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1. Introduction  

Feedback linearization is a powerful technique that allows to obtain linear model with exact 
dynamics (Isidori,1985), (Slotine & Li, 1991). Linear quadratic control is well known optimal 
control method and with its dynamic programming properties can be also easily calculated 
(Anderson & Moore, 1990). The combination of feedback linearization and LQ control has 
been used in many algorithms in Model Predictive Control applications for many years and 
it is used also in the current papers (He De-Feng et al.,2011), (Margellos & Lygeros, 2010). 
Another problem apart from finding the optimal solution on a given horizon (finite or 
infinite) is the constrained control. A method which uses the advantages of feedback 
linearization, LQ control and applying signals constraints was proposed in (Poulsen et al., 
2001b). In every step it is based on interpolation between the LQ optimal control and a 
feasible solution – the solution that fulfils given constraints. A feasible solution is obtained 
by taking calculated from LQ method optimal gain for a perturbed reference signal. The 
compromise between the feasible and optimal solution is calculating by minimization of one 
variable – the number of degrees of freedom in prediction is reduced to one variable. 

Feedback linearization relies on choosing new state input and variables and then 
compensating nonlinearities in state equations by nonlinear feedback. The signals from 
nonlinear system are constrained, they are accessible from linear model through nonlinear 
equations. Therefore in the interpolation a nonlinear numerical method has to be used. The 
whole algorithm is operating in a discretized system. 

There are several problems while using the method. One of them is that signals from 
nonlinear system can change its values within given one discrete time interval, while we 
assume that variables of linear model are unchanged. Those values should be considered as 
constrained. Another problem is finding the basic feasible perturbed reference signal which 
will provide well control performance. Method proposed in (Poulsen et. al, 2001b) gives 
good results if the weight matrices in cost function and the sampling interval are well 
chosen. Often it is difficult to choose these parameters and in general the solution may 
provide not only unfeasible signals (violating constraints), but also signals which violate 
assumption for system equations (like assumption of nonzero values in a denominator of a 
fraction). 
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Other method of finding feasible solution proposed in the chapter provides better results of 
feasibility. The presented method also takes into consideration important feature, that input 
of nonlinear system changes its value in the sampling interval, while the control value of 
linearized model is unchanged. The algorithm is applied to the two tanks model and also to 
the continuous stirred tank reactor model, which operates in an area of unstable equilibrium 
point. The influence of well chosen perturbed reference signal is presented on charts for 
those two systems. The chapter is closed by concluding remarks.  

2. Input–output feedback linearization 

The main idea in feedback linearization is the assumption that the object described by 
nonlinear equations is not intrinsically nonlinear but may have wrongly chosen state 
variables or input. By nonlinear compensation in feedback and new variables one can obtain 
linear model with embedded original model and its dynamics. A nonlinear SISO model 
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if there exists a diffeomorphism 

 ( )z x  (3) 

and a feedback law 

 ( , ).u v x  (4) 

Important factor in feedback linearization is a relative degree. This value represents of how 
many times the output signal has to be differentiated as to obtain direct dependence on 
input signal. If relative degree r is definite for the system then there is a simple method of 
obtaining linear system (2) with order r. It can be developed by differentiating r times the 
output variable y and by choosing new state variables and input as 
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where the derivatives can also be expressed by Lee derivatives  
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The linear system (5) describes the dependence between the new input v and the output y. 
These equations can be used to design appropriate input v in order to receive desirable 
output y. If relative degree r is smaller than the order of original nonlinear system n, then to 
track all state variables x we need additional n-r variables z. For 

  1( )
T

r nx z z    (6) 

the variables from vector (6) should satisfy condition  

 ( ) 0.gL x   (7) 

In that case the system has internal dynamics which has to be taken into consideration in 

stability analysis. The convenient way to consider the stability of n-r variables which after 

linearization are unobservable from output y is the analysis the zero dynamic. The zero 

dynamics is the internal dynamics of the system when the output is kept at zero by input. 

By using appropriate input and state and then checking the stability of obtained equations it 

is possible to find out if the system is minimum phase and the unobservable from y 

variables will converge to a certain value when time tends to infinity.  

Feedback linearization method (Isidori,1985), (Slotine & Li, 1991) in the basic version is 
restricted to the class of nonlinear models which are affine in the input and have smooth 
functions f(x), g(x), definite relative degree and stable zero dynamics. Therefore algorithms 
which uses feedback linearization are limited by above conditions. 

3. Unconstrained control 

Unconstrained LQ control will be applied to discrete system 

 1k d k d k

k d k

z A z B v

y C z
  


  (8) 

obtained by feedback linearization of (1) and by discretization of (2) with sampling interval Ts. 

In order to track the nonzero reference signal wt we augment the state space system by 
adding new variable zint with integral action 

 int_ 1 int_t t t tz z w y     (9) 

the equation (8) with augmented state vector takes form 
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 (10) 

The cost function can be written by 
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 2 ,T
t k k k

k t

J z Qz Rv



   (11) 

then the control law which minimize the cost function (11)  

 ,t y t tv L w Lz    (12) 

where L is the optimal gain and  0 .
T

y dL L C  

If the system (11) is complete controllable and the weight matrices Q and R are positive 
definite, then the cost function Jt is finite and the control law (12) guarantee stability of the 
control system (Anderson & Moore 1990). 

4. Constrained predictive control 

Constrained variables of nonlinear system (1) can be expressed by equation 

 k k kc Px Hu   (13) 

with constraints vectors LB and UB 

 .kLB c UB    (14) 

Constraints will be included into control law by interpolation method in every step t. It 
operates by using optimal control law (12) to 

 original reference signal wt (unconstrained optimal control), 

 changed reference signal t t tw w p   with pt called perturbation so chosen, that all 

signals after using control law will satisfy constraints, 

then using t t t tw w p   one has to minimize in every step αt with constraints (14) while 

using (10) and (12) to predict future values on prediction horizon. For nonlinear system 

constrained values depend on signals from linear model through nonlinear functions (3,4) 

therefore to minimize αt the bisection method was used in simulations.  

The αt can take values between 0 (this represents unconstrained control) and 1 (feasible but 
not optimal solution). If changing control vt have the effect in changing u and every 
constrained values in monotonic way then the dependence of αt on constrained values is 
also monotonic and there exists one minimum of αt. 

Note that pt is a vector of the size of reference signal wt calculated in the time instant t. The 
perturbation pt which provide feasible solution can be obtained from previous step by 

 1 1.t t tp p    (15) 

With optimal αt we can rewrite control law from (12): 

 ( )t y t t t tv L w p Lz     (16) 

and the state equation (10) with used (16): 
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 1 ( ),t t t t tz z w p       (17) 

where 
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 (19) 

At the beginning of the algorithm (t=0) we have to find pt in other way – we do not have pt-1. 
Several ways of choosing this initial perturbation p0 will be presented with analysis of its 
performance in the section 7.1.  

5. Two coupled tanks 

Equations describing dynamics of two tanks system 

 1 1
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 (20) 

with Bernoulli equations 

 1 1 2 1 2

2 0 0 2 2

2 ( )

2 0

l lq a g h h for h h

q a gh for h





  

 
 (21) 

presents action of the system. The variables h1 and h2 represent levels of a fluid in the first 
and the second tank. h2 is also the output of the system. The control input is the inflow q to 
the first tank and the output is the level in the second tank. More details about this system 
can be find in (Poulsen et al.2001b). 

After replacing the state by vector x and the input by u after some calculation we obtain 
system (1) with 
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System inflow and the two levels are constrained in this system owing to its structure. 
Constrains are given by equations:  
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 (23) 
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5.1 Feedback linearization 

By differentiating the output signal and choosing the consequent elements of vector z: 
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we obtain linear system 
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Where 55 10    is chosen to ensure balanced relation of components in LQ cost equation. 

While operating on linear model we need to have access to state variables the 

diffeomorphism (3). We also need equation to calculate the control signal from original 

system (4).  

This can be done via the following equations (calculated as a result of (24) and above): 
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6. Continuous stirred tank reactor 

The operation of reactor (CSTR) is described by 3 differential equations (27). First equation 

illustrates the mass balance, 

 
( )

( ( )) ( ),i

dC t
V C C t VR t

dt
     (27a) 

where C(t) is the concentration (molar mass) of reaction product measured in [kmol/m3]. 

The second equation represents the balance of energy in the reactor 
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( ( )) ( ) ( ),p p i

dT t
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        (27b) 

the balance of energy in the reactor cooling jacked is described by third equation 

  0
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with T(t) - temperature inside the reactor and Tj(t) – temperature in the cooling jacket, both 
measured in Kelvin. 

Thermal energy in the process of cooling and the velocity of reaction are described by 
additional equations: 

 ( ) ( ) ( ) ,c jQ t UA T t T t   

/ ( )
0( ) ( ) .E RT tR t C t k e  

( )j t  represents cooling flow through the reactor jacket expressed in [m3 /h] and is the 

input of the system. The output variable is the temperature T(t). More detailed explanation 

of this system can be found in (Zietkiewicz, 2010). 

Equations (27) can be rearranged to the simplified form (1) with 
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Constrained value in this system is the inflow of the cooling water to the reactor jacket –the 
input of the system 

 3 30m / h 2.5m / hu   (29) 

The system has an interesting property – three equilibrium points, two stable and one 
unstable. In normal work the system is operating in the unstable area. 

6.1 Feedback linearization 

The system has order n=3 relative degree r=2. Therefore we obtain two linear equations (two 
states) differentiating the output 
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We obtain linear system with order=2 similar to (24). The calibrating parameter in this 

system 45 10 .    The system has internal dynamic described by equation 

/
1 0 1( )E Ry

ix aC a k e x    

The zero dynamics are given by 

1 1ix aC ax   

The eigenvalue is then equal to a. As 31.13m / h  and 31.36mV  the modulus of a is less 

than 1 therefore the system is minimum phase.  

The third state variable satisfying condition (7) will be chosen as 
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7. Operating of the algorithm 

The control strategy described in sections 2-4 will be developed in this point showing 
advantages of the algorithm while using it to the two nonlinear systems with constraints. 

7.1 Initial perturbation 

Problem with finding initial perturbation signalized at the end of the section 4, arise because 
the solution must guarantee constraints, and the constrained values in spite of linearization 
are not accessible in a linear way. On the other hand this solution should not be too simple 
and only feasible as it will be shown on charts. 

The first way of calculating initial perturbation is the method proposed in (Poulsen et 
al.2001b). It is based on using zero as the reference signal and the initial state corresponding 
to the step of original reference signal. We obtain state equation 

 1 .t t tz z p       (32) 

After minimization of the cost function 

 2T
t k p k p k

k t

J z Q z R p



    (33) 
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and finding optimal gain K by LQ method we have 

 .t tp Kz   (34) 

In fig.(1) charts with dashed lines presents signals without perturbation and with zero 
reference signal, whereas solid lines represent signals with used perturbation obtained from 
(34). Minimization of the first element in (33) approaches output and input v to zero, 
minimization of the second element approaches signals to that without using perturbation. 
Problem appears with the input v which approaches to zero by minimization of the first 
element of (33) but by minimization of the second element approaches to high negative 
value. This is visible in the first steps. This value also depends on Qp and Rp nonetheless it 
cannot be chosen arbitrarily close to zero. Too high modulus of v causes signals of nonlinear 
system to be more didstant from zero, and that can violate constraints. Another way of 
calculating initial perturbation can be find in (Poulsen et al.2001a) but that method is limited 
to linear (or Jacobian linearized) models. 

 

Fig. 1. First method of finding the initial perturbation trajectory 

To remedy this difficulty we can try to use as the initial perturbation signal which makes wt 
and automatically other signals unchanged. This however causes problems in working 
algorithm in next steps and provides week tracking of original reference signal (this will be 
shown in fig.(11)). 

Other way of calculating initial perturbation is to take minimum of  

 2T
t k p k p k

k t

J z Q z R v



   (35) 

when 

 t t y tv Lz L p    (36) 

then after some calculations 

 2 2T T
t k j k p k k j k

k t

J z Q z R p z N p



    (37) 
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with 

 ,T
j pQ Q L RL   ,j y yR L RL  1

T
jN L RL   (38) 

After using this cost function (37) with the same Qp and Rp as was used in the first method of 

calculating initial perturbation we obtain signals presented in fig.(2).  

 

Fig. 2. Second method of finding the initial perturbation trajectory 

It can be seen from figures (1) and (2) that in the second variant the two input values have 

smaller absolute values which can have an influence on fulfilling constraints. The second 

solution is not provide feasible signals for every Q, R, Qp Rp, Ts but it simplify choosing 

those parameters.  

7.2 Constrained values as a dependence of α  

After using the third method of obtaining initial perturbation for model of two tanks and 

reactor we will see how the constrained values are dependent on αt in the first step. 

Important feature of nonlinear system is that in a sampling interval Ts in given step t when 

vt is constant, u is changing because u is a function of vt and x, which is also changing from 

xt to xt+1. We have to monitor this control value as it may violate constraints. We can 

calculate x in every step from the inversion of (3) but (4) gives as only initial ut at the 

beginning of Ts. Therefore u has to be calculated by integration. However when Ts is not to 

high and u changes monotonically in Ts we can use its approximated value at the end of Ts 

calculated from (4) by 

 _ 1( , ).t end t tu v x    (39) 

That value has to be taken in consideration in the algorithm while minimizing αt with 

constraints. 

For the two tanks system we have constrained u, x1 and x2. Constraints are given in (23).  

Figures represent how the input and the two variables change for various αt. The system was 

sampled with Ts=5, weight matrices for LQ regulator are given Q=diag(1 1 1), R=0.01 and 

the weight matrices used to calculate initial perturbation are Qp=0.01* diag(1 1 1), Rp=1. 

Reference signal was changed from 20cm to 40cm. 
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Fig. 3. Input u[cm3/s] as a dependence on α 

 
 
 

 
 

Fig. 4. Level in the first tank x1[cm] as a dependence on α  
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Fig. 5. Level in the second tank x2[cm] as a dependence on α  

 

Fig. 6. Input u[cm3/s] calculated at the end of every Ts as a dependence on α 

On above figures it can be seen that the dependence of x and u on αt is monotonic and for 

small values αt the variables are close to zero end fulfils constraints. We can see that input 

values at the end of every period Ts is very important because it can takes higher values 

than ut calculated from (4). 
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The CSTR system has one constrained value - control input u, the constraints are given in 
equation (29). For simulations the sampling interval was chosen as Ts=5s, weight matrices 
for LQ regulator: Q=diag(1 1 1), R=10 and weight matrices for LQ regulator in first 
perturbation calculations: Qp=0.1*diag(1 1 1), Rp=10. Reference values was changed from 
333K to 338K. 

 

Fig. 7. Input u[m3/h] as a dependence on α 

 

Fig. 8. Input u[m3/h] calculated at the end of every Ts as a dependence on α 

- 4 

-4 
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In figures (7-8) we can see as for the two tank system that constrained values are 

monotonically dependent on α. Moreover the two unconstrained variables x1 and x2 which 

charts are presented in fig.(9,10) are also monotonically dependent on α therefore those 

variables could be taken into consideration as constrained variables in the algorithm. 

 

 

Fig. 9. Product concentration x1[kmol/m3] as a dependence on α 

 

 

Fig. 10. Temperature in the jacket x2[K] as a dependence on α 
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7.3 Simulations of the algorithm 

In this section the final algorithm is used for two tanks system and then for CSTR system. 

On every figure time is expressed in seconds. For the two tanks system reference signal was 

changed from 20cm to 40cm in time 160s, other adjustments were chosen as: Ts=8s, Q=diag(1 

1 1), R=0.1.  

In the first experiment the initial perturbation was chosen so that reference signal and 

therefore every signals in the system was unchanged. The result is given in fig.(11). 

 

Fig. 11. First experiment for two tanks system, output y[cm] and input u[cm3/s] values 

In this case if we use perturbed reference trajectory obtained in the described way, in 

every time instant t changing αt means that the perturbed reference signal is a step in this 

time instant and it is not changing from time t+1 to the end of original reference signal. 

In the upper chart the output is represented by solid line, whereas dotted line means 

perturbed reference signal (the first value of the perturbed reference signal is taken in 

every step t). There is visible that from about 250s to 300s the perturbation is the same, in 

those instants α has to be equal 1. That is a consequence of too low perturbed reference 

signal which results in too low value of input, which has to be placed by appropriate α at 

the constraint, in this case zero. In normal work of this algorithm if the active constraint 

is the constraint of input it should concern values in the first steps distant from the 

current t. 

In the second experiment we will use initial perturbation calculated with cost function (37) 

and weight matrices Qp=0.1*diag(1 1 1), Rp=0.1. 

In the second experiment the active constraint is the input and from time 270s the level in 

the first tank. The regulation time is shorter than in the first experiment, constraints are 

fulfilled. The fast changes of input value visible from time 150s are the changes within 

intervals Ts. 
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Fig. 12. Second experiment for two tanks system, output y[cm] and input u[cm3/s] values 

 

Fig. 13. The level in the first tank x1[cm] in the second experiment for two tanks system  

 

Fig. 14. The experiment for the CSTR system, output y[K] and input u[m3/h] values 
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Fig. 15. The experiment for the CSTR system, product concentration x1[kmol/m3] and the 
temperature in the jacket x2[K] 

The experiment for Continuous Stirred Tank Reactor was performed for changing reference 
signal from 333K to 338K, adjustments takes given values: Ts=10, Q=diag(1 1 1), R=10 
Qp=0.1*diag(1 1 1), Rp=10. 

8. Conclusion 

Model based predictive control attracts interest of researchers for many years as the method 

which is intuitive and allows to include constraints in the control design. Quadratic cost 

function in various types are used in MPC. Application of feedback linearization in MPC is 

also interested issue. Proposed interpolation method allows to reducing the number of 

degrees of freedom in the prediction. horizon. In the chapter the algorithm which combine 

interpolation and LQ regulator for feedback linearized system was tested for a CSTR model 

which is nonlinear and works in unstable area. It has been developed by using new initial 

perturbation calculating and by taking into consideration input values of unconstrained 

model which changes within sampling intervals. 

Further research in this area could concern developing a method of finding adjustments for 

initial perturbation and for the LQ regulator used in the algorithm.  Interesting issue is to 

apply the method for more complicated system. The multi-input and multi-output systems 

can be interesting class because feedback linearization rearranges those systems to m linear 

single-input, single output systems.  
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