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1. Introduction

In this chapter, we consider the vibrational and chemical kinetics in reacting gas flows under
the conditions of strong deviations from thermodynamic equilibrium. Such conditions occur,
for example, near surfaces of nonexpendable space vehicles in their reentry into the Earth and
Mars atmospheres, in experiments carried out in high-enthalpy facilities, in supersonic gas
flows in nozzles and jets, in chemical technology processes. In many cases, the characteristic
times of vibrational relaxation and chemical reactions appear to be comparable with the
characteristic time for the variation of basic gas-dynamic parameters of a flow. Therefore,
the equations of gas dynamics and non-equilibrium kinetics should be considered jointly.
Consequently, the set of governing equations for macroscopic parameters includes not only
the conservation equations for the momentum and total energy, but also the equations for
chemical reactions and vibrational energy relaxation. The latter equations contain the rates of
energy transitions and chemical reactions which are needed in order to solve the equations of
non-equilibrium gas flows.

Originally, non-equilibrium chemical reactions were studied in thermally equilibrium gas
mixtures which were assumed to be spatially homogeneous Kondratiev & Nikitin (1974).
Later on, different models for vibrational–chemical coupling were proposed on the basis of
the kinetic theory methods. One of the first works in this area is that by I. Prigogine Prigogine
& Xhrouet (1949), followed by studies Present (1960), and Ludwig & Heil (1960). The effect
of non-equilibrium distributions on the chemical reaction rate coefficients was considered
in Shizgal & Karplus (1970). Later on, this effect was studied using various distributions
of reacting gas molecules over the internal energy (see, for instance, Refs. Belouaggadia
& Brun (1997); Knab (1996))). Most of these models are based on thermally-equilibrium
distributions or non-equilibrium Boltzmann distributions over the vibrational energy of the
reagents. More rigorous models of non-equilibrium kinetics in a flow take into account the
non-Boltzmann quasi-stationary distributions or the state-to-state vibrational and chemical
kinetics Kustova et al. (1999); Nagnibeda & Kustova (2009). The influence of state-to-state and
multi-temperature distributions on reaction rates in particular flows are studied in Kustova
& Nagnibeda (2000); Kustova et al. (2003). Recently the comparison of kinetic models for
transport properties in reacting gas flows has been discussed in Kustova & Nagnibeda (2011).

In the present contribution, we propose mathematical description for the chemical kinetics
in gas flows on the basis of the Chapman–Enskog method, generalized for strongly
non-equilibrium reacting gas mixtures.
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First, we consider the one-temperature model for the non-equilibrium chemical kinetics in
thermally equilibrium gas flows or deviating weakly from thermal equilibrium state. Then,
the models for vibrational–chemical coupling in gas flows are derived from the kinetic theory
taking into account state-to-state and multi-temperature vibrational distributions.

The influence of non-equilibrium distributions, gas compressibility and space inhomogeneity
on the reaction rates for different processes is discussed.

2. One-temperature model for non-equilibrium kinetics

2.1 Kinetic equations. Distribution functions

We consider strong non-equilibrium chemical kinetics in a flow under the following
conditions for relaxation times

τel < τint ≪ τreact ∼ θ. (1)

Here τel , τint, τreact and θ are mean times for relaxation of translation and internal degrees of
freedom, chemical reactions and gas dynamic parameters changing respectively. The kinetic
equations for the distribution functions have the form Nagnibeda & Kustova (2009):

∂ fcij

∂t
+ uc · ∇ fcij =

1

ε
J
rap
cij + Jsl

cij, (2)

ε = τrap/τsl ∼ τrap/θ ≪ 1 is the small parameter, J
rap
cij and Jsl

cij are the collision integral

operators for rapid and slow processes, c, i, j denote chemical species, vibrational and
rotational levels respectively, r, u, t are coordinates, molecular velocities and time. Under
condition (2), integral operators of rapid processes describe elastic collisions and collisions
with rotational and vibrational energies change and can be written in the form

J
rap
cij = Jel

cij + Jrot
cij + Jvibr

cij = Jel
cij + Jint

cij , (3)

The operator of slow processes Jsl
cij = Jreact

cij includes the integrals of reactive collisions and

describes exchange reactions

Ac(uc, i, j) + Ad(ud, k, l) ⇋ Ac′ (uc′ , i′, j′) + Ad′ (ud′ , k′, l′), (4)

and dissociation-recombination reactions

Ac(uc, i, j) + Ad(ud, k, l) ⇋ Ac′ (uc′ ) + A f ′ (u f ′ ) + Ad(u
′
d, k, l), (5)

c′, f ′ are the atomic species forming as reaction products; uc′ , u f ′ , u′
d are the particle velocities

after the collision. For the simplicity we consider dissociation of only diatomic molecules,
therefore products of dissociation are only atoms. In addition to this, it is commonly supposed
that the dissociation cross section does not depend on the internal state of a partner in the
reaction, and this state does not vary as a result of dissociation and recombination.

The collision operator Jreact
cij represents the sum of two terms, Jex

cij and Jdiss
cij . Expressions for

these operators are given, for instance, in Alexeev et al. (1994); Ern & Giovangigli (1998);
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Kuščer (1991); Ludwig & Heil (1960); Nagnibeda & Kustova (2009); Rydalevskaya (1977):

Jex
cij = ∑

dc′d′
∑
ki′k′

∑
l j′ l′

∫

[

fc′ i′ j′ fd′k′ l′
sc

ijs
d
kl

sc′
i′ j′ s

d′
k′ l′

(

mcmd

mc′md′

)3

− fcij fdkl

]

gσ
c′d′ , i′ j′k′ l′

cd, ijkl d2Ωdud, (6)

Jdiss
cij = ∑

d
∑
k

∑
l

∫

⎡

⎣ f ′dkl fc′ f f ′ h
3sc

ij

(

mc

mc′m f ′

)3

− fcij fdkl

⎤

⎦ gσdiss
cij, ddudduc′du f ′du′

d. (7)

In Eq. (6), σ
c′d′ , i′ j′k′ l′

cd, ijkl is the differential cross section of the exchange reaction, and the

distribution functions after the collision are denoted fc′ i′ j′ = fc′ i′ j′ (r, uc′ , t), fd′k′ l′ =

fd′k′ l′ (r, ud′ , t); in Eq. (7), σdiss
cij, d(uc, ud, uc′ , u f ′ , u′

d) is the formal cross section of dissociation,

fc′ = fc′ (r, uc′ , t), f f ′ = f f ′ (r, u f ′ , t) are the distribution functions of atomic dissociation

products; f ′dkl = fdkl(r, u′
d, t), h is the Plank constant, mc is the mass of a molecule c, sc

ij is

the statistical weight of the internal states i and j of a component c, g is the relative velocity, Ω

is the solid angle in which a molecule appear after a collision.

Expressions (6), (7) are written taking into account the principle of microscopic reversibility
for reactive collisions considered in Alexeev et al. (1994); Ern & Giovangigli (1998); Kuščer
(1991); Ludwig & Heil (1960); Rydalevskaya (1977):

sc′

i′ j′ s
d′

k′ l′m
2
c′m

2
d′ g

′2σ
cd, ijkl
c′d′ , i′ j′k′ l′ (g

′, Ω) = sc
ijs

d
klm

2
c m2

dg2σ
c′d′ , i′ j′k′ l′

cd, ijkl (g, Ω′), (8)

m3
c′m

3
f ′

h3
σ

rec, cij
c′ f ′d (uc′ , u f ′ , u′

d, uc, ud) = sc
ijm

3
c gσdiss

cij, d(uc, ud, uc′ , u f ′ , u′
d), (9)

σ
rec, cij
c′ f ′d is the probability density for a triple collision resulting in dissociation.

In the frame of the method proposed in Kustova & Nagnibeda (1998); Nagnibeda & Kustova
(2009) for the solution of Eqs. (2), the distribution functions are expanded in a power series of
the small parameter ε. The peculiarity of the modified Chapman-Enskog method is that the
distribution functions and macroscopic parameters are determined by the collision invariants
of the most frequent collisions. Under condition (1), the set of collision invariants contains
the invariants of any collision (momentum and total energy) and the additional invariants of
rapid processes. In our case, these additional invariants are any variables independent of the
velocity and internal energy and depending arbitrary on chemical species c because chemical
reactions are supposed to be frozen in rapid processes This set of collision invariants provides
the following set of macroscopic parameters for a closed flow description: number densities
of species nc(r, t) (c = 1, ..., L), gas velocity v(r, t) and temperature T(r, t).

2.2 Governing equations. Reaction rates

Closed set of equations of the flow are derived from the kinetic equations (2). Integrating these
equations over velocities and summing over the internal energy levels we obtain equations of
chemical kinetics in the flow. Multiplying kinetic equations by the collision invariants of any
collision, integrating over the velocity and summing over the internal energy levels, we obtain
the conservation equations for the momentum and total energy. Finally the set of governing
equations for macroscopic parameters nc(r, t), v(r, t), T(r, t) takes the form:
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dnc

dt
+ nc∇ · v +∇ · (ncVc) = Rreact

c , c = 1, .., L, (10)

ρ
dv

dt
+∇· P = 0, (11)

ρ
dU

dt
+∇· q + P : ∇v = 0. (12)

Here U is the total energy per unit mass which is the function of temperature and species
number densities, P is the pressure tensor, q is the total heat flux, Vi are the diffusion
velocities.

The production terms in Eqs. (10) take the form

Rex
c = ∑

dc′d′

(

nc′nd′k
d′d
c′c − ncndkdd′

cc′

)

, (13)

Rdiss
c = ∑

d

nd

(

nc′n f ′k
d
rec,c − nckd

c,diss

)

. (14)

Production terms (13) (14) contain the rate coefficients of exchange chemical reactions kdd′

cc′ ,

dissociation kd
c, diss, and recombination kd

rec,c Nagnibeda & Kustova (2009).

For practical calculations it is more suitable to use component mass fractions αc = ρc/ρ
instead of number densities nc (ρ is the total mass density, ρc is the component c mass density).
In this case, the set of macroscopic parameters includes αc(r, t) (c = 1, ..., L), v(r, t), T(r, t). The
equations of chemical kinetics take the form:

ρ
dαc

dt
= −∇ · (ρcVc) + ∑

r
ξ̇rνrc Mc, c = 1, .., L (15)

here Mc is the component molar mass, ξ̇r is the chemical reaction rate for reaction r (r =

1, ..., R, R is the number of reactions in a mixture), νrc = ν
(p)
rc − ν

(r)
rc is global stoichiometric

coefficient, ν
(r)
rc , ν

(p)
rc are the stoichiometric coefficients of reactants and products.

The source terms are defined by expressions:

∑
r

ξ̇rνrc Mc = mc ∑
ij

∫

Jsl
cijduc = mc ∑

ij

∫

(Jex
cij + Jdiss

cij )duc. (16)

Let us introduce the rate coefficients of forward and backward reactions k f , r, kb, r. For
exchange reaction (4) (r = ex), and recombination-dissociation reaction (5) (r = diss) they
have the form:

νex, c k f , ex = −NA ∑
jl j′ l′

∑
iki′k′

∫ fcij fdkl

ncnd
g σ

c′d′ , i′ j′k′ l′

cd, ijkl d2Ω dud duc, (17)

νex, c kb, ex = −NA ∑
jl j′ l′

∑
iki′k′

∫ fc′ i′ j′ fd′k′ l′

nc′nd′
g′ σ

cd, ijkl
c′d′ , i′ j′k′ l′ d2Ω dud′ duc′ , (18)
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νdiss, c k f , diss = −NA ∑
jl

∑
ik

∫ fcij fdkl

ncnd
g σdiss

cij, d duc dud duc′ du f ′ du′
d, (19)

νdiss, c kb, diss = −N 2
A ∑

jl
∑
ik

∫ fc′ f f ′ f ′dkl

nc′n f ′nd
σ

rec, cij
c′ f ′d duc′ du f ′ du′

d duc dud. (20)

Rate coefficients (17)–(20) are connected with those appearing in equations (13), (14) by the
relations:

k f ,r = −
NA

νrc
kdd′

cc′ , kb,r = −
NA

νrc
kd′d

c′c (21)

for exchange reactions, and

k f ,r = −
NA

νrc
kd

c, diss, kb,r = −
N 2

A

νrc
kd

rec, c (22)

for dissociation and recombination reactions, NA is the Avogadro number.

Using equations (16), (17)–(20), we can write the expression for the reaction rate ξ̇r in the
conventional form:

ξ̇r = k f , r

L

∏
c=1

(

ρc

Mc

)ν
(r)
rc

− kb, r

L

∏
c=1

(

ρc

Mc

)ν
(p)
rc

. (23)

One can notice that the general expressions for the rate coefficients depend on the cross-section
of corresponding reactions as well as on the distribution functions, and, consequently, on the
approximation of the Chapman–Enskog method.

2.3 Zero-order reaction-rate coefficients

The zero-order solution of Eqs. (2) for molecular species has the form of the
Maxwell-Boltzmann distributions

f
(0)
cij =

( mc

2πkT

)3/2 nc

Zint
c (T)

sc
ij exp

(

−
mcc2

c

2kT
−

εc
ij

kT

)

, (24)

with the internal partition function Zint
c given by

Zint
c (T) = ∑

ij

sc
ij exp

(

−
εc

ij

kT

)

.

Here εc
ij is the internal energy of a molecule at the ith vibrational and jth rotational levels, k

is the Boltzmann constant, cc = uc − v is the peculiar velocity. The zero-order distribution
function for atomic species reads

f
(0)
c =

( mc

2πkT

)3/2
nc exp

(

−
mcc2

c

2kT

)

. (25)

The zero order transport terms in the flow equations take the form V
(0)
c = 0, P

(0) = pI,

q(0) = 0, the pressure is p = nkT, n is the total number density. Thus, in the zero-order
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(Euler) approximation, the governing equations describe non-equilibrium chemical kinetics
in a thermally equilibrium inviscid non-conducting gas mixture:

ρ
dαc

dt
= ∑

r
ξ̇
(0)
r νrc Mc, c = 1, .., L, (26)

ρ
dv

dt
= −∇p , (27)

ρ
dU

dt
= −p∇· v. (28)

The right-hand side in Eqs. (26) contain the zero-order reaction rates:

ξ̇
(0)
r = k

(0)
f , r

L

∏
c=1

(

ρc

Mc

)ν
(r)
rc

− k
(0)
b, r

L

∏
c=1

(

ρc

Mc

)ν
(p)
rc

. (29)

Here k
(0)
f , r, k

(0)
b, r are the thermal-equilibrium reaction-rate coefficients. For the exchange reaction

(4), when the partner Ad is a molecule, k
(0)
f , ex, k

(0)
b, ex are given by:

νex, c k
(0)
f , ex(T) = −

NA

Zint
c (T)Zint

d (T)

( mcd

2πkT

)3/2

∑
iki′k′

∑
jl j′ l′

∫

exp

(

−
mcdg2

2kT

)

×

sc
ijs

d
kl exp

(

−
εc

ij + εd
kl

kT

)

g3σ
c′d′ , i′ j′k′ l′

cd, ijkl (g, Ω) dg d2Ω, (30)

νex, c k
(0)
b, ex(T) = −

NA

Zint
c′ (T)Zint

d′ (T)

( mc′d′

2πkT

)3/2

∑
iki′k′

∑
jl j′ l′

∫

exp

(

−
mc′d′ g

′2

2kT

)

×

sc′

i′ j′ s
d′

k′ l′ exp

⎛

⎝−
εc′

i′ j′ + εd′

k′ l′

kT

⎞

⎠ g′3σ
cd, ijkl
c′d′ , i′ j′k′ l′ (g′, Ω) dg′ d2Ω, (31)

and if Ad is an atom,

νex, c k
(0)
f , ex(T) = −

NA

Zint
c (T)

( mcd

2πkT

)3/2

∑
ii′

∑
jj′

∫

exp

(

−
mcdg2

2kT

)

×

sc
ij exp

(

−
εc

ij

kT

)

g3σ
c′d′ , i′ j′

cd, ij (g, Ω) dg d2Ω. (32)

νex, c k
(0)
b, ex(T) = −

NA

Zint
c′ (T)

( mc′d′

2πkT

)3/2

∑
ii′

∑
jj′

∫

exp

(

−
mc′d′ g

′2

2kT

)

×

sc′

i′ j′ exp

⎛

⎝−
εc′

i′ j′

kT

⎞

⎠ g′3σ
cd, ij
c′d′ , i′ j′ (g′, Ω) dg′ d2Ω. (33)
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For the dissociation reaction (5), the zero-order forward-rate coefficient is obtained in the form

νdiss, c k
(0)
f , diss(T) = −

4πNA

Zint
c (T)

( mcd

2πkT

)3/2

∑
ij

∫

exp

(

−
mcdg2

2kT

)

×

sc
ij exp

(

−
εc

ij

kT

)

g3σdiss
cij, d(g, uc′ , u f ′ , u′

d) dg duc′ du f ′ du′
d. (34)

The zero-order recombination (backward for dissociation) rate coefficient reads

νdiss, c k
(0)
b, diss(T) = −N 2

A

(

mc′m f ′md

)3/2

(2πkT)9/2 ∑
ij

∫

exp

(

−
mc′ c

2
c′

2kT
−

m f ′ c
2
f ′

2kT
−

mdc′
2
d

2kT

)

×

σ
rec, cij
c′ f ′d (uc, ud, uc′ , u f ′ , u′

d) duc dud duc′ du f ′ du′
d. (35)

Thus, if the cross-sections of the corresponding reactions are known, the zero-order rate
coefficients can easily be calculated. However, for practical applications, phenomenological
models such as the Arrhenius one are commonly used.

Using the detailed balance principle (8)–(9), one can obtain the ratios of forward and backward
reaction rate coefficients:

K
(0)
ex (T) =

k
(0)
b, ex(T)

k
(0)
f , ex(T)

=

(

mcmd

mc′md′

)3/2 Zint
c (T)Zint

d (T)

Zint
c′ (T)Zint

d′ (T)
exp

(

Dc + Dd − Dc′ − Dd′

kT

)

, (36)

K
(0)
diss(T)=

k
(0)
b, diss

k
(0)
f , diss

= NA

(

mc

mc′m f ′

)3/2

h3(2πkT)−3/2Zint
c (T) exp

(

Dc

kT

)

, (37)

Dc is the dissociation energy of molecule c, Dc + Dd − Dc′ − Dd′ is heat effect of an exchange
reaction. Formulas (36), (37) express the chemical-equilibrium constants well known from
thermodynamics and hold only for Maxwell-Boltzmann distributions over velocity and
internal energy.

2.4 First order reaction rate coefficients. Chemical kinetics in viscous gases

First-order distribution functions are obtained in Nagnibeda & Kustova (2009) in the form

f
(1)
cij = f

(0)
cij

(

−
1

n
Acij · ∇ ln T −

1

n ∑
d

Dd
cij · dd −

1

n
Bcij : ∇v −

1

n
Fcij∇ · v −

1

n
Gcij

)

. (38)

Functions Acij, Bcij, Dd
cij, Fcij and Gcij satisfy the linear integral equations with the linearized

operators of elastic collisions and inelastic ones with internal energy transitions.

Let us consider the first-order transport terms in equations Eqs. (10)–(12). For the viscous
stress tensor we obtain

P = (p − prel)I − 2ηS − ζ ∇ ·vI. (39)

Here, prel is the relaxation pressure, η and ζ are the coefficients of shear and bulk viscosity.
In the one-temperature approach, the additional terms connected to the bulk viscosity and
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relaxation pressure appear in the diagonal terms of the stress tensor due to rapid inelastic
internal energy transitions. The existence of the relaxation pressure is caused also by slow
processes of chemical reactions proceeding on the gas-dynamic time scale.

The transport coefficients in the expression (39) can be written in terms of functions Bcij, Fcij,
and Gcij:

η =
kT

10
[B, B] , ζ = kT [F, F] , prel = kT [F, G] . (40)

In these formulae, [A, B] (where A, B are arbitrary functions of molecular velocities) denotes
a bilinear form depending on the linearized integral collision operator for rapid processes.
In the kinetic theory, such bilinear forms are basically called bracket integrals. The bracket
integrals in the expressions (40) are introduced in Nagnibeda & Kustova (2009) similarly to
those defined in Ferziger & Kaper (1972) for a non-reacting gas mixture under the conditions
of weak deviations from the equilibrium.

The diffusion velocity and the total energy flux in the considered approach are specified by

the functions Dd
cij, Ad

cij also depending on the cross sections of rapid processes and are studied

in Kustova & Nagnibeda (2011).

Thus, the governing equations (10)–(12) with the first order transport terms describe a flow
of reacting mixture of viscous gases with strong non-equilibrium chemical reactions in the
Navier-Stokes approximation. Transport properties in the one-temperature approach in
reacting gas mixtures are considered in Ern & Giovangigli (1994); Kustova (2009); Kustova
et al. (2008); Nagnibeda & Kustova (2009).

The chemical reaction rate coefficients contributing to the production terms Rreact
c in the

equations (10) or to the reaction rates in the equations (15) in the first-order approximation
are defined by the first order distribution functions (38) and depend on the cross sections of
reactive collisions.

The chemical-reaction rate in Eqs. (15) in the first-order approximation has the form (23) where

k f , r = k
(0)
f , r (T)− k̄

(1)
f , r (α1, ..., αL, ρ, T)− k̃

(1)
f , r (α1, ..., αL, ρ, T) , (41)

kb, r = k
(0)
b, r (T)− k̄

(1)
b, r (α1, ..., αL, ρ, T)− k̃

(1)
b, r (α1, ..., αL, ρ, T) . (42)

Quantities k̄
(1)
f , r, k̃

(1)
f , r, k̄

(1)
b, r , k̃

(1)
b, r express first-order corrections to the reaction-rate coefficients

(17)–(20). The terms k̄
(1)
f , r, k̄

(1)
b, r are due to deviations from Maxwell-Boltzmann distributions

over velocities and internal energies whereas the terms k̃
(1)
f , r, k̃

(1)
b, r are due to spatial

non-homogeneity. If internal degrees of freedom are neglected, the coefficients k̃
(1)
f , r and k̃

(1)
b, r

vanish.

The first-order corrections to the reaction-rate coefficients are defined by the expressions:

νex, c k̄
(1)
f , ex = −

NA

n ∑
iki′k′

∑
jl j′ l′

∫ f
(0)
cij f

(0)
dkl

ncnd

(

Gcij + Gdkl

)

g σ
c′d′ , i′ j′k′ l′

cd, ijkl d2Ωdudduc, (43)
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νex, c k̃
(1)
f , ex = −∇ · v

NA

n ∑
iki′k′

∑
jl j′ l′

∫ f
(0)
cij f

(0)
dkl

ncnd

(

Fcij + Fdkl

)

g σ
c′d′ , i′ j′k′ l′

cd, ijkl d2Ωdudduc, (44)

νex, c k̄
(1)
b, ex = −

NA

n ∑
iki′k′

∑
jl j′ l′

∫ f
(0)
c′ i′ j′ f

(0)
d′k′ l′

nc′nd′

(

Gc′ i′ j′ + Gd′k′ l′

)

g′ σ
cd, ijkl
c′d′ , i′ j′k′ l′d

2Ωdud′duc′ , (45)

νex, c k̃
(1)
b, ex = −∇ · v

NA

n ∑
iki′k′

∑
jl j′ l′

∫ f
(0)
c′ i′ j′ f

(0)
d′k′ l′

nc′nd′

(

Fc′ i′ j′ + Fd′k′ l′

)

g′ σ
cd, ijkl
c′d′ , i′ j′k′ l′d

2Ωdud′duc′ , (46)

νdiss, c k̄
(1)
f , diss = −

NA

n ∑
iki′k′

∑
jl j′ l′

∫ f
(0)
cij f

(0)
dkl

ncnd

(

Gcij + Gdkl

)

g σdiss
cij, d duc dud duc′ du f ′ du′

d, (47)

νdiss, c k̃
(1)
f , diss = −∇ · v

NA

n ∑
iki′k′

∑
jl j′ l′

∫ f
(0)
cij f

(0)
dkl

ncnd

(

Fcij + Fdkl

)

g σdiss
cij, d duc dud duc′ du f ′ du′

d, (48)

νdiss, c k̄
(1)
b, diss = −

N 2
A

n ∑
ik

∑
jl

∫ f
(0)
c′ f

(0)
f ′ f ′

(0)
dkl

nc′n f ′nd

(

Gc′ + G f ′ + Gdkl

)

σ
rec, cij
c′ f ′d duc dud duc′ du f ′ du′

d,

(49)

νdiss, c k̃
(1)
b, diss = −∇·v

N 2
A

n ∑
ik

∑
jl

∫ f
(0)
c′ f

(0)
f ′ f ′

(0)
dkl

nc′n f ′nd

(

Fc′ + Ff ′ + Fdkl

)

σ
rec, cij
c′ f ′d duc dud duc′ du f ′ du′

d.

(50)

It can be noted that the first-order corrections for the reaction rate coefficients depend on the
same functions Fcij and Gcij which define the additional diagonal elements of the pressure
tensor connected to the bulk viscosity and relaxation pressure.

Algorithms for the calculation of vector and tensor transport properties and first order
corrections to reaction rate coefficients are described in details in Nagnibeda & Kustova (2009).
In Ref. Alexeev & Grushin (1994), a procedure for the calculation of the first-order reaction rate
coefficients has been developed for gases without internal degrees of freedom. In Ref. Kustova
et al. (2008), the scalar functions Fcij and Gcij are considered, and transport linear systems for
the calculation of bulk viscosity, chemical-reaction contribution to the normal mean stress
and first-order reaction rate coefficients are derived taking into account internal energy of
molecules. Numerical estimations of the first-order rate coefficients in reacting viscous gas
flows remain an open question up to now. In the simulations of viscous flows, the first-order
corrections to the rate coefficients are usually neglected as well as relaxation pressure and
bulk viscosity. Some results in this field have been recently obtained in Ref. Kustova (2009)
where numerical estimations of the normal mean stress and the first order corrections to
the dissociation and recombination rates in the mixture N2/N have been performed. It is
shown that whereas the first-order contribution to the normal mean stress remains small,
the first-order corrections to the reaction rates are not negligible in both shock heated and
expanding flows.
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3. State-to-state model for vibrational–chemical coupling

3.1 Distribution functions. Governing equations

In this section, chemical kinetics in multi-component reacting gas mixture flows are studied
under the conditions of strong vibrational and chemical non-equilibrium. Experimental
results on the relaxation times of various processes demonstrate that, in a wide temperature
range, the equilibration of translational and rotational degrees of freedom proceeds much
faster compared to the vibrational relaxation and chemical reactions. The characteristic
relaxation times satisfy the relation

τel < τrot ≪ τvibr ∼ τreact ∼ θ. (51)

where τrot, τvibr are relaxation times for rotational and vibrational degrees of freedom. Under
such conditions, the integral operators in the kinetic equations (2) take the form:

J
rap
cij = Jel

cij + Jrot
cij , Jsl

cij = Jvibr
cij + Jreact

cij . (52)

In this case, the vibrational-chemical coupling in reacting flows becomes important.

The kinetic equations for the distribution functions in the zero-order Chapman-Enskog
approximation have the form:

J
el(0)
cij + J

rot(0)
cij = 0. (53)

In this case, the system of collision invariants for the most frequent collisions includes along
with the momentum and a particle total energy, any value independent of the velocity and
rotational level j and depending arbitrarily on the vibrational level i and chemical species
c. This values are conserved at the most frequent collisions because, according to the
condition (51), vibrational energy transitions and chemical reactions are forbidden in the rapid
processes. Based on the above set of the collision invariants, the solution of Eqs. (53) takes the
form

f
(0)
cij =

( mc

2πkT

)3/2
sci

j

nci

Zrot
ci (T)

exp

(

−
mcc2

c

2kT
−

εci
j

kT

)

(54)

for molecular species, and

f
(0)
c =

( mc

2πkT

)3/2
nc,a exp

(

−
mcc2

c

2kT

)

(55)

for atomic species. Here nci is the number density of molecules c at the i-th vibrational level,
nc,a is the number density of atoms c, Zrot

ci is the partition functions of rotational degrees of
freedom:

Zrot
ci (T) = ∑

j

sci
j exp

(

−
εci

j

kT

)

, (56)

εci
j is the rotational energy of a molecule at the ith vibrational level, sci

j is the rotational

statistical weight.

The solution (54) represents the local equilibrium Maxwell-Boltzmann distribution over the
velocity and rotational energy levels with the temperature T and strongly non-equilibrium
distribution over chemical species and vibrational energy levels. The distribution functions
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(54), (55) are completely specified by the macroscopic gas parameters nci(r, t) (c = 1, ..., L, i =
0, 1, ..., Lc, Lc is the number of excited vibration levels of molecular species c), T(r, t), and
v(r, t) and correspond to the set of the collision invariants of rapid processes.

The set of equations for the macroscopic parameters nci(r, t), v(r, t), and T(r, t) follows
from Eq. (2) with collision operators (52). This system includes equations of state-to-state
vibrational and chemical kinetics in a flow Kustova & Nagnibeda (1998); Nagnibeda &
Kustova (2009):

dnci

dt
+ nci ∇· v +∇· (nciVci) = Rci, c = 1, ..., L, i = 0, ..., Lc, (57)

coupled to the conservation equations for the momentum and total energy which formally
coincide with Eqs. (11)–(12). Here, Vci is the diffusion velocity of molecules c at the vibrational
state i. The total energy per unit mass U is specified by level populations nci(r, t), atomic
number densities nc(r, t) and gas temperature.

The source terms in equations (57) characterize the variation of the vibrational level
populations and atomic number densities caused by different vibrational energy exchanges
and chemical reactions and are expressed via the integral operators of slow processes:

Rci = ∑
j

∫

Jsl
cijd uc = Rvibr

ci + Rreact
ci . (58)

The equations (57), (11), (12) provide a detailed description of vibrational and chemical
kinetics and flow dynamics for weak deviations from the equilibrium distributions over
the velocity and rotational energy levels and arbitrary deviations from the equilibrium for
the vibrational degrees of freedom and chemical species. Let us emphasize that for such
an approach, the vibrational level populations are included to the set of main macroscopic
parameters, and particles of various chemical species in different vibrational states represent
the mixture components. The expressions (58) can be written in the form:

Rvibr
ci = ∑

dki′k′

(

nci′ndk′k
d, k′k
c, i′ i − ncindkkd,kk′

c,ii′

)

, (59)

Rreact
ci = Rex

ci + Rdiss
ci ,

Rex
ci = ∑

dc′d′
∑
ki′k′

(

nc′ i′nd′k′k
d′k′ , dk
c′ i′ , ci − ncindkkdk, d′k′

ci, c′ i′

)

, (60)

Rdiss
ci = ∑

dk

ndk

(

nc′n f ′k
dk
rec, ci − ncik

dk
ci, diss

)

. (61)

Here the rate coefficients are introduced for the energy exchange:

Aci + Adk ⇋ Aci′ + Adk′ , (62)

exchange chemical reactions:
Aci + Adk ⇋ Ac′ i′ + Ad′k′ (63)

and dissociation-recombination reactions:

Aci + Adk ⇋ Ac′ + A f ′ + Adk. (64)
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The rate coefficients for the forward reactions (62)–(64) (for collisions of particles Aci and Adk)

are introduced, respectively, as kd, kk′

c, ii′ , kdk, d′k′

ci, c′ i′ , and kdk
ci, diss, the recombination rate coefficient is

denoted as kdk
rec, ci. Note that if k′ = k, then Eq. (62) describes VT(TV) transitions for a molecule

Aci during the collision with a molecule Adk with the rate coefficient kdk
c, ii′ of the forward

transition. If d is an atom, then the corresponding rate coefficient of the forward transition
(62) is kd

c, ii′ .

If k �= k′ then the reaction (62) describes either VV1 exchange of the vibrational energy
between molecules of the same chemical species (for c = d) or VV2 transitions between
molecules of different chemical species (for c �= d). Note that VV1 and VV2 transitions
of the vibrational energy are almost always accompanied with the transfer of the part of
vibrational energy into the translational or rotational modes. However, the probability of a
simultaneous exchange between three and more energy modes during one collision is rather
low, consequently, these exchanges are usually omitted in the production terms of the kinetic
equations.

In the dissociation and recombination reactions (64), the particle Adk can also be either a
molecule or an atom. Therefore, different dissociation rate coefficients should be introduced:
kdk

rec, ci, kd
rec, ci. The rate coefficients of the above processes depend on the order of the

distribution function approximation.

The Chapman–Enskog method generalized for the conditions (51) gives the possibility to
express, in any approximation, the transport and relaxation terms in Eqs. (57), (11), (12) as
functions of the main macroscopic parameters nci(r, t), v(r, t), and T(r, t) and thus to close
completely the set of governing equations.

In the zero-order approximation (54), (55),

P
(0) = nkTI, q(0) = 0, V

(0)
ci = 0 ∀ c, i, (65)

and the governing equations contain the equations of state-to-state kinetics

dnci

dt
+ nci ∇· v = R

(0)
ci , c = 1, ..., L, i = 0, ..., Lc, (66)

coupled to the conservation equations in the form (27), (28).

The right hand sides of Eqs. (66) R
(0)
ci are specified by the zero-order distribution function. The

expressions for Rci contain the microscopic rate coefficients for vibrational energy exchanges
and chemical reactions. The equations (66) describe detailed state-to-state vibrational and
chemical kinetics in an inviscid non-conductive gas mixture flow in the Euler approximation.
In the first-order approximation state-dependent transport properties and reaction rates in
reacting non-equilibrium flows are studied in Kustova & Nagnibeda (1998); Kustova et al.
(1999); Nagnibeda & Kustova (2009).

3.2 State dependent reaction rate coefficients

Let us consider state dependent rate coefficients for chemical reactions appearing in
Eqs. (59)–(61). In the zero-order Chapman-Enskog approximation rate coefficients for
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exchange reactions have the form Nagnibeda & Kustova (2009):

kdk, d′k′

ci, c′ i′ =
4π

Zrot
ci Zrot

dk

( mcd

2πkT

)3/2

∑
jl j′ l′

∫

exp

(

−
mcdg2

2kT

)

×

× sci
j sdk

l exp

(

−
εci

j + εdk
l

kT

)

g3σ̃
c′d′ , i′ j′k′ l′

cd, ijkl dg, (67)

with σ̃
c′d′ , i′ j′k′ l′

cd, ijkl designating the integral cross section of a collision resulting in a bimolecular

reaction. The integral cross section is obtained integrating the corresponding differential cross
sections over solid angles in which relative velocity appear before and after collision:

σ̃
c′d′ , i′ j′k′ l′

cd, ijkl (g) =
1

4π

∫

σ
c′d′ , i′ j′k′ l′

cd, ijkl (g, Ω)d2Ωd2Ω′. (68)

It is commonly supposed that the cross section depends on the absolute value g of the relative
velocity rather than the vector g. Then

σ̃
c′d′ , i′ j′k′ l′

cd, ijkl (g) =
∫

σ
c′d′ , i′ j′k′ l′

cd, ijkl (g, Ω)d2Ω. (69)

The recombination rate coefficients in the zero-order approximation can be represented in the
form

kdk
rec, ci =

(mc′m f ′md)
3/2

(2πkT)9/2 ∑
j

∫

σ
rec, cij
c′ f ′d (uc′ , u f ′ , u′

d, uc, ud)×

× exp

(

−
mc′u

2
c′ + m f ′u

2
f ′ + mdu′2

d

2kT

)

duc′du f ′du′
dducdud. (70)

The zero-order dissociation rate coefficients take the form Kuščer (1991); Ludwig & Heil (1960)

kdk
ci, diss =

4π

Zrot
ci

( mcd

2πkT

)3/2

∑
j

∫

exp

(

−
mcdg2

2kT

)

sci
j exp

(

−
εci

j

kT

)

g3σ̃diss
cij, ddg, (71)

the integral dissociation reaction cross section is introduced by the formula

σ̃diss
cij, d =

∫

σdiss
cij, d(g, uc′ , u f ′ , u′

d)duc′du f ′du′
d. (72)

Since it is supposed that the cross sections of dissociation σdiss
cij, d and recombination σ

rec, cij
c′ f ′d do

not depend on the vibrational state k of the partner Adk in the reaction (64), then:

kdk
ci, diss = kd

ci, diss, kdk
rec, ci = kd

rec, ci (73)

The relations connecting the rate coefficients of forward and backward collisional processes
follow from the microscopic detailed balance relations for reactive collisions (8)-(9) after
averaging them with the Maxwell–Boltzmann distribution over the velocity and rotational
energy. Thus for the rate coefficients of forward and backward reactions we obtain

Kd′k′ , dk
c′ i′ , ci =

kd′k′ , dk
c′ i′ , ci

kdk, d′k′

ci, c′ i′

=
sc

i sd
k

sc′
i′ sd′

k′

(

mcmd

mc′md′

)3/2 Zrot
ci Zrot

dk

Zrot
c′ i′ Z

rot
d′k′

×
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× exp

(

εc′

i′ + εd′

k′ − εc
i − εd

k

kT

)

exp

(

Dc + Dd − Dc′ − Dd′

kT

)

, (74)

Kd
rec−diss, ci =

kd
rec, ci

kd
ci, diss

= sc
i

(

mc

mc′m f ′

)3/2

h3 (2πkT)−3/2 Zrot
ci exp

(

−
εc

i − Dc

kT

)

. (75)

In the last formula, mc = mc′ + m f ′ .

For diatomic gases, the vibrational statistical weight sc
i = 1. Moreover, for the rigid rotator

model, the rotational partition function is independent of the vibrational state Zrot
ci = Zrot

c . In
this case, the ratio of the backward and forward reaction rate coefficients takes the reduced
form. The expression (74) can be simplified if the collision partner is an atom.

For the application of Egs. (66), (27), (28) to particular problems of non-equilibrium fluid
dynamics, the analytical expressions for the dependence of the reaction rate coefficients on
the vibrational states of molecules participating in the reactions are needed.

As for vibrational energy transitions, a number of theoretical and experimental estimates for
rate coefficients of these transitions are available in the literature in different temperature
intervals. These data can be found, for example, in Nagnibeda & Kustova (2009); Phys-Chem
(2002; 2004). The comparison of rate coefficients for vibational energy transitions of N2

molecules obtained using different models is given in Nagnibeda & Kustova (2009).

The rate coefficients for dissociation from different vibrational levels have been studied much
less widely than for vibrational energy transitions. Two models are commonly used for
calculations: the ladder-climbing model assuming dissociation only from the last vibrational
level (see, for instance, Armenise et al. (1996; 1995); Capitelli et al. (1997); Osipov (1966)), and
that of Treanor and Marrone Marrone & Treanor (1963) allowing for dissociation from any
vibrational state.

In the frame of ladder climbing model, the rate of dissociation is specified by the number of
molecules occurring on the last vibrational level. Consequently, the dissociation rate is totally
specified by the probabilities for the vibrational energy transitions to the last level. In the case
when dissociation can occur from any vibrational level, the expression for the rate coefficient
for dissociation of a molecule on the vibrational level i can be written in the form Nagnibeda
& Kustova (2009):

kd
i, diss = Zd

i (T)k
d
diss,eq(T). (76)

Here, kd
diss,eq(T) is the thermal equilibrium dissociation rate coefficient obtained by averaging

the state-dependent rate coefficient with the one-temperature Boltzmann distribution; Zd
i is

the non-equilibrium factor. Using the Treanor–Marrone model Marrone & Treanor (1963), the
expression for Zd

i (T) was obtained in Nagnibeda & Kustova (2009):

Zd
i (T) = Zi(T, U) =

Zvibr(T)

Zvibr(−U)
exp

[

εi

k

(

1

T
+

1

U

)]

, (77)

Zvibr is the equilibrium vibrational partition function

Zvibr(T) = ∑
i

sc
i exp

(

−
εi

kT

)

, (78)
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U is a parameter of the model.

Thus, the state-dependent dissociation rate coefficient kd
i, diss is expressed in terms of the

averaged thermal equilibrium coefficient kd
diss, eq(T) and non-equilibrium factor (77). To

calculate kd
diss, eq(T), the empirical Arrhenius law can be applied:

kd
diss, eq = ATn exp

(

−
D

kT

)

, (79)

the coefficients A and n are generally obtained as a best fit to experimental data. The
tables of the coefficients in the Arrhenius formula for various chemical reactions can be
found in Refs. Gardiner (1984); Kondratiev & Nikitin (1974); Park (1990); Phys-Chem (2002);
Stupochenko et al. (1967).

In Ref. Esposito, Capitelli, Kustova & Nagnibeda (2000), the dissociation rate coefficients
kd

i, diss calculated within the framework of the Treanor–Marrone model are compared
with those obtained from trajectory calculations Esposito, Capitelli & Gorse (2000), some
recommendations for the optimum choice for the parameter U for the specific reactions are
given. Figure 1 presents the temperature dependence of the state-dependent dissociation

rate coefficients kN2

i, diss in an (N2, N) mixture. The coefficients are calculated for different

values of the parameter U for two vibrational quantum numbers: i = 0 and i = 20.
The results of trajectory calculation for ki, diss taken from Ref. Esposito, Capitelli & Gorse
(2000) are also plotted. We can see that for low vibrational levels, the choice for U = ∞

results in significant overestimation for ki, diss, which confirms the common assumption of the
preferential dissociation from high vibrational states.

With the increase in the vibrational quantum number, for U = ∞ we obtain more realistic
values for ki, diss, and for i > 40, we have the best agreement with the results of accurate
trajectory calculations. U = D/(6k) and U = 3T provide good consistency for ki, diss at
intermediate levels (20 < i < 40). Furthermore, U = D/(6k) results in better consistency
for low temperatures, whereas U = 3T is good in the high temperature range (T > 6000 K).
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Fig. 1. The temperature dependence of the dissociation rate coefficient kN2

i, diss for i = 0 (a) and
i = 20 (b). The curve 1 represents the results obtained in Ref. Esposito, Capitelli & Gorse
(2000), curves 2–4 correspond to U = D/(6k), U = 3T, and U = ∞.

It should be emphasized that using the same value for the parameter U for any i and T
can result in considerable errors in the calculation for the state-to-state dissociation rate
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coefficients. The choice for the parameter should be specified by the conditions of a particular
problem (the temperature range, basic channels of dissociation, etc.). In some studies
Armenise et al. (1996); Candler et al. (1997); Capitelli et al. (1997), a possibility for dissociation
from any vibrational state is suggested within the framework of the ladder-climbing model.
To this end, it is supposed that a transition to the continuum occurs as a result of
multi-quantum vibrational energy transfers.

The rate coefficients for bimolecular exchange reactions depending on the vibrational states
of reagents and products have been less thoroughly studied than those for dissociation
processes. Theoretical and experimental studies for the influence of the vibrational excitation
of reagents on reaction rates were started by J. Polanyi Polanyi (1972); some experimental
results were also obtained in Birely & Lyman (1975). The accurate theoretical approach to this
problem primarily requires a calculation for the state-dependent differential cross sections for
collisions resulting in chemical reactions, and their subsequent averaging over the velocity
distributions. In the recent years, the dynamics of atmospheric reactions has been studied,
and quasi-classical trajectory calculations for the cross sections and state-dependent rate
coefficients for the reactions N2(i) + O → NO + N and O2(i) + N → NO + O have been
carried out by several authors Gilibert et al. (1992; 1993).

At present time, two kinds of analytical expressions are available in the literature. The
first kind includes analytical approximations for numerical results obtained for particular
reactions (see Refs. Bose & Candler (1996); Capitelli et al. (1997; 2000); Phys-Chem (2002)).
These expressions are sufficiently accurate and convenient for practical use; however, their
application is restricted by the considered temperature range. Another approach is based
on the generalizations of the Treanor–Marrone model to exchange reactions suggested in
Refs. Aliat (2008); Knab (1996); Knab et al. (1995); Seror et al. (1997). These models can be
used for more general cases, but the theoretical expressions for the rate coefficients contain
additional parameters, which should be validated using experimental data. A lack of the data
for these parameters restricts the implementation of the above semi-empirical models.

Therefore, the development of justified theoretical models for cross sections of reactive
collisions and state-dependent rate coefficients for exchange reactions remains a very
important problem of the non-equilibrium kinetics.

4. Multi-temperature models for vibrational-chemical kinetics

4.1 Governing equations

The approach proposed in the previous section makes it possible to develop the most
rigorous model of reacting gas mixtures, since it takes into account the detailed state-to-state
vibrational and chemical kinetics in a flow. However, practical implementation of this method
leads to serious difficulties. The first important problem encountered in the realization
of the state-to-state model is its computational cost. Indeed, the solution of the fluid
dynamics equations coupled to the equations of the state-to-state vibrational and chemical
kinetics requires numerical simulation of a great number of equations for the vibrational level
populations of all molecular species. The second fundamental problem is that experimental
and theoretical data on the state-specific rate coefficients and especially on the cross sections
of inelastic processes are rather scanty. Due to the above problems, simpler models based
on quasi-stationary vibrational distributions are rather attractive for practical applications.
In quasi-stationary approaches, the vibrational level populations are expressed in terms of a
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few macroscopic parameters, consequently, non-equilibrium kinetics can be described by a
considerably reduced set of governing equations.

It is known from experiments Gordiets et al. (1988) that in a vibrationally excited gas,
near-resonant vibrational energy exchanges between molecules of the same chemical species
proceed much faster than non-resonant transitions between different molecules, as well as
transfers of vibrational energy to other modes and chemical reactions. Therefore the following
relation between the characteristic relaxation times is fulfilled:

τel � τrot < τVV1
≪ τVV2

< τTRV < τreact ∼ θ, (80)

τVV1
is the mean time between the collisions of the same species; τVV2

is the characteristic
time of the vibrational energy exchange between different molecules. In the multi-component
reacting gas mixture under the condition (80) the integral operators in the kinetic equations
(2) includes the operator of VV1 vibrational energy transitions between molecules of the same
species along with the operators of elastic collisions and collisions with rotational energy
exchanges:

J
rap
cij = Jel

cij + Jrot
cij + JVV1

cij . (81)

The operator of slow processes Jsl
cij consists of the operator of VV2 vibrational transitions

between molecules of different species, the operator describing the transfer of vibrational
energy into rotational and translational modes JTRV

cij , as well as the operator of chemical

reactions Jreact
cij :

Jsl
cij = JVV2

cij + JTRV
cij + Jreact

cij . (82)

Governing equations of the reacting flows and distribution functions in the zero-order and
first-order approximations, under condition (80) are studied in details in Nagnibeda &
Kustova (2009). The distribution function is totally specified by the macroscopic parameters
nc, v, T, and Tc

1 , where the parameter Tc
1 is the vibrational temperature of the first vibrational

level of molecules c. The parameter Tc
1 is associated to the additional collision invariant ic

which reflects the conservation of the number of vibrational quanta of each molecular species
in rapid processes. The zero-order distribution functions in this case may be written in the
form (54) where level populations nci are described by the relation:

nci =
nc

Zvibr
c (T, Tc

1)
sc

i exp

(

−
εc

i − iεc
1

kT
−

iεc
1

kTc
1

)

. (83)

with vibrational partition function

Zvibr
c (T, Tc

1) = ∑
i

sc
i exp

(

−
εc

i − iεc
1

kT
−

iεc
1

kTc
1

)

. (84)

εc
1 is the vibrational energy of a molecule c at the first level. Here the vibrational energy is

counted from the energy of the zeroth level.

The expression (83) yields the non-equilibrium quasi-stationary Treanor distribution Treanor
et al. (1968) generalized for a multi-component reacting gas mixture taking into account
anharmonic molecular vibrations and rapid exchange of vibrational quanta.
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The closed set of governing equations for the macroscopic parameters nc(r, t), v(r, t),
T(r, t), and Tc

1(r, t) derived in Chikhaoui et al. (2000; 1997) includes the equations of the
multi-temperature chemical kinetics for the species number densities

dnc

dt
+ nc∇ · v +∇ · (ncVc) = Rreact

c , c = 1, ..., L, (85)

relaxation equations for the specific numbers of vibrational quanta Wc in each molecular
species c:

ρc
dWc

dt
+∇ · qw,c = Rw

c − WcmcRreact
c + Wc∇ · (ρcVc) , c = 1, ..., Lm. (86)

along with the conservation equations for the momentum and the total energy, Lm is the
number of molecular species in the mixture. The latter equations formally coincide with the
corresponding equations (11) and (12) obtained in the two previous approaches. One should
however bear in mind that in the multi-temperature approach, the total energy is a function of
T, Tc

1 , and nc, and the transport terms are expressed as functions of the same set of macroscopic
parameters T, Tc

1 , and nc.

The source terms in Eqs. (85) are determined by the collision operator of chemical reactions

Rreact
c = ∑

ij

∫

Jreact
cij duc. (87)

The production terms in the relaxation equations (86) are expressed as functions of collision
operators of all slow processes: VV2 and TRV vibrational energy transfers and chemical
reactions,

Rw
c = ∑

ij

i
∫

Jsl
cijd uc = Rw, VV2

c + Rw, TRV
c + Rw, react

c . (88)

The value qw,c in Eq. (86) has the physical meaning of the vibrational quanta flux of c
molecular species and is introduced on the basis of the additional collision invariant of the
most frequent collisions ic:

qw,c = ∑
ij

i
∫

cc fcijduc.

It is obvious that the system of governing equations in the multi-temperature approach is
considerably simpler than the corresponding system in the state-to-state approach, since it
contains much fewer equations. In the zero-order approximation of the Chapman-Enskog
method, the system of governing equations takes the form typical for inviscid non-conductive
flows. In this case equations (85), (86) read:

dnc

dt
+ nc ∇· v = R

react(0)
c , c = 1, ..., L, (89)

ρc
dWc

dt
= R

w(0)
c − mcWcR

react(0)
c , c = 1, ..., Lm. (90)
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4.2 Multi-temperature reaction rate coefficients

The production terms in Eqs. (89) may be written in the form (13), (14) similar to the
equations obtained in the one-temperature approximation. However, the coefficients in
these expressions differ from those in the one-temperature approach and contains the

multi-temperature rate coefficients kdd′

cc′ of the reaction (63) (during a collision of two molecules

or a molecule and an atom Ad), the two-temperature coefficients of dissociation kd
c, diss, and

recombination rate coefficients kd
rec,c.

In the zero-order approximation, the multi-temperature rate coefficients of exchange and
dissociation reactions can be expressed in terms of the state-specific rate coefficients
considered in section 3.2:

k
dd′ (0)
cc′ =

1

ncnd
∑

iki′k′
ncindk k

dk,d′k′ (0)
ci,c′ i′ (T), (91)

k
d (0)
c,diss =

1

nc
∑

i

nci k
d (0)
ci, diss(T), (92)

where nci denotes some non-equilibrium quasi-stationary distribution.

For the generalized Treanor distribution (83), the multi-temperature rate coefficients of
exchange reactions occurring as a result of collisions of two molecules take the form

k
dd′ (0)
cc′ (T, Tc

1 , Td
1 )=

1

Zvibr
c (T, Tc

1)Zvibr
d (T, Td

1 )
∑

iki′k′
sc

i sd
k exp

(

−
εc

i − icεc
1

kT
−

−
εd

k − kdεd
1

kT
−

icεc
1

kTc
1

−
kdεd

1

kTd
1

)

k
dk, d′k′ (0)
ci, c′ i′ (T). (93)

The rate coefficient for the exchange reaction in a collision of a diatomic molecule and an atom,
as well as the dissociation rate coefficient, depends on two temperatures (T and Tc

1 ):

k
dd′ (0)
cc′ (T, Tc

1)=
1

Zvibr
c (T, Tc

1)
∑
ii′

sc
i exp

(

−
εc

i − icεc
1

kT
−

icεc
1

kTc
1

)

k
dd′ (0)
ci, c′ i′ (T), (94)

k
d (0)
c,diss(T, Tc

1) =
1

Zvibr
c (T, Tc

1)
∑

i

sc
i exp

(

−
εc

i − icεc
1

kT
−

icεc
1

kTc
1

)

k
d (0)
ci, diss(T). (95)

The total recombination rate coefficient k
d (0)
rec,c is defined in terms of the state-specific rate

coefficients as follows
k

d (0)
rec,c(T) = ∑

i

k
d (0)
rec,ci(T) (96)

and depends on the gas temperature T only. One should keep in mind that the
superscript "0" in the notations for the state-to-state rate coefficients indicates that they
are calculated by averaging the corresponding inelastic collision cross sections with the
Maxwell–Boltzmann distribution over the velocity and rotational energy. The relations
connecting the multi-temperature rate coefficients of forward and backward reactions can be
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obtained applying the microscopic detailed balance relations for the collision cross sections.
For bimolecular reactions we find

k
d′d (0)
c′c (T, Tc′

1 , Td′

1 )=
1

Zvibr
c′ (T, Tc′

1 )Zvibr
d′ (T, Td′

1 )
∑

iki′k′
sc′

i′ sd′

k′ exp

(

−
i′c′ ε

c′

1

kTc′
1

−

−
k′d′ ε

d′

1

kTd′
1

−
εc′

i′ − i′c′ ε
c′

1

kT
−

εd′

k′− k′d′ ε
d′

1

kT

)

k
dk, d′k′ (0)
ci, c′ i′ K

d′k′ , dk (0)
c′ i′ , ci (T), (97)

whereas for dissociation-recombination we can write

k
d (0)
rec,c (T) = ∑

i

k
d (0)
rec,ci(T) = ∑

i

k
d (0)
ci,diss(T)K

d (0)
rec−diss,ci(T). (98)

In these formulae, the ratios for the state-to-state rate coefficients K
d′k′ , dk (0)
c′ i′ , ci (T), K

d (0)
rec−diss,ci(T)

are defined in (74), (75).

In the zero-order approximation, R
w(0)
c includes the vibrational distributions (83) and

the state-to-state rate coefficients of VV2, VT vibrational energy transitions and chemical
reactions.

If anharmonic effects are neglected then the Boltzmann vibrational distributions with the
vibrational temperature Tc

v are valid, and the multi-temperature rate coefficients of the
reactions (93)–(95) take the form

k
dd′ (0)
cc′ (T, Tc

v , Td
v ) =

1

Zvibr
c (Tc

v)Zvibr
d (Td

v )
×

× ∑
iki′k′

sc
i sd

k exp

(

−
εc

i

kTc
v
−

εd
k

kTd
v

)

k
dk,d′k′ (0)
ci,c′ i′ (T), (99)

if d is a molecule,

k
dd′ (0)
cc′ (T, Tc

v) =
1

Zvibr
c (Tc

v)
∑
ii′

sc
i exp

(

−
εc

i

kTc
v

)

k
dd′ (0)
ci,c′ i′ (T), (100)

if d is an atom, and

kd
c,diss(T, Tc

v) =
1

Zvibr
c (Tc

v)
∑

i

sc
i exp

(

−
εc

i

kTc
v

)

k
d (0)
ci,diss(T). (101)

For the calculation of two-temperature dissociation rate coefficients in the most studies
(see Marrone & Treanor (1963); Phys-Chem (2002))), the two-temperature dissociation rate
coefficient kd

diss is associated with the equilibrium averaged coefficient kd
diss, eq by introducing

the two-temperature non-equilibrium factor Z(T, T1, U) rather than the state-to-state factor
Zi(T, U):

kd
diss = Z(T, T1, U)kd

diss, eq(T). (102)

where

Z(T, T1, U) =
1

nm
∑

i

niZi(T, U). (103)
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Using the Treanor distribution (83) for ni, the factor Z is given by the relation

Z(T, T1, U)=
Zvibr(T)

Zvibr(−U)Zvibr(T, T1)
∑

i

si exp

[

iε1

k

(

1

T
−

1

T1

)

+
εi

kU

]

. (104)

For the harmonic oscillator model, the non-equilibrium factor is specified by the vibrational
temperature Tv and can be calculated using the expression:

Z(T, Tv, U) =
Zvibr(T)Zvibr(Tf )

Zvibr(−U)Zvibr(Tv)
, (105)

where the effective temperature Tf is defined as

Tf =

(

1

Tv
−

1

T
−

1

U

)−1

,

Figure 2 presents the temperature dependence of the non-equilibrium factor Z(T, T1, U) in
nitrogen for fixed vibrational temperature values. The non-equilibrium factor is calculated
for both anharmonic (104) and harmonic (105) oscillator models. We can see that for
minor deviations from the equilibrium (T1/T ∼ 1), both models yield similar results,
whereas for the ratio T1/T essentially different from unity, the values of Z for harmonic and
anharmonic oscillators differ considerably. In particular, for the selected dissociation model,
the non-equilibrium factor and hence the dissociation rate coefficient of harmonic oscillators
at T1/T > 1 significantly exceed Z and kd

diss, respectively, when calculated for anharmonic

oscillators. For T1/T < 1, the use of the harmonic oscillator model yields lower Z and kd
diss

than those obtained taking into account anharmonic effects.
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Fig. 2. The non-equilibrium factor Z in N2 as a function of temperature T for fixed
temperatures T1 and U = D/(6k). The solid lines represent anharmonic oscillators, dashed
— harmonic oscillators. The curves 1, 1′ — T1 = 3000; 2, 2′ — T1 = 5000; 3, 3′ — T1 = 7000 K.
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Note in addition that the ratio of the dissociation and recombination rate coefficients Krec–diss

under the non-equilibrium conditions can also be expressed in terms of the averaged
non-equilibrium factor:

Krec−diss =
kd

rec

kd
diss

=
1

Z
K

eq
rec−diss(T), (106)

where K
eq
rec−diss(T) is the ratio of the dissociation and recombination rate coefficients in a

thermal equilibrium gas. Calculating Z from the state-to-state or quasi-stationary vibrational
distributions ni/n for various dissociation models, we can find Krec−diss under thermal
non-equilibrium conditions and estimate its deviation from the equilibrium constant.

The equations of non-equilibrium reacting flows derived in the state-to-state,
multi-temperature and one-temperature approaches were applied for calculations of
distributions and macroscopic parameters in particular flows of air components behind shock
waves, in nozzles, in non-equilibrium boundary layer (see Nagnibeda & Kustova (2009) and
references in this book). On the basis of obtained distributions, global reaction rates (92) were
calculated in relaxation zone behind the shock wave Kustova & Nagnibeda (2000) and in
nozzle expansion Kustova et al. (2003) in different approaches. The results obtained for the
relaxation zone behind the shock wave at the following free stream conditions: T0 = 293 K,
p0 = 100 Pa, M0 = 15 are presented in Fig. 3.
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Fig. 3. The averaged dissociation rate coefficient kN2

diss as a function of x. Curves 1, 2, 3 are,
respectively, for the state-to-state, two-temperature, and one-temperature approaches.

It is seen that the one-temperature model describes the behavior of the dissociation rate
coefficient inadequately, particularly close to the shock front. The two-temperature approach
provides more realistic values for the dissociation rate coefficient, overestimating however

kN2

diss in comparison to the state-to-state approximation at x < 0.5 cm.

The averaged dissociation rate coefficient kmol
diss calculated for O2/O and N2/N mixtures in a

conic nozzle in four approaches using state-to-state, multi-temperature and one-temperature
distributions, is presented in Fig. 4. The following conditions in the throat are considered: for
O2/O mixture, T∗ = 4000 K, p∗ = 1 atm; for N2/N mixture, T∗ = 7000 K, p∗ = 1 atm. Two
kinds of multi-temperature distributions are applied: the Boltzmann distribution for harmonic
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Fig. 4. Averaged dissociation rate coefficient k
(mol)
diss (m3/s) versus x/R in a conic nozzle. (a)

O2/O, T∗ = 4000 K, p∗ = 1 atm; (b) N2/N, T∗ = 7000 K, p∗ = 1 atm. Curves 1: state-to-state
model; 2: two-temperature anharmonic oscillator model; 3: two-temperature harmonic
oscillator model; 4: one-temperature model.

oscillators and a complex distribution for anharmonic oscillators studied in Kustova et al.
(2003). One can see a quite strong influence of the kinetic model on the averaged dissociation
rate coefficients, all quasi-stationary models give the values of kmol

diss rather far from those

obtained in the rigorous state-to-state approximation, the same effect is obtained for kat
diss.

In all considered cases, kat
diss is higher than kmol

diss, i.e., atoms are more efficient as partners in the
dissociation process.

5. Conclusions

In this Chapter, the theoretical models for non-equilibrium chemical kinetics in
multi-component reacting gas flows are proposed on the basis of three approaches of the
kinetic theory. In the frame of the one-temperature approximation the chemical kinetics in
thermal equilibrium flows or deviating weakly from thermal equilibrium is studied. The
coupling of chemical kinetics and fluid dynamics equations is considered in the Euler and
Navier-Stokes approximations. Chemical kinetics in vibrationally non-equilibrium flows is
considered on the basis of the state-to-state and multi-temperature approaches. Different
models for vibrational-chemical coupling in the flows of multi-component mixtures are
derived. The influence of non-equilibrium distributions on reaction rates in the flows behind
shock waves and in nozzle expansion is demonstrated.
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