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1. Introduction

Bistability is increasingly recognized as a mechanism underlying patterns in a wide variety
of ecological time series (reviewed in Scheffer & Carpenter, 2003). One consequence of
bistability is that a system can be in either of two stable states for a given set of conditions,
each stable state being surrounded by a basin of attraction. Such bistability provides
one explanation for pest outbreaks because pest populations can cross a threshold from a
low-density, biologically-controlled equilibrium and enter into the basin of attraction of a
high-density outbreak equilibrium (see e.g., Ludwig et al., 1978). In such systems, integrated
pest management has the dual goal of simultaneously decreasing the magnitude of the
outbreak basin of attraction and perturbing the pest population back across the threshold to
the biologically controlled state. Decreases in the magnitude of the outbreak basin of attraction
arise when management strategies alter basic biological parameters, such as the realized rate
of population growth. For example, releasing sterile males decreases fecundity, and hence,
birth rates diminish in relation to death rates (Knipling, 1970). Similarly, introduction of
predators with larger half-saturation constants changes the landscape of equilibria in favor
of biological control (Drury & Lodge, 2008). In the presence of such factors, the required
magnitude of direct pest reductions decreases, because the state of the outbreak system
moves closer to the threshold between equilibria (e.g., moving leftwards on the top line in
Fig. 1). Relatively smaller pest reductions can therefore move the state of the system across
the threshold and into the biologically controlled basin of attraction. Here we quantify the
effects of such species manipulations in terms of equilibrium resilience to demonstrate how
targets can be computed so that pest control schedules can be devised (e.g., Drury, 2007).
Our definition of resilience is the distance between an equilibrium and a threshold, which is
one component of classical definitions describing the characteristic return time to equilibrium
following perturbations (Pimm, 1984).

2. The spruce budworm model

The Spruce budworm model has a long history in ecological pest management (Ludwig et al.,
1978) and has the advantage of being a relatively simply model that nevertheless contains
components of integrated pest management while generating bistable dynamics (Strogatz,
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Fig. 1. As the parameter r (from Eq. (2)) is increased above 0.3, two new equilibria emerge
and the potential for outbreaks is introduced. At large values of r, only the outbreak
equilibrium exists.

Parameter Meaning Value in this study

R population growth rate 0.25
K carrying capacity 15
B maximal predator attack rate 0.75

A2 predator half-saturation constant 1

Table 1. Parameters of Eq. (1), their meanings, and representative values used in this study.

1994). Letting X represent pest population density, and using the parameters in Table 1, the
model is,

dX

dt
= RX

(

1 −
X

K

)

−
BX2

A2 + X2
, (1)

where the first term represents logistic growth and the second term represents a Holling type
III functional response, which means that predators switch to the pest at some intermediate
density, but nevertheless become sated at higher densities thus allowing the pest to escape
control.
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The dynamics of Eq. (1) are often studied at equilibrium by first nondimensionalizing (see

e.g., Murray, 2002). For example, with x = X
A , r = AR

B , k = K
A , and τ = Bt

A as nondimensional
parameter groups this yields

r
(

1 −
x

k

)

=
x

1 + x2
. (2)

This strategy has the advantage of specifying the left-hand side as a linear function of x that
when equal to the right-hand side, specifies equilibria. It is thus a simple matter to plot the two
sides of the equation on the same axes to see where they intersect (see the solid lines in Fig. 2).
Furthermore, the effects of changes to r and k can be seen by fixing one and varying the other
and evaluating the effects on equilibria values. This qualitative approach has obvious intuitive
appeal and provides heuristic guidance for pest management. Nevertheless, as composite
parameter groupings, r and k can be difficult to interpret in practice. Additionally, direct
pest control measures often require specific objectives, e.g., assessment of pest populations
in relation to some economic threshold (Pedgrigo & Zeiss, 1996), which can be difficult to
extract from such qualitative exercises. Thus, we revisit Eq. (1) with the goal of developing
quantitative methods for assessing the effects of integrated pest management in terms of
relative equilibria positions, which in turn allows quantitative predictions of necessary direct
pest control measures (such as spraying insecticides).

3. Model analysis

To analyze Eq. (1), we first recognize that at equilibrium it is a cubic in X,

RX

(

1 −
X

K

)

−
BX2

A2 + X2
= 0 (3)

−X3 + KX2 − X

(

A2 +
KB

R

)

+ KA2 = 0 (4)

Following standard methods for solving cubic equations (Uspensky, 1948), Eq. (4) can be
solved yielding three roots, X1, X2, and X3, corresponding to the three possible equilibrium
states of the system. As management actions change parameter values, the values of these
equilibria change and at bifurcation points even emerge or vanish (see, e.g., Fig. 1-2). Our
approach allows assessment of the effects of integrated pest management on pest equilibrium
values. Here, we use a simplified version of Cardano’s method of solving cubics to evaluate
the effects of management activities that alter the intensities of R and B and the magnitudes
of A and K. We then apply this strategy to the spruce budworm model to solve for the three
equilibria. The method is quite general, however, and could be used to solve any cubic model,
which are common in pest control, because of the ubiquity of the type III functional response.

3.1 Solving for equilibrium pest values: The general case

Consider the general monic cubic equation (i.e., with leading coefficient of 1),

f (x) = x3 + ax2 + bx + c = 0. (5)
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Fig. 2. The left-hand side of Eq. (2) (solid, straight line) crossing the curve described by the
right-hand side in three places, correspondig to the three equilibria in Fig. (1), x1, x2, x3. The
two dotted straight lines signify the effects of changing r on the existence and value of
equilibria. The lower dotted line, representing small values of pest intrinsic growth rate, only
crosses the curve at a relatively low pest population size; pest outbreaks are not possible. In
contrast, the upper dotted line only crosses the curve at a relatively high pest population
size; biological control is not possible.

Cardano’s technique, dating to the first half of the sixteenth century, involves simplifying
Eq, (5) so that it no longer contains the second power of x. This is achieved by introducing a
new variable y and setting,

x = y + k, (6)

where k is as yet an arbitrary constant.

To specify k, we begin by using Taylor’s formula to approximate f (y + k) by

f (y + k) = f (k) + f ′(k)y +
f ′′(k)

2
y2 +

f ′′′(k)

6
y3. (7)

The terms on the right-hand side of Eq. (7) can be related to the terms of our monic cubic,
Eq. (5) yielding,

f (k) = k3 + ak2 + bk + c, (8)

f ′(k) = 3k2 + 2ak + b, (9)

1

2
f ′′(k) = 3k + a, (10)

1

6
f ′′′(k) = 1. (11)
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Quantifying the Effects of Integrated Pest Management in Terms of Pest Equilibrium Resilience 5

Simplification is now possible because we can choose k in Eq. (10) so that,

3k + a = 0, or k = −
a

3
. (12)

With k so defined (i.e., the so-called “Tschirnhaus transformation”) our solution is translated
to the origin and we can substitute it into the remaining equations to arrive at,

f ′
(

−
a

3

)

= b −
a2

3
, (13)

f
(

−
a

3

)

= c −
ba

3
+

2a3

27
(14)

After substituting x = y − a
3 and equating coefficients of like powers of y and k in Eqs. (7) and

(8–11) respectively, Eq. (5) is transformed into,

y3 + αy + β = 0, (15)

where

α = b −
a2

3
, β = c −

ab

3
+

2a3

27
. (16)

By a simple reverse transformation, any formula for the roots of Eq. (15) can be transformed
into a formula for the roots of Eq. (5), i.e., by substituting Eq. (16) into Eq. (15) and using
x = y − a

3 . Thus, in the sequel, we consider only Eq. (15).

Cubic equations of the form, Eq. (15), referred to as “depressed cubics”, can be solved by
introducing two new variables u, v such that,

y = u + v. (17)

Upon substituting this expression into Eq. (15) we see that u and v must satisfy the equation,

u3 + v3 + (α + 3uv)(u + v) + β = 0, (18)

which has two unknowns. Thus, the problem is indeterminant without another known
relation between u and v, Eq. (17) being one. Another relation that is consistant with Eq. (18)
is to take

α + 3uv = 0, (19)

or,

uv = −
α

3
. (20)

It then follows from Eq. (18) that,

u3 + v3 = −β, (21)

Solving the cubic Eq. (15) can now be achieved by solving the system of two equations,

u3 + v3 = −β, (22)

uv = −
α

3
. (23)
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Because it is convenient to know the sum and product of two unknown quantities, in this case
u3 and v3, we take the cube of the latter equation yielding,

u3v3 = −
α3

27
. (24)

The reason these quantities are convenient is that upon solving one in terms of the other and
substituting, a single quadratic equation results. To see this rearrange Eq. (22) as follows,

u3 = −(v3 + β), (25)

and substitute this expression for u3 into Eq. (24) giving,

− (v3 + β)v3 =
−α3

27
. (26)

We next expand the left-hand side of Eq. (26) giving,

− v6 − βv3 =
−α3

27
, (27)

or, substituting t = v3 and dividing through by (−1),

t2 + βt −
α3

27
= 0. (28)

Thus, apparently, u3 and v3 can be computed from the roots of Eq. (28). Equating v3 to the
positive root that results from applying the quadratic formula, we have,

v3 = −
β

2
+

√

β2

4
+

α3

27
, (29)

or

v =
3

√

−
β

2
+

√

β2

4
+

α3

27
. (30)

Now we take advantage of the relationship in Eq. (25) to solve for u yielding,

u3 = −(v3 + β), (31)

= −

(

−
β

2
+

√

β2

4
+

α3

27
+ β

)

, (32)

=
β

2
−

√

β2

4
+

α3

27
, or, (33)

u =
3

√

β

2
−

√

β2

4
+

α3

27
. (34)

We can now write an expression for y, which was set equal to u + v in Eq. (17) yielding,

y = u + v, (35)

=
3

√

β

2
−

√

β2

4
+

α3

27
+

3

√

−
β

2
+

√

β2

4
+

α3

27
. (36)
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Quantifying the Effects of Integrated Pest Management in Terms of Pest Equilibrium Resilience 7

The final step is to use the relation xi = yi −
a
3 where i ∈ {1, 2, 3} to return the three

equilibrium solutions to our original model. Note that at certain values of α and β a bifurcation
occurs and two of the real solutions disappear to be replaced by imaginary solutions. In
this study, we have used parameter values that yield three real solutions. In the case of a
single real equilibrium the basin of attraction of the outbreak equilibrium either does not exist
(i.e., outbreaks are not possible) or consists of the entire space (i.e., biological control is not
possible).

3.2 Solving for equilibrium pest values: The spruce budworm model

As we have seen, the spruce budworm model, Eq. (1), can be expanded to its cubic form
yielding,

x3 − Kx2 + (A2 +
KB

R
)x − KA2 = 0, (37)

(after multiplying through by −1) or, more simply,

x3 + px2 + qx + r = 0, (38)

where,

p = −K, (39)

q = A2 +
KB

R
, (40)

r = −KA2. (41)

Forming the depressed cubic requires removing the quadratic term from Eq. (38). To do so, let

x = y −
p

3
, (42)

and to simplify the resulting equation, let,

α =
1

3
(3q − p2), (43)

β =
1

27
(2p3 − 9pq + 27r), (44)

yielding,

y3 + αy + β = 0. (45)

We can now simply substitute our particular model parameters, embodied in α and β, through
p, q, and r into Eqs. (35–36) yielding,

y = u + v, (46)

=
3

√

β

2
−

√

β2

4
+

α3

27
+

3

√

−
β

2
+

√

β2

4
+

α3

27
. (47)

Finally, back transforming the solution into terms of x we use the relation,

xi = yi −
p

3
, i ∈ {1, 2, 3}. (48)
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4. Results

Having explicitely solved the cubic equation, we can now evaluate the effects of parameter
manipulation on equilibrium resilience. For example, Fig. 3 shows that the magnitude of
the outbreak basin of attraction changes relatively rapidly with increasing K and R. It is not
possible to evaluate the relative effects of changes to each using this graph because of the
different scales and units. Nevertheless, it is apparent that these two familiar parameters both
influence the magnitude of the outbreak basin of attraction.

R : 0.22 �� 0.4

K
:1

4
�
�

1
7

0

1

Fig. 3. Shaded contours of the magnitude of the basin of attraction of the outbreak
equilibrium as intrinsic growth rate R and carrying capacity K are changed. Scale is
normalized from 0 to 1 such that darker colors represent smaller, and lighter colors larger,
basins of attraction. Thus, as expected, large values of R and K both yield large potential for
outbreaks.

When the square root of the predator’s half-saturation constant A is varied, its effects can
be compared to the large changes caused by changes in K because they both have units of
individuals (Fig. 4). The roughly vertical contours indicate that changes to carrying capacity
have a much greater effect than changes to A, at least over ranges of each that yield bistability.
Note that the slight concave down character of these contours indicates that changes in
resilience following changes in A are slightly more likely at high values of K. The reason
for such changes to equilibium resilience can be seen in Fig. (5). Specifically, as the predator

half-saturation constant A2 increases, the dx
dt curve is shifted downwards, increasing the

magnitude of the biologically controlled basin of attraction at the expense of the outbreak
basin.

Finally, changes to the maximal predator attack rate have a large effect on the resilience of
the both the biologically controlled equilibrium and the outbreak equilibrium. Specifically,
increasing B, the maximal predator attack rate increases the magnitude of the biologically
controlled equilibrium. This matches our intuition, because higher attack rates presumably
favor the predator, not the pest. To analyze the effects of changing B, we used both a higher
value of B and a lower value and inspect the effects on the magnitudes of each basin of
attraction.
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K : 12 �� 16

A
:

0
.8
�
�

1
.2

0

1

Fig. 4. Shaded contours of the magnitude of the basin of attraction of the outbreak
equilibrium as carrying capacity K and the square root of half-saturation constant A are
changed. Scale is normalized from 0 to 1 such that darker colors represent smaller, and
lighter colors larger, basins of attraction.

2 4 6 8 10 12
x

�100

�50

50

dx � dt

0.25 A

A

Fig. 5. Effect of changing A in the spruce budworm model. Increases in A generate increases
in the magnitude of the biologically controlled basin of attraction by decreasing the value of
the lower equilibrium and increasing the value of the unstable, middle equilibrium.

Figure 6 shows that increasing B lowers the entire dx/dt curve. In contrast, increasing R
raises the curve, which also has an intuitive effect, because increased growth rate is expected
to favor outbreaks. As Fig. 7 shows, increasing R increases the magnitude of the outbreak
basin of attraction at the expense of the biologically controlled basin of attraction.

The net sum effects of changes in R and B are depicted in Fig. 8, which shows that lower
attack rates and higher pest growth rates both increase the magnitude of the outbreak basin of
attraction. In contrast, high attack rates and low growth rates decrease that basin and increase
the biologically controlled basin of attraction.

5. Discussion

We have undertaken an analysis of a simple model of pest population dynamics with the
goal of understanding the role of specific, commonly encountered model parameters on the

85Quantifying the Effects of Integrated Pest Management in Terms of Pest Equilibrium Resilience
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2 4 6 8 10 12
x

�150

�100

�50

50

100

dx � dt

1.1 B

B

0.9 B

Fig. 6. The rate of change in pest population growth rate versus pest population size
according to the spruce budworm model. As the maximal predator attack rate B increases,
the magnitude of the biologically controlled basin of attraction increases, as evidenced by the
reduced distance between the two right-most points where dn/dt = 0. In contrast, when B is
dereased, the magnitude of the outbreak equilibrium is increased.

2 4 6 8 10
x

�50

50

100

dx � dt

2 R

R

Fig. 7. The rate of change in pest population growth rate versus pest population size
according to the spruce budworm model. As R is increased, the curve, dx/dt shifts upward
bringing the two left-most equilibrium points where dx/dt = 0 closer together. Thus, the
basin of attraction of the biologically controlled equilibrium decreases.

resilience of equilibria. Furthermore, the parameters we have studied are those typically
affected by integrated pest management. We defined equilibrium reslience as the distance
between the stable equilibria and the unstable equilibrium, which marks the threshold
betweem the basins of attraction for the biologically-controlled, and outbreak equilibria.

Our results show that the pest carrying capacity has a large effect on the resilience of the
outbreak equilibrium. Specifically, changes in K generate large changes in the magnitude of
the outbreak basin of attraction. In terms of integrated pest management, this means that pest
control strategies that decrease the pest’s carrying capacity, such as intercropping to break
up monocultures, move the outbreak equilibrium closer to the threshold of the biologically
controlled equilibrium. Thus, smaller culling events, or smaller releases of enemies, achieve
the desired shift to the biologically controlled equilibrium than otherwise.
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R : 0.2 �� 0.4

B
:
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.5

5
�
�

0
.7
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1

Fig. 8. Shaded contours of the magnitude of the basin of attraction of the biologically
controlled equilibrium as intrinsic growth rate R and maximal attack rate B are changed.
Scale is normalized from 0 to 1 such that darker colors represent smaller, and lighter colors
larger, basins of attraction. At large values of R and small values of B the outbreak basin
dominates, while at high values of B and low values of R, it goes to zero.

The effects of pest population growth rate are two-fold. First, increasing pest growth rate
increases the outbreak basin of attraction, an intuitive result, because higher pest population
growth rates are expected to favor outbreaks. At the same time, increasing r decreases the
magnitude of the biologically controlled basin of attraction, making escape from predator
control more feasible.

The magnitude of the outbreak basin of attraction decreases with increasing half-saturation
constant. This constant is comprised of (attack rate × handling time)−1 (Gotelli, 1995). Thus,
the effects of A2 depend on the relationship between these two biological parameters. In our
analysis, for simplicity we used A = 1. Increases in the half-saturation constant mean that
the predators require higher densities of prey in order to begin being sated. Thus, they can
consume more prey before the saturating effects of the functional response take effect.

The maximum feeding rate B also has a large and intuitive effect on equilibrium resilience.
Because this feeding rate is the inverse of handling time (Gotelli, 1995) introducing natural
predators with shorter handling times generates meaningful decreases in the magnitude of
the outbreak basin of attraction. Additionally, Kidd & Amarasekare (2011) demonstrated
that predators with shorter handling times induce weak transient dynamics of short duration
relative to predators with longer handling times. Thus, according to their analysis, when
predators with short handling times are introduced (i.e., those with larger maximum feeding
rates), large oscillations in the prey population are less likely. According to our analysis, when
predators with short handling times and correspondingly higher maximal attack rates are
released, outbreaks become less likely.

Using the approach we outline here, schedules for integrated pest management can be
developed based on knowledge of specific equilibrium values. For example, solving the
model for x1, x2, and x3 allows one to compute the needed change in density to change a
system from the outbreak state to the biologically controlled state. Furthermore, our approach
permits evaluation of the effects of individual components of integrated pest management on
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distance to the threshold between equilibria. Thus, the effects of strategies such as release of
sterile males and enhancement of natural predators can be understood in terms of decreased
culling requirements.

Acknowledgements: Professor Adam Hammett kindly read the manuscript and made useful
comments that improved clarity, especially in the final steps of the solution of the cubic.
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