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the Path Integral Paradigm –  

Complexified Lagrangian Mechanics 
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Russ. Ac. Sci., Gatchina, Leningrad District 
Russia 

1. Introduction 

All material objects perceivable by our sensations move in real 3D-space. In order to 

describe such movement  in strict mathematical forms we need to realize, first, what does 

the space represent as a mathematical abstraction and how motion in it can be expressed? 

Isaac Newton had gave many cogitations with regard to categories of the space and time. 

Results of these cogitations  have been devoted to formulating categories of absolute and 

relative space and time (Stanford Encyclopeia, 2004): (a) material body occupies some place 

in the space; (b) absolute, true, and mathematical space remains similar and immovable 

without relation to anything external; (c) relative spaces are measures of absolute space 

defined with reference to some system of bodies or another, and thus a relative space may, 

and likely will, be in motion; (d) absolute motion is the translation of a body from one 

absolute place to another; relative motion is the translation from one relative place to 

another. 

Observe, that space coordinates of a body can be attributed to center of mass of the body, 
and its velocity is measured as a velocity of motion of this center. It means, that a classical 
body can be replaced ideally by a mathematical point situated in the center of mass of the 
body. Velocity of the point particle is determined from movement of the center of mass per 
unit of time. Both point particle coordinates and its velocity are measured exactly. Its 
behavior can be computed unambiguously from formulas of classical mechanics (Lanczos 
1970). 
Appearance of quantum mechanics in the early twentieth century brought into our 
comprehension of reality qualitative revisions (Bohm, 1951). One problem, for example, 
arises at attempt of simultaneous measurement of the particle coordinate and its velocity. 
There is no method that could propose such measurements. Quantum mechanics 
proclaims weighty, nay, unanswerable principle of uncertainty prohibiting such 
simultaneous measurements. Therefore we can measure these parameters only with some 
accuracy limited by the uncertainty principle. From here it follows, that formulas of 
classical mechanics meet with failure as soon as we reach small scales. On these scales the 
particles behave like waves. It is said, in that case, about the wave-particle duality 
(Nikolić, 2007). 
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It would be interesting to note here, that as far back as 5th century, B. C., ancient 
philosopher Democritus, (Stanford Encyclopeia, 2010), held that everything is composed 
of "atoms", which are physically indivisible smallest entities. Between atoms lies empty 
space. In such a view it means  that the atoms move in the empty space. And only 
collisions of the atoms can effect on their future motions. One more standpoint on Nature, 
other than atomistic, originates from ancient philosopher Aristotle (Stanford Encyclopeia, 
2008). Among his fifth elements (Fire, Earth, Air, Water, and Aether), composing the 
Nature, the last element, Aether, has a particular sense for explanation of wave processes. 
It provides a good basis for understanding and predicting the wave propagation through 
a medium.  
By adopting wave processes underlying the Nature one can explain of interference 
phenomena of light. Huygens  (Andresse, 2005) gave such an explanation. In contrast to 
Newtonian corpuscular explanation, Huygens proposed that every point to which a 
luminous wave reached becomes a source of a spherical wave, and the sum of these 
secondary waves determines the form of the wave at any subsequent time. His name was 
coined in the Huygens's wave principle, (Born & Wolf, 1999). 
Such a competition of the two standpoints, corpuscular and wave, can provide more insight 
penetration into problems taking place in the quantum realm. Here we adopt these 
standpoints as a program for action (Sbitnev, 2009a). The article consists of five sections. Sec. 
2 begins from a short review of the classical mechanics methods and ends by Dirac's 
proposition as the classical action can show itself in the quantum realm. Feynman's path 
integral is a summit of this understanding. The path integral technique is used in Sec. 3 for 
computing interference pattern from N-slit gratings. In Sec. 4 the path integral is analyzed in 
depth. The Schrödinger equation results from this consideration. And as a result we get the 
Bohmian decomposition of the Schrödinger equation to pair of coupled equations, modified 
the Hamilton-Jacobi equation and the continuity equation. Sec. 5 studies this coupled pair in 
depth. And concluding Sec. 6 gives remarks relating to sensing our 3D-space on the 
quantum level. 

2. From classic realm to quantum 

A path along which a classical particle moves, Fig. 1, obeys to variational principles of 
mechanics. A main principle is the principle of least action (Lanczos, 1970). The action S is a 
scalar function that is inner production of dynamical entities of the particle (its energy, 
momentum, etc.) to geometrical entities (time, length, etc.). For a particle's  swarm moving 
through the space along some direction, the action is represented as a surface  be pierced by 
their trajectories. Observe that adjoining surfaces are situated in parallel to each other and 
the trajectories pierce them perpendicularly. 
The action S is the time integral of an energy function, that is the Lagrange function, along 
the path from A (starting from the moment t0) to B (finishing at the moment t1) : 

 
1

0

( , ; )

t

t

S L q q t dt 
  . (1) 

Here ( , ; )L q q t
   is the Lagrange function representing difference of kinetic and potential 

energies of the particle. And q


 and q
  are its coordinate and velocity. Scientists proclaim that 

the action S remains constant along an optimal path of the moving particle. It is the principle  
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Fig. 1. Particle, at passing from A to B, moves along geodesic trajectory - the trajectory 
satisfying the principle of least action. All geodesic trajectories intersect equiphase surfaces, 
S=C, S = C+ǆ, perpendicularly (Lanczos, 1970). 

of least action. According to this principle, finding of the optimal path adds up to solution of 

the extremum problem ǅS = 0. The solution leads to establishing the Lagrangian mechanics 
(Lanczos, 1970). We sum up the Lagrangian mechanics by presenting its main formulas via 
The Legendre's dual transformations as collected in Table 1: 

 

Variables : 

Coordinate:  1 2( , , , )Nq q q q
   

Momentum: 1 2( , , , )Np p p p
   

Variables : 

Coordinate: 1 2( , , , )Nq q q q
   

Velocity:  1 2( , , , )Nq q q q
     

Hamiltonian function: 

1

( , ; ) ( , ; )
N

n n
n

H q p t p q L q q t


      

n
n

H
q

p





  

n
n

H
p

q


 


  

Lagrangian function: 

1

( , ; ) ( , ; )
N

n n
n

L q q t p q H q p t


       

n
n

L
p

q




 
 

n
n

L
p

q





  

Table 1. The Legendre's dual transformations 

The Hamilton-Jacobi equation (HJ-equation) 

 ( , ; )
S

H q p t
t


 


 
, (2) 
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describing behavior of the particle in 2N-dimesional phase space is one of main equations of 
the classical mechanics. Let us glance on Fig. 1. Gradient of the action S can be seen as 
normal to the equiphase surface S = const. Consider two nearby surfaces S = C and S = C+ǆ. 
Let us trace normal from an arbitrary point P of the first surface up to its intersection with 
the second surface at point P ’. Next, make another shift of the surface that is 2ǆ distant away 
from the first surface, thereupon on 3ǆ, and so forth. Until all space will be filled with such 
secants. Normals drawn from P to P ‘ thereupon from P ‘ to P ‘’, and so forth, disclose possible 

trajectory of the particle, since S = ǆ / ǅ represents a value of the gradient of S. When ǆ and 

ǅ tend to zero, this relation can be expressed in the vector form 

 p S 


. (3) 

So far as the momentum p mv
 

 (m is a particle mass) has a direction tangent to the 

trajectory, then the following statement is true (Lanczos, 1970): trajectory of a moving particle  

is perpendicular to the surface  S = const. Dotted curves in Fig. 1 show  bundle of trajectories 

intersecting the surfaces  S  perpendicularly. 
The particle's swarm moving through space can be dense enough. It is appropriate to 
mention therefore the Liouville theorem, that adds to the conservation law of energy one 
more a conservation law. Meaning of the law is that a trajectory density is conserved 
independently of deformations of the surface that encloses these trajectories. 
Mathematically, this law is expressed in a form of the continuity equation 

  v
t

 
 




. (4) 

Here ǒ  is a density of moving mechanical points with the velocity /v p m
 

. 

Thus we have two equations, the HJ-equation (2) and the continuity equation (4) that give 
mathematical description of moving classical particles undergoing no noise. Draw attention 
here, that the continuity equation depends on solutions of the HJ-equation via the term 

/v S m 


. On the other hand we see, that the HJ-equation does not depend on solutions of 
the continuity equation. This is essential moment at description of moving ensemble of the 
classical objects. 
Starting from a particular role of the action, which it has in classical mechanics, Paul Dirac 

drew attention in 1933 (Dirac, 1933) that the action can play a crucial role in quantum 

mechanics also. The action can exhibit itself in expressions of type exp{ iS / ћ}. It is 
appropriate to notice the following observation: the action here plays a role of a phase shift. 

According to the principle of least action, we can guess that the phase shift should be least 
along an optimal path of the particle. In 1945 Paul Dirac emphasize once again, that the 
classical and quantum mechanics have many general points of crossing (Dirac, 1945). In 

particular, he had written in this article: "We can use the formal probability to set up a 
quantum picture rather close to the classical picture in which the coordinates q of a 
dynamical system have definite values at any time. We take a number of times t1, t2, t3, … 
following closely one after another and set up the formal probability for the q 's at each of 

these times lying within specified small ranges, this being permissible since the q ‘s at any 
time all commutate. We then get a formal probability for the trajectory of the system in 
quantum mechanics lying within certain limits. This enables us to speak of some trajectories 

being improbable and others being likely". 
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Next, Richard Feynman undertook successful search of acceptable mathematical apparatus 
(Feynman, 1948) for description of  evolution of  quantum particles traveling through an 
experimental device. The term 

    exp i / exp i /S L t   (5) 

plays a decisive role in this approach. Idea is that this term executes mapping of a wave 
function from one state to another spased on a small time interval  ǅt. And L is Lagrangian 
describing current state of the quantum object. 
Feynman's insight has resulted in understanding that the integral kernel (so called 
propagator) of the time-evolution operator can be expressed as a sum over all possible paths 
(not just over the classical one) connecting the outgoing and ingoing points, qa and qb, with 
the weight factor exp{ iS(qa, qb ;t)/ћ } (Grosche, 1993; MacKenzie, 2000) : 

    
all paths

, exp i ( , ; ) /a b a bK q q A S q q T   , (6) 

where A is an normalization constant. 
Observe that The Einstein-Smoluchowski equation which describes the Brownian motion of 
classical particles within some volume (Kac, 1957), served him as an example. As follows 
from idea of the path integral (6), there are many possible trajectories, that can be traced 
from a source to a detector. But only one trajectory, submitting to the principle of least 
action, may be real. The others cancel each other because of interference effects. Such an 
interpretation is extremely productive at generating intuitive imagination for more perfect 
understanding quantum mechanics. 
It is instructive further to consider some quantum tasks by using the Feynman path integral. 
Here we will compute interference patterns as a result of incidence of particles on N-slit 
gratings. 

3. Interference pattern from an N-slit gratin 

Let a beam of coherent particles spreads through a grating. The grating shown in Fig. 2 has a 
set of narrow slits sliced in parallel. Width of the slits is sufficient in order that even large 
molecules could pass they through. Here we face with the uncertainty principle, ΔrΔp ≥ ћ/2.  
 

 

Fig. 2. Interference experiment in cylindrical geometry. Slit grating with n=0,1, … ,N-1 slits 
is situated in a plane (x,y). Propagation of particles occurs along axis z. 
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It means, if diameter of the molecule is close to width of the slit then direction of its escape 
from the slit is uncertain. One can draw, as commonly, cylindrical waves that are divergent 
from each slit, as shown in this illustration on the slit 3. They illustrate equally probable 
outcomes from slits in different directions. In other words, a particle may fly out in any 
direction with equal probability. 

3.1 Passing through a slit 
Before we will analyze interference on the N-slit grating, let us consider a particle passing 
through a single slit. The problem has been considered in detail in (Feynman & Hibbs, 1965). 
We will study migration of the free particle in transversal direction, let it be axis x, at 
passing along z with a constant velocity, see Fig. 3. Lagrangian is as follows 

 
2

const
2

x
L m 


. (7) 

Here m is mass of the particle and x is its transversal velocity. By translating a particle's 

position on a small value  ǅx = (xb-xa) << 1, being performed for a small time ǅt = (tb-ta) << 1, 
we find that a weight factor, see (5), is as follows 

 
2

i / i ( )
e exp

2 ( )
L t b a

b a

m x x

t t

     
  




. (8) 

Pay attention on the following situation: so far as argument of the exponent contains 
multiplication of the Lagrangian L by ǅt, as shown in Eq. (5), we obtain result (xb - xa) 2  
divided by (tb - ta). Next we will see, that the weight factor (8) plays an important role. By 
means of such small increments let us trace passing the particle from a source through the 
slit, Fig. 3. 
 

 

Fig. 3. A particle, being emitted from a source that is localized at a point (xs, zs) passes 
through a slit with width 2b0 . It may undergo deflection from a straight direction at passing 
through the slit (Feynman & Hibbs, 1965). 

We suppose, that at the time t = 0 the particle leaves a source localized at a point  (xs, zs). Let 
we know, that after a time T the particle enters to the vicinity x0 ± b of a point x0, see Fig. 3. 
The question is: what is the probability to disclose the particle after a time Ǖ  at a point x1 
remote from the point x0 at a distance Δx=(x1 - x0)? Let the particle outgoing from the point 
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xs  at the time t=0 passes a slit between the points x0 - b and x0+b at the time t=T. Let us 
compute the probability of discovering the particle at some point x1 after the time Ǖ, i.e., at 
t=T+Ǖ. Because of existence of an opaque barrier a direct path to the point x1 can be absent. 
In order to reach the point x1 the particle should pass through the slit, maybe with some 
deflection from the direct path. In this connection, we partition the problem into two parts. 
Each part relates to movement of the free particle. In the first part we consider the particle 
which begins movement from the point xs at the initial moment t = 0 and reaches to a point x 
= x0+ξ, at the moment t = T, where |ξ| ≤ b . In the second part we consider the same particle 
that after passing the point x=x0+ξ at the time t=T moves to the point x1 and reach it at the 
time t=T+Ǖ. A full probability amplitude is equal to integral convolution of two kernels, each 
describing movement of the free particle: 

 1 0 s 1 0 0 s( , , ) ( , ; , ) ( , ; ,0)
b

b

x x x K x T x T K x T x d    


    . (9) 

Here the kernel reads 

 
1 2 22 i ( ) i ( )

( , ; , ) exp
m 2 ( )

b a b a
b b a a

b a

t t m x x
K x t x t

t t

               




. (10) 

It describes a transition amplitude from xa to xb for a time interval (tb – ta) (Feynman & 
Hibbs, 1965). Consequently, the integral (9) computes the probability amplitude of transition 
from the source xs  to the point x1 through the all possible intermediate points ξ  situated 
within the interval (x0 - b, x0 + b). 
The expression (9) is written in accordance with a rule of summing amplitudes for 
successive events in time. The first event is the moving particle from the source to the slit. 
The second event is the movement of the particle from the slit to the point x1. The slit has a 
finite width. Passage through the slit is conditioned by different alternative possibilities. For 
that reason, we need to integrate along all over the slit width in order to get a right result. 
All particles, moving through the slit, are free particles and their corresponding kernels are 
given by the expression (10). By substituting this kernel to the integral (9) we get the 
following detailed form 

1 2 1 22 2
0 s

1 0 s

2 i i ( ) 2 i i ( )
( , , ) exp exp

2 2

b

b

m x T m x x
x x x d

m m T

     
 



 



                  
         


 
 

. (11) 

Integration here is fulfilled along the slit of a width a=2b, i.e., from -b to +b. 
Formally, range of the integration can be broadened from -∞ to +∞. But in this case, we need 
to introduce the step function G(ξ) equal to unit in the interval [-b,+b] and equal to zero 
outside this interval. In principle, we can approximate hard edged slits by series of the 
Gaussian functions, each with narrow halfwidth  (Sbitnev, 2010). For sake of simplicity 
however, we confine themselves by a single Gaussian form-factor 

  2 2( ) exp 2G b   . (12) 

It simulates slits with fuzzy edges. Effective width of this curve is conditioned by a 
parameter b. For such a form-factor roughly two thirds of all its area is situated between the 
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points -b and +b. If the particles would move by classical way, then we can anticipate, that 
after the time Ǖ a distribution of the particles will be similar to the distribution existing at T, 
see Fig. 4. New center x1 of the distribution is shifted on a value Δx from the point x0. Width 
b1 of the new distribution is also broadened. The both parameters, x1 and b1, are determined 
from expressions 

 1 0 11 , 1x x b b
T T

          
   

. (13) 

 

 

Fig. 4. Trajectories of particles passing through the Gaussian slit (Feynman & Hibbs, 1965), 
form a ray with an angle α of the divergent particle beam emanating from the source xs. 

Observe that quantum particles, in contrast to the classical ones, at scattering on the slit 
behave themselves like waves. The wavelike nature  manifests itself via phase shifts of the 
moving particles in an observation point because of the de Broglie wavelength as innate 
character of quanta. According to the above stated remarks, Eq. (11) with inserted the form-
factor of the slit, G(ξ), now can be rewritten in the following form 

 
2 2

1 0 0 s
1 0 s

( ) i ( ) ( )
( , , ) exp

22 i

mG m x x x x
x x x d

TT

   
 





          
    

 
. (14) 

By substituting G(ξ) from Eq. (12) to this expression and integrating it we obtain 

 
 

1 2

1 0 s 2

22 2
1 0 0 s1 0 0 s

2

( , , ) 1 i
2 i

( ) ( )i ( ) ( )
exp

2 (1 i )

m
x x x

T T mb

x x x x Tm x x x x

T T mb

 


 
  


 

    
 

              




 

. (15) 

At integrating Eq. (14) we use a standard integral 

 
2 2 4e d e     




   




 . (16) 

Before we will write out a final expression let us fulfill a series of replacements. 
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3.1.1 Series of replacements 

First we define an effective slit's half-width 0 2b  . And further we define a complex 

time-dependent spreading 

 0
0

i
2 (1 )m T


 

 
 




, (17) 

which has been defined in works (Sanz & Miret-Artês, 2007, 2008}. More one step is to 
replace flight times T and Ǖ  by flight distances (z0 - zs) and (z1 - z0), namely, T = (z0 -zs)/vz 
and  Ǖ = (z1 -z0)/vz. Here vz is a particle velocity along the axis z. We note that mvz =pz is z-
component of the particle momentum. This component is not changed at passing through 
the grating. Next, we introduce the de Broglie wavelength  λdB = h/pz, where h=2Ǒћ is the 
Planck constant. Rewrite  in this view the complex time-dependent spreading (17) as the 
complex distance-dependent spreading 

 
1

dB 1 0
0

1
0

0

( )
i

4
z

s

s

z z

z z

z z




 





 
 
  

. (18) 

Define now a dimensionless complex distance-dependent spreading as follows 

 
1

1 dB 1 0
2

0 0

( )
i

4
s

z
s

z z z z

z z




 
 


 (19) 

and a dimensionless parameter characterizing remoteness of the source 

 0 1 0
0

0 1 0

( ) ( )
1

( ) ( )
s

s

x x z z

z z x x
  

 
 

, (20) 

which tends to 1 as zs → -∞. 
Now we can use the above parameters, the dimensionless complex distance-dependent 

spreading 
1z  and the remoteness of the source Ξ0, in order to write out the wave function 

behind the slit. By rewriting Eq. (15) via these parameters we obtain 

 
2 2 2

0 0 0
0

dB 0 dB 0

(  -  ) (  -  )
( , , , ) exp i 1

2 i ( ) ( )
s

s
z z s

x x x xm
x x x z

T z z z z

 
    

                
. (21) 

Here we have removed the subscript 1 at the variables, x, z, and Σz, since they relate to every 
points of the  space behind the slit. In particular, at removing the source to infinity, zs  → -∞, 
the parameter Ξ0 tends to 1 and the wave function  reduces down to the paraxial 
approximation 

 
2

0
0

dB 0

(  -  ) 1
( , , ) exp i 1

( ) z

x x
x x z A

z z
 

 
      

   
. (22) 

Here a normalization factor A reads 
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2 i z

m
A

T 



. (23) 

One can see it vanishes at T → ∞. It means, as the source moves away to infinity its intensity 
tends to zero. In the paraxial approximation we need to ignore this expression and consider 
the parameter A simply as a factor that normalizes the wave function. 
Further, for the sake of simplicity, we will deal with the paraxial approximation. 

3.2 Matter waves behind the grating 
Let we have a screen, on which an incident monochromatic beam of the particles is 
scattered. It has N slits (n=0,1,2, … ,N-1) located at equal distance from each other, as shown 
in Fig. 2. Origin of coordinates is placed in the center of the slit grating. In this frame of 
reference, n-th slit has a position x0 = (n - (N-1)/2)d, where d is a spacing between slits. The 
spacing is measured in units multiple to the wavelength λdB. 
We need now to compute contributions of all paths that pass from the source through all 
slits in the screen and farther to a point of observation (x,z). Per se, we should superpose in 
the observation point all wave functions (22) from all slits n=0,1,2, … ,N-1. Such a 
superposition reads 

 
1

0

1 1
( , ) , ,

2

N

n

N
x z x n d z

N
 





     
  

  (24) 

and probability density in the vicinity of the observation point (x,z) is 

 ( , ) ( , ) ( , )p x z x z x z  . (25) 

3.2.1 Far-field diffraction 
Before we will take up interference effects in the near-field region, let us consider an 
asymptotic limit of the formula (25) in the far-field region, Fig. 5. With this aim in mind, we 
replace the term (n - (N-1)/2)d in Eq. (24) by kd, where k runs from -(N-1)/2 to  (N-1)/2. 
Next, at summation we will neglect contribution of coefficients at  k 2d 2  emergent at 
decomposition (x - kd) 2 = x 2 - 2xkd + k 2d 2. The point is that the terms with k 2d 2 lead to 
phases muddled up on infinity. Because of it sum of all these exponents gives zero 
contribution. Other sums containing coefficients at x 2 and 2xkd can be easily computed. 
Next, at summation we use the mathematical equality 

    
 

( 1) 2

( 1) 2

sin 2
exp i

sin 2

N

k N

Nx
kx

x



 
 . (26) 

Intensity of the particle beam in the far-field region computed according to the above 
approximation is as follows 

 

2

0 2

( , )
sin

2
( , ) ( , )

( , )
sin

2

N x z

I x z I x z
x z





 
 
 
 
 
 

. (27) 
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Fig. 5. Diffraction in the far-field zone at simulation of scattering thermal neutrons (λdB=0.5 
nm) on N=7 slits grating. Width of slits a=2λdB, spacing d=10λdB, and the Talbot length 
zT=2d2/λdB=200λdB. Directions of principal and subsidiary maxima  are pointed out by big 
red arrows and small blue arrows, respectively. 

Here terms Ǉ(x,z) and I0(x,z) read 

 

dB
2

2
z

2 2

0 2 2
z

4( , ) ,
2

I ( , ) exp .
2z

z
xd

x z

A x
x z

N





 








         

 (28) 

The parameter A is the normalization factor, see Eq. (23), and ǔz has the following form 

 dB
2

1
4

z

z 


    
 

. (29) 

This parameter is equivalent to the instantaneous Gaussian width presented in (Sanz and 
Miret-Artês, 2007). 
Fig. 6 shows diffraction in the far-field zone from the grating having N=7 slits. Distance to 
the observation screen is z=10 7 zT =1 m, where zT =2d 2/λdB = 200λdB is the Talbot length. It 
will be explained below. It is seen, that the principal maxima are partitioned from each other 
by N-2=5 subsidiary maxima. 

3.2.2 Near-field interference 
Above we have considered a coherent flow of thermal neutrons, λdB=0.5 nm. Radius of these 
particles is 10-15 m. It is much smaller the de Broglie wavelength λdB = 5·10-10 m. For this 
reason, these particles can be considered as point particles, in contrast to enormous fullerene 
molecules shown in Fig 7. 
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Fig. 6. Diffraction of thermal neutrons (λdB=0.5 nm) in the far-field zone from grating having 
N=7 slits. Distance to observation screen is z=1 m. Blue circles relate to the probability 
density calculated by Eqs. (24)--(25). Intensity (27) is drawn by red solid curve. Dotted green 
curve draws envelope I 0(x,z) N 2. 

 

 

Fig. 7. The fullerene molecule C60 consists of 60 carbon atoms. Its radius is about 700 pm. At 
a flight velocity  from a source v =100 m/s de Broglie wavelength of the fullerene molecule, 
λdB, is about 5 pm. 

Here we consider interference phenomena in the near-field created by the fullerene 
molecules. Interest to such heavy molecules, having masses about 100 amu and more (Arndt 
et al., 2005; Brezger et al., 2002, 2005; Gerlich et al., 2011; Hackermüller et al., 2003, 2004; 
Nairz et al., 2003) is due to the fact that under ordinary circumstances they behave almost as 
classical objects. Indeed, diameter of the fullerene molecule C60, see Fig. 7, is about 700 pm 
(Yanov & Leszczynski, 2004), but de Broglie wavelength is ~5 pm (Hackermüller et al., 2003; 
Juffmann et al., 2009). There is a problem to observe quantum interference for such  large 
molecules having minuscule wavelengths. 
At small distances from the grating we need in a acceptable scale in order to partition 
interference patterns on characteristic zones. Such a scale parameter is the Talbot length 

 
2

T
dB

2
d

z


 . (30) 

This length starts from Henry Fox Talbot who discovered in 1836 a beautiful interference 
pattern (Talbot, 1836), that carries his name. Here d is the spacing between slits and λdB is the 
de Broglie wavelength of particles under consideration. Figs. 8 and 9 show emergence of 
such interference patterns in the near-field. 
Fig. 8 shows the density distribution function (25) in a transient region from near-field to 
far-field (it is shown in gray color). The Talbot length ranges from 0 to 8zT = 0.8 m. The  
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Fig. 8. Interference pattern of matter waves. The wave is presented by coherent fullerene 
molecule beam incident to a grating having N = 15 slits. De Broglie wavelength of the 
fullerene molecules is λdB = 5 pm. Spacing between slits d = 500 nm and slit width a = 2b = 10 
nm. The Talbot length zT=0.1 m. Two Bohmian trajectories divergent from central area of the 
grating are shown in blue as examples. 

 

 

Fig. 9. Talbot carpet in the near-field of the grating having N = 255 slits. The pattern has 
been captured from central part of the grating. De Broglie wavelength of the fullerene 
molecules is λdB = 5 pm. Spacing between slits d = 500 nm and slit width a = 2b = 10 nm. The 
Talbot length zT=0.1 m. Some of the Bohmian trajectories passing by zigzag through spots 
with high density distribution are shown in blue as examples. 
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interference pattern emergent has been calculated for heavy particles, fullerene molecules, 

Fig. 7, incident on the grating containing N = 15 slits. Spacing between slits is d = 500 nm 

and slit width a = 2b = 10 nm. Mass of the fullerene molecules is about mC60 ≈ 1.2·10-24 kg. 

And at average velocity about 100 m/s (Juffmann et al., 2009) the de Broglie wavelength is 5 

pm. The Talbot length is about zT = 0.1 m. One can easily evaluate that ratio of the Talbot 

length to the spacing between slits is equal to 2·10 5. So, a stripe between two slits extending 

from the grating up to the first Talbot length is extremely narrow. We can see that nearby 

the grating there exists a relatively perfect interference pattern. It decays with removing 

from the grating. And far from the grating characteristic rays divergent from it arise, as 

shown, for example, in Fig. 5 

More fascinating picture arises at observation of the Talbot carpet as a peculiar 

manifestation of interference in near-field, see Fig. 9. The Talbot carpets arise if three 

conditions, Berry's conditions (Berry, 1996, 1997; Berry & Klein, 1996; Berry et al., 2001), are 

fulfilled: (a) paraxial beam; (b) arbitrary small ratio λdB/d; (c) arbitrary large number of slits. 

In a strict sense, in the limits N → ∞ and λdB/d → 0 the Talbot carpet should transform to 

fractal interference pattern. It would look like ǅ-peaks everywhere densely populating the 

probability density distribution function p(x,z), as shown, for example, in Fig. 10. 

 
 

 
 

Fig. 10. Probability density distribution approaches infinite set of ǅ -functions as λdB/d tends 
to zero. Parameters here are as follows N = 64, λdB = 0.5 nm (thermal neutrons), d = 20 nm, zT 
= 6400 nm (Sbitnev, 2009b). 
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In order to reach the Berry's conditions, we take number of slits as many as possible. The 
ratio λdB/d  should be as small as possible, as well. Given λdB = 5 pm and d = 500 nm we 
have the ratio λdB/d = 10-5. It is in good agreement with the condition (b). As for number of 
slits, as seen in Fig. 8 the interference patterns  are washed away on first some Talbot 
lengths. It means, that number of the slits N = 15 is insufficient for observing of the Talbot 
carpet. Fig. 9 shows emergence of the Talbot carpet in the near-field in central part of the 
grating having 255 slits. As seen, N = 255 is sufficient number to get the Talbot carpet with 
perfect organization of alternation of high and low values of the density distribution. 

3.3 Bohmian trajectories 
How does particle pass through the slits? Answer to this problem is proposed in the 
Bohmian mechanics (Bohm, 1952a, 1952b; Bohm & Hiley, 1982; Hiley, 2002). In the next 
section we will consider this solution in detail. Here we show only some particular 
solutions. Two divergent Bohmian trajectories drawn in blue are shown in Fig. 8. They 
prefer to go along dark plots (high values of the density distribution) and avoid light-
colored plots (low values of the density distribution). Fig. 9 also shows in blue a family of 
the Bohmian trajectories. In contrast to the trajectories shown in previous figure, here they 
demonstrate complex zigzag movements. The Bohmian trajectories result from solution of 
the guidance equation (Wyatt & Bittner, 2003; Nikolić, 2007; Sanz & Miret-Artês, 2007, 2008; 
Struyve & Valentini, 2009) 

  1
Imx

S
v x

m m
 

   
 . (31) 

According to the equation (31), position (x,z) of the particle in 2D space is given as follows 

 0 0

0

( ) , ( )
t

x zx t x v d z t z v t    . (32) 

Since we believe that longitudinal momentum, pz, is constant in contrast to the transversal 
momentum px, the component  z  here is calculated by simple multiplication of  vz  by  t. In 
turn, velocity vx, as seen from Eq. (31), is (a) proportional to gradient of the wave function;  
and (b) inversely proportional to the same wave function. It means: (a) a trajectory 
undergoes greatest variations in plots, where the wave function has slopes; and (b) the 
trajectory avoid areas, where the wave function tends to zero. 
One could think that the Bohmian trajectories are physical artifacts, since they enter into a 
rough contradiction with the Heisenberg uncertainty principle, because of prediction in each 
time moment of exact values of  coordinates and velocities of the particle (Bohm, 1952a, 
1952b; Bohm & Hiley1982). However, there is no here contradiction so far as the uncertainty 
principle refers to the measurement problem. Whereas the Bohmian trajectories are simply 
geodesic trajectories. At drawing the density distribution function we could use an 
orthogonal grid represented by geodesic trajectories and surfaces of equal phases, see, for 
example, Fig. 1. In the absence of intervention in a particle's history by  measuring its 
parameters, real particle prefer to move along a geodesic trajectory. However, as soon as we 
undertake  measurement of the particle's parameters we destroy its  history. For example, if 
we measure position of the particle, we destroy its future history. If we measure its 
momentum, then we lose its past history. 
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The Bohmian trajectories in Fig. 9 are seen to fulfill intricate zigzag dances. One can see, the 
trajectories pass through areas where the density distribution has high values and avoid 
areas with low its values. The particles one can guess should perform zigzag motions. 
However, as was noted above, the ratio zT to d is about 2·10 5 and the observed pattern is 
within a very narrow strip. Consequently, these zigzags have very small curvatures. 
Vacuum fluctuations can provoke emergence of such deviations. 

4. Variational computations 

What could cause the particle to perform  such a wavy and zigzag behaviors, as shown in 
the figures above? Possible answer could be as follows: a family of ordered slits in the screen 
poses itself as a quantum object that polarizes vacuum in the near-field region. The 
polarization, in turn, induces formation of a virtual particle’s escort around of a flying real 
particle through the space. The escort corrects movement of the particle depending on the 
environment  by interference of virtual particles with each other  (Feynman & Hibbs, 1965). 

4.1 Wave-particle duality, the Schrödinger equation 
In contrast to classical mechanics where a single trajectory connecting the initial and final 
points submits to the principle of least action, in the quantum mechanics we need to 
consider  all possible trajectories connecting these points in order to obtain clear answer. 
They pass through all intermediate points belonging to a transitional set R 3. All these paths 
should be evaluated jointly. Such a description goes back to the integral Chapman-
Kolmogorov equation (Ventzel, 1975): 

 ( , ; ) ( , ; ) ( , , )
nR

p x z t p x y t p y z dy     (33) 

which gives transitional probability densities of a Markovian sequence. 
 

 

Fig. 11. Computation  of  all possible paths that pass from point  q0  to point  q1  through 
possible intermediate points qx  R 3 represents a core of the path integral method. Pink 
circles conditionally represent radiation of Huygens waves. 

Essential difference from the classical probability theory is that instead of the probabilities 
quantum mechanics deals with probability amplitudes containing imaginary terms. They 
bear information about phase shifts accumulated along paths. In that way, a transition from 
an initial state 0q


 to a final state 1q


 through all intermediate positions xq


 given on a 

conditional set R 3 (see Fig. 11)  is represented by the following path integral 
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3

3
1 0 1 0( , , ) ( , ; , ) ( , , )x x xq q t t K q q t t t q q t q     
     

R

D  (34) 

in the limit ǅt → 0 and 1 xq q
 

. Here symbol D 3qx represents a differential element of 
volume in the set R 3. 
Circular waves pictured by dotted circumferences in Fig. 11 illustrate working of the 
Huygens-Fresnel principle (Landsberg, 1957; Longhurst, 1970). The principle proclaims that 
each point xq


 at an advanced wave front is, in fact, the center of a fresh disturbance and it is 

the source of a new wave radiation. The advancing wave as a whole may be regarded as the 
sum of all the secondary waves arising from points in the medium already traversed by the 
wave. All the secondary waves are coherent, since they are activated from the one source 
given in 0q


. 

It is important to note, that all rays from such secondary sources represent virtual 
trajectories emanating from the source at 0q


 up to the point 1q


. Along with the other virtual 

trajectories generated by the other secondary sources, all together they create in the point 1q


 
an averaged effect of contribution of these secondary sources. This averaged effect shows 
whether a real particle passes by this route and what probability of this event can be. 
We suppose that the integral  kernel 

  1

1 i
( , ; , ) exp ,x x xK q q t t t L q q t

A
     

 

   


 (35) 

has a standard form of the Lagrangian (Feynman & Hibbs, 1965) 

  
2

1, ( )
2

x
x x x

q qm
L q q U q

t
   

 

    . (36) 

Here ( )xU q


 is a potential energy of the particle localized at the point xq 


 R 3. And 

1( ) /xq q t
 

 is a velocity xq
  attached to the same point xq


 and oriented in the direction of 

the point 1q


. 
The next step is to expand terms, ingoing into the integral (34), into Taylor series. The wave 
function written at the left is expanded up to the first term 

 1 0 1 0( , , ) ( , , )q q t t q q t t
t

   
  


   

. (37) 

As for the terms under the integral, here we preliminarily make some transformations. We 
define a small increment 

 3 3
1 x xq q q     

  
D D . (38) 

The Lagrangian (36) is written as 

 
2

12
( , ) ( )

2
x x

m
L q q U q

t

 


  
   . (39) 

Here the potential energy 1( )U q 


 is subjected to expansion into the Taylor series by the 
small parameter 


. The under integral wave function 0 1 0( , , ) ( , , )xq q t q q t   

   
 is 

subjected to expansion into the Taylor series up to the second terms of the expansion 

www.intechopen.com



 
Theoretical Concepts of Quantum Mechanics 

 

330 

   2 2
1 0 1 0( , , ) ( , , ) 2q q t q q t             

    
. (40) 

Taking into account the expressions (37)-(40) and substituting theirs into Eq. (34) we get 
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
 

 
D

 (41) 

One can see that the term 1 0( , , )q q t  
 is presented from both the left side and from the right 

side. These both term can remove each other, if the right part will satisfy the following 
condition 
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From here it follows 

 
3 2

2 i t
A

m

    
 


. (43) 

The power 3 arises here because that the integration is fulfilled on the 3-dimensional set R 3 . 

It would be desirable also to integrate the terms ( )  


 and 2 2 2    existing in the 

integral (41). With this aim in the mind, we mention the following two integrals (Feynman & 
Hibbs, 1965) 
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and 
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
R

D . (45) 

In accordance with the first integral, contributions of the terms   and U  in the 

expression (41) disappear. Whereas, the terms with multiplier ξ 2/2 gains the factor 
(iћǅt/m)/2. 
Taking into account the above stated expressions, let us rewrite  Eq.( 41) 

 
2

1 1 0 1 1 0i i ( ) ( , , ) ( ) ( , , )
2 2

tt t
t U q q q t U q q q t

t m m

     
    


      


. (46) 

The last term contains the factor ǅt 2  due to which contribution of this term to this equation 
is abolished in contrast with other terms as ǅt → 0. By omitting this term, we come to the 
Schrödinger equation 
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2

1i ( )
2

U q
t m

  
   


  . (47) 

describing the function ψ , wave function, in the configuration space R 3 . The subscript 1 
here can be dropped. 

4.2 The Bohmian decomposition 
Let us examine the Schrödinger equation  (47) by substituting the wave function ψ in the 
following form: 

    ( , , ) ( , , ) exp i ( , , ) / ( , , )exp i ( , , ) /q p t q p t S q p t R q p t S q p t  
           . (48) 

Here functions ( , , )S q p t
 

 and ( , , )q p t  
 are real functions of their variables q


, p


, and t. The 

first function is the action which was mentioned earlier. And the second function is the 
probability density distribution defined as follows 

 
2

( , , )q p t    
 

. (49) 

Here we will consider the decomposition in a general view, i.e., the variables 

1 2( , , , )Nq q q q
   and 1 2( , , , )Np p p p

   are those representing the quantum system in 2N-

dimensional phase space. It means, in particular, that there are several particles which can 

be considered in this space as one generalized particle. 

By substituting the wave function ( , , )q p t  
 into the Schrödinger equation (47) we obtain 
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 (50) 

Operators of gradient,  , and laplacian, 2 , read 
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1 2 2 2 2

1 2 1 2

, , , ,N
N N

i i i
q q q q q q

                   
           

  . (51) 

A set { i1,i2, … , i N } represents orthonormal basis of N-dimensional state space S N. The 
orthonormality means that ik· ij=ǅ k,j  for all k, j ranging 1 to N. 
Collecting together real terms (a) and (c), and separately imaginary terms (b) in Eq. (50) we 

obtain two coupled equations for real functions ( , , )S q p t
 

 and ( , , )q p t  
 

  
22 2

2

(c)

1
( )

2 2 2 2

S
S U q

t m m

 
 

                





, (52) 
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S

t m

        
. (53) 

A term 

 
22 22 2

2 2 2 2

R
Q

m m R

 
 

          
   

 
 (54) 

enveloped by brace (c) in Eq. (52) is the quantum potential. It evaluates a measure of 
curvature of the N-dimensional state space induced by a prepared physical scene consisting 
of sources, detectors, and other experimental devices. Equations, (52) and (53), are seen to be 
the coupled pair of nonlinear partial differential equations. The first of the two equations, 

Eq. (52), is the Hamilton-Jacobi equation modified by the quantum potential ( , )Q q t


. The 

second equation, Eq. (53), is the continuity equation. In the above equations we define the 
following computations 

 p mv S  
 

, (55) 

and 

  2 21 1

2 2
S p

m m
  . (56) 

Here p


 is momentum of the particle, v


 is its velocity, and the last equation represents 

kinetic energy of the particle. 
Equation (52) states that total particle energy is the sum of the kinetic energy, potential 
energy, and the quantum potential  (Hiley, 2002). Equation (53), in turn, is interpreted as the 

continuity equation for probability density ( , , )q p t  
. It says that all individual trajectories 

demonstrate collective behavior like a liquid flux  (Madelung, 1926; Wyatt, 2005), perhaps, 

superconductive one. We shall see further, that the quantum potential ( , , )Q q p t
 

 introduces 

corrections both in the kinetic energy and in the potential energy of the particle. 

4.2.1 The quantum potential as an information channel 
According to the observation 

  1 ln       (57) 

we can rewrite the quantum potential by the following way 

  
2 22 2 2

21 1 1 1 1 1
, ln( ) ln( )

2 2 2 2 2 2 2
Q q t

m m m
    

  

                            
          

  
. (58) 

Define a logarithmic function 

  1
( , , ) ln ( , , )

2
QS q p t q p t 
   

 (59) 
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to be called further quantum entropy. It is like to the Boltzmann entropy. However if the 
Boltzmann entropy characterizes degree of order and chaos of classical  gases, the quantum  
entropy evaluates analogous quality of the quantum liquid mentioned above. To be more 
defined, one can imagine the quantum liquid as ensemble of partially ordered virtual 
vortices (particle-antiparticle pairs) within vacuum. For example, such virtual vortices may 
be presented by spinning electron-positron pairs. 
Substituting (59) into Eq. (58) we find that the quantum potential can be expressed in terms 
of this function 

  
2 2

2 2

(a) (b)

( , , )
2 2

Q QQ q p t S S
m m

    
  

 
. (60) 

It should be noted, that the term -SQ  (negative SQ) is named C-amplitude in (Bittner, 2003; 
Wyatt, 2005; Wyatt & Bittner, 2003). Here the term enveloped by brace (a) is viewed as the 
quantum corrector of the kinetic energy. And the term enveloped by brace (b) corrects the 
potential energy. Namely, substituting into Eq. (52) we obtain 

    
2 2

22 2

(a) (b)

1
( )

2 2 2
Q Q

S
S S U q S

t m m m


       


 

 
. (61) 

In this equation the terms enveloped by brace (a) relate to the kinetic energy of the particle, 
and those enveloped by brace (b) relate to its potential energy. 

Substituting also QS  in the continuity equation (53) instead of ǒ we obtain the entropy 
balance equation 

   1
( )

2

Q
Q

S
v S v

t


    


 

. (62) 

Here /v S m 


is a particle speed. The rightmost term, ( )v


, describes a rate of the entropy 
flow produced by spatial divergence of the speed due to curvature of the N-dimensional 
state space. This term is nonzero in regions where the particle changes direction of 
movement. 

5. Beyond the Bohm's insight into QM 

Pair of the equations, the modified HJ equation (61) and the entropy balance equation (62), 
describes behavior of the quantum particle, subject to influence of the quantum entropy. Let 
us now multiply Eq. (62)  by the factor –iћ and add the result to Eq. (61). We obtain 

      
2 2

22 2

(a) (b)

1 1 1
i ( ) i ( )

2 2 2 2
Q Q QS S S S U q v S

t m m m m


            

S    

 
. (63) 

Here S is sum of the action S and the quantum entropy SQ  (complexified action) 

 i QS S S  . (64) 
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Terms enveloped by brace (a) can be rewritten as gradient of the squared complexified 
action 

        
2

22 21 1 1
i

2 2 2
Q QS S S S

m m m m
       S

 . (65) 

As for the terms enveloped by brace (b) they could stem from expansion into the Taylor's 
series of the potential energy extended previously to a complex space, like a complex 
extension, for example, in (Poirier, 2008). In our case, the potential function is extended in 
the complex space, which has a small broadening into imaginary sector. Let us expand into 
the Taylor's series the potential function that has a complex argument 

 
2

2( i ) ( ) i( ( )) ( )
2

U q U q U q U q
       

      . (66) 

Now we will examine the last two terms. Here a small vector   has dimensionality of 
length. But it should contain also the Planck constant, ћ , in order to reproduce the second 
and third terms enveloped by brace (b) in Eq. (63). A minimal representation of this vector 
can be as follows 

 B
2

s n
m

 
 

. (67) 

Here n


 is unit vector pointing direction of the small increment, m is the particle mass, and 

sB  is universal constant, "reverse velocity", 

 7
B 0 2

4 4.57 10 [s/m]s
e

   


. (68) 

Here 191.6 10 [C]e     is the elementary charge carried by a single electron and 
12 2 1 2

0 8.854 10 [C N m ]      is the vacuum permittivity. The reverse velocity measures 

time required for traversing unit of a distance. Such a distance can be perimeter of orbit 

(Poluyan, 2005) at oscillating electron around. Observe that rB = sBћ/m=4Ǒǆ0 ћ2/me 2 is  value 

of the electron radius under its travelling on first orbit around the nucleus (Dirac, 1982). In 

our case it can be an effective radius of electron-positron pair under their virtual revolution 

about the mass center on  the first orbit. From the above it follows, that 
6

B B1 / 2.188 10v s   m/s is the Bohr velocity of electron oscillating on the first orbit about 

the mass center, and 10
B B/ 0.529 10r mv    m  is the Bohr radius of this orbit. Here mvB  

is the electron  momentum. 
In light of these remarks, we can rewrite the expansion (66) in the following form 

 

 

1 2

1 2

2 2
2B B

(b ) (b )

22
B B

(b ) (b )

( i ) ( ) i ( ) ( )
2 2 2

i 1
( ) ( ) ( )

2 4

s s
U q U q n U q U q

m m m

U q nr U q r U q


                  

    

    


   



. (69) 
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A term enveloped by brace (b1) contains unit vector n


 that points out direction of the 
imaginary broadening. A force ( )F U q 

 
 multiplied by Bnr


 is elementary work 

performed  at displacement on a length r B  along direction n


. The elementary work divided 
into ћ  is a rate of variation of the particle velocity per unit length, i.e., it represents 
divergence of the velocity, v


. So, the term enveloped by brace (b1) can be rewritten in the 

following form 

  1 B

1
(b ) : ( ) ( )nr U q v    

  


. (70) 

As for the term 22
B B( / 2 ) ( ) (1 / 2 ) ( )s m U q mv U q  

 
 which is placed over brace (b2) in Eq. (69) 

it is dimensionless. Accurate to an additive dimensionless function 2 ( )aq bq c 
 

 this term is 

comparable with SQ, i.e., with ln(ǒ). Taking into account that sB=1/vB  we proclaim 

 2 2
2 2 2

B B

1 1
(b ) : ( ) ( )

2 2
QU q F S

mv mv

 
       
 


. (71) 

Thus, a value of the Laplacian of ( )U q


 at the point q


can be interpreted as the density of 

sources (sinks) of the potential vector  field ( )F U q 
 

 at this point. Accurate to the 

denominator 2
B2mv , it is proportional to the Laplacian of the quantum entropy SQ. 

We have defined the corrections (70) and (71) by extending coordinates of the real 3D space 
into imaginary domain on the value ǆ. It is equal to about the Bohr radius of the first orbit of 
the electron-positron virtual pair, 11

B 5.292 10r    m. Energy of this pair is much smaller of 
the energy creating two real particles from the vacuum. Therefore such a shift, ǆ = rB/2, can 
be considered as a virtual small shift to the imaginary domain. 
Now we can define complexified momentum 

 i Qm S S      S
  P Q  (72) 

and complexified coordinate 

 iq  
  

Q  (73) 

as extended representations of the real vectors p


 and q


. The complexified momentum P


 
differs from momentum  p


 by additional imaginary term QS . And the complexified 

coordinate Q


 differs from real coordinate q


 by the small imaginary vector (67). Now we 
can rewrite Eq. (63) as complexified the Hamilton-Jacobi equation: 

  21
( ) ( i ) ;

2
U q t

t m



     

S

S
 

H Q ,P . (74) 

Here ( , ; )H Q P t
 

 is a complexified Hamiltonian.  

The total derivative of the complex action reads 

 
1 1

SN N

n n

d d

dt t dt t 

  
   
   S S S n

n n
n

Q
P Q

Q
 (75) 
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where complex derivative is (see Ch.2 in (Titchmarsh, 1976)) 

 i
Q

n n

SS

q q

 
  

  
S  n

n

P
Q

. (76) 

Combining Eq. (75) with (76) we come to the Legendre's dual transformation (Lanczos, 1970) 
that binds the Hamiltonian H  and the Lagrangian L , and conversely: 

 
1

; ) ; )
N

n

d
t t

dt 
   S    

n nH(Q,P P Q L(Q,Q . (77) 

We summarize this section by collecting formulas of the complexified Hamiltonian and 
Lagrangian mechanics via the Legendre's dual transformations in Table 2: 
 

Variables : 

  Coordinate:  Q 


B

i
2

q n
mv


  

 

 Momentum:         P 


Qp S i
   

Variables : 

Coordinate:  Q


B

i i
2

q q n
mv

   
    

 

Velocity:   Q


B

i i
2

q q n
mv

   
         

Hamiltonian function: 

( , , )H Q P t
 

1

N

n n
n

  QP ( , , )L Q Q t
 

 

n
n

H
Q

P





  

n
n

H
P

Q


 


  

Lagrangian function: 

( , , )L Q Q t
 

1

N

n n
n

  QP ( , , )H Q P t
 

 

n
n

L
P

Q




 
 

n
n

L
P

Q





  

Table 2. The Legendre's dual transformations. 

The Lagrangian equations of motions and the Legendre's transformations are invariant 
under the above fulfilled imaginary extension of the real momenta, p n, and the real 
velocities, v n, n=1,2, … N . It should be noted, that the Hamiltonian function is quadratic in 

the momenta, P n, and the Lagrangian function is quadratic in the velocities, 
nQ . A 

conservation law in this case unifies conservation of energy represented by real part, 

Re ( ; )t  
 

H Q,P , and the entropy balance  (62) represented by imaginary part, Im ( ; )t  
 

H Q,P . 

One can see from definition of the complexified velocity presented in this table, that tip of 

the small vector   performs rotating movements on the sphere of the Bohr radius rB = 

ћ/2mvB. This radius is about 115.3 10  m  for the  electron-positron pair dancing on the 

first, virtual, orbit. Energy of this pair, E = ћvB/rBe = 27 V, lies much below energy of the 
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electron-positron creation, E = ћc/λCe = ћ(vB α -1)/(rB α)e = 511 kV. Here e is the electric 

charge, c is the speed of light, λC is the Compton wavelength, and 1 /137  is the fine 

structure constant. From here it is seen, that there is a wide scope of energies for correcting 
movement of real particle by virtual ones. 

6. Concluding remarks 

Classical mechanics supposes a principle possibility of simultaneous measuring both 
coordinates (x,y,z) of material objects and their relative velocities (vx ,vy, vz). In the beginning 
of 20th century scientists call in question such simultaneous measurements. Methods of the 
classical mechanics cease to give correct results on microscopic level. Instead of the classical 
equations describing behavior of a classical body, equations of quantum mechanics deal 
with wave functions that encompass behavior of any particle belonging to the same 
ensemble of coherent particles. The wave function bears information about distribution of 
particles that populate a space-time prepared by experimenter. It is said in that case, that it 
is a guidance function. It contains both the action S and a quantum entropy SQ (logarithm of 
the density distribution with negative sign) in the following manner 

    , exp i Qt S S  
 

Q,P . (78) 

In contrast to the classical mechanics here the action traces all routes weighted with the 
factor  proportional to the density distribution ǒ = exp{ -SQ }. 
Wave functions within the same physical scene (the scene is represented by particle sources, 
detectors, and different physical devices placed between them) obey to superposition 
principle. Namely, sum of the wave functions is again a wave function that bears 
information about organization of the physical scene. At measurements we detect 
interference effects that are conditioned by a specific physical scene. There is no collapse of a 
wave function at the moment of detecting particle. Information relating to the physical scene 
exists until destruction of the scene happens. It can be picked up by a new particle again as 
soon as the particle will be generated by the source. The physical scene prepared by 
experimenter defines a space-time volume in which  particles emitted by sources evolve. 
The Schrödinger equation (Schrödinger, 1926) gives formulas that determine a probable 
evolution of the particles within the space-time predefined by boundary conditions of a task. 
Madelung (Madelung, 1926) and then Bohm (Bohm, 1952a, 1952a) have demonstrated that 
behind this new equation of quantum mechanics (Schrödinger, 1926), classical equations, 
Hamilton-Jacobi equations together with the continuity equation, can be discerned. In contrast 
with the classical equations here a new term emerges - the quantum potential. According to 
the Madelung's views, the wave function simulates laminar flow of a "fluid" along geodesic 
paths, named further the Bohmian trajectories. Equiphase surfaces, in turn, are represented by 
secant surfaces of the trajectory's bundles. Because of these findings we cannot nowadays 
consider the space-time with the same point of view how it  was formulated by thinkers of 
17th century. The quantum potential compels to expand  the 3D coordinate space onto the 
imaginary sector by unification the action S and the quantum entropy SQ, that is, by 
introducing a complex action S + i ћSQ. One way to envisage such a complex space is to 
imagine a hose-pipe. From a long distance it looks like a one dimensional line. But a closer 
inspection reveals that every point on the line is in fact a circle. It determines the unitary group 
U(1), which generates the term exp{ i S/ћ} - a main term in the Feynman path integral. 
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