but most of them 

are intended for the sensitivity of one network transfer function only. Besides this in many 

cases it is desirable to find the symbolic expressions of the sensitivities because such a 

presentation facilitates the element value influence determination. An other useful and 

important application of the matrices J and H is in the tasks for optimization of synthesized 

networks with respect to their sensitivities or other parameters (Korn & Korn, 1968; 

Wilde,1978). 

As it is well known all linear active networks can be modeled by using passive elements and 
nullator-norator pairs (nullors). The presented paper deals with the application of Chan-Mai 
signal-flow graphs (CMG) to the determination of the matrices J and H elements, having in 
mind the peculiarities of nullors and their influence on the passive element network 
admittance matrix and on the corresponding CMG. The method developed here is an 
improved and enlarged version of the approach in (Nenov, 2004). One demonstrates that the 
method reduces to the obtaining of two (for the elements of J) or four (for the elements of H) 
isomorphic Chan-Mai signal-flow graphs. 

2. Chan-Mai signal flow graph 

It was introduced in graph theory in 1967 (Chan & Mai, 1967). Compared with other kinds 
of oriented graphs (especially Mason and Coates graphs) the Chan-Mai graph (CMG) holds 
out a simplest way to the representation the relationships between the dependent and 
independent quantities in an algebraic equation set. In order to make easier the 
understanding of the following sections of the paper further we give the procedure for 
drawing of CMG and the basic formulae related. 
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Assume the algebraic set 

 . A X Y  (1) 

is given, where  
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is a square matrix with real or complex entries and 
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are the vectors of the dependent and of the independent variables, respectively. The CMG 

consists of n vertices with sink signals y1, y2, …, yn , n vertices with source signals x1, x2, …, xn  

and maximum n2 edges with transmission coefficients aji directed from the vertex xi toward 

the vertex yj ; i,j = 1, 2, …, n – Fig. 1. The calculations on the base of a CMG are connected 

with the following definitions (Chan & Mai, 1967, Donevsky & Nenov, 1979): 

i. By removing all outgoing from the vertex xi edges and by adding the edges with 
transmission coefficients yj from the vertex xi directed toward the vertices yj , j=1, 2, …, 
n one obtains the graph CMG,i; 

ii. A separation (S) contains all vertices of CMG and a part of edges so that every vertex is 
incident to only one incoming and one only outgoing edge. The product of the 
transmission coefficients of all edges in a separations represents the corresponding 
separation product (SP); 

iii. Two edges with transmission coefficients aij and aji form a symmetrical pair. 
iv. An edge which does not belong to a symmetrical pair is an asymmetrical edge. 

 

Fig. 1. Chan-Mai Signal-Flow Graph 
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An arbitrary unknown quantity xi in X can be evaluated according to the expression 
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In (4) and (5) r is the number of the separations in CMG, m is the number of the separations 

in CMG,i , Na,k is the number of all asymmetrical edges in k-th separation of CMG, Ns,k is the 

number of all symmetrical pairs in k-th separation of CMG, Naq is the number of the 

asymmetrical edges in q-th separation of CMG,i, Ns,q is the number of the symmetrical pairs 

in q-th separation of CMG,i, whereas SPq(CMG,i) and SPk(CMG) are the separation products 

of q-th separation of CMG,i and the separation products of k-th separation of CMG, 

respectively. 

3. Nullor network Chan-Mai signal-flow graph 

Suppose that an equivalent nullor network N with m+1 nodes, r passive branches and g 

nullors is given and the nodal equation of its passive part Np (the part of N which is 

obtained by removing all nullors) is 

 p p pY V I  (6) 

where 
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Y  (7) 

is the nodal matrix of Np and 
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
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V

I
 (8) 

are the nodal voltage and the nodal current vectors of Np, respectively. Additionally we 

assume that between the nodes of all node pairs in N only one element or more than one but 

parallel connected elements exist.  
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The equation (1) can be represented graphically by using a CMG  Gp (Chan & Mai, 1967). 

Further, taking into account the peculiarities of the nullators and the norators (Davies, 1966) 

the graph Gp can be transformed into the graph G of the actual network N according to the 

following   

Rule 1:  

i. When a nullator is connected between the node k in N and the ground node m+1 one 

removes all vertices going out from the vertex Vk of Gp; 

ii. When a norator is connected between the node k in N and the ground node m+1 one 

removes all vertices coming into the vertex Ik of Gp; 

iii. When a nullator is connected between the nodes k and l in N one unites the vertices Vk 

and Vl in Gp; 

iv. When a norator is connected between the nodes k and l in N one unites the vertices Ik 

and Il in Gp. 

The so obtained graph CMG G corresponds to the matrix equation 

 YV I  (9) 

where Y is an (nn) nodal admittance matrix of N, V is the nodal voltage vector of N and I is 

the nodal current vector of  for n=m-g. 

4. Jacobian matrix determination 

The matrices in (9) have the form: 

    

11 1 1

1 1 2 1 2

1

.. ..

. . . . .

.. .. ;   ... ;   ...

. . . . .

.. ..

i n

j ji jn n nt t

n nj nn
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            

Y V I  (10) 

In the common case every element Yji in (7) is an algebraic admittance sum 

 ;  , {1,2,..., }; {1,2,..., },ji s
s

Y y j i n s r    (11) 

where ys is the admittance of s-th branch of the network Np. 

The vectors V and I correspond to the unknown (dependent) variables and to independent 
variables of N, respectively and consequently 

 
1V Y I . (12) 

Let us suppose that the admittance ys changes its value to 

 
'
s s sy y dy  . (13) 
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Usually the admittance ys takes part in several (but no more then four) elements of (7) and 
then all these elements change their values (Nenov, 2004) 

 
' ;
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 (14) 

and  

 ' d Y Y Y . (15) 

In a common case the admittance ys influences the admittances Yji ,Yjl , Yki and Ykl; i,j,k,l Є {1, 
2, …, n}.  Then one obtains 
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K . (16) 

Note that the values of the derivatives in (16) are 1 or –1 because every admittance ys takes 
part in (11) only once. Hence 

 ' d V V V  (17) 

for 
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V
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By substituting Y ’and V ’ in (9) instead Y and V,  respectively, it follows 

    .d d  Y Y V V I . (20) 
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Having in mind that 

 d d Y V 0  (21) 

the equation (20) yields 

 d d Y V YV  (22) 

or 

 d d  1V Y YV . (23)  

Then we obtain 

 .s s s
s

dy dy
y


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
1V
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and the Jacobian matrix (Korn & Korn, 1968). for the change of the admittance ys is 
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where 

 1 2 .. n
s
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  
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J . (26) 

Taking into account (24) and (25) one obtains 

 
1 1 1 1 ;

.
s s s s

s s

          


 

J Y K Y I Y K V Y V

V K V
 (27) 

and according to (20) ÷ (22) 

  1
1 .. ..  s r

 J Y K K K V . (28) 

The expressions (22) show that in order to find the vector Js it is necessary to follow the 

Rule 2: 

i. Find the vector V by using the CMG G; 
ii. Evaluate the vector Vs; 
iii. Draw a new CMG Gs where the source vertices are the elements of the vector Js and the 

sink vertices are the elements of the vector Vs; 
iv. Find the source vertex variables in Gs. 
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Example A 

The network N in Fig. 2 is given, where m=6; r=9; g=2. Here obviously V2=V3=V23; V6=0 and  
we wish to find the vector 

 23 51 4
3

3 3 3 3( ) ( ) ( ) ( )
t

V VV V

sC sC sC sC

   
      

J . (29) 

 

Fig. 2. Nullor Network N 

In Fig. 3 the CMG Gp of the passive part of N is drawn (Nenov, 2004). Further following the 
Rule 2 we reach to the graph G in Fig. 4 for 
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Because Y32=sC3; Y42= -sC3 and 

 32 32

3 3

1;  1.
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  
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from (16) and (31) we have 

 

 

3

3 3 23 23

0 0 0 0

0 0 0 0
;

0 1 0 0

0 1 0 0

0 0
t

V V

 
 
        
   

K

V K V

 (32) 
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Fig. 3. CM Signal-Flow Graph Gp  

 

Fig. 4. CM Signal-Flow Graph G   

Obviously, in the case we have to find the voltage V23 only. For this purpose a CM graph G23 
is drawn (Fig. 5). 

 

Fig. 5. CM Signal-Flow Graph G23 
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According to (4) and (5) for the separations of the graph G (Fig. 6) we obtain  

 

1 1 4 5 1 2 ,1 ,1

2
2 1 4 5 ,2 ,2

3 2 3 5 ,3 ,3

( ); 4; 0;

; 2; 1;

: 2; 1

a s

a s

a s

SP G sC G G G N N

SP G sC G N N

SP G sC G N N

     
    
   

 (33) 

and for the unique separation of the graph G23 (Fig. 7): 

 
23,1 1 1 4 5 ,23,1 ,23,1; 2;a sSP J G sC G N N   (34) 

Then the formulae (4) and (5) yield       

 1 4
23

2 3 4( )

J C
V

G C C



. (35) 

Having in mind (26) ÷ (29) we have 

 

Fig. 6. Separations S1, S2 and S3 of CM Graph G 

 1 1
3 3 3( )    J Y V Y V  (36) 

and following Rule 2 one draws the CM graph GJ3 (Fig. 8). Obviously, the graphs G and GJ3 
have one and the same structure and consequently the expressions (33) hold for the source 
vertex quantities in (29) also. But for the nominator polynomials in (4) we have to draw 
according the Rule 2 four new CM graphs – GJ3,1, GJ3, 23, GJ3, 4 and GJ3, 5 – Fig. 9. 

  

Fig. 7. Separation S23,1 of CM Graph G23      
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Fig. 8. CM Graph GJ3 

 

Fig. 9. CM Graphs GJ3,1 ,GJ3,23, GJ3,4 and GJ3,5 
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Fig. 10. Separation SJ3,1,1 of CM Graph GJ3,1  

 

Fig. 11. Separation SJ3,23,1 of CM Graph GJ3,23 
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Fig. 12. Separations SJ3,4,1, SJ3,4,2, SJ3,4,3 and SJ3,4,4 of CM Graph GJ3,4 
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Fig. 13. Separations SJ3,5,1 and SJ3,5,2 of CM Graph GJ3,5 

From Fig. 9 ÷ Fig. 13 it follows 
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2
1 4 23 , 3,4,3 , 3,4,3

3,4,4 1 2 3 23 , 3,4,4 , 3,4,4

3,5,1 1 1 2 5 23 , 3,5,1 , 3,5,1

2
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a J s J

J a J s J
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J a J s J

G sC V N N
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






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   

   

   

  (37) 

Than by substituting (35) in (36) and by taking into consideration (33) from (4) and (5) we 
obtain the vector J3: 

 
2

1 4 1 4 1 4 1 4
3 2 2 2 2

2 3 4 2 3 4 2 5 3 4 2 3 4( ) ( ) ( ) ( )
t

J C J C J C J C

G s C C G s C C G G C C G s C C

 
  

     
J  (38) 

5. Hessian matrix determination 

In many practical cases it is necessary and useful to find not only the first-order derivatives 

of a network function or variable (for example voltage Vw) among n variables with respect to 

some parameter (for example ys) but their second-order derivatives with respect to the same 

or to an other parameter (for example yt ), too. 

The matrix formed from all possible second-order derivatives of Vw with respect to the 

simultaneous changes of two parameters 
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2 2 2

2
1 2 11

2 2 2

2
2 1 22

2 2 2

2
1 2

...

...

. . . .

...

w w w
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w w w
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 
 
    
      

H  (39) 

is the Hessian matrix or briefly Hessian (Korn & Korn, 1968, Wilde, 1978). Obviously for a 

network one exists a variety of Hessian matrices – every one matrix corresponds to a 

definite network function or variable. 

The results obtained in section 3. can be applied to the derivation of a Hessian matrix as it 

will be explained below. By differentiating the vector Js in (27) with respect to the 

admittance yt one obtains 

 
 

2 1
1 1 1 ;

, {1,2,..., }.

s
s s

t s t t ty y y y y

s t n


       

     
       

 

J V Y
K Y Y K Y I

 (40) 

Because the elements in Y depend linearly on the network element admittances and their 

derivatives with respect to the parameter ys equal 1, -1 or 0 it holds 

 t
tt

s

yy
K

YK









 s; ;0  (41) 

and from (40) it follows 

 

 
2
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1 1
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;    

; 

.

 

t s s t
s t

st st

st t s s t

st st

y y
   

 

 


  

  


  


  
 

V
Y K Y K K Y K Y I

Y K V Y V

K K Y K K Y K

V K V

 (42) 

The last result compared with the formulae (27) and (28) shows that we can find the vector  

 2V/ ys yt in principle by using the same approach as for  V/ ys in section 3. 

However here we must pay attention to the obtaining of the matrix Kst: In the common case 

the matrices Ks and Kt contain more than one nonzero element (1 or –1). Hence we can 

expressed each of them as a sum of no more then four addends 

 , ,;  ; , 4s s a t t b
a b

a b   K K K K , (43) 
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where each of the matrices Ks,a and Kt,b has only one nonzero element. Then as a result the 
expression of Kst in (42) is a sum of products of the kind 

 1 1
, , , ,and  ;  , .s a t b t b s a a b  K Y K K Y K .  (44) 

The products in (44) are square matrices with only one nonzero element which is a definite 
element of Y-1. Let, for example, the nonzero element for the left-side matrix in (44) is on i-th 
row and on j-th column and the similar element for the right-side matrix is on k-th row and 
on l-th column. Then it is easy to see that the corresponding product in (44) contains the 

element zu,v ;  u, v Є{1, 2, …, n} on  i-th row and on l-th column, where zu,v is an element of 
Y-1. The upper (lower) sign of this element holds for equal (non equal) signs of nonzero 
elements of Ks,a  and Kt,b in (44), respectively. 

The matrix Y-1 can be evaluated by using an auxiliary CM graph G0 too. For this purpose let 
us consider the equation 

 1X Y E , (45) 

where 

    
11 12 1

21 22 21
1 2 1 2

1 2

.

.
;  . ;  . .

. . . .

.

n

n
n nt t

n n nn

z z z

z z z
x x x e e e

z z z



 
 
          

Y X E . (46) 

After multiplying in (45) for X one follows 

 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

...

...

.

...

n n

n n

n n nn n

z e z e z e

z e z e z e

z e z e z e

   
    
 
 

   

X . (47) 

This means that if the CM graph G0 corresponds to (45) the multipliers of e1, e2, …, en for 
every element of X are elements of Y-1. Note that in real cases a limited number of the 
elements of Y-1 are necessary only. Hence for determination of an element of the Hessian 
matrix Hst we can form the following:  

Rule 3: 

i. Draw the CM graph Gp of the nullor network under consideration; 
ii. Transform the graph Gp into the graph G, according to the Rule  1 in section 2. and 

compose the vectors V and I; 
iii. Determine the vector V from G; 
iv. Write the matrices Ks and Kt; 
v. Determine the matrix Y-1 by using the auxiliary CM graph G0; 
vi. Determine the matrix Kst; 
vii. Determine the matrix Vst; 
viii. Draw a CM graph Gst in accordance with Vst; 

ix. Determine the elements of the vector  2V/ ys yt from Gst. 
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Note that by following the above sequence we obtain 2n elements of n Hessian matrices 
simultaneously, because ∂2V/∂ys∂yt =∂2V/∂yt∂ys – Fig. 14. 

 

Fig. 14. A Set of n Hessian Matrices 

Example B 

Suppose that we want to determine the vector   2V/ (sC3) (sC4) for the network N in Fig.2. 
Because the items i, ii and iii of the Rule 3 were fulfilled in the Example A we have to 
continue further: Here the matrices K3 and K4 are 

 

31 32

3 31 32 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
;  ;

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0

0 0 0 0
;    

0 0 0 0

0 0 0 1

   
   
        
   

    


  
  
    
  
    

K K

K K K K

  (48) 

and from (42) ÷ (46) it follows 
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 34
24

43 44 24

0 0 0 0

0 0 0 0

0 0 0

0 0

z

z z z

 
 
 
 
 

  

K . (49) 

We can find the nonzero elements of K34 by using the auxiliary CM graph G0 drawn in Fig. 

15.  By comparing (47) with (49) one settles we need only these addends of elements x2 and 

x4 in (47) that content the quantities e4 and e3, e4, respectively. According to the Chan-Mai 

procedure we draw the graphs G0,2 and G0,4  - Fig. 16 and Fig. 17. 

 24 44 43
3 4

1
; 0

( )
z z z

s C C
   


. (50) 

 

Fig. 15. The auxiliary CM graph G0                      

 

Fig. 16. The CM graph G0,2                             
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Fig. 17. The CM graph G0,4 

From Fig. 18 ÷ Fig. 19 we obtain the products 

 

0 2 1 1 4 5 2 0 2 1 0 2 1

0 2 2 1 4 5 1 0 2 2 0 2 2

0 2 3 1 2 5 4 0 2 3 0 2 3

0 4 1 1 1 2 5 4 0 4 1 0 4 1

2
0 4 2 1 5 4 0 4,2

;  4 0;

;  2 1;

;  2 1;

( ) ;  4 0;

;  2

, , a, , , s, , ,

, , a, , , s, , ,

, , a, , , s, , ,

, , a, , , s, , ,

, , a, ,

SP G sC G e N ; N

SP G sC G e N ; N

SP G G G e N ; N

SP G G G G e N ; N

SP G G e N

   

  

   

   

  0 4,2

0 4 3 1 3 5 2 0 4,3 0 4,3

1;

;  2 1;

s, ,

, , a, , s, ,

; N

SP G sC G e N ; N








 
    

. (51) 

Note that with the exception of the sink and source quantities the graph G0 is isomorphic to 

the graph G in Fig. 4. That is why the expressions (33) remain valid for the denominator in 

(4) also. Than for the elements of the vector (47) from (51) and (33) it follows: 

 

1 4 5 1 1 4 5 2 1 2 5 4
2

1 2 5 3 4

1 3 5 2 1 2 5 4
4

1 2 5 3 4

;
( )

( )

G sC G e G sC G e G G G e
x

G G G s C C

G sC G e G G G e
x

G G G s C C

    
  
 

 (52) 

or taking into consideration (46) and (47) 

 

Fig. 18.  Separations S0,2,1, S0,2,2 and S0,2,3 of CM graph G0,2 
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Fig. 19. Separations S0,4,1, S0,4,2 and S0,4,3 of CM graph G0,4 

 24 44 43
3 4

1
;  z 0

( )
z z

s C C

    
 

. (53) 

Now we return to (42) and (49) and obtain 

 

1

23 5
34 34 34 34

43 4 3 4

5 23 5

3 4 3 4 3 4

00 0 0 0

00 0 0 0

1
0 0 0 ;   

( ) ( )

1 1
0 0

( ) ( ) ( )

V

V V

Vs C C s C C

V V V

s C C s C C s C C

  
                                     

        

K V K V K . (54) 

 

23 5
,34,1,1 1 2 5 , 3,1,1 3,1,1

3 4

23 5
,34,23,1 1 2 5 , 3,23,1 3,23,1

3 4

5
,34,4,1 1 1 2 4 , 3,4,1 3,4,1

3 4

,34,4,2 1 2 3

;  4;  , 0;
( )

;  4;  , 1;
( )

( ) ;  4;  , 0;
( )

H a J J

H a J J

H a J J

H

V V
SP G G G N Ns

s C C

V V
SP G G G N Ns

s C C

V
SP G G G sC N Ns

s C C

V
SP G G sC


   




  


    


 23 5
, 3,4,2 , 3,4,2

3 4

2 5
,34,4,3 1 4 , 3,4,3 , 3,4,3

3 4

5
,34,4,4 1 2 3 , 3,4,4 , 3,4,4

3 4

23 5
,34,5,1 1 1 2 5 , 3,5,1

3 4

;  4;  0;
( )

;  2;  1;
( )

;  2;  1;
( )

( ) ;  4
( )

a J s J

H a J s J

H a J s J

H a J

V
N N

s C C

V
SP G sC N N

s C C

V
SP G G sC N N

s C C

V V
SP G G G C N

s C C


 



   


  



   



1

, 3,5,1

2 23 5
,34,5,2 5 , 3,5,2 , 3,5,2

3 4

;  0;

;  2;  1;
( )

s J

H a J s J

N

V V
SP G G N N

s C C




















 


      

. (55) 
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In order to determine the second derivatives of the vector  2V/ (sC3) (sC4) and having in 

mind (42) one draws the CM graph GH,34 shown in Fig. 20. In the case we have a 

simplification of the analysis on the base of the graph GH,34  because the substantial 

difference between GH,34  and GJ3  consists in the sink and source vertex signal expressions – 

instead of –V23 and V23 in GJ3  the corresponding signals in GH,34  are V5 /s(C3+C4) and  -

(V23+V5) /s(C3+C4). Owing to this peculiarity further we use directly (37) after substituting 

sink vertex signals, namely: 

 

Fig. 20. CM Graph GH,34 

The voltage V5 can be find similarly to V23 from CM graph G and it is: 

 
3 1

5
3 4( )

C J
V

s C C
 


. (56) 

Then by using (33), (35), (55) and (56) one obtains the vector 

 
2

1 4 3 1 4 3 1 3 4 1 4 3
2 3 2 3 3 2 3

3 4 2 3 4 2 3 4 2 5 3 4 2 3 4

( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( ) ( )
t

J C C J C C J C C J C C

sC sC G s C C G s C C sG G C C G s C C

   
  

       

V
,  (57) 

Its elements are a part of elements in the Hessian matrices H1, H23, H4 and H5 with respect to 

the admittances sC3 and sC4. 
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6. First and second-order quadratic sensitivity sums 

The sensitivity is an important parameter for the evaluation of practical suitability of 

electrical networks. For this purpose usually one uses the first-order sensitivity and the 

second-order sensitivity, defined by the well known formulae (Cederbaum, 1984; Chua & 

Lin, 1975) 

 .F
x

F x
S

x F



 ; (58) 

and 

 

2

, .F
x y

xyF
S

x y F



  , (59) 

respectively and where F is a network function or variable and x, y are changeable network 

element parameters. 

Obviously, the derivatives in these expressions can be determined according to the above 

described method based on Chan-Mai signal-flow graphs. Besides very often we are 

interested in a global index as a quadratic sum of sensitivities (first- or second-order): 

 

2

2( ) .iF i
x

ii i

F x
S

x F

 
  

 
   (60) 

and 

 

22
2

,( ) .iF i
x y

ii i

xyF
S

x y F

 
     

  , (61) 

where i є {1, 2, …, n} .  

Without loss of generality further we assume that the functions Fi are the elements of the 

voltage vector V. Then the sum (60) can be derived with the help of the expressions of the 

corresponding Jacobian matrix subvectors Ji and of the voltage vector V: 

 

2 2 1 2
,

1 2

( ) ( ) ;

{ ,  ,  ...,  ,  ...,  }

iV
x i t i

i

i n

S x

diag V V V V

  

 

 J M J

M
.  (62) 

If from the elements of the Hessian matrices Hi one forms the vector 

 

2

1, 2, , , ,... ... ;  i
xy xy xy i xy n xy i xyt

V
h h h h h

x y

     
h  (63) 
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the sum (61) can be rewritten as 

 
2 2 2 1 2

,( ) ( )iV
xy i t i

i

S x y  h M h . (64) 

7. Conclusions 

A topological method for obtaining the Jacobian and Hessian matrices and their use for 

quadratic first- or second-order sensitivity sums calculation of active networks is presented. 

It is based on the replacement of the investigated network N by using a nullor equivalent 

circuit and on the representation of the circuit passive part Np by a Chan-Mai signal-flow 

graph Gp. The Jacobian and the Hessian matrix elements of the nullor network can be 

obtained by means of the some dependent variables of some Chan-Mai graphs derived from 

G. The substantial advantage of the method consists in the use mainly of isomorphic graphs. 

Two examples illustrate the proposed method. 
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