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1. Introduction 

We perform a critical analysis of some quantum mechanical models such as the 
hydrodynamic model (Madelung’s model), de Broglie’s theory of double solution etc., 
specifying both mathematical and physical inconsistencies that occur in their construction. 
These inconsistencies are eliminated by means of the fractal approximation of motion 
(physical objects moving on continuous and non-differentiable curves, i.e. fractal curves) 
developed in the framework of Scale Relativity (SR) (Nottalle, L., 1993; Chaline, J. et al, 2009; 
Chaline, J. et al, 2000; Nottale, L., 2004; Nottale, L. & Schneider J., 1984; Nottale, L., 1989; 
Nottale, L., 1996). The following original results are obtained: i) separation of the physical 
motion of objects in wave and particle components depending on the scale of resolution 
(differentiable as waves and non-differentiable as particles) - see paragraphs  5-7; ii) solidar 
motion of the wave and particle (wave-particle duality) - see paragraph 8, the mechanisms 
of duality (in phase wave-particle coherence, paragraphs 9 and 10 and wave-particle 
incoherence, see paragraph 11); iii) the particle as a clock, its incorporation into the wave 
and the implications of such a process - see paragraphs 12 and 13; iv) Lorentz-type 
mechanisms of wave-particle duality - see paragraph 14. 
The original results of this work are published in references (Harabagiu A. et al , 2010; 
Agop, M. et al, 2008; Harabagiu, A. & Agop, M., 2005;Harabagiu, A. et al, 2009; Agop, M. et 
al, 2008). Explicitely, Eulerian’s approximation of motions on fractal curves is presented in 
(Agop, M. et al, 2008), the hydrodynamic model in a second order approximation of motion 
in (Harabagiu, A. & Agop, M., 2005), wave-particle duality for „coherent” fractal fluids with 
the explanation of the potential gap in (Harabagiu, A. et al, 2009), the physical self-
consistence of wave-particle duality in various approximations of motion and for various 
fractal curves in (Agop, M. et al, 2008). A unitary treatment of both the problems listed 
above and their various mathematical and physical extensions are developed in (Harabagiu 
A. et al , 2010). 

2. Hydrodynamic model of quantum mechanics (Madelung’s model) 

Quantum mechanics is substantiated by the Schrődinger wave equation (ĥiĦeica, S., 1984; 

Felsager, B., 1981; Peres, A., 1993; Sakurai J.J. & San Fu Taun, 1994) 
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where   is the reduced Planck’s constant, 0m  the rest mass of the test particle, U the 
external scalar field and   the wave-function associated to the physical system. This 
differential equation is linear and complex. 
Starting from this equation, Madelung (Halbwacs, F., 1960; Madelung R., 1927) constructed 

the following model. One separates real and imaginary parts by choosing   of the form: 

      ,
, ,

iS tt R t e  r
r r  (2) 

which induces the velocity field:  

 
0

S
m

 v


 (3) 

and the density of the probability field: 

 2( , ) ( , )t R t r r  (4) 

Using these fields one gets the hydrodynamic version of quantum mechanics (Madelung’s 
model) 

 0 0( ) ( ) ( )m m U Q
t

  
     


v vv  (5) 

   0
t
 
   


v  (6) 

where 
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02
Q

m




 


 (7) 

is called the quantum potential. Equation (5) corresponds to the momentum conservation 
law and equation (6) to the conservation law of the probability’s density field (quantum 
hydrodynamics equations). 

We have the following: i) any micro-particle is in constant interaction with an environment 
called „subquantic medium” through the quantum potential Q, ii) the „subquantic 
medium” is identified with a nonrelativistic quantum fluid described by the equations of 
quantum hydrodynamics. In other words, the propagation of the Ψ field from wave 
mechanics is replaced by a fictitious fluid flow having the density   and the speed v , the 
fluid being in a field of forces ( )U Q  . Moreover, the following model of particle states 
(Bohm D. & Hiley B.J., 1993; Dϋrr D. et al,1992; Holland P.R., 1993; Albert D.Z., 1994; Berndl 
K. et al, 1993; Berndl K. et al, 1994; Bell J.S., 1987; Dϋrr D. et al, 1993): Madelung type fluid in 
„interaction” with its own „shell” (there is no space limitation of the fluid, though of the 
particle).  
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3. DeBroglie’s theory of double solution. The need for introducing the model of Bohm 
and Vigier 

One of the key observations that de Broglie left in the development of quantum mechanics, 
is the difference between the relativistic transformation of the frequency of a wave and that 
of a clock’s frequency (de Broglie L., 1956; de Broglie L., 1957; de Broglie L., 1959; de Broglie 
L., 1963; de Broglie L., 1964; de Broglie L., 1980). It is well known that, if 0  is the frequency 
of a clock in its own framework, the frequency confered by an observer who sees it passing 
with the speed v c  is   

2
0 1c    . 

This is what is called the phenomenon of “slowing down of horologes”. This phenomenon 
takes place due to the relative motion of horologes. On the contrary, if a wave within a 
certain reference system is a stationary one, with frequency 0  and is noticed in a reference 
system animated with speed v c , as compared with the first one, it will appear as a 
progressive wave that propagates in the sense of the relative motion, with frequency 

0

21







 

and with the phase speed 

2c c
V

v
  . 

If the corpuscle, according to relation W = hv, is given an internal frequency  

2

0
om c
h

   

and if we admit that within the appropriate system of the corpuscle the associated wave is a 

stationary one, with frequency 0 , all the fundamental relations of undulatory mechanics 

and in particular 
h
p

  , in which p is the impulse of the corpuscle, are immediately 

obtained from the previous relations. 
Since de Broglie considers that the corpuscle is constantly located in the wave, he notices the 
following consequence: the motion of the corpuscle has such a nature that it ensures the 
permanent concordance between the phase of the surrounding wave and the internal phase 
of the corpuscle considered as a small horologe. This relation can be immediately verified in 
the simple case of a corpuscle in uniform motion, accompanied by a monochromatic plain 
wave. Thus, when the wave has the general form 

 2
, , ,

( , , , )

i
x y z t

hA x y z t e



   

in which A and Φ are real, the phase concordance between the corpuscle and its wave 
requires that the speed of the corpuscle in each point of its trajectory be given by the relation  
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Nevertheless it was not enough to superpose the corpuscle with the wave, imposing it to be 
guided by the propagation of the wave: the corpuscle had to be represented as being 
incorporated in the wave, i.e. as being a part of the structure of the wave. De Broglie was thus 
directed to what he himself called the theory of “double solution”. This theory admits that the 
real wave is not a homogeneous one, that it has a very small area of high concentration of the 
field that represents the corpuscle and that, besides this very small area, the wave appreciably 
coincides with the homogeneous wave as formulated by the usual undulatory mechanics.  
The phenomenon of guiding the particle by the surrounding undulatory field results from 

the fact that the equations of the field are not linear ones and that this lack of linearity, that 

almost exclusively shows itself  in the corpuscular area, solidarizes the motion of the particle 

with the propagation of the surrounding wave (de Broglie L., 1963; de Broglie L., 1964; de 

Broglie L., 1980). 

Nevertheless there is a consequence of “guidance” upon which we should insist. Even if a 

particle is not submitted to any external field, if the wave that surrounds it is not an appreciably 

plain and monochromatic one (therefore if this wave has to be represented through a 

superposition of monochromatic plain waves) the motion that the guidance formula imposes is 

not rectilinear and uniform. The corpuscle is subjected by the surrounding wave, to a force that 

curves its trajectory: this “quantum force” equals the gradient with the changed sign of the 

quantum potential Q given by (7). Therefore, the uniform motion of the wave has to be 

superposed with a “Brownian” motion having random character that is specific to the corpuscle.  

Under the influence of Q, the corpuscle, instead of uniformly following one of the trajectories 
that are defined by the guidance law, constantly jumps from one of these trajectories to 
another, thus passing in a very short period of time, a considerably big number of sections 
within these trajectories and, while the wave remains isolated in a finite area of the space, this 
zigzag trajectory hurries to explore completely all this region. In this manner, one can justify 
that the probability of the particle to be present in a volume element d  of the physical space 
is equal to 

2 d . This is what Bohm and Vigier did in their statement:  therefore they 
showed that the probability of repartition in 

2  must take place very quickly. The success of 
this demonstration must be correlated with the characteristics if “Markov’s chains.”(Bohm, D., 
1952; Bohm D. & Hiley B.J., 1993; Bohm D., 1952; Bohm D., 1953).  

4. Comments 

In his attempt to built the theory of the double solution, de Broglie admits certain assertions 
(de Broglie L., 1956; de Broglie L., 1957; de Broglie L., 1959; de Broglie L., 1963; de Broglie L., 
1964; de Broglie L., 1980):  
i. the frequency of the corpuscle that is assimilated to a small horologe must be identified 

with the frequency of the associated progressive wave;  
ii. the coherence of the inner phase of the corpuscle-horologe with the phase of the 

associated wave;  
iii. the corpuscle must be “incorporated” into the progressive associated wave through the 

“singularity” state. Thus, the motion of the corpuscle “solidarizes” with the propagation 
of the associated progressive wave. Nevertheless, once we admit these statements, de 
Broglie’s theory does not answer a series of problems, such as, for example:  
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1. What are the mechanisms through which either the undulatory feature or the 
corpuscular one impose, either both of them in the stationary case as well as in the 
non stationary one?;  

2. The limits in the wave-corpuscle system of the corpuscular component as well as 
the undulatory one and their correspondence;  

3. How is the “solidarity” between the motion of the corpuscle and the one of the 
associated progressive wave naturally induced?  

iv. What are the consequences of this “solidarity”? And we could continue … . Moreover, 
Madelung’s theory (Halbwacs, F., 1960; Madelung R., 1927) brings new problems. How 
can we built a pattern of a corpuscle (framework + Madelung liquid) endlessly 
extended in space? 
Here are some of the “drawbacks” of the patterns in paragraphs 2 and 3 which we shall 
analyze and remove by means of introducing the fractal approximation of the motion. 

5. The motion equation of the physical object in the fractal approximation of motion. 
The Eulerian separation of motion on resolution scales 

The fractal approximation of motion refers to the movement of physical objects (wave + 
corpuscle) on continuous and non differentiable curves (fractal curves). This approximation 
is based on the scale Relativity theory (RS) (Nottalle, L., 1993; Chaline, J. et al, 2009; Chaline, 
J. et al, 2000; Nottale, L., 2004, Nottale, L. & Schneider J., 1984; Nottale, L., 1989; Nottale, L., 
1996). Thus, the fractal differential operator can be introduced  

 
 2/ 12ˆ

ˆ
2

FDd dt
i

dt t

 

         
V   (8) 

where V̂  is the complex speed field 

 ˆ iV = V- U   (9) 

λ is the scale length, dt is the temporary resolution scale,   is the specific time to fractal-non 
fractal transition, and DF is the arbitrary and constant fractal dimension. Regarding the 
fractal dimension, we can use any of Hausdorff-Bezicovici, Minkowski-Bouligand or 
Kolmogoroff dimensions, etc. (Budei, L., 2000; Barnsley, M., 1988; Le Mehante A., 1990; 
Heck, A. & Perdang, J.M., 1991; Feder, J. & Aharony, A., 1990; Berge, P. et al, 1984; Gouyet 
J.F., 1992; El Naschie, M.S. et al, 1995; Weibel, P. et al, 2005; Nelson, E., 1985; Nottalle, L., 
1993; Chaline, J. et al, 2009; Chaline, J. et al, 2000; Nottale, L., 2004; Agop, M. et al, 2009). The 
only restriction refers to the maintaining of the same type of fractal dimension during the 
dynamic analysis. The real part of the speed field V  is differentiable and independent as 
compared with the resolution scale, while the imaginary scale U  is non differentiable 
(fractal) and depends on the resolution scale. 
Now we can apply the principle of scale covariance by substituting the standard time 
derivate (d/dt) with the complex operator d /dt . Accordingly, the equation of fractal 
space-time geodesics (the motion equation in second order approximation, where second 
order derivates are used) in a covariant form: 

 
 2/ 12

2
ˆ ˆ

ˆ ˆ ˆ 0
2

FDd dt
i

dt t

 

          

V V
V V V  (10) 
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This means that the sum of the local acceleration ˆ t V , convection ˆ ˆV V  and 
”dissipation” 2 ˆ V  reciprocally compensate in any point of the arbitrarily fractal chosen 
trajectory of a physical object.  
Formally, (10) is a Navier-Stokes type equation, with an imaginary viscosity coefficient, 

 
 2/ 12

2

FDdt
i

 


   
 

 (11) 

This coefficient depends on two temporary scales, as well as on a length scale. The existence 
of a pure imaginary structured coefficient specifies the fact that “the environment” has 
rheological features (viscoelastic and hysteretic ones (Chioroiu, V. et al, 2005; Ferry, D. K. & 
Goodnick, S. M., 2001; Imry, Y., 2002)). 
For 

 
 2/ 12

0
2

FDdt
 


   
 

 (12) 

equation (10) reduces to Euclidian form (Harabagiu A. et al , 2010; Agop, M. et al, 2008): 

 
ˆ

ˆ ˆ 0


  
t
V

V V  (13) 

and, hence, separating the real part from the imaginary one 

 

0

0

t

t


    




    


V
V V U U

U
U V V U

 (14a,b) 

Equation (14a) corresponds to the law of the impulse conservation at differentiable scale (the 
undulatory component), while (14b) corresponds to the same law, but at a non differentiable 
scale (corpuscular component). As we will later show, in the case of irotational movements 
(14) it will be assimilated to the law of mass conservation. 

6. Rotational motions and flow regimes of a fractal fluid 

For rotational motions, ˆ 0 V  relation (10) with (9) through separating the real part from 

the imaginary one, i.e. through separating the motions at a differential scale (undulatory 
characteristic) and non differential one (corpuscular characteristic), results (Harabagiu A. et 
al , 2010) 

 

 

 

2/ 12

2/ 12

0
2

0
2

F

F

D

D

dt
t

dt
t


 


 





           

           

V V U U

U
U V V U

V
U

V

 (15a,b) 

According to the operator relations 
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2

( )
2

( )
2

( ) ( ) ( )

 
       

 
 

       
 

           

V
V V V V

U
U U U U

U V V U U V V U U V

 (16a-c) 

equations (15) take equivalent forms 

 

 

 
 

dt

t

dt

t

2/ 12 2 2

2/ 12

( ) ( ) 0
2 2 2

( ) ( ) 0
2

F

F

D

D


 


 





                     

               

V V U
V V U U U

U
V U V U U V V

 (17a,b) 

We can now characterize the flow regimes of the fractal fluid at different scales, using some 
classes of Reynolds numbers. At a differential scale we have  

 
2 2

( ) ( )
V V V l

R differential nondifferential R D N
D U DUL


    


 (18) 

 ( ) ( )
U U Ul

R nondifferential nondifferential R N N
D U D


    


 (19) 

with 

 
 2/ 12

2

FDdt
D


 


   
 

 (20) 

and at  nondifferential scale 

R (differential-non differential-differential transition) = R(TDN-D)
U V UL
D V D


 


 (21) 

R (non differential-differential-differential transition) = R(TND-D)
2V U UL

D V Dl


 


 (22) 

In previous relations V, L, D, are the specific parameters, while U, l, D are the parameters of 
the non differential scale. The parameters V, U are specific speeds, L, l specific lengths and D 
is a viscosity coefficient. Moreover, the common “element” for R(D-N), R(N-N), R(TDN-D) 
and R(TND-D) is the ”viscosity” which, through (20) is imposed by the resolution scale. 
Equations (15) are simplified in the case of the stationary motion for small Reynolds 
numbers. Thus, equation (15) for small R (D-N) becomes 

 
 

dt
2/ 12

0
2

FD
 


      
 

U U U  (23) 
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and for small R(N-N)  

 

 
dt

2/ 1
2

0
2

DF


 



      
 

V V U  (24) 

Equation (15b) for small R(TDN-D) takes the form 

 

 

dt

2/ 1

2

0
2

DF


 



     
 

V U V  (25) 

and for small R(TND-D)  

 

 
dt

2/ 1
2

0
2

DF


 



     
 

U V V  (26) 

7. Irotational motions of a fractal fluid. The incorporation of the associate wave 
corpuscle through the solidarity of movements and generation of Schrodinger 
equation 

For irotational motions 

 ˆ 0 V  (27) 

which implies 

 0, 0   V U  (28 a,b) 

equation (10) (condition of solidarity of movements) becomes (Harabagiu A. et al , 2010) 

 
 2/ 12 2

0
2 2

FDdt
i

t

 

              

V V
V  (29) 

Since through (27) the complex speed field is expressed by means of a scalar function 

gradient , 

 ˆ  V  (30) 

equation (29) taking into account the operator identities 

 ,
t t
 
     

 
 (31) 

takes the form 

  
 

i

2/ 12
21

0
2 2

FDdt
t


 

              
 (32) 
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or furthermore, through integration 

  
 

 
2/ 12

21

2 2

FDdt
i F t

t

 

         
 (33) 

where F(t)  is an arbitrary function depending only on time. 

In particular, for  having the form 

 
 2/ 12

2 ln
2

FDdt
i

 


     
 

 (34) 

where  is a new complex scalar function, equation  (46), with the operator identity 

  2ln ln


     


 (35) 

takes the form : 

 
     4/ 2 2/ 14 2

2
0

2 24

F FD D F tdt dt
i

t
 

  

                
 (36) 

The Schrodinger “geodesics” can be obtained as a particular case of equation (36), based on 

the following hypothesis (conditions of solidarity of the motion, incorporating the 

associated wave corpuscle):  

i. the motions of the micro-particles take place on fractal curves with the fractal 
dimension DF=2, i.e. the Peano curves (Nottalle, L., 1993; Nottale, L., 2004);  

ii. id  are the Markov-Wiener type stochastic variables (Nottalle, L., 1993; Nottale, L., 
2004) that satisfy the rule 

 
2

i l ild d dt
  
     (37) 

iii. space scale  and temporary one are specific for the Compton scale 

 
2

0 0

,
m c m c

  
 

 (38) 

with m0 the rest mass of the microparticle, c the speed of light in vacuum and   the 
reduced Planck constant. The parameters (38) should not be understood as “structures” 
of the standard space-time, but as standards of scale space-time; iv) function F(t) from 
(36) is null. Under these circumstances, (36) is reduced to the standard form of 
Schrodinger’s equation (ĥiĦeica, S., 1984; Peres, A., 1993) 

 
2

0

0
2

i
m t


  


   (39) 

In such a context, the scale potential of the complex speeds plays the role of the wave 
function. 
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8. Extended hydrodynamic model of scale relativity and incorporation of associated 
wave corpuscle through fractal potential. The correspondence with Madelung model 

Substituting the complex speed (9) with the restriction (27) and separating the real part with 
the imaginary one, we obtain the set of differential equations (Harabagiu A. et al , 2010) 

 

 

 
 

Q
2

0 0

2/ 12

2

0
2

FD

m m
t

dt
t


 



 
       

          

V V

U
V U V

 (40a,b) 

where Q is the fractal potential, expressed as follows 

 
 2/ 12 2

0 0

2 2 2

FDm m dt
Q


 


      
 

U
U  (41) 

For 

 iSe   (42) 

with   an amplitude and S a phase, then (34) under the form 

 
 

2/ 12

ln
FD

iSdt
i e
 
 


     
 

 

implies the complex speed fields of components 

 
   2/ 1 2/ 12 2

, ln
2 2

F FD Ddt dt
S

  
   

 
         
   

V U  (43a,b) 

From the perspective of equations (43), the equation (40) keeps its form, and the fractal 
potential is given by the simple expression 

 
 2/ 12

0

FDdt
Q m


  

     
 

 (44) 

Again through equations (43), equation (40b) takes the form: 

ln
ln 0

t
          

V V  

or, still, through integration with 0   

    T t
t
 
  


V  (45) 
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with T(t), an exclusively time dependent function 

Equation (40) corresponds to the impulse conservation law at differential scale (the classical 
one), while the impulse conservation law at non differential scale is expressed through (45) 
with   0T t  , as a probability density conservation law 
Therefore, equations 

 
 

 

2

0
2

0

m Q
t

t
 

  
          


   



VV
V

V

 (46a,b) 

with Q given by (41) or (44) forms the set of equations of scale relativity extended 
hydrodynamics in fractal dimension DF. We mention that in references (Nottalle, L., 1993; 
Chaline, J. et al, 2009; Chaline, J. et al, 2000; Nottale, L., 2004) the model has been extended 
only for DF=2. The fractal potential (41) or (44) is induced by the non differentiability of 
space-time. 
In an external scalar field U, the system of equations (46) modifies as follows 

 
 

2

0
2

( ) 0

m Q U
t

t
 

  
          


  



VV

V

 (47a,b) 

Now the quantum mechanics in hydrodynamic formula (Madelung’s model (Halbwacs, F., 

1960)) is obtained as a particular case of relations (47), using the following hypothesis: i) the 

motion of the micro-particles takes place on Peano curves with DF=2; ii) id   are the 

Markov-Wiener variables (Nottalle, L., 1993; Chaline, J. et al, 2009; Chaline, J. et al, 2000; 

Nottale, L., 2004); iii) the time space scale is a Compton one. Then, (38) have the expressions 

 
0 0

, ln
2

S
m m

   
 

V U  (48) 

and (41), 

 
2

0

2 2

m
Q     

U
U  (49) 

9. “Mechanisms” of duality through coherence in corpuscle-wave phase 

In the stationary case, the system of equations (46) becomes (Harabagiu A. et al , 2010) 

 

 

2

0
2

0

Q



 
    
 

 

V

V

 (50a,b) 

or, still, through integration 
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2

.
2

.

Q E const

const

  



V

V

 (51a,b) 

Let us choose the null power density in (51b). Then there is no impulse transport at 

differential scale between corpuscle and wave. Moreover, for 0   

 0V  (52) 

which implies through relation (43) 

 .S const  (53) 

In other words, the fluid becomes coherent (the fluid particles have the same phase). Such a 

state is specific for quantum fluids (Ciuti C. & Camsotto I., 2005; Benoit Deveand, 2007), 

such as superconductors, superfluids, etc. (Felsager, B., 1981; Poole, C. P. et al, 1995). Under 

such circumstances, the phase of the corpuscle considered as a small horologe equals the 

phase of the associated wave (coherence in corpuscle-wave phase). 

At non-differential scale, equation (51) , with restriction (52) takes the form 

 
 

D
2 2

0 0
0

2/ 12

2

2

FD

m m
Q m D E const

dt
D





 




       

   
 

U
U

 (54 a,b) 

or, still, by applying the gradient operator 

 ( ) A  (55) 

 
2

0

0
2

E

m D
  A A  (56) 

We distinguish the following situations 
i. For E>0 and with substitution 

 
2 2

0

1

2

E

m D



 (57) 

equation (56) becomes 

 
2

1
0  


A A  (58) 

Therefore:  
1. the space oscillations of field A and, therefore the space associated with the motion 

of coherent fluid particles is endowed with regular non homogeneities (of lattice 

type). In other words, the field A crystallizes (“periodicizes”) the space. The one 

dimensional space “crystal” has the constant of the network  
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  1 22/ 12

02

2

FD mdt
E


 


       

   
 (59) 

that depends both on the “viscosity” – iη given by (11) and on the energy of the 
particle;  

2. the one dimensional geodesics of the “crystallized” space given by the expression 

 2 2( ) sin ( )x A kx    (60) 

implies both fractal speed 

 
ln

2 ( )x
d

U D Dkctg kx
dx
     (61) 

and fractal potential  
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m U dU
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dx

m D k m D k
kx





     

 


 (62) 

with A and  and the integration constants 

 
1

k 


 (63) 

3. for the movements of microparticles on Peano curves (DF=2) at Compton scale 

0D 2m   , 

therefore, through (62) under the form 

 
2

2 2
0 0

0

2 ,    2
2

x
x x

p
Q m D k p m Dk

m
    (64a,b) 

de Broglie “quantum” impulse is found 

 xp 



 (65) 

4. the dominant of the undulatory characteristic is achieved by the “self diffraction” 
mechanism of the fractal field, ρ, on the one dimensional space “crystal” of 
constant Λ induced by the same field. Indeed, relation (61) with notations  

 
1

   ,     kx k   


 (66a,b) 

in approximation «1 , i.e. for sintg    and using Nottale’s relation (Nottalle, L., 
1993; Chaline, J. et al, 2009; Chaline, J. et al, 2000; Nottale, L., 2004; Nottale, L. & 
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Schneider J., 1984; Nottale, L., 1989; Nottale, L., 1996) 2 / xD U n  it takes the 
common form (Bragg’s relation) 

 sin ;n    (67) 

This result is in concordance with the recently expressed opinion in (Mandelis A. et 
al, 2001; Grössing G., 2008; Mandelis A., 2000);  

5. there is impulse transfer on the fractal field between the corpuscle and the wave;  
6. according to Taylor’s criterion (Popescu, S., 2004) self-organization (crystallization 

and self diffraction of the space) appears when the energy of the system is minimal. 
This can be immediately verified using relation (51a); 

ii. For E=0, equations (51a) and (56) have the same form 

 =0  0  A  (68) 

It follows that:  
1. the geodesics are expressed through harmonic functions and the particle finds itself 

in a critical state, i.e. the one that corresponds to the wave-corpuscle transition;  
2. in the one –dimensional case, the geodesics have the form 

 ( )x kx    (69) 

which induces the fractal speed field 

 x
D

U
kx 




 (70) 

namely the null value of the fractal potential 

 
   

2 2
0 0

2 2
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2 2
x

m mD D
Q

kx kx 
   

 
 (71) 

3. although the energy is null, there is impulse transfer between corpuscle and wave 
on the fractal component of the speed field 

iii. For E<0 and with notations 

 
2 2

0

1
,   

2

E
E E

m D
  


 (72) 

equation (56) takes the form  

 
2

1
0  


A A  (73) 

The following aspects result:  
1. field A is expelled from the structure, its penetration depth being 

 
  1 22/ 12
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FD mdt
E


 


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 (74) 
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2. the one-dimensional geodesics of the space are described through function 

 2 2( ) ( )x A sh kx    (75) 

and lead to the fractal speed 

 2 ( )xU Dkcth kx    (76) 

the fractal potential respectively 

 
2

2 2 2 2 2 2
0 0 02

2 ( ) 2 2
( )

x
k

Q m D k cth kx m D m D k
sh kx




     


 (77) 

where ,   A  are two integration constants and 

 

1
k 


 (78) 

3. the dominant of the corpuscular characteristic is accomplished by means of “self-

expulsion” mechanism of the fractal field from its own structure that it generates 

(that is the corpuscle), the penetration depth being  . The identification 

 
2

2 2
0

0

2
2

x
p

Q m D k
m

    (79) 

implies the purely imaginary impulse 

 02p im Dk   (80) 

that suggests ultra rapid virtual states (ultra rapid motions in the wave field, 

resulting in the “singularity“of the field, i.e. the corpuscle). As a matter of fact, if 

we consider de Broglie’s original theory (motions on Peano curves with DF=2, at 

Compton’s scale), singularity (the corpuscle) moves “suddenly” and chaotically in 

the wave field, the wave-corpuscle coupling being accomplished through the 

fractal potential. The corpuscle “tunnels” the potential barrier imposed by the field 

of the associate progressive wave, generating particle-antiparticle type pairs (ghost 

type fields (Bittner E.R., 2000)). Nevertheless this model cannot specify the type of 

the physical process by means of which we reach such a situation: it is only the 

second quantification that can do this (Ciuti C. & Camsotto I., 2005; Benoit 

Deveand Ed., 2007; Mandelis A. et al, 2001; Grössing G., 2008; Mandelis A., 2000; 

Bittner E.R., 2000);  

4. there is an impulse transfer between the corpuscle and the wave on the fractal 

component of the speed field, so that all the attributes of the differential speed 

could be transferred on the fractal speed.  

All the above results indicate that wave-particle duality is an intrinsic property of 

space and not of the particle. 
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10. Wave-corpuscle duality through flowing stationary regimes of a coherent fractal 
fluid in phase. The potential well 

According to the previous paragraph, let us study the particle in a potential well with 
infinite width and walls. Then the speed complex field has the form (Harabagiu A. et al, 
2010; Agop, M. et al, 2008; Harabagiu, A. & Agop, M., 2005; Harabagiu, A. et al, 2009) 

 ˆ 0 2x x x
n n

V V iU iD ctg x
a a
           

   
 (81) 

and generates the fractal potential (the energy of the structure) under the form of the 
noticeable 

 
2

2
02n n

n
Q m D E

a
   

 
 (82) 

The last relation (82) allows the implementation of Reynold’s criterion 

  
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2 ,    c n

c
V a E

R n n V
D m


 

    
 

 (83a,b) 

For movements on Peano curves (DF=2) at Compton scale 0(2 )m D   (83) with substitutions 

 0 ,    c xm V P a x     (84a,b) 

and n=1 reduces to Heinsenberg’s relation of uncertainty under equal form 

 
2

x
h

p x    (85) 

while for n   it implies a Ruelle-Takens’ type criterion of evolution towards chaos 
(Ruelle D. & Takens, F., 1971; Ruelle, D., 1975). Therefore, the wave-corpuscle duality is 
accomplished through the flowing regimes of a fractal fluid that is coherent in phase. Thus, 
the laminar flow (small n) induces a dominant ondulatory characteristic, while the turbulent 
flow (big n) induces a dominant corpuscular characteristic.  

11. Wave-corpuscle duality through non-stationary regimes of an incoherent fractal 
fluid 

In the one dimensional case the equations of hydrodynamics (46) take the form 

    
2

2 1/2
0 0 1/2 2

1
2m ; 0

V V
m V D V

t x x t xx

 


                       
 (86a,b) 

Imposing the initial conditions 
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 (87a,b) 
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and on the frontier  

 
 ,

( , ) ( , ) 0

V x ct t c

x t x t 
 

     
 (88a,b) 

the solutions of the system (86), using the method in (Munceleanu, C.V. et al, 2010), have the 
expressions 
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 (89a,b) 

The complex speed field is obtained 
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 (90) 

and the field of fractal forces  
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Therefore:  
i. both differential scale speed V and non-differential one U are not homogeneous in x 

and t. Under the action of fractal force F, the corpuscle is assimilated to the wave, is a 
part of its structure, so that it joins the movement of the corpuscle with the propagation 
of the associated progressive wave;  

ii. the timing of the movements at the two scales, V=U implies the space-time 
homographic dependence 

 
2 2

2

2
1

22 1

D
tc

x
DD t

 







 (92) 

in the field of forces  
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m Dc
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D D
t t
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     

 (93) 

Considering that the type (92) changes are implied in gravitational interaction (Ernst, 
F.J., 1968; Ernst, F.J., 1971), it follows that the solidarity of the corpuscle movement with 
the movement of the associated progressive wave is accomplished by means of the 
appropriate gravitational field of the physical object;  

iii. the uniform movement V=c is obtained for null fractal force F=0 and fractal speed U=0, 
using condition x=ct. The fractal forces in the semi space. x x    and x x    
are reciprocally compensated. 

x
x

F F 
   

This means that the corpuscle in “free” motion simultaneously polarizes the 
“environment” of the wave behind x ct  and in front of x ct , in such a manner that 
the resulting force has a symmetrical distribution as compared with the plane that 
contains the position of the noticeable object x ct  at any time moment t. Under such 
circumstances, the physical object uniformly moves (the corpuscle is located in the field 
of the associated wave). 

12. The corpuscle as a horologe and its incorporation in the associated wave. 
Consequences 

According to de Broglie’s theory, the corpuscle must be associated to a horologe having the 
frequency equal to that of the associated progressive wave. Mathematically we can describe 
such an oscillator through the differential equation 

 2 0q q   (94) 

where ǚ defines the natural frequency of the oscillator as it is dictated by the environment (the 

wave), and the point above the symbol referes to the differential as compared with time. The 
most general solution of equation (94) generally depends not on two arbitrary constants, as it is 

usually considered, but on three: the initial relevant coordinate, the initial speed and the phase 
of the harmonic oscillatory within the ensemble that structurally represents the environment 

(the isolated oscillator is an abstraction !). Such a solution gives the relevant co-ordinate 

      i t i tq t he he      (95) 

where h  refers to the complex conjugate of h and   is an initial phase specific to the 
individual movement of the oscillator. Such a notation allows us to solve a problem that we 
could name “the oscillators with the same frequency”, such as Planck’s resonators’ 
ensemble-the basis of the quantum theory arguments in their old shape. That is, given an 
ensemble of oscillators having the same frequency in a space region, which is the relation 
between them? 
The mathematical answer to this problem can be obtained if we note that what we want here 
is to find a mean to pass from a triplet of numbers –the initial conditions- of an oscillator 
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towards the same triplet of another oscillator with the same frequency. This process 
(passing) implies a simple transitive continuous group with three parameters that can be 
built using a certain definition of the frequency. We start from the idea that the ratio of two 
fundamental solutions of equation (94) is a solution of Schwarts’ non linear equation (Agop, 
M. & Mazilu, N., 1989; Agop, M. & Mazilu, N., 2010; Mihăileanu, N., 1972) 
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 
 

 (96) 

This equation proves to be a veritable definition of frequency as a general characteristic of 
an ensemble of oscillators that can be scanned through a continuous group of three 
parameters. Indeed equation (96) is invariant to the change of the dependent variable 

 0
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( )
( )

( )

a t b
t

c t d







 (97) 

which can be verified through direct calculation. Thus,  t characterizes another oscillator 

with the same frequency which allows us to say that, starting from a standard oscillator we 

can scan the whole ensemble of oscillators of the same frequency when we let loose the three 

ratios a: b: c: d in equation (97). We can make a more precise correspondence between a 

homographic change and an oscillator, by means of associating to each oscillator a personal 

 t through equation 

 20
1

0

( )
( )                 

1 ( )
ih hk t

t k e
k t





 
 


 (98) 

Let us notice that 0 1,  can be freely used one instead the other, which leads to the next 

group of changes for the initial conditions 

                      , , ,  
ah b ah b ch d

h h k k a b c d R
ch d ch dch d

       
 

 (99a-d) 

This is a simple transitive group: one and only one change of the group (the Barbilian group 
(Agop, M. & Mazilu, N., 1989; Agop, M. & Mazilu, N., 2010; Barbilian, D., 1935; Barbilian, 
D., 1935; Barbilian, D., 1938; Barbilian, D., 1971)) corresponds to a given set of values (a/c, 
b/c, d/c). 
This group admits the 1-differential forms, absolutely invariant through the group (Agop, 

M. & Mazilu, N., 1989) 

 0 1 2 ,   
( )

dk dh dh dh
i

k h h k h h
  

 
       

 (100) 

and the 2- differential form 

 

 

22
2

0 1 22 2
4 4  ,   = .

ds dk dh dh dhdh
const

k h h h h
   



 
         

 (101) 
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respectively. 
If we restrict the definition of a parallelism of directions in Levi-Civita manner (Agop, M. & 
Mazilu, N., 1989)   

 
du

d
v

    (102) 

with 

 =  , ,  =e ih u iv h u iv k     (103) 

Barbilian’s group invariates the metrics of Lobacevski’s plane (Agop, M. & Mazilu, N., 1989), 

 
2 2 2

2 2

ds du dv

v


   (104) 

Metrics (104) coincides with the differential invariant that is built with the complex scalar 
field of the speed, 

 

22
2 2 2

2
(2 ln )(2 ln ) 4 ( )

ds d
d d Dds iDd Dds iDd D ds D

   


 
       

 
 (105) 

which admits the identities 

 ,  2 = - ,  ln ln  
du

D ds d d d v
v

      (106a-c) 

Now, through a Matzner-Misner type principle one can obtain Ernst’s principle of 
generating the symmetrical axial metrics (Ernst, F.J., 1968; Ernst, F.J., 1971) 

 1/2 3
2

0
( )

h h
d x

h h
  


  (106d) 

where  = det   with  the metrics of the “environment”. 
Therefore, the incorporation of the corpuscle in the wave, considering that it functions as a 
horologe with the same frequency as that of the associated progressive wave, implies 
gravitation through Einstein’s vacuum equations (equivalent to Ernst’s principle (106d)). On 
the contrary, when the frequencies do not coincide, there is an induction of Stoler’s group 
from the theory of coherent states (the parameter of the change is the very ratio of 
frequencies when creation and annihilation operators refer to a harmonic oscillator (Agop, 
M. & Mazilu, N., 1989)). 

Let us note that the homographic changes (99) generalize the result (92). Moreover, if 
a,b,c,d є then the Ernst type equations describe supergravitation N=1 (Green, M.B. et al, 1998). 

13. Informational energy through the fractal potential of complex scalar speed field. 
The generation of forces 

The informational energy of a distribution is defined through the known relation (Mazilu N. 

& Agop M., 1994), 
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 lnE dx    (107) 

where  x  is the density of distributions, and we note by x, on the whole, the random 
variables of the problem, dx being the elementary measure of their field. 
This functional represents a measure of the uncertainty degree, when defining the 
probabilities, i.e. it is positive, it increases when uncertainty also incresases taken in the 
sense of expanding distribution and it is additive for sources that are independent as 
compared to uncertainity. If we admit the maximum of informational energy in the 
inference against probabilities, having at our disposal only a partial piece of information this 
is equivalent to frankly admitting the fact that we cannot know more. Through this, the 
distributions that we obtain must be at least displaced, as compared to the real ones, because 
there is no restrictive hypothesis regarding the lacking information. In other words, such a 
distribution can be accomplished in the highest number of possible modalities. The partial 
piece of information we have at our disposal, is given, in most cases, in the form of a f(x) 
function or of more functions. 

 ( ) ( )f x f x dx   (108) 

Relation (108), together with the standard relation of distribution density 

 ( ) 1x dx   (109) 

are now constraints the variation of the functional (107) has to subject to, in order to offer the 
distribution density corresponding to the maximum of informational energy. In this 
concrete case, Lagrange’s non determined multipliers method directly leads to the well 
known exponential distribution 

 ( ) exp( ( ))x x f x     (110) 

Let us notice that through the fractal component of the complex scalar of speed field 

 lnD    (111) 

expression (107), ignoring the scale factor D, is identical with the average mean of (111) 

 lnE dx
D

 
     (112) 

In the particular case of a radial symmetry, imposing the constraints 

 ( )r r rdr   (113) 

 ( ) 1r dr   (114) 

the distribution density ( )r  through the maximum of informational energy implies the 
expression 

 ( ) exp( ),    , .r r const         (115) 
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or in notations 

 0exp( ) ,     2 / a      (116) 

 

2

0( )

r
ar e 


  (117) 

Then the fractal speed 

 
2

(ln )
d D

u D const
dr a

     (118) 

through the fractal potential 

    
2 22

20 0
0 2

22 1 2
ln ln

2

m u m Dd d
Q m D

r dr a a rdr
 

            
   

 (119) 

implies the fractal field of central forces 

 
2

0
2

4
( )

m DdQ
F r

dr ar
     (120) 

Consequently, the fractal “medium” by maximization of the informational energy becomes 
a source of central forces (gravitational or electric type). 

14. Lorenz type mechanism of wave-corpuscle duality in non stationary systems 

Impulse conservation law 

Let us rewrite the system of equations (15) for an external scalar field U under the form   

 

0

D U
t

D
t


     




      


V
V V - U U - U -

U
V U U V V

 (121a,b) 

with D given by relation (54). Hence, through their decrease and using substitution 

  UV V  (122) 

we find 

 2 2D D U
t


        


V

V V U U U V -  (123) 

Taking into account that the fractal term, 2 2D  U U U  intervenes as a pressure (for 
details see the kinetic significance of fractal potential Q (Bohm, D., 1952)) then we can admit 
the relation 

 2
2

0

2 2 2
2

pQ
D D

m 
    

                  

U
UU U U = -  (124) 
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then equation (123) takes the usual form 

 
p

U D
t 


      


V

V V - V  (125) 

In particular, if U  g  is a gravitational accelaration (125) becomes 

 .
p

D
t 


     


V

V V - g V  (126) 

Energy conservation law 

Energy conservation law, ε in the case of movements on fractal curves of fractal dimension 
DF is written under the form 

 
ˆ

ˆ 0
d d

iD
dt dt
        V  (127) 

or, still, by separating the real part from the imaginary one 

 0,    D
t
   
     


V - U  (128) 

Hence, through addition and taking into account relation (122), we obtain the expression 

 D
t
  
   


V  (129) 

In particular, for 02m D    with   the wave pulsation (for movements on Peano curves 
with DF=2 at Compton scale    ) the previous relation becomes 

 D
t


   


V  (130) 

Lorenz type “mechanism” 

For an incompressible fractal fluid, the balance equations of the “impulse” -see (126), of the 
energy -see (129) and ”mass” – see (46) with .const   and 0  U  become 

 

0

p
D

t

D
t


  


     




   

 

V
V V - g V

V

V

 (131a-c) 

Let us take into account the following simplyfing hypothesis:  
i. constant density, 0 .const    excepting the balance equation of the impulse where 

density is disturbed according to relation  

 0     (132) 
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ii. the energy “expansion” is a linear one 

  0 01          (133) 

with ǂ the energy “dilatation” constant. 
Under such circumstances, system (131) becomes 

 

 p
t

t

0 0 0

0

D

D

   

  

 
         


   


 

V
V V g V

V

V

 (134a-c) 

In order to study the dynamics of system (134), our description closely follows the 
approach in (Bârzu, A. et al, 2003). 
The convection in the fractal fluid takes place when the ascending force that results 

from energy “dilatation” overcomes the viscous forces. Then we can define the Rayleigh 

number 

 0asc

visc

g
F

R
F D




 
V

 (135) 

The variation of the density satisfies through (133) the relation 

 
0

  


   (136) 

and the “energy” balance equation (134c) implies 

 
D

V
d

  (137) 

where d is the thickness of the fractal fluid level. Substituting (136) and (137) in (135) we 
obtain Rayleigh’s number under the form 

 
4

2

gd
R

D


  (138) 

where /d 0     is the energy gradient between the superior and inferior frontiers 
of fluid layer. In the case of convection, Rayleigh’s number plays the role of control 
parameter and takes place for 

criticR R  

In general, R is controlled through the gradient ǃ of the energy. 

As reference state, let us choose the stationary rest state ( 0) V , for which equations 
(134a-c) take the form 
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 0 0
ˆ ˆ[1 ( )]

0
S S S

S

p gz gz    


      
 

 (139a,b) 

where ẑ  represents the versor of vertical direction. We take into account that pressure 
and ε vary only in vertical direction due to the considered symmetry. For ε the 
conditions on the frontier are 

    0 1, ,0 ,    , ,x y x y d      (140a,b) 

Integrating equation (139b) with these conditions on the frontier, it will follow that in 
the reference rest state, the profile of ε on vertical direction is linear. 

 0= S z    (141) 

Substituting (141) in (139) and integrating, we obtain 

  S 0 0 1
2

z
p z p g z

     
 

 (142) 

The features of the system in this state do not depend on coefficient D that appears in 
balance equations. 
We study now the stability of the reference state using the method of small 
perturbations (Bârzu, A. et al, 2003). The perturbed state is characterized by 

 

   
   
   
   

,

,

,

, , ,

S

S

S

z r t

z r t

p p z p r t

r t u v w

  

  



  


 
   
  V V

 (143a-d) 

One can notice that the perturbations are time and position functions. Substituting (143) 
in equations (134) and taking into account (141) and (142) the following equations for 
perturbations (in linear approximation) are obtained: 

 2

2

0

  0

1
ˆ

w D
t

p D g z
t


  

   


  


  



     


V

V
V

 (144a-d) 

We introduce adimensional variables ', ', ', ', 't p  r V  through the changes 

2 22

0 23

' ;   ' ;   ' ;   ' ;   '
pt

t p
d D dd D DD

dg d

   




    
   
        

r V
r V  

Replacing these changes and renouncing, for simplicity, at the prime symbol, the 
adimensional perturbations satisfy the equations 
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t

t

2

2

ˆ

( )

0

p z

Rw



  


     




   

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V
V V V

V

V

 (145) 

where R is Rayleigh’s number. 
For R>RC, the reference state becomes unstable, and the convection “patterns” appear. 
We consider them as being parallel therefore the speed vector will be always 
perpendicular to their axis. We assume the patterns parallel to the y axis, i.e., the speed 
component along this direction is zero. 
The incompressibility condition becomes 

 0x zu w   (146) 

Equation (146) is satisfied if and only if 

 z x;    u w     (147) 

where  , ,x y z  defines Lagrange’s current function. The speed field must satisfy the 
conditions on frontiers (the inferior and superior surfaces) 

 1/2| 0zw    (148) 

If the frontiers are considered free (the superficial tension forces are neglected), the 
“shear” component of the pressure tensor is annulated  

 1/2| 0z
u
z 





 (149) 

Using Lagrange’s function,  , ,x y z  the limit conditions (148) and (149) become 

1/2

1/2

| 0

| 0

x z

zz z





 

 
 

Let us choose Ǚ with the form 

       1, , cos sinx z t t z qx    

According to (147), the components of the speed field are  

1

1

( )sin( )sin( )

( )cos( )cos( )

u t z qx

w q t z qx

 


 
  

 

The impulse conservation equation (for equation (145)) for directions x and z becomes 

 
 
 

t x z x

t x z z

u uu wu p u

w uw ww p w 

     

      
 (150a,b) 

We derive (150 a) according to z and (150) according to x. One finds 
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   

   

tz x z xz

tz x z zx

u uu wu p u
z z

w uw ww p w
x x x



          
             

 

Through the sum we obtain 

       2
x z x z xt

uu wu uw ww
z x

              
 (151) 

The value ε being fixed on the two frontiers, we shall have 

1/2| 0z    

We consider θ having the form 

            1 2, , cos cos sin 2x z t t z qx t z       (152) 

If we consider in (151) the expressions for u, w, θ and Ǚ it follows that 

 2 21
1 12 2

( )
q

q
q


  


  


  (153) 

The balance equation for the energy becomes 

 

2 2
1 1 2 1 1

2
2 1 1 2

( )

1
4

2

q qR q

q

      

     

    

 



  (154) 

In (153) and (154) we change the variables 

' 2 2
12 2

2 2

1 22 2 3 2 2 3

( ) ;    
2( )

;    
2( ) ( )

q
t q t X

q

q q
Y Z

q q


 



 
 

 

  


 
 

 

We obtain the Lorenz type system 

 

 X Y X

Y XZ rX Y

Z XY bZ

 

   

 






 (155) 

where 

2 2

2 2 3 2 2

4
,    

( )

q
r R b

q q


 

 
 

 

The Lorenz system 
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 X Y X

Y XZ rX Y

Z XY bZ

 

   

 






 

reduces to (155) for 1  . 

Characteristics of Lorenz type system. Transitions towards chaos. 

We consider the evolution equations of Lorenz type system (155) with the notation 

 

 x y x

y rx y xz

z xy bz

 

  
 





 (156) 

The system is a dissipative one, since the divergence (for details see (Bărzu, A. et al, 2003)) 

2 0
yx z

FF F
F b

x y z

 
        

  
 

since b>0. 
Therefore, the phase volume exponentially diminishes in time, as the system tends towards 
the atractor. For any value of the control parameter r, the system (156) admits as a fixed 
point the origin 

 0 0 0 0x y z    (157) 

The characteristic equation is 

 0 0

0 0

1 1 0

1 0r z x

y x b






 
    

 
 (158) 

For the fixed point (157), it takes the form 

1 1 0

1 0 0

0 0

r

b






 
  

 
 

from where we find 

     = 02 2 1b r         (159) 

Since parameters b and r are positive ones, it follows that the first eigenvalue 1 b    is 
negative for any values of the parameters. The other two eigenvalues 2 and 3 satisfy the 
relations 

 
 

+2 3

2 3

2 0

1r

 
 

  
   

 (160) 
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According to (160), if 0 r 1   the sum of the two eigenvalues is negative and the product is 
positive. Therefore, all the eigenvalues are negative and the origin is a stable node. For r > 1, 
according to (160), the origin becomes unstable and two new fixed points appear in a fork 
bifurcation. These points are noted with C  and C  which corresponds to patterns 

 0 0 0 0

0 0

( 1) ( 1)
( ) ,    ( )

1 1

x y b r x y b r
C C

z r z r
         
 

     
 (161) 

 

 

Fig. 1. (according to (Bărzu, A. et al, 2003)) 

Let us study their stability. Replacing the values that correspond to the branch ( C ) in (158), 
the characteristic equation becomes 

 
   

1 1 0

1 1 1 0

1 1

b r

b r b r b







 

    

   

 

from where it follows that 

 3 2( 2) (1 ) 2 ( 1) 0b b r b r          (162) 

If the fixed points (161) will bear a Hopf bifurcation, for a value of control parameter Hr 1 , 
there will be two complex conjugated purely imaginary eigenvalues. Replacing i   in 
(162) we obtain 

 3 2( 2) (1 ) 2 ( 1) 0i b i b r b r           (163) 

Separating the real part from the imaginary one in (163) we obtain the system 

 
3

2

(1 ) 0

( 2) 2 ( 1) 0

b r

b b r

 



   

    
 (164a,b) 
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From equation (164a) it follows that  2 1b r   . Replacing this value in equation (164), 
Hopf bifurcation takes place in 

 
4

H
b

r
b


   (165) 

Considering that Hr 1 the condition for b results 

 4b   (166) 

For this value of the control parameter, the two fixed points C and C lose their stability in 
a subcritical Hopf bifurcation. Beyond the bifurcation point all the periodical orbits are 
unstable and the system has a chaotic behavior. Figures 2a-c to 8a-c show the trajectories, 
the time evolutions, the phase portraits and the Fourier transform for the different values of 
the parameters. It follows that when the value of the parameter r increases, there is a 
complicated succession of chaotic regimes with certain periodicity windows. The limit cycle 
appears through a reverse subarmonic cascade and loses stability through intermittent 
transition towards a new chaotic window. 
 

 

 

Fig. 2. a) Trajectory b) time evolution c) phase pattern for r=80, b=0.15  

 
 

 

Fig. 3. a) Trajectory b) time evolution c) phase pattern for r=100, b=0.19 
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Fig. 4. a) Trajectory b) time evolution c) phase pattern for r=100, b=0.06 

 

 

Fig. 5. a) Time evolution b) phase portrait c) the Fourier transform for r=416, b=0.067 

 

 

Fig. 6. a) Time evolution b) phase portrait c) the Fourier transform for r=403, b=0.067 

 

 

Fig. 7. a) Time evolution b) phase portrait c) the Fourier transform for r=401, b=0.067 

www.intechopen.com



 
Theoretical Concepts of Quantum Mechanics 

 

440 

 

Fig. 8. a) Time evolution b) phase portrait c) the Fourier transform for r=380, b=0.067 

In Fig.9 we present the map of the Lyapunov exponent with the value 1   (the co- 
ordinates of the light points represent the pairs of values    , ,x y b r  for which the 
probability of entering in a chaotic regime is very high. 
 

 
 

Fig. 9. The Lyapunov exponent map for value 1   of  the Lorenz system 

Correspondences with quantum mechanics 

The previous analysis states the following: 
i. a model of a physical object can be imagined. This model is built from a Madelung type 

fluid limited by two carcases that are submitted to an energy “gradient”, from the 
inferior carcase towards the superior one; 

ii. for small energy gradients, i.e. R<RC the reference state is a stable one. The ascending 
force resulting from energy ”dilatation” is much smaller than the dissipative one. 

iii. for energy gradients that impose restriction R>RC the reference state becomes unstable 
through the generation of convective type “rolls”. The ascensional force is bigger than 
the dissipative one; 

iv. the increase of energy gradient destroys the convective type ”patterns” and induces 
turbulence; 

b

r
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v. this behavior of fractal fluid can correspond  to a Lorenz type “mechanism”: limit cycles 
the convective type “rolls”, intermitences (“jumps” between limit cycles) with the 
“destroy” of the convective type “rolls”, chaos with “turbulence” of the convective type 
state etc.; 

vi. the stability of solutions corresponds to the dominant undulatory feature, the wave-
corpuscle duality can be correlated with the Lorenz type mechanism: self-organization 
of the structure through the generation of convective type “rolls” implies the wave-
corpuscle transition, while the “jumps” among limit cycles, i.e. the intermittences 
induce a critical state that corresponds to chaos transition, thus ensuring the dominance 
of corpuscular effect. 

15. Conclusions 

Finally we can display the conclusions of this chapter as follows: 
- a critical analisys of the hydrodinamic model of Madelung and of the double solution 

theory of de Broglie’s theory of double solution was performed – departing from here, 
we built a fractal approximation of motion; 

- we got the equation of motion of the physical object in the fractal approximation and 
the Eulerian case was studied; 

- the flowing regimes of a rotational fractal fluid were studied;  
- we studied the irotational regime of a fractal fluid and the incorporation of the particle 

into the associated wave by generating a Schrödinger equation; 
- the extended hydrodinamic model of scale relativity was built and the role of the fractal 

potential in the process of incorporation of the particle into the wave, specified; 
- we indicated the mechanisms of wave–particle duality by their in phase coherences; 
- we studied the wave-particle duality by stationary flow regimes of a fractal fluid which 

is coherent in phase, and by non-stationary flow regimes of an incoherent fractal fluid 
by means of a „polarization” type mechanism; 

- considering the particle as a singularity in the wave, we showed that its incorporation 
into the associated wave resulted in Einstein’s equations in vacuum - contrary, its non-
incorporation led to the second quantification; 

- we established a relation between the informational energy and the fractal potential of 
the complex speed field - it resulted that the generation of forces implies the maximum 
of the information energy principle; 

- we showed that a particle model in a fractal approximation of motion induced a Lorenz 
type mechanism. 
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