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1. Introduction

In 1984 Berry addressed a quantum system undergoing a unitary and cyclic evolution under

the action of a time-dependent Hamiltonian (M. V. Berry, 1984). The process was supposed

to be adiabatic, meaning that the time scale of the system’s evolution was much shorter

than the time scale of the changing Hamiltonian. Until Berry’s study, it was assumed that

for a cyclic Hamiltonian the quantum state would acquire only so-called dynamical phases,

deprived of physical meaning. Such phases could be eliminated by redefining the quantum

state through a “gauge” transformation of the form |ψ〉 → eiα |ψ〉. However, Berry discovered

that besides the dynamical, there was an additional phase that could not be “gauged away”

and whose origin was geometric or topological. It depended on the path that |ψ〉 describes

in the parameter space spanned by those parameters to which the Hamiltonian owed its time

dependence. Berry’s discovery was the starting point for a great amount of investigations
that brought to light topological aspects of both quantum and classical systems. Berry’s phase

was soon recognized as a special case of more general phases that showed up when dealing

with topological aspects of different systems. For example, the Aharonov-Bohm phase could

be understood as a geometric phase. The rotation angle acquired by a parallel-transported

vector after completing a closed loop in a gravitationally curved space-time region, is also a

geometric, Berry-like phase. Another example is the precession of the plane of oscillation of a

Foucault pendulum.

Berry’s original formulation was directly applicable to the case of a spin-1/2 system evolving

under the action of a slowly varying magnetic field that undergoes cyclic changes. A

spin-1/2 system is a special case of a two-level system. Another instances are two-level

atoms and polarized light, so that also in these cases we should expect to find geometric

phases. In fact, the first experimental test of Berry’s phase was done using polarized, classical

light (A. Tomita, 1986). Pancharatnam (S. Pancharatnam, 1956) anticipated Berry’s phase

when he proposed, back in 1956, how to decide whether two polarization states are “in

phase”. Pancharatnam’s prescription is an operational one, based upon observing whether

the intensity of the interferogram formed by two polarized beams has maximal intensity. In

that case, the two polarized beams are said to be “in phase”. Such a definition is analogous to

the definition of distant parallelism in differential geometry. Polarized states can be subjected

to different transformations which could be cyclic or not, adiabatic or not, unitary or not.
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2 Will-be-set-by-IN-TECH

And in all cases Pancharatnam’s definition applies. Pancharatnam’s phase bore therefore

an anticipation and – at the same time – a generalization of Berry’s phase. Indeed, Berry’s

assumptions about a cyclic, adiabatic and unitary evolution, turned out to be unnecessary for

a geometric phase to appear. This was made clear through the contributions of several authors
that addressed the issue right after Berry published his seminal results (Y. Aharonov, 1987; J.

Samuel, 1988).

Pancharatnam’s approach, general as it was when viewed as pregnant of so many concepts

related to geometric phases, underlay nonetheless two important restrictions. It addressed

nonorthogonal and at the same time pure, viz totally, polarized states. Here again the assumed

restrictions turned out to be unnecessary. Indeed, it was recently proposed how to decide

whether two orthogonal states are in phase or not (H. M. Wong, 2005). Mixed states have

also been addressed (A. Uhlmann, 1986; E. Sjöqvist, 2000) in relation to geometric phases

which – under appropriate conditions – can be exhibited as well-defined objects underlying

the evolution of such states.

The present Chapter should provide an overview of the Pancharatnam-Berry phase by

introducing it first within Berry’s original approach, and then through the kinematic approach

that was advanced by Simon and Mukunda some years after Berry’s discovery (N. Mukunda,

1993). The kinematic approach brings to the fore the most essential aspects of geometric

phases, something that was not fully accomplished when Berry first addressed the issue.

It also leads to a natural introduction of geodesics in Hilbert space, and helps to connect

Pancharatnam’s approach with the so-called Bargmann invariants. We discuss these issues

in the present Chapter. Other topics that this Chapter addresses are interferometry and

polarimetry, two ways of measuring geometric phases, and some recent generalizations of

Berry’s phase to mixed states and to non-unitary evolutions. Finally, we show in which sense

the relativistic effect known as Thomas rotation can be understood as a manifestation of a

Berry-like phase, amenable to be tested with partially polarized states. All this illustrates

how – as it has often been the case in physics – a fundamental discovery that is made by

addressing a particular issue, can show afterwards to bear a rather unexpected generality and

applicability. Berry’s discovery ranks among this kind of fundamental advances.

2. The adiabatic and cyclic case: Berry’s approach

Let us consider a non-conservative system, whose evolution is ruled by a time-dependent

Hamiltonian H(t). This occurs when the system is under the influence of an environment.

The configuration of the environment can generally be specified by a set of parameters

(R1, R2, . . .). For a changing environment the Ri are time-dependent, and so also the

observables of the system, e.g., the Hamiltonian: H(R(t)) ≡ H(R1(t), R2(t), . . .) = H(t).
The evolution of the quantum system is ruled by the Schrödinger equation, or more generally,

by the Liouville-von Neumann equation (in units of h̄ = 1):

i
dρ(t)

dt
= [H(R(t)), ρ(t)] . (1)

Here, the density operator ρ is assumed to describe a pure state, i.e., to be of the form ρ(t) =
|ψ(t)〉 〈ψ(t)|. An “environmental process” is given by t → R(t), the curve described by the

vector R in parameter space. To such a process it corresponds a curve described by |ψ(t)〉 in

the Hilbert space H to which it belongs, or by the corresponding curve ρ(t) = |ψ(t)〉 〈ψ(t)|
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The Pancharatnam-Berry Phase: Theoretical and Experimental Aspects 3

in the “projection space” P(H) to which ρ belongs. We will assume that for all R there is an

orthonormal basis |n; R〉 such that

H(R) |n; R〉 = En(R) |n; R〉 . (2)

An environmental process R(t) is called periodic with period T, whenever R(T) = R(0),
En(R(T)) = En(R(0)), and |n; R(T)〉 〈n; R(T)| = |n; R(0)〉 〈n; R(0)|. Of course, we can

change the eigenbasis according to |n; R〉 → |n; R〉′ = eiαn(R) |n; R〉, which is called a

gauge transformation. When the adiabatic approximation was first studied, people assumed

that it would be always possible to get rid of phase factors by simply performing a gauge

transformation, if necessary (A. Bohm, 2003). Berry’s discovery made clear that this is not

always the case. The point is that we are not always totally free to choose the required

phase factors when performing gauge transformations. Let us see why it is so. To this end,

we consider first two simple cases in which phase factors appear that can be eliminated.

A first case is a conservative system (∂H/∂t = 0). The initial condition |ψ(0)〉 = |n; R〉
leads to |ψ(t)〉 = exp(−iEnt) |n; R〉. In this case the phase factor can be gauged away. A

second case is a non-conservative system whose Hamiltonian is such that [H(t), H(t′)] = 0

for all t and t′. In this case |ψ(t)〉 = exp(−i
∫ t

0 dt′En(t′)) |n; R(0)〉 and the phase factor

can again be gauged away. Now, if [H(t), H(t′)] �= 0 the evolution is given by |ψ(t)〉 =

T
[
exp(−i

∫ t
0 dt′En(t′))

]
|n; R(0)〉, where T means the time-ordering operator. In this case,

the phase-factor cannot generally be gauged away. To see why is this the case, let us first

restrict ourselves to a slowly evolving Hamiltonian and to an approximate solution of Eq.(1),

the so-called adiabatic approximation:

ρ(t) = |ψ(t)〉 〈ψ(t)| ≈ |n; R(t)〉 〈n; R(t)| . (3)

When R(t) describes a closed path (R(T) = R(0)) so also does ρ(t) under the

adiabatic approximation, because the eigenprojectors are single-valued: |ψ(T)〉 〈ψ(T)| ≈
|n; R(T)〉 〈n; R(T)| = |n; R(0)〉 〈n; R(0)|. However, the state |ψ(t)〉 may acquire a phase.

Note that |ψ(t)〉 〈ψ(t)| ≈ |n; R(t)〉 〈n; R(t)| cannot be upgraded to an equality. This follows

from observing that H(R(t)) and |n; R(t)〉 〈n; R(t)| commute, so that for |ψ(t)〉 〈ψ(t)| =
|n; R(t)〉 〈n; R(t)| to satisfy Eq.(1), it must be stationary. Let us see under which conditions

the adiabatic approximation applies. Writing |ψ(t)〉 = ∑k ck(t) |k; R(t)〉, the adiabatic

approximation means that |ψ(t)〉 ≈ cn(t) |n; R(t)〉, with cn(0) = 1, because |ψ(0)〉 = |n; R(0)〉.
By replacing such a |ψ(t)〉 in the Schrödinger equation one easily obtains the necessary and

sufficient conditions for the validity of the adiabatic approximation (A. Bohm, 2003):

dcn

dt
|n; R(t)〉 ≈ −cn

[
iEn(t) |n; R(t)〉+ d

dt
|n; R(t)〉

]
. (4)

Multiplying this equation by 〈k; R(t)| it follows that

〈k; R(t)| d

dt
|n; R(t)〉 ≈ 0, for all k �= n. (5)

By deriving Eq.(2) with respect to t this condition can be brought, after some calculations, to

the form
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4 Will-be-set-by-IN-TECH

〈k; R(t)| dH(t)/dt |n; R(t)〉
En(R)− Ek(R)

≈ 0, for all k �= n. (6)

Hence, the energy differences En(R)− Ek(R) – or correspondingly, the transition frequencies

of the evolving system – set the time scale for which the variation of H(t) can be considered

“adiabatic”, and |ψ(t)〉 ≈ cn(t) |n; R(t)〉 a valid approximation. Next, we multiply Eq.(4) by

〈n; R(t)| and obtain

dcn

dt
= −cn

[
iEn(t) + 〈n; R(t)| d

dt
|n; R(t)〉

]
, (7)

whose solution is

cn(t) = exp

[
−i

∫ t

0
En(s)ds

]
exp

[
−

∫ t

0
〈n; R(s)| d

ds
|n; R(s)〉 ds

]
≡ exp

(
−iΦdyn(t)

)
exp (iγn(t)) .

(8)

Here,

γn(t) = i
∫ t

0
〈n; R(s)| d

ds
|n; R(s)〉 ds (9)

is the geometric phase, which is defined modulo 2π. We see that it appears as an additional

phase besides the dynamical phase Φdyn. We have thus,

|ψ(t)〉 ≈ cn(t) |n; R(t)〉 = exp
(
−iΦdyn(t)

)
exp (iγn(t)) |n; R(t)〉 . (10)

The geometric phase γn can also be written in the following way, to make clear that it does

not depend on the parameter s:

γn(t) = i
∫ R(t)

R(0)
〈n; R| ∂

∂Rk
|n; R〉 dRk ≡

∫ R(t)

R(0)
A
(n) · dR. (11)

The vector potential A(n) ≡ i 〈n; R| ∇ |n; R〉 is known as the Mead-Berry vector potential. Eq.(11)

makes clear that γn depends only on the path defining the environmental process, i.e., the path

joining the points R(0) and R(t) in parameter space. This highlights the geometrical nature

of γn. Now, one can straightforwardly prove that a gauge transformation |n; R〉 → |n; R〉′ =
eiαn(R) |n; R〉 causes the vector potential to change according to

A
(n) → A

′(n) = A
(n) −∇αn(R). (12)

As a consequence, the geometric phase transforms as

γn(t) → γ′
n(t) = γn(t)− [αn(R(t))− αn(R(0))] . (13)

At first sight, gauge freedom seems to be an appropriate tool for removing the additional

phase factor exp (iγn) in Eq.(10). Indeed, we can repeat the calculations leading to Eq.(10) but

now using |n; R〉′ = eiαn(R) |n; R〉 instead of |n; R〉. We thus obtain an equation like Eq.(10) but

with primed quantities. We could then choose αn(R(t)) = −γ′
n(t) (modulo 2π) and so obtain

|ψ(t)〉 ≈ exp
(

iΦdyn(t)
)
|n; R(t)〉 . (14)

292 Theoretical Concepts of Quantum Mechanics

www.intechopen.com
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This is what V. Fock made when addressing adiabatic quantal evolutions (A. Bohm, 2003),

thereby exploiting the apparent freedom one has for choosing αn(R) when defining the

eigenvectors |n; R〉′ = eiαn(R) |n; R〉. However, when the path C is closed, a restriction appears

that limits our possible choices of phase factors. This follows from the fact that R(T) = R(0)
implies that |n; R(T)〉 = |n; R(0)〉, because eigenvectors are single-valued (something we

can always assume when a single patch is needed for covering our whole parameter space;

otherwise, trivial phase factors are required). The eigenvectors |n; R〉′ are also single-valued,

so that |n; R(T)〉′ = eiαn(R(T)) |n; R(T)〉 = eiαn(R(0)) |n; R(0)〉 = |n; R(0)〉′ = eiαn(R(0)) |n; R(T)〉.
We have thus the restriction exp (iαn(T)) = exp (iαn(0)), which translates into αn(T) =
αn(0) + 2πm, with m integer. Hence, because of Eq.(13),

γn(T) −→ γ′
n(T) = γn(T)− 2πm, (15)

and we conclude that γn(T) is invariant, modulo 2π, under gauge transformations. Thus, it

cannot be gauged away, as initially expected. According to Eq.(11) γn is independent of the

curve parameter (t), so that we should write γn(C) instead of γn(T). We have, finally,

|ψ(T)〉 = exp
(
−iΦdyn(T)

)
exp (iγn(C)) |ψ(0)〉 , (16)

with

Φdyn(T) =
∫ T

0
En(t)dt, (17)

γn(C) =
∮

C
A
(n) · dR. (18)

This is Berry’s result (M. V. Berry, 1984). The vector potential A(n) behaves very much like an

electromagnetic potential. The phase factors exp(iαn(R)) belong to the group U(1), hence the

name “gauge transformations” given to the transformations |n; R〉 → |n; R〉′ = eiαn(R) |n; R〉.
As in electromagnetism, we can also here introduce a field tensor F(n) whose components are

F
(n)
ij =

∂

∂Ri
A
(n)
j − ∂

∂Rj
A
(n)
i . (19)

Geometrically, F(n) has the meaning of a “curvature”. In differential geometry, where the

language of differential forms is used, A(n) is represented by a one-form, and F(n) by a

two-form. When the parameter space is three-dimensional, Eq.(19) can be written as

F
(n) = ∇× A

(n). (20)

Eq.(18) can then be written as

γn(C) =
∫

S
F
(n) · dS, (21)

with the surface element dS directed normally to the surface S, whose boundary is the curve

C.

A paradigmatic case corresponds to a spin-1/2 subjected to a variable magnetic field

B(t)=Bn(t), with n(t).n(t) = 1, see Fig.(1). The time-dependent Hamiltonian is then
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6 Will-be-set-by-IN-TECH

H(t) = −B(e/2mc)n(t) · −→σ , with −→σ the triple of Pauli matrices. The parameter space has

the topology of the unit sphere S2. It is not possible to assign coordinates to all point in S2

with a single patch. One needs at least two of them, which requires introducing two vector

potentials, one for each patch. They are related to one another by a gauge transformation,
i.e., their difference is a gradient. The corresponding curvature three-vector F = ∇ × A is

given by F = −er/2r2, with er the unit radial vector. We note in passing that F = −er/2r2

looks like a Coulomb field, while F = ∇ × A looks like a magnetic field. This hints at

a formal connection between Berry’s phase and Dirac’s magnetic monopoles. In this case,

γn(C) =
∫

S F · dS =
∫

S Frr2 sin θdθdϕ = −
∫

S dΩ/2, so that

B(0)

B(t)

S(t)

Fig. 1. A spin-1/2 subjected to a variable magnetic field B(t) that describes a closed
trajectory. When the field changes slowly in the time scale of the spin dynamics, then the
spin S can follow the field adiabatically. After a period, the spin state has accumulated a
geometric phase in addition to the dynamical one.

γn(C) = −Ω(C)/2, (22)

Ω(C) being the solid angle enclosed by C. This important result can be generalized to arbitrary

dimensions, as we shall see below.

We have introduced Berry’s phase by considering a unitary, cyclic and adiabatic evolution.

This was Berry’s original approach. It was generalized to the non-adiabatic case by Aharonov

and Anandan (Y. Aharonov, 1987), as already said, and by Samuel and Bhandari (J. Samuel,

1988) to the noncyclic case. A purely kinematic approach showed that it is unnecessary to

invoke unitarity of the evolution. Such an approach was developed by Mukunda and Simon

(N. Mukunda, 1993) and is the subject of the next Section.

3. The kinematic approach: total, geometric, and dynamical phases

Let us start by considering a Hilbert space H. We define H0 ⊂ H as the set of normalized,

nonzero vectors |ψ〉 ∈ H. A curve C0 in H0 is defined through vectors |ψ(s)〉 that continuously

depend on some parameter s ∈ [s1, s2]. Because |ψ(s)〉 is normalized, 〈ψ(s)|ψ̇(s)〉 +
〈ψ̇(s)|ψ(s)〉 = 0. Then, Re〈ψ(s)|ψ̇(s)〉 = 0, and
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The Pancharatnam-Berry Phase: Theoretical and Experimental Aspects 7

〈ψ(s)|ψ̇(s)〉 = i Im〈ψ(s)|ψ̇(s)〉. (23)

Now, consider the initial |ψ(s1)〉 and the end point |ψ(s2)〉 of C0. Following Pancharatnam,

we define the total phase between these states as Φtot(C0) = arg〈ψ(s1)|ψ(s2)〉. Under

a gauge transformation |ψ(s)〉 → |ψ′(s)〉 = exp (iα(s)) |ψ(s)〉, we have that C0 → C ′0,

Φtot(C0) → Φ′
tot(C0) = Φtot(C0) + α(s2) − α(s1) and Im〈ψ(s)|ψ̇(s)〉 → Im〈ψ′(s)|ψ̇′(s)〉 =

Im〈ψ(s)|ψ̇(s)〉 + ·
α(s). From these properties it is easy to see that we can construct the

following quantity, the “geometric phase”, which is gauge-invariant:

Φg(C0) = arg〈ψ(s1)|ψ(s2)〉 − Im
∫ s2

s1

〈ψ(s)|ψ̇(s)〉ds. (24)

Besides being re-parametrization invariant, Φg(C0) is, most importantly, also gauge invariant.

This means that despite being defined in terms of |ψ(s)〉 and C0, Φg effectively depends

on equivalence classes of |ψ(s)〉 and C0, respectively. Indeed, the set {|ψ′〉 = exp (iα) |ψ〉}
constitutes an equivalence class. The space spanned by such equivalence classes is called the

“ray space” R0. Instead of working with equivalence classes we can work with projectors:

|ψ〉 〈ψ|. The set {|ψ′〉 = exp (iα) |ψ〉} projects onto the object |ψ〉 〈ψ| by means of a projection

map π : H0 → R0. In particular, the curves C0, C ′0 which are interrelated by a gauge

transformation, are also members of an equivalence class. Under π, they project onto a curve

C0 ⊂ R0. What we have seen above is that Φg is in fact a functional not of C0, but of C0,

the curve defined by |ψ(s)〉 〈ψ(s)|. This is the reason why we call Φg the “geometric phase”

associated with the curve C0 ⊂ R0. We should then better write Φg(C0), though its actual

calculation requires that we choose what is called a “lift” of C0; that is, any curve C0 such that

π(C0) = C0. Thus, Φg(C0) is defined in terms of two phases, see Eq.(24):

Φtot(C0) = arg〈ψ(s1)|ψ(s2)〉, (25)

Φdyn(C0) = Im
∫ s2

s1

〈ψ(s)|ψ̇(s)〉ds. (26)

Φtot(C0) is, as already said, the total or the Pancharatnam phase of C0. It is the argument

α of the complex number 〈ψ(s1)|ψ(s2)〉 = |〈ψ(s1)|ψ(s2)〉| eiα. Later on, we will discuss

the physical meaning of this phase in the context of polarized states, the case addressed by

Pancharatnam. Φdyn(C0) is the dynamical phase of C0. We see that even though both Φtot(C0)
and Φdyn(C0) are functionals of C0, their difference Φg is a functional of C0 = π(C0):

Φg(C0) = Φtot(C0)− Φdyn(C0). (27)

Let us stress that this definition of the geometric phase does not rest on the assumptions
originally made by Berry. Φg(C0) has been introduced in terms of a given evolution of state

vectors |ψ(s)〉. This evolution does not need to be unitary, nor adiabatic. Furthermore, the

path C0 could be open: no cyclic property is invoked. Given a C0 ⊂ R0, we may choose

different lifts to calculate Φg(C0) and exploit this freedom to express Φg(C0) according to our

needs. For example, we can always make Φtot(C0) = 0, by properly choosing the phase of,

say, |ψ(s2)〉. In that case, Φg(C0) = −Φdyn(C0). Alternatively, we can make Φdyn(C0) = 0,

so that Φg(C0) = Φtot(C0), by choosing a so-called “horizontal lift”, one which satisfies
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8 Will-be-set-by-IN-TECH

Im〈ψ(s)|ψ̇(s)〉 = 0. Because Re〈ψ(s)|ψ̇(s)〉 = 0, in this case 〈ψ(s)|ψ̇(s)〉 = 0. In order to obtain

a horizontal lift we can submit, if necessary, any lift |ψ(s)〉 to a gauge transformation: |ψ(s)〉 →
|ψ′(s)〉 = exp (iα(s)) |ψ(s)〉, so that Im〈ψ(s)|ψ̇(s)〉 → Im〈ψ′(s)|ψ̇′(s)〉 = Im〈ψ(s)|ψ̇(s)〉 +
·
α(s). We then require Im〈ψ′(s)|ψ̇′(s)〉 = 0, which yields

α(s) = −Im
∫ s

s1

〈ψ(s)|ψ̇(s)〉ds, (28)

assuming α(s1) = 0, i.e., fixing |ψ′(s1)〉 = |ψ(s1)〉 by proper choice of the initial phase.

As Φg(C0) depends only on ray-space quantities, it should be possible to get an expression

reflecting this fact. Such an expression can be obtained by considering the operator K(s) =
ρ̇(s) = d(|ψ(s)〉 〈ψ(s)|)/ds, whose action on |ψ(s)〉 gives

K(s)|ψ(s)〉 = |ψ̇(s)〉 − 〈ψ(s)|ψ̇(s)〉|ψ(s)〉. (29)

K(s) is obviously gauge invariant; hence, Eq.(29) holds also for gauge-transformed quantities.

By choosing a horizontal lift, 〈ψ(s)|ψ̇(s)〉 = 0, Eq.(29) reads

d

ds
|ψ(s)〉 = ρ̇(s)|ψ(s)〉. (30)

The solution of Eq.(30) can be formally given as a Dyson series: |ψ(s)〉 =

P
(

exp
∫ s

s1
ρ̇(s)ds

)
|ψ(s1)〉, with P the “parameter-ordering” operator: it rearranges a product

of parameter-labelled operators according to, e. g., P (ρ̇(s1)ρ̇(s2)ρ̇(s3)) = ρ̇(s3)ρ̇(s2)ρ̇(s1),
for s3 ≥ s2 ≥ s1. Having a horizontal lift, the geometric phase reduces to Φg(C0) =
Φtot(C0) = arg 〈ψ(s1)|ψ(s2)〉. Now, 〈ψ(s1)|ψ(s2)〉 = Tr |ψ(s2)〉 〈ψ(s1)|, so that setting

|ψ(s2)〉 = P
(

exp
∫ s2

s1
ρ̇(s)ds

)
|ψ(s1)〉 we have

Φg(C0) = arg Tr

{
P

(
exp

∫ s2

s1

ρ̇(s)ds

)
ρ(s1)

}
. (31)

Eq.(31) gives the desired expression of Φg(C0) in terms of ray-space quantities. C0 is any

smooth curve in ray space. If C0 is closed, ρ(s2) = ρ(s1), and |ψ(s2)〉 must be equal to |ψ(s1)〉
up to a phase factor: |ψ(s2)〉 = eiα |ψ(s1)〉, with α = arg 〈ψ(s2)|ψ(s1)〉. For the horizontal lift

we are considering, α = arg 〈ψ(s2)|ψ(s1)〉 = Φg(C0), and we can thus write

|ψ(s2)〉 = P

(
exp

∫ s2

s1

ρ̇(s)ds

)
|ψ(s1)〉 = exp

(
iΦg(C0)

)
|ψ(s1)〉 , (32)

in accordance with our previous results.

3.1 Geodesics

We introduce now the concept of geodesics in both Hilbert-space and ray-space, with the help

of Eq.(29). Notice that K(s) |ψ(s)〉 is orthogonal to |ψ(s)〉, that is, 〈ψ(s)| K(s) |ψ(s)〉 = 0. In

general, 〈ψ(s)|ψ̇(s)〉 �= 0; i.e., the curve C0 = {|ψ(s)〉} has a tangent vector |ψ̇(s)〉 which is

generally not orthogonal to C0. By letting K(s) act on |ψ(s)〉 we get the component of |ψ̇(s)〉
that is orthogonal to the curve. Such a component is obtained from |ψ̇(s)〉 by subtracting

its projection on |ψ(s)〉, i.e., we construct |ψ̇(s)〉 − |ψ(s)〉〈ψ(s)|ψ̇(s)〉. Let us denote this

component by |ψ̇(s)〉⊥ = K(s)|ψ(s)〉. Under a gauge transformation, |ψ(s)〉 → |ψ′(s)〉 =
exp (iα(s)) |ψ(s)〉 and because K′(s) = K(s), it follows |ψ̇′(s)〉⊥ = exp (iα(s)) |ψ̇(s)〉⊥. The
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modulus of |ψ̇(s)〉⊥ is the quantity in terms of which we can define the “length” of a curve. To

make our definition parameter invariant, we take the square root of said modulus and define

the length of C0 as

L(C0) =
∫ s2

s1

√
⊥〈ψ̇(s)|ψ̇(s)〉⊥ds. (33)

Geodesics are defined as curves making L(C0) extremal. By applying the tools of variational

calculus one obtains (N. Mukunda, 1993)

(
d

ds
− 〈ψ(s)|ψ̇(s)〉

) |ψ̇(s)〉⊥√
⊥〈ψ̇(s)|ψ̇(s)〉⊥

= f (s)|ψ(s)〉, (34)

with f (s) an arbitrary, real function. Although Eq.(34) depends on the lifted curve C0, it

must be gauge and re-parametrization invariant, because it follows from Eq.(33). We may

therefore change both the lift and the parametrization in Eq.(34). We choose a horizontal

lift: 〈ψ(s)|ψ̇(s)〉 = 0, which implies that |ψ̇(s)〉⊥ = |ψ̇(s)〉. Furthermore, because of

re-parametrization freedom we may take s such that 〈ψ̇(s)|ψ̇(s)〉 is constant along C0. This

fixes s up to linear inhomogeneous changes, i.e., up to affine transformations. Then, Eq.(34)

reads

d2

ds2
|ψ(s)〉 =

√
〈ψ̇(s)|ψ̇(s)〉 f (s)|ψ(s)〉. (35)

Now, by deriving twice the equation 〈ψ(s)|ψ(s)〉 = 1, we obtain
√
〈ψ̇(s)|ψ̇(s)〉 f (s) +

〈ψ̇(s)|ψ̇(s)〉 = 0, which fixes f (s) to

f (s) = −
√
〈ψ̇(s)|ψ̇(s)〉. (36)

Thus, Eq.(35) reads finally

d2

ds2
|ψ(s)〉 = −ω2|ψ(s)〉, (37)

with ω2 ≡ 〈ψ̇(0)|ψ̇(0)〉. This equation holds for geodesics that are horizontal lifts from the

geodesic C0 in ray space, and with s rendering 〈ψ̇(s)|ψ̇(s)〉 constant. Eq.(37) is thus of second

order and its general solution depends on two vectors. It can be solved, e.g., for the initial

conditions |ψ(0)〉 = |φ1〉 and |ψ̇(0)〉 = ω|φ2〉, i.e., 〈φ1|φ1〉 = 1, 〈φ1|φ2〉 = 0, and 〈φ2|φ2〉 = 1.

The solution reads

|ψ(s)〉 = cos (ωs) |φ1〉+ sin (ωs) |φ2〉. (38)

We see that 〈ψ(0)|ψ(s)〉 = 〈φ1|ψ(s)〉 = cos (ωs). Because s has been fixed only up to an

affine transformation, we can generally choose it such that cos (ωs) ≥ 0 for s ∈ [s1, s2], so that

arg〈ψ(0)|ψ(s)〉 = 0. But because our lift is horizontal, Φg(C0) = arg〈ψ(0)|ψ(s)〉, so that

Φg(C0) = 0 for a geodesic C0. (39)

Eq.(38) shows that geodesics are arcs of circles in a space with orthonormal basis {|φ1〉 , |φ2〉}.

We are thus effectively dealing with a two-level system. The geodesic |ψ(s)〉 of Eq.(38) projects

onto a geodesic in ray-space ρ(s) = |ψ(s)〉〈ψ(s)|. Last one can be mapped onto the unit sphere

in a well-known manner. Indeed, for a two-level system, ρ(s) has the form
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ρ(s) =
1

2

(
I +−→n (s) · −→σ

)
, (40)

with I the identity matrix and −→n = Tr(ρ−→σ ). Now, any two unit vectors, |ψ1〉 and |ψ2〉,
can always be connected by a geodesic. To show this, we need only note that for any two

vectors |ψ1〉 and |ψ2〉 there are two corresponding vectors −→n 1 and −→n 2 on the unit sphere.

These points can be joined by the shortest of the two arcs conforming a great circle. This

is the geodesic arc joining ρ1 and ρ2 that can be lifted to a geodesic arc joining |ψ1〉 and

|ψ2〉. If necessary, we can submit this curve to a gauge transformation, thereby generally

destroying its horizontal but not its geodesic property. Let us discuss this procedure in more

detail. Consider two nonparallel vectors |ψ1〉, |ψ′
2〉. They span a two-dimensional subspace

in which we can consider an orthonormal basis {|φ1〉, |φ2〉}. For example, |φ1〉 = |ψ1〉 and

|φ2〉 =
(
|ψ′

2〉 − |φ1〉〈φ1|ψ′
2〉
)

/
√

1 −
∣∣〈φ1|ψ′

2〉
∣∣2. In such a basis, we can express |ψ′

2〉 in the

form |ψ′
2〉 = eiα|ψ2〉 ≡ eiα

[
cos(θ/2)|φ1〉+ eiϕ sin(θ/2)|φ2〉

]
. We start by considering first the

case in which the initial and final vectors are |φ1〉 = |ψ1〉 and |ψ2〉, respectively. Thereafter, we

deal with the more general case: |ψ′
2〉 = eiα|ψ2〉. The corresponding projectors ρ1 = |ψ1〉〈ψ1|

and ρ2 = |ψ2〉〈ψ2| are given by expressions of the form of Eq.(40) with −→n 1 = (0, 0, 1) and
−→n 2 = (cos ϕ sin θ, sin ϕ sin θ, cos θ). That is, −→n 1 is the North pole (of the “Bloch sphere”) and
−→n 2 has coordinates (θ, ϕ). In order to bring −→n 1 to −→n 2 along a great circle we can submit −→n 1

to a rotation around −→n = −→n 1 ×−→n 2/ sin θ. The rotation from −→n 1 to −→n 2 takes |ψ1〉 to |ψ2〉 by

a SU(2) transformation: U(θ, ϕ) |ψ1〉 = |ψ2〉, with

U(θ, ϕ) = exp

(
−i

θ

2
−→n · −→σ

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
−→n · −→σ = cos

(
θ

2

)
I− i

−→n 1 ×−→n 2

2 cos (θ/2)
· −→σ .

(41)

Setting |ψ(s)〉 = U(θs, ϕ)|φ1〉 we have |ψ(0)〉 = |ψ1〉, |ψ(1)〉 = |ψ2〉, and the curve |ψ(s)〉,
s ∈ [0, 1], is a horizontal geodesic. Indeed, by explicitly writing U(θs, ϕ) as

U(θs, ϕ) = cos

(
θ

2
s

)
I − i sin

(
θ

2
s

)
−→n ϕ · −→σ , (42)

with −→n ϕ = (− sin ϕ, cos ϕ, 0), we can straightforwardly verify that |ψ(s)〉 fulfills the defining

properties of horizontal geodesics, namely 〈ψ(s)|ψ̇(s)〉 = 0, and

d2

ds2
|ψ(s)〉 = −〈ψ̇(s)|ψ̇(s)〉|ψ(s)〉 = − θ2

4
|ψ(s)〉. (43)

Hence, we have proved that for |ψ1〉 = |φ1〉 and |ψ2〉 = cos(θ/2)|φ1〉 + eiϕ sin(θ/2)|φ2〉,
there is a horizontal geodesic |ψ(s)〉 = U(θs, ϕ)|φ1〉 joining these vectors, with U(θs, ϕ) as in

Eq.(42). Next, we consider a general final vector |ψ′
2〉 = eiα|ψ2〉. In this case we need only

change U(θs, ϕ) by e−iαsU(θs, ϕ) and it follows that the curve |ψ′(s)〉 = e−iαsU(θs, ϕ)|φ1〉,
with |ψ′(0)〉 = |ψ1〉, |ψ′(1)〉 = |ψ′

2〉, is still a geodesic; that is, it satisfies Eq.(34) (with f (s) =
θ/2) though it is no longer horizontal: 〈ψ′(s)|ψ̇′(s)〉 = −iα. In summary, we have proved that

any two vectors, |ψ1〉 and |ψ2〉, can be connected by a geodesic C0. If this geodesic happens

to be horizontal, then its dynamical phase vanishes and so does its total phase arg〈ψ1|ψ2〉, see
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Eq.(38). Hence, Φg(C0) = 0. This last property is gauge independent. However, if C0 is not

horizontal, then Φdyn(C0) �= 0 and arg〈ψ1|ψ2〉 �= 0, but Φg(C0) = 0 anyway.

Eq.(39) leads to an alternative formulation of the geometric phase. It rests upon the concept

of Bargmann invariants, for which Eq.(39) plays a central role, together with the total phase
arg〈ψ1|ψ2〉. When arg〈ψ1|ψ2〉 = 0 we say that |ψ1〉 and |ψ2〉 are “in phase”. This generalizes

Pancharatnam’s definition for polarization states to the quantal case. As we have seen, |ψ1〉
and |ψ2〉 are “in phase” when these two vectors can be joined by a horizontal geodesic.

Consider a third vector |ψ3〉, joined to |ψ2〉 by a horizontal geodesic, so that arg〈ψ2|ψ3〉 = 0

too. Our three vectors are thus joined by a curve made of two geodesic arcs. Can we conclude

that |ψ3〉 and |ψ1〉 are “in phase”? The answer is generally on the negative. Being “in phase”

is not a transitive property. The following discussion illustrates this point.

3.2 Bargmann invariants

Consider N points in ray space: ρ1, ρ2, . . . , ρN . As we have seen, each pair can be connected

by a geodesic arc. Let us denote by C0 the curve formed by the N − 1 geodesic arcs joining

the N points. Let us assume that any two neighboring points are nonorthogonal. That is, for

any lift |ψ1〉 , |ψ2〉 , . . . , |ψN〉, it holds 〈ψi|ψi+1〉 �= 0, for i = 1, . . . , N − 1. The geometric phase

Φg(C0) is given by

Φg(C0) = Φtot(C0)− Φdyn(C0) = arg 〈ψ1|ψN〉 −
N−1

∑
k=1

Φ
(k,k+1)
dyn , (44)

where Φ
(k,k+1)
dyn is the dynamical phase for the geodesic joining |ψk〉 with |ψk+1〉. Because

Φ
(k,k+1)
g = 0, we can write Φ

(k,k+1)
dyn = Φ

(k,k+1)
tot − Φ

(k,k+1)
g = arg〈ψk|ψk+1〉. Now,

∑
N−1
k=1 arg〈ψk|ψk+1〉 = arg ∏

N−1
k=1 〈ψk|ψk+1〉, and arg〈ψ1|ψN〉 = − arg〈ψN |ψ1〉, so that

Φg(C0) = arg〈ψ1|ψN〉 − arg
N−1

∏
k=1

〈ψk|ψk+1〉 = − arg

(
N−1

∏
k=1

〈ψk|ψk+1〉
)
〈ψN |ψ1〉, (45)

and we can finally write

Φg(C0) = − arg〈ψ1|ψ2〉〈ψ2|ψ3〉 . . . 〈ψN |ψ1〉. (46)

Although Φg(C0) has been derived by joining |ψ1〉, . . . , |ψN〉 with geodesic arcs, the final

expression does not depend on these arcs, but only on the vectors they join. Quantities

like 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 are called “Bargmann invariants”. They generalize |〈ψ1|ψ2〉|2,

which is invariant under simultaneous U(1) transformations: |ψ1〉 →
∣∣ψ′

1

〉
= exp(iα1) |ψ1〉

and |ψ2〉 →
∣∣ψ′

2

〉
= exp(iα2) |ψ2〉. Quantities that are invariant under U(1) ⊗ U(1) ⊗ . . .

were introduced by Bargmann for studying the difference between unitary and anti-unitary

transformations.

The curve C0 in Eq.(45) was assumed to be open: ρN �= ρ1. However, we can close the
curve to C̃0, by completing the N − 1-sided polygon C0 with a geodesic arc connecting ρN

with ρ1. By repeating the steps leading to Eq.(45), though taking into account that now

Φtot(C̃0) = 0 because the final point |ψN+1〉 = |ψ1〉, we see that Φg(C̃0) = −Φdyn(C̃0) =

− arg ∏
N
k=1〈ψk|ψk+1〉, so that Φg(C̃0) is given again by Eq.(46). In other words, Φg(C̃0) =

Φg(C0).
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Starting from Eq.(46) it is possible to recover the results previously found for general open

curves (N. Mukunda, 1993). One proceeds by approximating a given curve by a polygonal

arc made up of N → ∞ geodesic arcs. By a limiting procedure one recovers then Φg(C0) =
Φtot(C0)− Φdyn(C0) with Φtot(C0) and Φdyn(C0) given by Eqs.(25) and (26), respectively. Also
Eq.(31) can be recovered in a similar fashion (N. Mukunda, 1993).

The quantity 〈ψ1|ψ3〉〈ψ3|ψ2〉〈ψ2|ψ1〉, the three-vertex Bargmann invariant, can be identified

as the basic building block of geometric phases. It can be seen as the result of two

successive filtering measurements, the first projecting |ψ1〉 on |ψ2〉, followed by a second

projection on |ψ3〉. The phase of the final state with respect to the first one is Φ
△
g =

− arg〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 = − arg Trρ1ρ2ρ3. It can be proved (A. G. Wagh, 1999) that

Φ
△
g = −Ω

△
p /2. Here, Ω

△
p is the solid angle subtended by the spherical triangle formed by

shorter geodesics between |ψ2〉, |ψ3〉 and the projection |ψ1〉p of |ψ1〉 on the subspace spanned

by the other two vectors. Now, given a closed curve C̃0, by triangulation with infinitesimal

geodesic triangles it is possible to express Φg(C̃0) as (A. G. Wagh, 1999)

Φg(C̃0) = − 1

2

∫

S
dΩp, (47)

thereby generalizing Eq.(22).

4. Pancharatnam-Berry phase and its measurement by polarimetry and

interferometry

4.1 Interferometric arrangement

We introduced the total phase, arg〈ψ1|ψ2〉, as a generalization of Pancharatnam’s definition

for the relative phase between two polarized states of light. According to Pancharatnam’s

definition, we can operationally decide whether two nonorthogonal states are “in phase”.

Consider two nonorthogonal polarization states, |i〉 and | f 〉 �= |i〉, and let them interfere. Due

to the optical-path difference, there is a relative phase-shift φ giving rise to an intensity pattern

I =
∣∣∣eiφ |i〉+ | f 〉

∣∣∣
2
∝ 1 + |〈i| f 〉| cos (φ − arg 〈i| f 〉) . (48)

The maxima of I occur for φ = arg 〈i| f 〉 ≡ Φtot, which is thereby operationally defined as

the total (Pancharatnam) phase between |i〉 and | f 〉. If arg 〈i| f 〉 = 0, the states are said to be

“in phase”. Polarization states are two-level systems. When they are submitted to the action

of intensity-preserving optical elements, like wave-plates, their polarization transformations

belong to the group SU(2) (modulo global phase factors). We can exhibit Φtot by submitting |i〉
to U ∈ SU(2), thereby producing a state | f 〉 = U |i〉. Eq.(48) applies to, say, a Mach-Zehnder
array. Alternatively, one could employ polarimetric methods. We will discuss both methods

in what follows. Among the different parameterizations of U, the following one is particularly

well suited for extracting Pancharatnam’s phase:

U(β, γ, δ) = exp

(
i(

δ + γ

2
)σz

)
exp

(
−iβσy

)
exp

(
i(

δ − γ

2
)σz

)
=

(
eiδ cos β − eiγ sin β

e−iγ sin β e−iδ cos β

)
.

(49)
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Indeed, taking as initial state |i〉 = |+〉z ≡ |+〉, the eigenstate of σz for the eigenvalue +1, and

setting | f 〉 = U |+〉, we obtain

〈i| f 〉 = 〈+|U(β, γ, δ) |+〉 = eiδ cos β. (50)

Thus, Φtot = arg 〈i| f 〉 = δ + arg(cos β), for β �= (2n + 1)π/2. Because cos β takes on positive

and negative real values, arg(cos β) equals 0 or π, and Φtot is thus given by δ modulo π. In

principle, then, we could obtain ΦP (modulo π) by comparing two interferograms, one taken

as a reference and corresponding to ΦP = 0 (U = I), and the other corresponding to the

application of U. Their relative shift gives ΦP. We can implement unitary transformations

using quarter-wave plates (Q) and half-wave plates (H). These transformations are of the

form U(ξ, η, ζ) = exp
(
−iξσy/2

)
exp (iησz/2) exp

(
−iζσy/2

)
. They can be realized with the

following gadget (R. Simon, 1990), in which the arguments of Q and H mean the angles of

their major axes to the vertical direction:

U(ξ, η, ζ) = Q

(−3π + 2ξ

4

)
H

(
ξ − η − ζ − π

4

)
Q

(
π − 2ζ

4

)
. (51)

The corresponding interferogram has an intensity pattern given by

IV =
1

2

[
1 − cos

(η

2

)
cos

(
ξ + ζ

2

)
cos (φ)− sin

( η

2

)
cos

(
ξ − ζ

2

)
sin (φ)

]
. (52)

IV refers to an initial state |+〉z that is vertically polarized. This result follows from

the parametrization of U given by U(ξ, η, ζ). By using the relationship between this

parametrization and that of Eq.(49), i.e., U(β, γ, δ), one can show that IV can be written as

IV =
1

2
[1 − cos β cos (φ − δ)] . (53)

Pancharatnam’s phase ΦP = δ is thus given by the shift of the interferogram IV with

respect to a reference interferogram I = [1 − cos β cos φ] /2. By recording one interferogram

after the other one could measure their relative shift. However, thermal and mechanical

disturbances make it difficult to record stable reference patterns, thereby precluding accurate

measurements of ΦP. A way out of this situation follows from observing that the intensity

pattern corresponding to an initial, horizontally polarized state |−〉z is given by

IH =
1

2
[1 − cos (β) cos (φ + δ)] . (54)

Hence, the relative shift between IV and IH is twice Pancharatnam’s phase. If one manages to

divide the laser beam into a vertically and a horizontally polarized part, the two halves of the

laser beam will be subjected to equal disturbances and one can record two interferograms in

a single shot. The relative shift would be thus easily measurable, being robust to thermal and

mechanical disturbances. With such an array it is possible to measure Pancharatnam’s phase

for different unitary transformations. This approach proved to be realizable, using either a

beam expander or a polarizing beam displacer (J. C. Loredo, 2009).

A similar approach can be used to measure the geometric phase Φg = ΦP(C0) − Φdyn(C0).
One can exploit the gauge freedom and choose an appropriate phase factor exp(iα(s)), so

as to make Φdyn(C0) = 0 along a curve C0 : |ψ(s)〉 , s ∈ [s1, s2] which is traced out by

polarization states |ψ(s)〉 resulting from U(s): |ψ(s)〉 = U(s) |ψ(0)〉. Any U(s) can be realized
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by making one or more parameters in U(ξ, η, ζ) (see Eq.(51)) functions of s. Setting the

corresponding QHQ-gadget on one arm of the interferometer, one lets the polarization state

|ψ(s)〉 follow a prescribed curve. A second QHQ-gadget can be put on the other arm, in order

to produce the factor exp(iα(s)) that is needed to make Φdyn(C0) = 0. To fix α(s), one solves

Im〈ψ(s)|ψ̇(s)〉 + ·
α(s) = 0. The corresponding interferometric setup is shown in Fig.(2). It

is of the Mach-Zehnder type; but a Sagnac and a Michelson interferometer could be used as

well. With the help of this array one can generate geometric phases associated to non-geodesic

trajectories on the Poincaré sphere (J. C. Loredo, 2011). In this way, one is not constrained to

use special trajectories, along which the dynamical phase identically vanishes (Y. Ota, 2009).

The geometric phase is nowadays seen as an important tool for implementing robust quantum

gates that can be employed in information processing (E. Sjöqvist, 2008). It appears to be noise

resilient, as recent experiments seem to confirm (S. Fillip, 2009).

Ref.(J. C. Loredo, 2011) reports measurements that were obtained with a 30 mW cw He-Ne

laser (632.8 nm) and the interferometric array shown in Fig.(2).The interferograms were

Q

Q

H

P1

P2

P

E

BS

BS

L

MM

M

Y

X

Fig. 2. Mach-Zehnder array for measuring the geometric phase. Quarter (Q) and half (H)
wave plates are used for realizing the SU(2) transformations. L: He-Ne laser, P, P1, P2:
polarizers, E: beam expander, BS: beam-splitter, M: mirror.

recorded with the help of a CCD camera and evaluated using an algorithm that performs

a column average of each half of the interferogram. The output was then submitted to a

low-pass filter to get rid of noisy features. For each pair of curves the algorithm searches

for relative minima and compares their locations. This procedure could be applied to a set
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of interferograms corresponding to different choices of U(ξ, η, ζ). Experimental results are

shown in Fig. (3), corresponding to the trajectory on the Poincaré sphere shown in Fig. (4). As

can be seen, they are in very good agreement with theoretical predictions.

1 2 3 4 5 6
s

�80

�60

�40

�20

�g

n � �
3

5
,
4

5
,0� Β � 53

o

Fig. 3. Geometric phase for a non-geodesic trajectory on the Poincaré sphere. The trajectory is
a circle resulting from intersecting a cone with the Poincaré sphere. It is fixed by the axis n of
the cone and its aperture angle β.

4.2 Polarimetric arrangement

Some years ago, Wagh and Rakhecha proposed a polarimetric method to measure

Pancharatnam’s phase (A. G. Wagh, 1995;b). Such a method is experimentally more

demanding than the interferometric one, but it was considered more accurate because it

requires a single beam. Both methods were tested in experiments with neutrons (A. G. Wagh,

1997; 2000), whose spins were subjected to SU(2) transformations by applying a magnetic

field. Now, it is not obvious that one can extract phase information from a single beam. As we

shall see, polarimetry can be understood as “virtual interferometry”, in which a single beam

is decomposed in two “virtual” beams.

n � �
3

5
,
4

5
,0� Β � 53

o

�1.0
�0.5

0.0
0.5

1.0

x

�1.0 �0.5 0.0 0.5 1.0

y

�1.0

�0.5

0.0

0.5

1.0

z

Fig. 4. The trajectory described on the Poincaré sphere. The dynamical phase is
simultaneously cancelled by means of a QHQ gadget.
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Consider an initial state |+〉 ≡ |+〉z and let it be submitted to a π/2-rotation around the

x-axis to produce the circularly polarized state (|+〉 − i |−〉) /
√

2, which is in turn acted

upon by exp (−φσz/2). The result is V |+〉 ≡ exp (−iφσz/2) exp (−iπσx/4) |+〉, i.e., the

state
(
|+〉 − ieiφ |−〉

)
/
√

2, up to a global phase. We have thereby generated a relative

phase-shift φ between |+〉 and |−〉, as in an interferometer. Applying U ∈ SU(2) we obtain

UV |+〉 = e−iφ/2
(

U |+〉 − ieiφU |−〉
)

/
√

2 ≡ |χ+〉 + |χ−〉. From this state we will extract

Pancharatnam’s phase. To this end, we project with V |+〉, so that the intensity of the projected

state is

I =
∣∣∣〈+|V† (|χ+〉+ |χ−〉)

∣∣∣
2

. (55)

Let us write V |+〉 = e−iφ/2
(
|+〉 − ieiφ |−〉

)
/
√

2 ≡ |ϕ+〉 + |ϕ+〉 and take U as given by

Eq.(49). Calculating the amplitude 〈+|V† (|χ+〉+ |χ−〉) = (〈ϕ+|+ 〈ϕ−|)(|χ+〉+ |χ−〉) we

obtain, using 〈ϕ±|χ±〉 = exp (±iδ) cos (β) /2, and 〈ϕ∓|χ±〉 = i exp (∓i(γ + φ)) sin (β) /2,

that (〈ϕ+|+ 〈ϕ−|)(|χ+〉+ |χ−〉) = cos (β) cos (δ) + i sin (β) cos (γ + φ) and

I = cos2 (β) cos2 (δ) + sin2 (β) cos2 (γ + φ) . (56)

Eq.(56) contains Pancharatnam’s phase δ = Φtot. It can be extracted from intensity

measurements. Indeed, Eq.(56) yields the minimal and maximal intensity values of the

pattern that arises from varying φ. They are given by Imin = cos2 (β) cos2 (δ) and Imax =
cos2 (β) cos2 (δ) + sin2 (β), respectively, so that Pancharatnam’s phase follows from

cos2 (δ) =
Imin

1 − Imax + Imin
. (57)

In order to measure the geometric phase, we make Φdyn = 0. As we saw before, this

can be achieved by using in place of the gauge |ψ(s)〉 = U(s) |+〉, the gauge |ψ(s)〉 =
exp [iα(s)]U(s) |+〉. In this way we get 〈ψ(s)|dψ(s)/ds〉 = 0, so that Φtot = Φg. To be specific,

let us assume that we wish to generate circular trajectories corresponding to rotations by an

angle s around −→n (θ, ϕ). The corresponding unitarity is U(θ, ϕ, s) = exp
[
−is−→n (θ, ϕ) · −→σ

]
. In

order to make Φdyn(C0) = 0 in this case, we can take α(s) = 〈+| −→n (θ, ϕ) · −→σ |+〉 s.

In an optical arrangement we implement V and U with retarders. Simon and Mukunda (R.

Simon, 1989) proposed a gadget realizing U(θ, ϕ, s), so that the circular trajectory is generated

by rotating a single retarder (H) by the angle s/2, after having fixed θ and ϕ. This gadget is

U(θ, ϕ, s) = Q

(
π + ϕ

2

)
Q

(
θ + ϕ

2

)
H

(−π + θ + ϕ

2
+

s

2

)
Q

(
θ + ϕ

2

)
Q
( ϕ

2

)
. (58)

As for V = exp (−iφσz/2) exp (−iπσx/4), we have exp (−iπσx/4) = Q(π/4) and

exp (−iφσz/2) = Q(π/4)H((φ − π) /4)Q(π/4). Using Q2(π/4) = H(π/4) and

exp (+iφσz/2) = Q(−π/4)H((φ + π) /4)Q(−π/4) we get

Utot ≡ V†UV = H
(
−π

4

)
H

(
φ + π

4

)
Q
(
−π

4

)
UQ

(π

4

)
H

(
φ − π

4

)
H

(π

4

)
. (59)

Inserting for U the corresponding operator, which in the present case is exp [iα(s)]U(θ, ϕ, s),
we obtain the full arrangement. Applying relations like Q(α)H(β) = H(β)Q(2β − α),
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Q(α)H(β)H(γ) = Q(α + π/2)H(α − β + γ − π/2), etc. (R. Simon, 1990), we can reduce

the array from elf to seven retarders:

Utot(θ, ϕ, s, γ) = Q
(π

4
− γ

2

)
Q
(
−π − ϕ

2
− γ

2

)
Q

(
π − θ − ϕ

2
− γ

2

)
× (60)

×H

(−s − θ − ϕ

2
− γ

2

)
Q

(
π − θ − ϕ

2
− γ

2

)
Q

(
π − ϕ

2
− γ

2

)
Q
(
−π

4
− γ

2

)
,

with γ ≡ σ + α(s) = σ + s sin θ cos ϕ. For each fixed value of s – that is, for each

point on the chosen trajectory – one generates an intensity pattern through variation

of σ, i.e., by rotating the whole array σ radians over some interval, which should be

large enough for recording several maximal and minimal intensity values. From these

values one can obtain Φg(s). Indeed, the intensity is given by I = |〈+|Utot |+〉|2,

and it can be proved (J. C. Loredo, 2011) that in the present case I = cos2 (s) +

sin2 (s) [cos (θ) cos (σ − α(s))− sin (θ) sin (ϕ) sin (σ − α(s))]2. From this result one derives

the following expression for the geometric phase (J. C. Loredo, 2011):

Φg(s) = arccos
(√

Imin

)√
1 − Imax

1 − Imin
− arctan

(√
1 − Imax

Imin

)
. (61)

This result has been tested for various trajectories (J. C. Loredo, 2011), confirming theoretical

predictions with the expected accuracy. Though all these experiments were performed with

a cw He-Ne laser, an alternative setting using single-photon sources should produce similar

results. This is so because all the aforementioned results have topological, rather than classical

or quantal character.

5. Geometric phase for mixed states

Up to this point, the geometric phase refers to pure states ρ = |ψ〉〈ψ|. It is natural to ask

whether geometric phases can be defined for mixed states as well. Uhlmann addressed

this question (A. Uhlmann, 1986) and introduced a phase based on the concept of parallel

transport. When a pure state |ψ(s)〉 evolves under parallel transport, it remains in phase with

|ψ(s + ds)〉, i.e., the system does not suffer local phase changes. After completing a closed

loop, a state may acquire a nontrivial phase, stemming from the curvature of the underlying

parameter space. This notion can be extended to mixed states. To this end, Uhlmann

considered so-called “purifications” of mixed states. That is, one considers a mixed state as

being part of a larger system, which is in a pure state. There are infinitely many possible

purifications of a given mixed state. Hence, to a given cyclic evolution there correspond

infinitely many evolutions of the purifications. However, one of these evolutions can be

singled out as the one which is “maximally parallel” (A. Uhlmann, 1986), and this leads to

a definition of geometric phases for mixed states.

An alternative approach was addressed more recently by Sjöqvist et al. (E. Sjöqvist, 2000).

The starting point is Pancharatnam’s approach; i.e., the interference between two states: |i〉,
to which a phase-shift φ is applied, and | f 〉 = U|i〉, with U unitary. The interference pattern

is given by
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I =
∣∣∣eiφ |i〉+ U |i〉

∣∣∣
2
= 2 + 2 |〈i|U|i〉| cos (φ − arg〈i|U|i〉) = 2 + 2v cos (φ − Φtot) , (62)

with v = |〈i|U|i〉| being the visibility and Φtot = arg〈i|U|i〉 the total phase between |i〉 and

U|i〉.
Consider now a mixed state ρ = ∑i wi|i〉〈i|, with ∑i wi = 1. The intensity profile will now be

given by the contributions of all the individual pure states:

I = ∑
i

wi

∣∣∣eiφ |i〉+ U |i〉
∣∣∣
2
= 2 + 2 ∑

i

wi |〈i|U|i〉| cos (φ − arg〈i|U|i〉) . (63)

We can write I in a basis-independent form as (E. Sjöqvist, 2000)

I = 2 + 2 |Tr (Uρ)| cos [φ − arg Tr (Uρ)] . (64)

It is then clear that v = |Tr (Uρ)| and that the total phase can be operationally defined as

Φtot = arg Tr (Uρ), which is the value of the shift φ at which maximal intensity is attained. As

expected, such a definition reduces to Pancharatnam’s for pure states ρ = |i〉〈i|.
Let us now address the extension of the geometric phase for mixed states. For pure states |ψ(s)〉
the geometric phase equals Pancharatnam’s phase whenever |ψ(s)〉 evolves under parallel

transport: 〈ψ(s)|ψ̇(s)〉 = 0. We can try to extend the notion of parallel transport for mixed

states by requiring ρ(s) to be in phase with ρ(s + ds) = U(s + ds) ρ0U†(s + ds) = U(s + ds)
U†(s)ρ(s)U(s)U†(s + ds). According to our previous definition, the phase difference between

ρ(s) and ρ(s + ds) is given by arg Tr
(
U(s + ds)U†(s)ρ(s)

)
in this case. We say that ρ(s) and

ρ(s + ds) are in phase when arg Tr
(
U(s + ds)U†(s)ρ(s)

)
= 0, i.e., Tr

(
U(s + ds)U†(s)ρ(s)

)
is

a positive real number. Now, because Tr (ρ(s)) = 1 and ρ(s)† = ρ(s), the number Tr
(
U̇U†ρ

)

is purely imaginary. Hence, a necessary condition for parallel transport is

Tr
(

U̇(s)U†(s)ρ(s)
)
= 0. (65)

However, such a condition is not sufficient to fix U(s) for a given ρ(s). Indeed, considering

any N × N matrix representation of the given ρ, Eq.(65) determines U only up to N phase

factors. In order to fix these factors we must impose a more stringent condition:

〈k(s)|U̇(s)U†(s)|k(s)〉 = 0, k = 1, . . . , N, (66)

where ρ(s) = ∑k wk|k(s)〉〈k(s)|. This gives the desired generalization of parallel transport to

the case of mixed states. We can now define a geometric phase for a state that evolves along

the curve C : s → ρ(s) = U(s)ρ0U†(s), with s ∈ [s1, s2] and U(s) satisfying Eqs.(65) and (66).

The dynamical phase Φdyn ≡ −i
∫ s2

s1
dsTr

(
U†(s)U̇(s)ρ(0)

)
= 0 and we define the geometric

phase Φg for mixed states as

Φg = arg Tr (U(s)ρ(0)) . (67)

Φg is gauge and parametrization invariant and has been defined for general paths, open or

closed. In special cases, Φg can be expressed in terms of a solid angle, as it is the case with

Berry’s phase. For example, a two-level system can be described by
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ρ =
1

2

(
I +−→r · −→σ

)
=

1

2

(
I + r−→n · −→σ

)
, (68)

with −→n · −→n = 1 and r constant for unitary evolutions. For pure states r = 1, while for mixed

states r < 1. The unitary evolution of ρ(s) makes −→n (s) to trace out a curve C on the Bloch

sphere. If necessary, we close C to C̃ by joining initial and final points with a geodesic arc,

so that C̃ subtends a solid angle Ω. Then, the two eigenstates |±;−→n · −→σ 〉 of −→n · −→σ acquire

geometric phases ∓Ω/2. Both states have the same visibility v0 =
∣∣〈±;−→n · −→σ |U|±;−→n · −→σ 〉

∣∣.
The eigenvalues of ρ are w± = (1 ± r)/2. The geometric phase thus reads

Φg = arg

(
1 + r

2
e−iΩ/2 +

1 − r

2
e+iΩ/2

)
= − arctan

(
r tan

(
Ω

2

))
. (69)

and the visibility

v = v0

∣∣∣∣
1 + r

2
e−iΩ/2 +

1 − r

2
e+iΩ/2

∣∣∣∣ = v0

√

cos2

(
Ω

2

)
+ r2 sin2

(
Ω

2

)
. (70)

Eqs.(69) and (70) reduce for r = 1 to Φg = −Ω/2 and v = v0, respectively, the known

expressions for pure states. For maximally mixed states, r = 0, we obtain Φg = arg cos (Ω/2),
v = |cos (Ω/2)|, and Eq.(64) yields

I = 2 + 2 |cos (Ω/2)| cos (φ − arg cos (Ω/2)) = 2 + 2 cos (Ω/2) cos φ. (71)

We see that for Ω = 2π there is a sign change in the intensity pattern. This was experimentally

observed in early experiments testing the 4π symmetry of spin-1/2 particles (H. Rauch, 1975).

Much later, theoretical results like those expressed in Eqs.(69,70) have been successfully put

to experimental test (M. Ericsson, 2005).

The above extensions of Pancharatnam’s and geometric phases assume a unitary evolution

|i〉 → | f 〉 = U|i〉. A non-unitary evolution – reflecting the influence of an environment –

can be handled with the help of an ancilla; that is, by replacing the true environment by an

environment simulator, a fictitious system being in a pure state |0e〉〈0e|, which is appended

to the given system. The system plus the environment simulator are then described by ρ̃ =
ρ ⊗ |0e〉〈0e| and evolve unitarily, ρ̃ → ρ̃′ = Uρ̃U†, in such a way that by tracing over the

environment we recover the change of ρ → ρ′ = Treρ̃′. Introducing an orthonormal basis

{|ke〉}k=0,...,M for the environment, we can write Treρ̃′ = ∑k KkρK†
k , with Kk ≡ 〈ke|U|0e〉 being

so-called Kraus operators (S. Haroche, 2007). Using these tools it is possible to extend total

and geometric phases to non-unitary evolutions (J. G. Peixoto, 2002).

6. Thomas rotation in relativity and in polarization optics

In this closing Section we address a well-known effect of special relativity, Thomas rotation,

and show its links to geometric phases. We recall that Thomas rotation is a rather

surprising effect of Lorentz transformations. These transformations connect to one another

the coordinates of two inertial systems, O and O′, by xμ → x′μ = Λ
μ
ν xν, with Λ

μ
ν ημτΛτ

σ =
ηνσ. Here, ημν denotes the Minkowsky metric tensor. Lorentz transformations form a

six-parameter Lie group, whose elements can be written as (J. D. Jackson, 1975) Λ = exp L,

with L = −−→ω · −→S − −→
ζ · −→K . The matrices

−→
S and

−→
K are the group generators, while
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−→ω = (ω1, ω2, ω3) and
−→
ζ = (ζ1, ζ2, ζ3) are six parameters, those required to fix any group

element. The generators form an algebra, the Lie algebra of the group, which in the present

case is defined through the following commutators:

[
Si, Sj

]
= ǫijkSk, (72)

[
Si, Kj

]
= ǫijkKk, (73)

[
Ki, Kj

]
= −ǫijkSk (74)

In Eq.(72) we recognize the generators of the rotation group. On the other hand, the Ki are

generators of “boosts” connecting two systems that move with uniform relative velocity and

parallel axes. Intuitively, if O and O′ are related by a boost, and so also O′ and O′′, then

we expect that the same holds true for the transformation relating O and O′′. The surprising

discovery of Thomas was that this is not the case. Having parallel axes is not a transitive

property within the framework of Lorentz transformations. The product of two boosts is not

a boost, but it is instead a product of a boost by a rotation, the Thomas rotation. As almost

all relativistic effects, in order to exhibit Thomas rotation we should consider systems whose

relative velocity is near the velocity of light. Otherwise, the effect is too small to be observed.

However, there is an equivalent effect that appears in the context of geometric phases, whose

observation might be realizable with standard equipment. The root of Thomas rotation is

the non-transitive property of boosts. As we have seen, Pancharatnam’s connection relates

also in a non-transitive way two polarization states. Intensity-preserving transformations of

these states form a representation of the rotation group SU(2). But these are only particular

transformations among others, more general ones, which include intensity non-preserving

transformations. The latter can be realized with the help of, e.g., polarizers, that is, dichroich

optical elements. These elements provide us with the necessary tools for studying Thomas

rotations.

Before we discuss the optical framework, we need some more algebra to build the bridge

connecting Lorentz and polarization transformations. To this end, we recall the Dirac equation

(J. D. Bjorken, 1964):

(iγμ∂μ − m)ψ(x) = 0, (75)

with ψ(x) denoting a bi-spinor and the γμ being the Dirac matrices: γμγν + γνγμ = 2ημν.

Bi-spinor space can be used as a representation-space for the Lorentz group. The Lorentz

transformation Λ = exp L, which acts in space-time, has a corresponding representation in

bi-spinor space that is given by (J. D. Bjorken, 1964)

S(Ωμν) = exp

(
− 1

4
Ωμνγμγν

)
, (76)

with Ωμν(Λ) = −Ωνμ(Λ) constituting six independent parameters. The commutation

properties of the γμ allow us to write S(Ωμν) in terms of Pauli matrices −→σ . This is so because

S(Ωμν) contains only even products of the γμ matrices. Such products conform a subalgebra

of the γμ, which is isomorphic to the Pauli-algebra. We can then map each 4× 4 matrix S(Ωμν)
into a 2 × 2 matrix
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T(−→α ,
−→
β ) = exp

[(−→α + i
−→
β
)
· −→σ

]
. (77)

We see that T(−→α ,
−→
β ) is like an element of SU(2), exp

(
i
−→
δ · −→σ

)
, but with

−→
δ being replaced

by a complex three vector −→α + i
−→
β that entails the six real parameters of the Lorentz group.

The representation of this group as in Eq.(77) is what we need to establish a connection with

polarization optics.

A monochromatic, polarized, plane wave can be represented by Jones vectors with complex

components: |π〉 =
(

cos χ, eiφ sin χ
)T

. Alternatively, polarization states can be represented

by four-component Stokes vectors (s0,−→s ), corresponding to a representation of pure states

by density operators:

ρ = |π〉 〈π| = 1

2

(
I +−→s · −→σ

)
. (78)

In general, the Stokes four-vector (s0,−→s ) = (Trρ, Tr(ρσ1), Tr(ρσ2), Tr(ρσ3)). The Stokes

three-vector −→s that corresponds to the Jones vector |π〉 =
(

cos χ, eiφ sin χ
)T

is given by
−→s = (cos(φ) sin(2χ), sin(φ) sin(2χ), cos(2χ)). Vectors −→s span the Poincaré-Bloch sphere.

Intensity preserving transformations, like those realized by wave plates, are represented by

2 × 2 matrices belonging to the SU(2) group. The effect of such a matrix on −→s is to rotate this

vector without changing its length. By applying U = exp
(
iΦ−→n · −→σ /2

)
to an input vector |πi〉

we obtain an output vector |πo〉 = U |πi〉. The corresponding Stokes vectors, −→s i and−→s o, are

related to one another by the well-known Rodrigues formula (H. Goldstein, 1980) that gives a

rotated vector in terms of the rotation angle Φ and axis −→n :

−→s o = cos(Φ)−→s i + [1 − cos(Φ)]
(−→n · −→s i

)−→n + sin(Φ)−→s i ×−→n . (79)

Consider now dichroic optical elements, e.g., a non-ideal polarizer. To encompass optical

conventions we use in what follows the Pauli matrices: ρ1 = σ3, ρ2 = σ1, ρ3 = σ2. In such

a representation |π〉 =
(

cos χ, eiφ sin χ
)T

is x-polarized when χ = 0 and y-polarized when

χ = π/2. The matrix representing a non-ideal polarizer whose lines of maximal and minimal

transmission are along the x- and y-polarization axes, respectively, is given by

Jdiag =

(
px 0

0 py

)
. (80)

The eigenvectors of Jdiag, (1, 0)T and (0, 1)T, are thus polarization vectors along the x and −x

directions, respectively, on the Poincaré sphere. The corresponding matrix whose eigenvectors

are |π1〉 =
(

cos χ, eiφ sin χ
)T

and its orthogonal |π2〉 =
(
−e−iφ sin χ, cos χ

)T
, is given by

J =

(
px + py

2

)
I +

(
px − py

2

)
[(cos 2χ) ρ1 + (sin 2χ cos φ) ρ2 + (sin 2χ sin φ) ρ3] . (81)

Taking x as transmission axis (px > py), writing px = e−αm , py = e−αM and setting
−→
Γ =

(cos 2χ, sin 2χ cos φ, sin 2χ sin φ), we obtain, with αs = αm + αM and αd = αM − αm,
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J = exp
(
− αs

2

) {
cosh

(αd

2

)
I + sinh

( αd

2

)−→
Γ · −→ρ

}
. (82)

We can show that Eq.(77) is just of this form. To this end, we write T(−→α ,
−→
β ) = exp(−−→

f · −→ρ ),

with
−→
f = −→α + i

−→
β , and observe that

−→
f · −→ρ has eigenvalues

λ± = ±
√
−→α 2 −−→

β 2 + 2i−→α · −→β ≡ ±z. (83)

Denoting by |f±〉 the eigenvectors of
−→
f · −→ρ ; that is,

−→
f · −→ρ |f±〉 = λ± |f±〉, we have I =

|f+〉 〈f+|+ |f−〉 〈f−| and
−→
f · −→ρ = λ+ |f+〉 〈f+|+λ− |f−〉 〈f−|. Solving for |f±〉 〈f±| we obtain

|f±〉 〈f±| =
zI ±−→

f · −→ρ
2z

. (84)

Using exp A = ∑n exp an |an〉 〈an| with A = −−→
f · −→ρ and observing that exp

(
−−→

f · −→ρ
)

has

eigenvectors |f±〉 and eigenvalues exp (∓z), we get

exp(−−→
f · −→ρ ) = e−z |f+〉 〈f+|+ ez |f−〉 〈f−| =

e−z

2z

(
zI + f · −→ρ

)
+

ez

2z

(
zI −−→

f · −→ρ
)

=

(
ez + e−z

2

)
I −

(
ez − e−z

2z

)−→
f · −→ρ

= (cosh z)I − sinh z

(−→
f

z

)
· −→ρ (85)

It is easy to show from Eq.(85) that a Lorentz transformation exp(−−→
f · −→ρ ) can generally

be written as a product of a boost by a rotation. It is clear from Eq.(77) that a rotation

is obtained when −→α =
−→
0 and a boost when

−→
β =

−→
0 . A general rotation U(ξ, η, ζ) ∈

SU(2) can be implemented with the help of three wave-plates, see Eq.(51). A general

boost can be implemented with dichroic elements realizing Eq.(82). The global factor there,

exp (−αs/2), corresponds to an overall intensity attenuation. We can thus in principle realize

any transformation of the form exp(−−→
f · −→ρ ) by using optical elements like wave-plates and

dichroic elements. In particular, by letting a polarization state pass through two consecutive

dichroic elements – each corresponding to a boost – we could make appear a phase between

initial and final states. This is a geometric phase rooted on Thomas rotation, which can thus

be exhibited by using the tools of polarization optics. Thus, we have here another example

showing the topological root shared by two quite distinct physical phenomena.

7. Conclusion

Berry’s phase was initially seen as a surprising result, which contradicted the common

wisdom that only dynamical phases would show up when dealing with adiabatically evolving

states. But soon after its discovery it brought to light a plethora of physical effects sharing

a common topological or geometrical root. Once the initial concept was relatively well

understood, people could recognize its manifestation in previously studied cases, like the

Aharonov-Bohm effect and the Pancharatnam’s prescription for establishing whether two
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polarization states of light are in phase. Thanks to the contributions of a great number of

researchers, Berry’s phase has evolved into a rich subject of study that embraces manifold

aspects. There are still several open questions and partially understood phenomena, as well

as promising approaches to implement practical applications of geometrical phases, notably
those related to quantum information processing. The present Chapter can give but a pale

portrait and a limited view of what is a wide and rich subject. However, it is perhaps precisely

out of these limitations that it could serve the purpose of awaking the reader’s interest for

studying in depth such a fascinating subject-matter.
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