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1. Introduction 

Charcot–Marie–Tooth disease (CMT) is one of the most common inherited neuropathy, with 
estimated prevalence of 17 to 40 in 100,000 affected (Patzkó, & Shy, 2011). CMT is 
characterized by atrophy of muscle tissue and loss of touch sensation of limb, 
predominantly in the feet and legs, foot drop, and hammer toes. The most frequent initial 
symptoms include foot drop, claw toe, and muscle wasting in the hands. Symptoms in the 
advanced cases may include muscle waste in the hands and fore arms, neck and shoulder, 
vocal cords, which leads to scoliosis and malfunction in chewing, swallowing, or speaking.  
The defective neurotransmission stems from either degradation of myelin sheath or 
breakdown of neuronal axon, which define primary forms of this disease, CMT type 1 and 
CMT type 2 respectively. CMT type 1 and CMT type 2 can be clinically distinguished based 
on nerve conduction velocity (NCV). Slow NCV (less than 38 m/s) is characteristic of 
demyelinating CMT type 1, and the average NCV is slightly below normal, but above 38 
m/s in CMT type 2. In addition, dominant intermediate subtypes of CMT (DI-CMT) have 
been identified, which are characterized by NCVs overlapping both demyelinating and 
axonal range (25 - 45 m/s). 
Number of genes and gene loci has been involved in the pathogenesis of CMT, and despite 
of diversity of the responsible genes, they are involved in common molecular pathways 
within Schwann cells and axons that cause these genetic neuropathies (Patzkó & Shy, 2011). 
CMT Type 1 primarily affects the myelin sheath, and is inherited as dominant, recessive or 
X-linked. Type 2 primarily affects the axon, and is either dominant or recessive. DI-CMT is 
classified type A (DI-CMTA), type B (DI-CMTB) type C (DI-CMTC), and type D (DI-CMTD) 
according to responsible genes and gene loci. 
In this review, we focus on dynamin 2 and the mutations, which are responsible for DI-
CMTB and axonal CMT type 2. We explain physiological role of dynamin 2 in the regulation 
of microtubules and propose possible pathogenesis of CMT attributed to dynamin 2 
mutants. 

2. Dyanmin2 mutation in CMT 

As described above, three types of dominantly inherited CMT with intermediate NCV DI-
CMT) are known. DI-CMTA was found in a large Italian family and it is linked to 
chromosome 10q24.1-q25.1 (Rossi et al., 1985; Verhoeven et al., 2001; Villanova et al., 1998), 
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but the responsible gene remains currently unknown. Two unrelated Midwestern-American 
and Bulgarian families with DI-CMT are linked to chromosome 1p34-p35, and it is classified 
as DI-CMTC (Jordanova et al., 2003b). In DI-CMTC, a mutation has been identified in  
tyrosyl-tRNA synthetase (YARS)(Jordanova et al., 2006).  
Studies on DI-CMT in unrelated two large pedigrees originating from Australia and North 

America, has assigned the locus (DI-CMTB) to chromosome 19p12–13.2. (Kennerson et al., 

2001; Zhu et al., 2003). Successively, Züchner and coworkers refined the locus of the two 

DICMTB families and additional Belgian family, and identified mutations in dynamin 2 

(Züchner et al., 2005). The North-American family showed a 9-bp deletion of the 3’ end of 

exon 14 of DNM2, 1652_1659+1delATGAGGAGg which is predicted to result in a shift of 

the open reading frame leading to a premature stop codon (Lys550fs), and the production of 

an in-frame mRNA with predicted deletion of three amino acids (Asp551_Glu553del). The 

Australian family and the Belgian family affect the same amino acid residue of dynamin 2: 
Lys558. The Australian family carried a missense mutation in exon 15, 1672A→G, resulting 

in the amino acid substitution Lys558Glu. The Belgian family showed a deletion of a single 

amino acid, Lys558del (1672_1674delAAG). Dynamin mutations in DI-CMTB identified in 

the original report were restricted in its PH domain (Züchner et al., 2005, Fig. 2). 

Subsequently, Claeys et al., analyzed the three original families and in three additional 

unrelated Spanish, Belgian and Dutch families with DI-CMTB and found two novel 

mutations in dynamin 2 (Claeys et al., 2009). They identified the novel missense mutation 

Gly358Arg (1072G4A) in exon 7 of dynamin 2 in the Spanish family, and the novel 

Thr855_Ile856del (2564_2569delCCATTA) mutation in exon 19 in the index patient of the 

Belgian family. These mutations are situated in the middle domain and proline-rich domain 

of dynamin 2, respectively (Fig. 2). Other mutations of dynamin 2 have been identified in 

CMT patients who present with symptoms typical of axonal CMT (CMT2)(Fabrizi et al., 

2007; Bitoun et al., 2008). The later study identified a heterozygous three base-pair deletion 

located in exon 15 of dynamin 2 (1675_1677delAAA) which results in the loss of the highly 

conserved lysine 559 (Lys559del) located in the PH domain (Fig.2). 

3. Overview of dynamin 

Before mentioning possible pathogenesis of CMT caused by the mutation of dynamin 2, the 

key molecule will be outlined here. In addition to the biochemical characteristics of the 

molecule, when and how the protein has been identified and studied, or what has been 

known so far regarding to its functions, will be described below.  

3.1 Identification of dynamin 
Long before the discovery of mammalian dynamin, Drosophila melanogaster mutant shibire 

(shits), a temperature-sensitive paralytic mutant, has been known (Grigliatti et al., 1973) 

Ultrastructural analysis of the neuromuscular junction of shits mutant fly revealed depletion 

of synaptic vesicles and accumulation of endocytic pits at presynaptic plasma membrane of 

neurons (Kosaka & Ikeda, 1983). Thus, the paralysis of shits mutant fly is caused by synaptic 

dysfunction due to blockage of synaptic vesicle endocytosis. 

Mammalian dynamin was originally isolated from bovine brain as a microtubule-binding 

protein (Shpetner & Vallee, 1989). Purified dynamin bound and interconnected microtubules, 

and supported microtubule gliding (Shpetner & Vallee, 1989, Fig. 1).  
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Fig. 1. Electron micrograph of dynamin polymerizing around microtubules.  
Bundle of microtubules decorated with dynamin (from Shpetner & Vallee, 1989 ). 

Following the identification, dynamin was cloned and sequenced (Obar et al., 1990). The 

amino acid sequence contained three consensus elements characteristic of GTP-binding 

proteins and suggested that it is a GTPase (Obar et al., 1990). As suggested, dynamin was 

turned out to be a GTPase, which was highly stimulated by the presence of microtubules 

(Shpetner & Vallee, 1992). Later on, Drosophila shibire gene was cloned and sequenced 

(Obar et al., 1990; van der Bliek et al., 1991), which revealed considerably high homology of 

mammalian dynamin and shibire gene product (66% identity, 78% similarity). This 

revelation immediately put dynamin in the central stage of endocytosis research. In a short 

while, endocytosis was examined in COS and HeLa cells overexpressing mutant dynamin, 

and it was found that an endocytosis is blocked at an intermediate stage (Herskovits et al., 

1993; van der Bliek et al., 1993). 

3.2 Dynamin Isoforms and their expression  
The mammalian brain dynamin was exclusively expressed in neurons (Scaife & Margolis, 

1990), preferentially after postnatal day 7 (Nakata et al., 1991). This neuron-specific isoform 
is termed dynamin 1 after two other isoforms with different tissue distributions were 

identified. Dynamin 2 is expressed ubiquitously (Cook et al., 1994), and dynamin 3 is 
expressed highly in brain, testis, lung and heart (Nakata et al., 1993).  

3.3 Domain structure of dynamin 
Dynamin isoforms were highly homologous, and all the dynamin isoforms share five 

characteristic domains (Fig. 2). They include highly conserved N-terminal GTPase domain, 

middle domain that binds to -tubulin (Thompson et al., 2004), pleckstrin homology domain 

(PH) that serves as binding motif for phophinositide-4, 5-bisphosphate (PIP2)(Barylko et al., 

1998), and GTPase effector domain (GED). C-terminal Proline/arginine -rich domain (PRD) 

considerably varies between dynamin isoforms, and mediates interaction with various SH3-

domains containing molecules, which include endocytic proteins amphiphysin 1 (David et 

al., 1996; Yoshida et al., 2004), endophilin (Ringstad et al., 1997), intersectin (Zamanian et al., 

2003), and sorting nexin 9 (Ramachandran & Schmid, 2008). Actin binding proteins, such as 

cortactin and Abp1, also contain SH3 domain and bind to dynamin PRD (McNiven et al., 

2000; Kessels et al., 2001). 
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Fig. 2. Domain structure of dynamin and its mutation cites identified in CMT patients 
All dynamin isoforms contains five functional domains. Reported mutations found in CMT 
patients are shown. Among these, four mutations indicated in red are reported in the first 

study on dynamin mutation in CMT (Züchner et al., 2005). Counterparts of dynamin’s 
binding motifs, PH and PRD, are also shown. GTPase: GTPase domain, middle: middle 

domain, PH: pleckstrin homology domain, GED: GTPase effector domain, PRD: 
Proline/arginine -rich domain, PIP2: phophinositide-4, 5-bisphosphate. 

3.4 Function of dynamin in endocytosis 
Dynamin self-assembles, or assembles with a binding partner molecule into rings and 

spirals in vitro (Hinshaw & Schmid, 1995; Takei et al., 1999). Furthermore, in presence of 

lipodsomes, dynamin polymerizes on the lipid membranes and deform them into narrow 

tubules, and constricts the lipid tubules to fragments upon GTP-hydrolysis (Sweitzer & 

Hinshaw, 1998; Takei et al., 1998; Stowell et al., 1999). This biophysical property of dynamin 

seems to support its role in the fission of endocytic pits in endocytosis. 
Physiologically, dynamin assembles into rings and spirals at the neck of deeply invaginated 
endocytic pits formed on the plasma membrane (Takei et al., 1995), and conformation of the 
polymerized dynamin is changed upon GTP hydrolysis providing a driving force to squeeze 
the neck to membrane fission (Sweitzer & Hinshaw, 1998; Takei et al., 1998; Marks et al., 
2001; Roux et al., 2006; Ramachandran & Schmid, 2008)(Fig.3). This mechanism of action of 
dynamin in endocytosis is referred as pinchase model (McNiven, 1998). Another model, in 
which conformational change of dynamin cause the extension of the dynamin spirals to pop 
off of the endocytic pit, is also proposed as popase model (Stowell et al., 1999). In either case, 
dynamin functions as a GTPase-driven mechanoenzyme in endocytosis.  

www.intechopen.com



 
Etiological Role of Dynamin in Charcot–Marie–Tooth Disease 

 

7 

Dynamin GTPase activity is stimulated by self-assembly (Warnock et al., 1996), by PH 

domain-mediated interaction with membrane lipids such as PIP2 (Lin et al., 1997), or by 

PRD-mediated interaction with subset of SH3 domain-containing proteins (Yoshida et al., 

2004). This enzymatic characteristic of dynamin would be favorable for its function as a 

mechanochemical enzyme in endocytosis.  

 

 

Fig. 3. Function of domain in endocytosis A: Dynamin assembles into rings at the neck of 

deeply invaginated endocytic pits formed on the plasma membrane. Conformational change 

of the polymerized dynamin upon GTP hydrolysis provides a driving force to squeeze the 

endocytic pit to membrane fission (left). Experimentally inhibiting the GTP hydrolysis 

results in overpolymerization of dynamin around elongated endocytic pit (middle).  

B: Electron micrograph of elongated endocytic pit decorated with dynamin (arrowheads, 

from Takei et al., 1995) 

Dynamin PRD interacts with various SH3 domain-containing endocytic proteins enriched in 

the synapse, including amphiphysin 1 (David et al., 1996; Takei et al., 1999; Yoshida et al., 

2004), endophilin (Farsad et al., 2001), sorting nexin 9 (Ramachandran & Schmid, 2008; Shin 

et al., 2008), syndapin (Kessels et al., 2004), and intersectin (Yamabhai et al., 1998). Such 

interactions may be utilized to incorporate various functional molecules synchronously 

required for endocytosis. For example, by interacting with amphiphysin or endophilin, BAR 

domain–containing endocytic proteins, BAR domain’s function of sensing or inducing 

membrane curvature would be synchronized with dynamin’s fission activity (Yoshida et al., 

2004; Itoh et al., 2005). By interacting with Abp1 or cortactin, actin dynamics would take 

place at the site of endocytosis (Kessels et al., 2001). Treatment with Latrunculin B, actin 

monomer-sequestering agent that blocks fast actin polymerization, results in the inhibition 

of fission reaction, supporting an implication of actin dynamics in endocytosis (Itoh et al., 

2005). 
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Dynamin 1 is phosphorylated by several kinases including PKC and CDK5, and 
dephosphorylated by carcinerurin. Dynamin-dependent endocytosis is enhanced in 
presence of Roscovitine, CDK5 inhibitor, indicating that CDK5-dependent phosphorylation 
of dynamin1 negatively regulates endocytosis. CDK5 phosphorylates not only dynmain1 
but also amphiphsyin1, its biding partner in endocytosis, and phosphorylation of these 
molecules decreases the binding affinity of these endocytic molecules (Tomizawa et al., 
2003).  

3.5 Implication of dynamin in actin dynamics 
Involvement of dynamin in the regulation of actin dynamics is based largely on studies 

using dynamin 2, a ubiquitous isoform. Dynamin 2 is enriched in variety of actin-rich 

structures, such as podosomes (Ochoa et al., 2000), invadopodia (Baldassarre et al., 2003), 

lamellipodia and dorsal membrane ruffles (Cao et al., 1998; Krueger et al., 2003; McNiven 

et al., 2000), phagocytic cups (Gold et al., 1999), and Listeria actin comets (Lee & De 

Camilli, 2002; Orth et al., 2002). Several studies suggest functional implication of dynamin 

GTPase in actin dynamics. Expression of dynamin K44A, a GTPase defective mutant, 

reduces the formation of actin comets (Lee & De Camilli, 2002; Orth et al., 2002), 

podosomes (Ochoa et al., 2000; Bruzzaniti et al., 2005), and drastically changes cell shape 

(Damke et al., 1994).  

Consistent with the localization and implication of dynamin in these actin-rich structures, 

molecular interactions of dynamin 2 with actin (Gu et al., 2010) and actin-regulating proteins 

such as Abp1 (Kessels et al., 2001), profilin (Witke et al., 1998) and cortactin (Schafer et al., 

2002; McNiven et al., 2000) have been reported. Some studies emphasizes that these 

interactions represent mechanisms to incorporate actin dynamics in dynamin-dependent 

endocytosis. For example, interaction between dynamin 2 and cortactin, SH3-domain 

containing actin binding protein that binds also F-actin and actin-regulating Arp2/3 

complex (Ammer & Weed, 2008), is associated with clathrin and dynamin-dependent 

endocytosis (Krueger et al., 2003; Cao et al., 2003; Zhu et al., 2005). On the other hand, 

however, the same dynamin-cortactin interaction is considered as a mechanism to recruit 

dynamin to the site of actin dynamics in other studies (McNiven et al., 2000; Schafer et al., 

2002; Mooren et al., 2009; Yamada et al., 2009).  
Assembly and remodeling of actin filaments by dynamin 2, through an interaction with 
cortactin, has been investigated by in vitro experiments (Schafer et al., 2002; Mooren et al., 
2009). In their recent study, they demonstrated that, in the presence of dynamin, GTP led to 
remodeling of actin filaments in vitro via the actin-binding protein cortactin (Mooren et al., 
2009). As the mechanism of the actin regulation, they suggests that GTP hydrolysis-induced 
conformational change within dynamin is transduced to cortactin, which in turn alters 
orientation of the F-actin so that actin’s sensitivity to cofilin, an actin depolymerizing factor, 
is increased (Mooren et al., 2009). However, as interactions between dynamin’s PRD and 
cortactin’s SH3 domain does not require GTP binding nor hydrolysis by dynamin, it 
remains uncertain how GTP hydrolysis dependent conformational change within dynamin 
might be transmitted to cortactin. More recently, direct interaction between dynamin and 
actin has been identified, and it was proposed that the interaction leads to release of 
gelsolin, an actin capping protein, from the actin filament (Gu et al., 2010). However, it 
remains unclear how dynamin GTPase activity is utilized to alter the affinity of F-actin to 
the actin regulatory factor. 
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4. Implication of dynamin in microtubule dynamics 

As described above, dynamin 1 was originally identified as a microtubule-binding protein 

(Shpetner & Vallee, 1989), and its GTPase activity was stimulated by microtubules (Shpetner 

& Vallee, 1989; Maeda et al., 1992). However, physiological significance of the dynamin-

microtubule interaction has not been elucidated yet. 

The association between dynamin and microtubules was recently investigated in relation to 

mitosis, in which tubulin plays a role as in mitotic spindle and centrosome. In mitotic cells, 

dynamin 2 was concentrated at microtubule bundles at mitotic spindle (Ishida et al., 2011), 

spindle midzone, and intercellular bridge in cytokinesis (Thompson et al., 2002). The middle 

domain of dynamin 2 binds to -tubulin, and they colocalize at the centrosome, where 

dynamin 2 is thought to play a role in centrosome cohesion (Thompson et al., 2004). 

Consistent with such observation, dynamin is enriched in spindle midbody extracts 

(Thompson et al., 2002). 

4.1 Dynamin CMT mutant 5513 impairs microtubule dynamics 
Dynamin’s role of on microtubules at interphase was incidentally revealed as a result of 

our recent investigation on dynamin mutations found in CMT patents (Tanabe & Takei 

2009).  

In order to elucidate molecular pathogenesis of dynamin 2-cused CMT disease, we 

overexpressed dynamin CMT mutants, 5513 and K558E, in COS-7 cells, and examined the 

dynamin’s role on microtubules. Endocytosis, which was assessed by transferrin uptake, 

was completely blocked by K558E as reported before (Züchner et al., 2005). Interestingly, 

5513 did not block endocytosis, but the transferrin-containing early and recycling 

endosomes no longer accumulated at the perinuclear region suggesting dysfunction of 

microtubule-dependent vesicular transport in dynamin 2-caused CMT (Fig.4). 

 

 

Fig. 4. Endocytosis of transferrin in dynamin 2 mutant expressing cells. COS-7 cells 

transfected with the indicated constructs were incubated with Alexa Fluor 488–transferrin 

for 30 min, and exogenous dynamin was stained by immunofluorescence (red). Note that 

transferrin (green) is internalized in 551Δ3 expressing cells, but the transferrin is not 

accumulated at perinuclear region (second panel from the left) in contrast to dynamin WT 

expressing cells (left). Endocytosis is blocked in dynamin K44A and K558E expressing cells 

(right two panels). (from Tanabe & Takei, 2009)  
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As mentioned above, dynamin was originally identified as a microtubule-associated protein 
(Shpetner & Vallee, 1989). Both dynamin 1 and dynamin 2 polymerizes around 
microtubules, and the interactions lead to the stimulation of dynamin GTPase activity 
(Maeda et al., 1992; Warnock et al., 1997). Consistently, in cells, subpopulation of dynamin 2 
is present at microtubules in addition to the plasma membrane and cytosol. Localization of 
dynamin at microtubules become more prominent in 5513 expressing cells (Züchner et al., 
2005; Tanabe & Takei, 2009), probably because of its increased affinity to microtubules.  
Microtubules can be very stable or highly dynamic depending on the cell cycle stage, and on 
position of the cell within the organism (Schulze & Kirschner, 1987). Microtubule typically 
comprises 13 protofilaments, which are consisted of tubulin heterodimers. The tubulin 
dimers can depolymerize as well as polymerize, and microtubules can undergo rapid cycles 
of assembly and disassembly. GTP-bound tubulin is added onto plus-tips of microtubules 
and hydrolysis of GTP induces conformational change in tubulin dimer, which induces 
microtubule depolymerization. This dynamic instability of microtubules is regulated by 
many factors (Howard & Hyman, 2007).
Stable microtubules are subject to acetylation (Piperno et al., 1987; Westermann & Weber, 
2003), thus they can be distinguished from dynamic microtubules by measuring acetylated 
tubulin. Acetylated tubulin was massively increased in 5513 expressing cells compared to 
WT dynamin (Fig.5), in spite of the protein expression levels were unchanged, indicating 
that the 5513 mutation of dynamin 2 impairs dynamic instability of microtubules.  
 

 

Fig. 5. Expression of 551Δ3 dynamin 2 mutant causes accumulation of acetylated tubulin. 
COS-7 cells were transfected with the indicated dynamin constructs and visualized by 
immunofluorescence for exogenous dynamin (red) and acetylated tubulin (green). Note the 
accumulation of abundant acetylated tubulin in 551Δ3 expressing cells (middle). (from 
Tanabe & Takei, 2009) 

Impaired dynamic instability of microtubules is known to inhibit intracellular trafficking 
along microtubules (Mimori-Kiyosue & Tsukita, 2003; Vaughan, 2005). Microtubule-
dependent traffic can be analyzed by examining the formation of the Golgi apparatus 
because the biogenesis involves transport process of pre-Golgi compartment from cell 
periphery to perinuclear region, and this transport is dependent on microtubules (Thyberg 
& Moskalewski, 1999) (Fig.6). 
While mature Golgi apparatus is ribbon-shaped localized at perinuclear region, immature 
pre-Golgi compartments are scattered throughout the cytoplasm. Golgi apparatus in the 
5513 expressing cells were massively fragmented, representing impaired microtubule-
dependent vesicular traffic in the cells (Fig.7). This is consistent with impaired dynamic 
instability of microtubules in 5513 expressing cells. 
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Fig. 6. Formation of mature Golgi apparatus by microtubule-dependent vesicular transport. 
Scheme showing radially arranged microtubules (green) and the formation of matured 
Golgi by microtubule dependent vesicular transport of immature pre-Golgi compartments 
(orange). Plus end of microtubules extends and shrinks dynamically and capture the cargo. 
(A). Loss of dynamic instability of microtubules impairs the microtubule-dependent 
transport. 

 

Fig. 7. Dynamin CMT mutant or dynamin 2 RNAi impairs the formation of Golgi apparatus. 
Upper panels: Expression of 551Δ3 dynamin 2 leads to Golgi fragmentation (right). COS-7 
cells transfected with the indicated dynamin constructs were visualized by 
immunofluorescence for exogenous dynamin (red) and GM130, a Golgi marker (green). 
Lower panels: Dynamin 2 RNAi causes fragmentation of Golgi apparatus (right). HeLa cells 
were transfected with the indicated siRNAs and visualized with antibodies a Golgi marker 
GRASP65 (green) and α-tubulin (red). (from Tanabe & Takei, 2009) 
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4.2 Depletion of dynamin affects microtubule dynamics 
Accumulation of acetylated microtubules and impairment of microtubule-dependent 

vesicular traffic induced by the 5513 mutation are thought to be due to ‘loss of function’ of 

dynamin 2, because depletion of endogenous dynamin 2 in HeLa cells by RNAi resulted in 

similar phenotypes (Tanabe & Takei, 2009). Golgi apparatus was fragmented in 

approximately 90 % of dynamin 2 siRNA cells, indicating suppressed microtubule-

dependent membrane transport. The dynamin 2 siRNA-treated cells did not show any 

apparent reorganization of microtubules by immunofluorescence. However, acetylated 

tubulin in the cells was increased approximately twofold while total tubulin protein level 

remain unchanged. In addition, EB1, which localizes at the plus-end of dynamic/growing 

microtubules, was significantly reduced in dynamin 2 siRNA cells, even though the EB1 

expression levels were unaffected by the siRNA (Fig.8). This indicates that depletion of 

endogenous dynamin 2 reduces dynamic, growing microtubules. 

5. Possible mechanism of the regulation of microtubule dynamics by 
dynamin 

As described above, dynamin 2 is implicated in the dynamic instability of microtubules, and 

deletion or mutation of the protein impairs the microtubule dynamics. Then how dynamin 

regulates the microtubule dynamics?  

Microtubule is regulated, both in polymerization and depolymerization, by many factors. 

While microtubule depolymerizing factors involve MCAK, a member of kinesin-13 family 

(Hunter ey al., 2003; Walczak, 2003), polymerization factors includes XMAP215, tau and 

doublecortin (Howard & Hyman, 2007; Kerssemakers et al., 2006). Furthermore, the 

microtubule plus-end proteins, including EB1, CLASPs and CLIP170, are also essential for 

dynamic instability of microtubules. 

It would be possible that activity of these microtubule-regulating molecules is altered by the 

presence of dynamin on microtubules. In another words, microtubule-bound dynamin 2 

might function as “ratchet” that limits the access of these molecules to microtubules. 

Physiologically, dynamin transiently interact with microtubules, resulting only small 

population of dynamin stays at “microtubule-bound” state. On the other hand, dynamin 

with CMT mutation has higher affinity to microtubules and preferably localizes at 

microtubules (Tanabe & Takei, 2009). This would lessen the access of microtubule-

regulating molecules to microtubules, and as a result, causes to decrease polymerization-

depolymerization cycle. It would be also possible that abundant presence of mutant 

dynamin on microtubules may mechanically obstruct polymerization and depolymerization 

of microtubules (Fig 9).  

It is known that blocking interconversion between stable and dynamic microtubules using 

Taxol, a microtubule depolymerization inhibitor, results in abnormal rearrangement of 

microtubules (Green & Goldman, 1983). Consistently, abnormal accumulation of 

acetylated microtubules is observed in dynamin 5513 expressing cells (Tanabe & Takei, 

2009).  

Live cell imaging of GFP tubulin stably expressed in HeLa cells revealed that dynamic 

instability of microtubules in dynamin 2-depleted cells was apparently decreased compared 

with control cells (Tanabe & Takei, 2009). 
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Fig. 8. Depletion of endogenous dynamin 2 by RNAi results in stable microtubule 

accumulation. HeLa cells cells transfected with control or dynamin 2 siRNA were stained by 

immunofluorescence as indicated. Note the increase of acetylated tubulin in dynamin 2 

knocked-down cells (middle panels) while total tubulin is unchanged (top panels). In the 

knocked-down cells, punctate staining of EB1, microtubules plus end factor is lost (bottom 

panels). (from Tanabe & Takei, 2009) 
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Fig. 9. Possible role of dynamin in the regulation of microtubule dynamics. Transient 

interaction of dynamin with microtubules would be essential for dynamic instability of 

microtubules (left). Mutation of dynamin would increase dynamin’s affinity of to 

microtubules, which in turn obstructs polymerization-depolymerization cycle of 

microtubules either mechanically, or indirectly via microtubule-regulating molecules.  

6. Conclusion 

Dynamin has been originally identified as a microtubule-binding protein in 1989. However, 
the most of dynamin studies in the last two decades has been focused on its functions in 
endocytosis and actin dynamics. Our recent investigation on CMT mutant dynamin 
revealed impairment of microtubule dynamics and microtubule-dependent transport. 
Furthermore, this study led to the discovery of a novel role of dynamin, i.e. regulation of 
dynamic instability of microtubules. 
It remains to be clarified which cells are more affected in the dynamin-caused CMT, in a 
correlation with clinical features of the disease. Since dynamin 2 is a ubiquitously expressed 
isoform, CMT mutations in dynamin 2 could affect either neurons, Schwan cells, or both. 
Precise molecular mechanism how dynamin regulates dynamic instability of microtubules 
would require future studies. Especially, it would be of importance which molecules 
function with dynamin in the microtubule regulation, or how dynamin-microtubule 
interaction is regulated. 
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