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1. Introduction  

Dendritic cells (DC) are highly specialized antigen-presenting cells (APC) that are pivotal in 
regulating the balance between immune tolerance and protective immunity. This functional 
versatility is highlighted in the context of allogeneic hematopoietic stem cell transplantation 
(allo-HSCT), where DC are crucial for the induction and modulation of graft-versus-host 
reactions. Furthermore, in the process of immune restoration after allo-HSCT, DC play a 
central role in generating protective immunity against pathogens. The importance of DC in 
directing the immune system during the complex immunological situation after allo-HSCT 
warrants further research, aimed at uncovering the therapeutic potential they hold in this 
setting. 

2. Role of dendritic cells in the development of acute graft-versus-host 
disease following allogeneic hematopoietic stem cell transplantation 

Allo-HSCT is a well-established and valuable therapeutic option for a variety of life-
threatening malignant and non-malignant diseases (Gratwohl et al., 2010). In cancer, allo-
HSCT has been mainly applied to treat leukemia and lymphoma patients (Gratwohl et al., 
2010). Immunologic graft-versus-leukemia (GVL) effects mediated by allogeneic 
lymphocytes present in the graft are major contributors to its success. A number of distinct 
donor cell subsets have been identified that may play a role in the GVL responses after allo-
HSCT. These include natural killer cells (Gill et al., 2009; Ruggeri et al., 2007), T cells reactive 
to tumor-specific or tumor-associated antigens (TAA; Molldrem et al., 2002; K. Rezvani & 
Barrett, 2008), and T cells reactive to host minor histocompatibility (miHC) antigens 
(Falkenburg et al., 2002, 2003; Riddell et al., 2002, 2003).  
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2.1 Development of acute graft-versus-host disease following allogeneic 
hematopoietic stem cell transplantation 

A major obstacle that substantially limits the therapeutic potential of allo-HSCT is the 
occurrence of graft-versus-host reactions against healthy host tissues, resulting in graft-
versus-host disease (GVHD). GVHD is a major cause of morbidity and mortality following 
allo-HSCT. The overall incidence lies between 30% and 60% with a mortality rate of 
approximately 50% (Barton-Burke et al., 2008). It is a complex multi-step process, involving 
innate and adaptive immunity and affecting many organs, including skin, liver and the 
gastrointestinal tract (Ball & Egeler, 2008; Ferrara et al., 2009). 
Billingham was the first to describe GVHD (Billingham, 1966). According to the Billingham 
criteria, three conditions must exist in order for GVHD to occur after allogeneic 
transplantation: (1) the donor graft must contain viable and immunologically functional 
effector cells, (2) the donor and recipient must be histoincompatible, and (3) the recipient 
must be immunocompromised.  
The series of events that contribute to the development of acute GVHD (as described by 
Ferrara & Reddy, 2006; Goker et al., 2001) can be divided in three phases (Goker et al., 2001). 
The first phase – conditioning phase – starts before the engraftment. This phase involves 
tissue damage caused by pre-transplantation myeloablative radiation/chemotherapy 
regimens, followed by release of lipopolysaccharide and secretion of proinflammatory 
cytokines, upregulation of adhesion molecules and enhanced expression of major 
histocompatibility complex (MHC) molecules on recipient tissues. The proinflammatory 
environment will also activate APC. The second phase – induction and expansion phase – 
starts with the recognition of the histoincompatible host tissue antigens by donor T cells. 
This phase involves T cell activation, stimulation, proliferation and differentiation. 
Activated host APC play a key role in the second phase of the graft-versus-host reaction by 
presenting mismatched recipient antigens to donor T cells. The first two phases constitute 
the afferent phase of GVHD. Finally, the third phase – effector phase – represents the actual 
clinical phase of acute GVHD and involves direct and indirect damage to host cells 
contributing to aggravation of GVHD. 
From these models, it is clear that donor T cells play a crucial role in evoking GVHD after 
allo-HSCT. Simultaneously, donor T cells represent major mediators of GVL effects. 
Therefore, research efforts are aimed at separating GVL reactions from GVHD (Li et al., 
2009a; Mackinnon et al., 1995; A.R. Rezvani & Storb, 2008). A key question is whether GVL 
activity and GVHD are fundamentally different mechanisms, or whether they are both 
clinical manifestations of similar graft-versus-host reactions.  
Preclinical model systems and clinical trials designed to investigate the possibility of 
selectively activating graft-versus-host reactions that result in GVL effects without GVHD, 
have led to new insights in the pathophysiology of GVL responses and GVHD after allo-
HSCT (Li et al., 2009a; A.R. Rezvani & Storb, 2008). In a more complex model of human 
GVHD and GVL pathophysiology (Li et al., 2009a), differentiation of activated T cells into 
the distinct subsets T helper (Th)1/cytotoxic T cell (Tc)1, Th2/Tc2, Th17 or regulatory T 
(Treg) cells is taken into account. These T cell subsets differ both in cytokine profiles and in 
their graft-versus-host activities. Activated Th1/Tc1 cells can directly attack host tissue and 
initiate specific inflammatory immune responses that lead to both GVL responses and acute 
GVHD.  Th2 cells on the other hand, evoke antigen-specific cellular and humoral immune 
responses resulting in GVL responses, but also in chronic GVHD. Notably, Th2 cytokines 
may inhibit the development of acute GVHD. Activated Th17 cells potentiate inflammation 
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and lead to acute GVHD, whereas the Th1 cytokine interferon (IFN)- can suppress Th17 
responses to decrease GVHD. Donor Treg cells suppress GVHD, but the effect of Treg cells 
on GVL responses remains to be further elucidated. The T cell subsets that are most likely 
associated with shifting the balance away from GVHD towards GVL responses are Th1/Tc1, 
 T and Treg cells (Li et al., 2009a). 

2.2 Dendritic cells in the development of acute graft-versus-host disease 

Early models have mainly focused on the central role of T cell activation and cytokine 
release in the pathophysiologic process of GVHD. The 1966 Billingham criteria clearly 
accounted for the presence of viable and immunologically functional effector cells as a 
prerequisite for the development of GVHD (Billingham, 1966). More recent models of 
GVHD (Choi et al., 2010; Ferrara & Reddy, 2006; Goker et al., 2001;  Li et al., 2009a) also take 
into account the key role of antigen presentation in its development by stating that 
activation of APC precedes activation and clonal expansion of T cells in the immune 
cascade. Host APC play a crucial role in the graft-versus-host reaction by presenting 
mismatched recipient antigens to donor T cells (Goker et al., 2001). In allo-HSCT with a 
histocompatible donor, the relevant antigens are miHC antigens (Falkenburg et al., 2002, 
2003; Ridell et al., 2002, 2003). APC digest miHC antigens into short peptides that are linked 
to MHC molecules and presented on the surface of APC as allopeptide-MHC complexes. 
Physical interaction between the allopeptide-MHC complexes and antigen-specific T cell 
receptors (TCR) then leads to recognition and activation of antigen-specific T cells (Clark & 
Chakraverty, 2002; Goker et al., 2001). 
Following allo-HSCT, a unique situation is created in which both host- and donor-derived 
APC co-exist within the host. Thus, foreign miHC antigens can be presented by either host-
derived or donor-derived APC. The latter case implies effective cross-presentation of 
recipient miHC antigens by donor-derived APC (Shlomchik, 2003). The roles of host- and 
donor-derived APC in the development of GVHD have been examined in experimental 
mouse studies. In a murine allogeneic bone marrow transplantation (BMT) model, 
Shlomchik and colleagues showed that host-derived APC were necessary and sufficient to 
initiate GVHD (Shlomchik et al., 1999). Donor APC on the other hand, while redundant for 
the onset of GVHD, were required to maximize the GVHD (Matte et al., 2004). A model 
focusing on the role of host-derived APC in the effector phase of GVHD demonstrated that 
tissue-resident APC control migration of alloreactive donor T cells into the tissues and 
subsequent local development of GVHD (Zhang et al., 2002). 
APC represent a heterogeneous population of cells with varying antigen-presenting 
capacities. As the most specialized and professional APC of the immune system, DC are 
highly efficient in processing and presenting antigens (Mellman & Steinman, 2001). The role 
of DC in GVHD has been investigated and confirmed in various experimental settings 
(Mohty, 2007; Mohty & Gaugler, 2008; Xu et al., 2008). 
Allo-HSCT can change the origin (host- versus donor-derived), number, lineage and 
activation level of DC in the host (Clark & Chakraverty, 2002). Several studies have 
examined the role of DC counts and subsets in the development and severity of GVHD. 
Based on their immunophenotype and functional properties, DC can be classified into 
myeloid conventional DC (cDC) and plasmacytoid DC (pDC) (Liu, 2001). A murine BMT 
model demonstrated that host-derived DC are necessary and sufficient for priming donor 
T cells to cause acute GVHD (Duffner et al., 2004). In humans, peripheral blood DC 
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chimerism experiments have been performed following allo-HSCT to analyze the 
contribution of different DC subsets to GVHD (Boeck et al., 2006; Chan et al., 2003; Pihusch 
et al., 2005). Findings of Chan et al (Chan et al., 2003) confirmed the importance of host DC, 
because persistence of the DC at day 100 after allo-HSCT was correlated with GVHD. On the 
other hand, graft-versus-host reactions were also detected in patients that had DC 
exclusively of donor origin (Boeck et al., 2006). Lower counts of cDC and pDC in patients 
were associated with an increased risk for acute GVHD (Horváth et al., 2009; Lau et al., 2007; 
Rajasekar et al., 2008; Reddy et al., 2004; Vakkila et al., 2005). In addition, higher numbers of 
donor pDC following allo-HSCT decreased the risk of developing chronic GVHD, but also 
increased the risk of relapse, possibly due to interference with GVL reactions (Waller et al., 
2001). In contrast to these data, higher pDC numbers in the graft or in the recipient after 
allo-HSCT have also been found to correlate with the development of chronic GVHD (Clark 
et al., 2003; Rossi et al., 2002). Next to absolute numbers, also activation status can be 
predictive of GVHD, with activated cDC being highly correlated with acute GVHD (Lau et 
al., 2007). Taken together, experimental data suggest that different DC subsets have different 
effects on GVHD and GVL reactions, but further research is required to unravel the exact 
role of each subset. 

3. Dendritic cell-based therapy and allogeneic hematopoietic stem cell 
transplantation 

Over the past decade several approaches of DC-based  therapy in allo-HSCT settings have 
been scrutinized, yielding some promising results with regard to decreasing GVHD, 
optimizing GVL reactions and restoring protective immunity against pathogens. 

3.1 Dendritic cell-based therapy to reduce graft-versus-host-disease and enhance 
graft-versus-leukemia effects 

Allogeneic T cells have the capacity to kill residual malignant cells in the host, but  also to 
destruct normal host tissue contributing to GVHD, which can be life-threatening and limits 
the use of allo-HSCT. While T cell depletion of the graft is a very effective way of reducing 
the risk of GVHD, it also diminishes the GVL effect, thereby increasing the risk of relapse. 
Hence, a more refined approach is needed to balance graft-versus-host reactions after allo-
HSCT. Given the inherent key regulatory function of DC, DC-based therapy is considered 
an attractive approach to shift the balance in favor of GVL reactions. 

3.1.1 Dendritic cell-based therapy to reduce graft-versus-host-disease 

The finding in murine BMT models that host APC are necessary for GVHD to develop 
(Matte et al., 2004; Shlomchik et al., 1999), led the authors to suggest that depletion of host 
APC before the conditioning regimen should prevent GVHD without the need for 
prolonged immunosuppressive treatment.  
Antibody-mediated depletion of DC was investigated in a chimeric human/mouse model of 
GVHD, in which severe combined immunodeficient (SCID) mice received a xenogeneic 
transplantation with human peripheral blood mononuclear cells (PBMC) (Wilson et al., 
2009). Antibodies against the DC activation marker CD83 were injected in host mice 3 hours 
before injection of human PBMC. This therapeutic intervention almost completely 
prevented lethal GVHD, whereas negative control mice all developed severe GVHD. 
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Moreover, mice treated with anti-CD83 antibodies required no further immunosuppressive 
therapy and possessed functional T cell immunity in vitro (Wilson et al., 2009). 
These data support further investigation of in vivo depletion of host and/or donor APC as a 
way of preventing GVHD in allo-HSCT recipients. This strategy makes redundant both 
T cell depletion, thereby preserving the memory T cell pool, and T cell-targeted 
immunosuppression, which greatly hampers GVL responses and protective immunity. 
However, the effect of DC depletion on GVL responses still needs to be investigated in 
animal allo-HSCT models including in vivo leukemic challenge. Some concern can be raised 
about potential interference of DC depletion with the GVL effect, because in mice studies 
antigen-presentation by host APC has been shown to be important in mediating GVL 
responses following donor lymphocyte infusions (DLI) (Chakraverty et al., 2006; Mapara et 
al., 2002). Furthermore, DC depletion might result in a delayed restorage of immunity 
against pathogens (Clark & Chakraverty, 2002). 
More thorough elucidation of the role of distinct DC subsets in allo-antigen responses after 
allo-HSCT will pave the way to depletion of undesirable or expansion of desirable DC 
subsets. In this context, a study of Li et al. (Li et al., 2009b) has shown that manipulating the 
content of donor APC subsets in allo-HSCT grafts can enhance the GVL effect without 
increasing GVHD. In their study, leukemia-bearing mice that received hematopoietic stem 
cells (HSC) and CD11b-negative donor APC had substantially enhanced survival compared 
to recipients of HSC alone, HSC and T cells, or HSC and CD11b-positive APC. 
Another promising strategy to modulate allo-antigen responses following allo-HSCT 
involves DC engineered to boost their tolerogenic or regulatory capacities.  
In a study of Reichardt et al (Reichardt et al., 2008), DC were isolated directly from mice 
bone marrow and spleen cells using positive magnetic cell selection and exposed to 
rapamycin for 24 hours. Adoptive transfer of rapamycin-treated DC of host origin, but not 
donor origin, administered together with the bone marrow transplant, reduced GVHD 
severity and led to improved survival of recipient mice in a dose-dependent way. The 
reduced expansion of alloreactive T cells could account for the beneficial effects on GVHD 
and survival, but carries the risk of reducing the GVL effect. 
In two other studies with similar methodology (Chorny et al., 2006; Sato et al., 2003), DC 
were generated from murine bone marrow cells using granulocyte macrophage colony-
stimulating factor (GM-CSF) and either interleukin (IL)-10 and transforming growth factor 
(TGF)-ǃ1 or vasoactive intestinal peptide (VIP) for 6 days. Then, lipopolysaccharide (LPS) 
was added for 2 days to induce activation, followed by injection of the DC 2 days after BMT. 
Results of both studies demonstrated that host-matched DC, but not host-mismatched DC, 
prevented the onset of severe GVHD in recipient mice in a dose-dependent way. In order to 
study the effect of DC therapy on GVL responses, mice were challenged with P815 or A20 
malignant cells. BMT recipient mice that received host-matched DC were not only protected 
from lethal GVHD, but also maintained a strong GVL effect and survived significantly 
longer than control animals (Chorny et al., 2006; Sato et al., 2003). 
In conclusion, the administration of specifically engineered DC appears to be a favorable 
means of modulating alloreactivity after allo-HSCT, because they are able to reduce the risk 
of severe GVHD, while maintaining the benefits of the GVL effect. Clinical trials will have to 
show if these beneficial effects can also be seen in humans. Considering that only host-
matched DC were able to protect the recipient from severe GVHD and conserve a strong 
GVL effect in these murine models, it seems likely that the DC will have to be tailored to 
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every individual patient. Although this will be costly and labor-intensive, it can be cost-
effective if proven beneficial in allo-HSCT. 

3.1.2 Dendritic cell-based therapy to enhance the graft-versus-leukemia effect without 
aggravating graft-versus-host-disease 

Donor alloreactive T cells responsible for the GVL effect target a broad range of allogeneic 
antigens and may thereby lead to GVHD. Hence, there is much interest in developing 
strategies that can direct the immune reaction towards specific antigens only or primarily 
expressed on malignant cells, so-called TAA. 
As key regulators of the immune system, DC are inherently capable of inducing tumor-
specific immune responses (Steinman & Banchereau, 2007). Various clinical studies have 
already explored the use of DC loaded with TAA as cellular cancer vaccines for 
hematological malignancies (Smits et al., 2011; Van de Velde et al., 2008). Thus far, results 
are often modest, but there is proof of principle that a DC vaccine can lead to eradication of 
malignant cells in an antigen-specific manner. Promisingly, in a phase I/II study by our 
group, vaccination with autologous monocyte-derived DC loaded with Wilms’ tumor 1 
(WT1) protein-encoding mRNA was able to convert partial remission into complete 
molecular remission in two patients in the absence of any other therapy (Van Tendeloo et 
al., 2010). These clinical responses were correlated with vaccine-associated increases in WT1-
specific CD8+ T cell frequencies. 
While DC vaccines are thoroughly being investigated in clinical trials for their capacity to 
induce tumor-specific immune responses, only few trials addressed their use in the setting 
of HSCT. In the context of autologous hematopoietic stem cell transplantation (auto-HSCT) 
for multiple myeloma (MM), a clinical trial in 27 patients suggested a benefit in overall 
survival of vaccination with autologous idiotype-pulsed APC, given at 4 time points after 
auto-HSCT, compared to historical controls (Lacy et al., 2009). 
In allo-HSCT, the dynamic immunological situation that follows transplantation due to the 
scollision of donor and host immune system adds complexity to the development of DC-
based therapy. Hitherto, it is unclear whether donor- or host-derived DC would be best 
suited for use in immunotherapy aimed at increasing GVL responses. In this regard, murine 
models demonstrated that host APC are crucial for GVL reactions and that donor APC, 
although not strictly necessary, can contribute to the GVL effect (Matte et al., 2004; Reddy et 
al., 2005). This is similar to what is observed in GVHD, which is not surprising given that 
both are manifestations of graft-versus-host immunity. Therefore, avoiding aggravation of 
GVHD is an important concern when developing DC-based strategies aiming to augment 
GVL immunity after allo-HSCT. 
Next to GVHD, another concern regarding DC vaccination to boost GVL responses is its 
effectiveness when given shortly after allo-HSCT, considering the immunosuppressive state 
of patients at that time. Murine vaccination studies have shown, however, that tumor lysate-
pulsed bone marrow-derived DC administered early after auto- or allo-HSCT can elicit 
effective anti-tumor immunity (Asavaroengchai et al., 2002; Moyer et al., 2006). 
Furthermore, DC vaccination around the time of HSCT could have some benefits, such as 
lower tumor burden, donor T cells that are not tolerant to host antigens and low numbers of 
host Treg cells (Hashimoto et al., 2011).   
A total of 6 patients have been involved in three clinical reports of DC vaccines after allo-
HSCT. Donor monocyte-derived DC were used for vaccination, pulsed with recipient tumor 
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cells (Fujii et al., 2001; Tatsugami et al., 2004) or with WT1 peptide (Kitawaki et al., 2008). 
Only one trial reported clinical, but transient responses in 4 relapsed patients with 
hematological malignancies in the absence of GVHD (Fujii et al., 2001). There were no 
detectable responses nor GVHD in the other two cases (renal cell carcinoma and acute 
myeloid leukemia). In the trial reporting clinical responses, patients were infused both with 
donor monocyte-derived DC pulsed with irradiated patient tumor cells and with donor 
T cells primed by these DC, which might both have contributed to the observed responses.  
A fourth study involving 20 MM patients investigated DLI and/or host-derived DC 
vaccination (Levenga et al., 2010). The authors concluded that partial T cell-depleted allo-
HSCT can be combined with pre-emptive DLI and recipient monocyte-derived DC 
vaccination to increase graft-versus-myeloma effects with limited GVHD. 
In conclusion, early results of clinical DC vaccination in the context of HSCT are promising 
with no or limited GVHD, but because of the small study populations and lack of controls, 
further research is required. 
Instead of engineering DC ex vivo and then transferring them to patients, another approach 
is to directly target them in vivo. To our knowledge, this approach has not been tested yet in 
the allo-HSCT setting.  
However, in 8 patients with Hodgkin disease, non-Hodgkin lymphoma or advanced-stage 
breast cancer, auto-HSCT was followed by immunotherapy with fms-like tyrosine kinase 
receptor-3-ligand (Flt3-L) for 6 weeks (Chen et al., 2005). Flt3-L is a hematopoietic growth 
factor, essential for the development of DC from progenitor cells. This phase I study 
demonstrated that vaccination with Flt3-L was safe and well-tolerated, resulting in 
increased frequencies and absolute numbers of circulating immature DC and their 
precursors in patients’ blood without affecting other mature cell lineages. The expanded DC 
were mostly pDC and were shown here to enhance T cell activation and NK cell cytotoxicity 
against tumor cells in vitro after Toll-like receptor 9-ligand administration, but are also 
known to play a role in antiviral immunity and in preventing GVHD (Arpinati et al., 2003). 
In correspondence with these data, others have also suggested that mobilization of specific 
DC subsets through Flt3-L administration might be a feasible way to target DC in vivo (Eto 
et al., 2002; Teshima et al., 2002), but more research is needed to unravel the functional 
diversity of these mobilized DC. 

3.2 Dendritic cell-based therapy to restore protective immunity against pathogens  

Viral and fungal infections are an important cause of morbidity and mortality in patients 
following HSCT (Gratwohl et al., 2005). These patients have increased susceptibility for 
primary infection, reinfection and also reactivation of latent viruses due to hampering of 
their immune system by two main factors (Smits & Berneman, 2010). Firstly, there is the 
immunosuppressed state accompanying HSCT, often further increased by medication given 
to prevent GVHD. Secondly, the intense pre-transplantation chemotherapy conditioning 
regimen, intended to destroy a large part of blood cells, is believed to eliminate memory 
T cells. Furthermore, early after HSCT dysfunctional DC lead to severely impaired 
development of antigen-specific T cells (Safdar, 2006). Considering their central role in 
innate and adaptive immunity, DC seem the ideal candidate for immunotherapy aimed at 
bringing about the swift restoration of immunity against pathogens in this particular setting.  
With regard to DC-based therapy for antifungal immunity after allo-HSCT, much 
knowledge was obtained from research by the group of Romani. They showed in murine 
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models of allo-HSCT that DC discriminate between different fungal morphotypes or their 
corresponding RNA with regard to maturation, cytokine production and Th1 cell priming 
both in vitro and in vivo (Bacci et al., 2002; Bozza et al., 2003; d’Ostiani et al., 2000). Similarly, 
also human monocyte-derived DC were found to react differently in terms of cytokine 
production and activation of IFN-Ǆ-producing T cells.  
Subcutaneous vaccination of mice with DC pulsed with Candida yeasts or Aspergillus 
conidia (or transfected with the corresponding RNA) on days 1 and 7 after T cell-depleted 
allo-BMT dramatically increased the recovery of antifungal resistance to subsequent fungal 
challenge (Bacci et al., 2002; Bozza et al., 2003).  
They also demonstrated that Flt3-L-expanded and thymosin ǂ1-treated IL-4-expanded 
monocyte-derived DC were capable of inducing antifungal immunity as well as allogeneic 
transplant tolerance (Romani et al., 2006). Overall, the findings of the group of Romani 
suggest a role for active DC vaccination very shortly after allo-HSCT to restore antifungal 
immunity and show that expansion of distinct DC might allow more specific regulation of 
post-transplantation immunity (Montagnoli et al., 2008; Perruccio et al., 2004). 
Over the last 10 years, DC have established a firm foothold in immune-based strategies 
aimed at restoring antiviral (and especially anti-CMV) immunity following allo-HSCT. 
Monocyte-derived DC from CMV-seropositive HSCT donors pulsed with CMV 
peptide/lysate or transfected with an adenoviral vector encoding CMV-peptide, have been 
used with great success to expand CMV-specific cytotoxic T lymphocytes (CTL) ex vivo 
(Micklethwaite et al., 2008; Peggs et al., 2001; Szmania et al., 2001). Clinical trials examining 
adoptive transfer of these DC-expanded CMV-specific CTL to allo-HSCT recipients 
demonstrated that this is a safe method capable of restoring functional anti-CMV immunity 
early after transplantation (Micklethwaite et al., 2007, 2008; Peggs et al., 2009). Although a 
minority of the patients developed GVHD after adoptive transfer of CMV-specific CTL, this 
was most likely not related to the infusion itself.  
Another study showed that DC transfected with CMV pp65-encoding RNA can successfully 
expand autologous CMV-specific CTL in vitro from both seropositive and -negative patients 
after allo-HSCT, suggesting that CMV-loaded DC vaccination could provide a valid clinical 
alternative to adoptive CTL transfer (Heine et al., 2006).  
Also for measles virus (MV), DC vaccination could be a favorable approach as results of an 
in vitro study with MV-loaded DC from HSCT patients showed that these DC significantly 
induced autologous MV-specific T cells from the naïve repertoire (Nashida et al., 2006). 
Clinical trials are needed, however, to validate whether viral antigen-loaded DC vaccination 
can indeed live up to the promising results obtained with adoptive virus-specific CTL 
transfer. 

4. Conclusion 

DC have been the subject of intensive investigation in mouse models to reduce the 
occurrence of GVHD and enhance GVL reactions following allo-HSCT. Also in humans, it is 
clear that DC play an important role in initiating and balancing graft-versus-host reactions. 
Further clarification of differences between DC subsets in their capacity to shift the balance 
away from GVHD towards GVL and anti-microbial reactions will help to translate the 
promising mouse data into clinical success. Questions to be solved are which would be the 
best time frame and strategy of immunotherapy to use in allotransplant patients. DC-based 
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approaches to be further investigated include DC vaccines, adoptive transfer of in vitro 
primed T cells and in vivo targeting of DC. 
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