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Nicolay V. Lunin
Volga State Academy of Water Transport, Nizhny Novgorod

Russia

1. Introduction

One of the unsolved problem in theoretical physics during some decades remains a
construction of the complete and closed theory in which quantum mechanics and special
relativity would be consistent without divergences and renormalization (Dirac, 1978). It may
be assumed that divergences show conservation laws violation in the conventional theories,
and a cause for it may be in turn violation of the group-theoretic principles in these theories,
in accordance with the Noether theorems. A success of renormalization allows one to believe
that the theory without divergences is possible.
This paper is devoted to consideration of possibility to develop the consistent group-theoretic
scheme of the quantum mechanics merely. It consists of Introduction, three parts, and
Conclusion.
The requirements which allow one to consider the quantum mechanics as a consistent
group-theoretic theory are formulated in Introduction.
The Noether theorems set one-to-one correspondence between conservation laws of the
variables to be measured, i.e. observables (Dirac, 1958), and groups of symmetries of the
solutions transformations of equations for complex wave functions, spinors, matrices and so
on in which the space-time properties appear (Olver, 1986). These solutions do not obey to be
an observables but the last ones may be constructed as the Hermitian forms corresponding to
these observables on their basis. The mathematical tool to express the space-time symmetry
properties is the group theory.
Two circumstances connected with the stated above attract attention in the generally accepted
schemes of the quantum mechanics.
The exact conservation laws fulfilment is inconceivable in any theoretical scheme under
absence of the complete set of the Hermitian forms, based on the main equations solutions
and its derivatives, each of them would be corresponded to the observables. Some of these
Hermitian forms have to be conserved, another have to be changed but all of them have
to satisfy to some completeness condition expressed mathematically. The last subject has
exceptional significance since if only some part of the unknown complete set of observables
really existing is included into the theory, then both physical interpretation and conservation
laws would be dependent on the Hermitian forms which are excluded from the theory. Of
course, such theory can not be recognized to be the consecutive, complete and closed theory.
One of the impressive consequence of the observables complete set and corresponding
completeness condition absence is the well known question on the hidden parameters
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2 Will-be-set-by-IN-TECH

(Einstein et al., 1935) being discussed up to now (Goldstein, 1998) including experimental
investigations (Greenstein & Zajonc, 2006). Moreover, absence of the completeness condition
for observables immediately relates to the physical contents of the wave function and
its probabilistic interpretation. These subjects are discussed during many years but the
uniqueness of the last one has not been proved up to now (Feynman & Hibbs, 1965).
The second question is not so obvious and discussed, the author had not seen the papers on
the subject.
The logical foundations of the physical theory having been consistent with causality, require
to act of the consequent transformation on the result of the previous one. The mathematical
description of this requirement is expressed by means of the operators product in the same
order as they act in the physical process to be described.
Transformation operators describing different physical processes map the space-time
properties, and the successive products define the binary operation over the transformations
set, it is the multiplication, its result depends on the operators order in general case. Therefore,
transformations set have to be multiplicative non-commutative groups in the fundamental
physical theories.
The elements of the multiplicative non-commutative groups are nonequivalent under the
group operation but the physical phenomena, similar to the interference, require to include the
non-commutative group elements compositions in which its elements would be equivalent.
The results of such kinds compositions have not be dependent on the order of the group
elements in it, and have to belong to the same group as two elements entered the compositions
at the same time.
In the ordinary superposition principle used in a great number of physical theories the
pairwise permutable composition is expressed as the sum of the elements, in particular the
elements of the multiplicative non-commutative groups. It means that the second binary
operation, the sum, over the group elements is introduced, besides of the multiplication.
Meanwhile, the group is the monoid, i.e. the set with only one binary operation, in accordance
with its definition (Zhelobenko & Shtern, 1983). Therefore, the theories in which two
binary operations are used over the set of transformations can not be recognized to be the
group-theoretic theory. For example, all elements of the unitary group SU(2) describing
rotations are unimodular. If one will sum two any elements of the group, the result would
not be unimodular, then it does not belong to the group. As a consequence of the Noether
theorems it may lead to violation of the conservation laws. The consistent group-theoretic
physical theory, in particular quantum mechanics, may be carried out only under fulfilment of
all the group definition requirements. So as associativity, existence of the unit and the inverse
elements, and, of course, the multiplication as the only binary operation over its elements.
In accordance with the stated above, such theory has to contain at least the pairwise
permutable composition over any elements of the non-Abelian Lie groups. Of course,
such composition has to turn into the ordinary superposition principle under correspondent
parameters area.
Oddly enough that the non-commutativity was not to be a cause of refusal to construct
quantum mechanics as the group-theoretic theory, it was only complicating factor (Feynman
& Hibbs, 1965). For example, one has only commutative propagators in the double-slit
experiment in homogeneous medium, they are multiplied along successive path segments.
Nevertheless, even if non-commutativity does not create any difficulties since all propagators
belong to the commutative subgroup of the SU(1, 1) group, an alternative propagators are
added together accordingly to the ordinary superposition principle (Feynman et al., 1963).
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The Group Theory and Non-Euclidean Superposition Principle in Quantum Mechanics 3

Of course, using only multiplication both for successive and alternative propagators, and
considering the only Hermitian form ρ = χχ∗ as an observable, one can not obtain an
"interference" pattern since ρ = const everywhere.
Nevertheless, the experimental pattern may be obtained without addition of the second
operation, as it would be shown below.
Therefore the inclusion of two binary operations over the set of transformations in quantum
mechanics (see for example (Landau & Lifshitz, 1963)) means the groundless rejection to
construct the last one as the consistent group-theoretic physical theory.
The section 2 contains consideration of the complete set of observables for the stationary
Schroedinger equation (Lunin, 1998; 1999). It consists of four bilinear Hermitian forms,
being together they satisfy to some identity which means the completeness condition at the
same time. Therefore only three of them are independent. Its geometric interpretation in
the Euclidean space is proposed. All conservation laws are considered for the free particle
described with the Schroedinger equation, it is shown that the successive points where these
laws are fulfilled form the spiral line in general case. Transformations of such lines are
considered under some simplest potentials. The qualitative explanation of the double-slit
experiment when particles go from the source up to detector one by one, and the experimental
pattern is formed by isolated point-wise traces is proposed there.
The section 3 contains the most important part of the paper: a short presentation of the
non-Euclidean superposition principle deduction. At first there are established the metric
of the propagators logarithms space for the stationary Schroedinger equation, it is the
Lobachevsky space. Then, mapping the group elements onto the Lobachevsky plane together
with the group operation one establishes the additive representation of the SU(1, 1) group in
the curved space. Geometric consideration of the subject allows one to develop the symmetric
binary composition which is invariable with respect to permutation of two non-commutative
group elements and which belongs to the same group as these ones entered the composition
(Lunin, 1994). Geometric investigation of this composition with respect to discrete symmetries
had also lead to three other compositions, all of them form the non-Euclidean superposition
principle, which turns into the ordinary, i.e. the Euclidean, superposition principle in the
vicinity of the identity, and applicable up to the Lie groups of arbitrary dimension (Lunin,
1998; 2002). The geometric deduction of all four compositions establishes their geometric
contents at the same time.
This section contains also a comparison of these two different rules of the propagators
composition for the experiment with two slits arranged at the two different media boundary.
It is shown there that the non-Euclidean superposition principle leads to fulfilment of
conservation laws everywhere whereas the Euclidean one leads to the same only in some
areas. This conclusion is valid also in the case of the homogeneous medium.
The section 4 contains an example of application of the non-Euclidean superposition principle
to the physically significant problem of the irreversibility in quantum mechanics (Ginzburg,
1999; Kadomtzev, 2003). All transformations of the time-dependent Schroedinger equation
solutions are reversible due to its reversibility, it means that all propagators turn into the
inverse ones under time inversion. However, the non-Euclidean superposition principle
contains also two binary compositions which do not turn into the inverse ones under inversion
of both propagators entered them. This circumstance allowed one to include irreversible
processes into the scheme of quantum mechanics. The reversibility of the equation is occurred
to be only necessary condition but not quite sufficient for the reversible evolution of the closed
physical system.

265The Group Theory and Non-Euclidean Superposition Principle in Quantum Mechanics

www.intechopen.com
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Thus, the non-Euclidean superposition principle allows coexistence of the reversible and
irreversible processes in the closed systems described with only reversible equations (Lunin
& Kogan, 2004; 2009).

2. Completeness of observables

To introduce the main and necessary notions for solution the problem mentioned above in the
simplest but sufficient way, let us consider the unidimensional Schroedinger equation with
real potential for the particle above barrier. According to (Kolkunov, 1969; 1970), and also
(Lontano & Lunin, 1991), we shall start with the equation under corresponding conditions at
the initial point z0

d2χ(z)

dz2
+ k2(z)χ(z) = 0, χ(z0) = χ0, χ′(z0) = χ′

0, (1)

where k2(z) = (2m/h̄2)[E − U(z)], E and U(z) are energy and real potential respectively.
Going over to the pair of first order equations for complex functions

Φ±(z) =
k1/2

√
2
[χ± 1

ik
χ

′
] (2)

with corresponding conditions at the initial point z0, one has the following matrix equation
for Φ= column ‖Φ+, Φ−‖

Φ
′
(z) = [ik(z)σ3 +

k
′
(z)

2k(z)
σ1]Φ(z), (3)

where σs are Pauli matrices including identity one σ0, s = 0, 1, 2, 3. Let us notice that equation
(2.3) may be also obtained by means of staircase approximation (Kolkunov, 1969; 1970).
Dividing axis z into segments ∆zi with ki = const and steps ∆ki at its common points,
requiring continuity of χi, χ′

i there, and going over to ∆zi → 0, one has also the equation
(2.3). Therefore propagator Q (see below) includes continuity of χ, χ′ everywhere.
A solution of (2.3) may be written in the form Φ(z) = Q(z, z0)Φ(z0), where Q is a propagator,
i.e. matrix, transforming Φ(z0) into Φ(z),

Q(z, z0) = T exp
∫ z

z0

[ikσ3 +
k′

2k
σ1]dz. (4)

Matrix Q is named as a product integral (Gantmakher, 1988), it is a limit of product of the
infinitesimal matrix transformations, in general case they are non-commutative.
Let us consider four bilinear Hermitian forms with respect to Φ, Φ+,

js(z) = Φ+(z)σsΦ(z). (5)

They satisfy to the identity

j20 = j21 + j22 + j23 (6)

independently if they are solutions of equation (2.3) or not, therefore only three of them are
independent. Let us introduce, accordingly to the direct product definition (Lankaster, 1969),
Hermitian matrix

J = ‖Φ∗
+, Φ∗

−‖
⊗

∣

∣

∣

∣

∣

∣

Φ+

Φ−

∣

∣

∣

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

Φ∗
+Φ+ Φ∗

−Φ+

Φ∗
+Φ− Φ∗

−Φ−

∣

∣

∣

∣

∣

∣
=

1

2

∣

∣

∣

∣

∣

∣

j0 + j3 j1 − ij2
j1 + ij2 j0 − j3

∣

∣

∣

∣

∣

∣
. (7)
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Its determinant is equal to zero due to the identity (2.6), it satisfies to relation J2 = j0 J
which under normalization condition j0 = 1 coincides with definition of the idempotent
matrix, therefore the matrix J is similar to the density matrix of pure states (Feynman, 1972).
Differentiating expression (2.7) and using equation (2.3) together with its Hermitian conjugate,
one obtains

J′ = ik{Φ+
⊗

σ3Φ − Φ+σ3

⊗

Φ}+ k′

2k
{Φ+

⊗

σ1Φ + Φ+σ1

⊗

Φ}, (8)

which is equivalent to four equations for js:

j′0 =
k′

k
j1, j′1 = 2kj2 +

k′

k
j0, j′2 = −2kj1, j′3 = 0. (9)

Differentiating the identity (2.6) for js and taking equations (2.9) into account, we derive the
identity also for js and j′s.
Let us notice that two Hermitian forms, ρ = χχ∗ and j3 = i(χχ′∗ − χ∗χ′), are considered, as
a rule, as observables named the density and the current in the generally accepted schemes
of quantum mechanics. They are a compositions of only χ and χ′, along with the complex
conjugate ones, of course. But there are exist also other its real compositions based on only
these variables. We introduce here into consideration four Hermitian forms expressed by
means of only these variables

j0 = kχχ∗ + (χ′)(χ∗′ )/k, j1 = kχχ∗ − (χ′)(χ∗′ )/k,

j2 = χχ∗′ + χ∗χ′, j3 = i(χχ∗′ − χ∗χ′),
(10)

therefore all four of them satisfy to the identity (2.6) and may also be considered as
observables.Taking into account (2.2) and comparing equations (2.5), (2.10) one may see that
both quadruples, (2.5) and (2.10), are the same. Therefore both quadruples of js may be
considered as an observables in the same way as ρ and j3 mentioned above.
It means that four Hermitian forms js form the complete set of observables due to the
completeness condition (2.6), only three of them are independent. Besides, the Schroedinger
equation (2.1), its spinor representation (2.3) and relations (2.2) allow one to derive equations
(2.9), leading not only to conservation law for current j3, but also to the consistent variations
of the Hermitian forms complete set at the same time.
Let us consider the group-theoretic properties of propagators in the spinor description. The
last equation in (2.9), j′3 = 0, means that the real scalar Hermitian form j3 = Φ+σ3Φ is
a constant. Let Q is a matrix transforming Φ(z0) into Φ(z), i.e. Φ(z) = Q(z, z0)Φ(z0).
Substituting this expression into the conservation condition j3 = const under arbitrary Φ(z0),
one has the relation

Q+σ3Q = σ3, (11)

which means that matrix Q belongs to the group Q ∈ SU(1, 1) (Lontano & Lunin, 1991) with
the properties detQ = 1, Q∗

22 = Q11, Q∗
21 = Q12. Of course, this conclusion can also be drawn

from the expression for the product integral (2.4), which is a solution to equation (2.3).
The Schroedinger equation describes spatial behavior both free particle and also particle in
potential. It defines also all conservation laws for observables at the same time (Malkin &
Man’ko, 1979). Therefore it is quiet clear that the ordered sequence of the points where
all necessary conservation laws are fulfilled forms the line which may be considered as the
particle trajectory. It means that a free particle described with the Schroedinger equation
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does not obey to move along Euclidean straight line under any conditions, as it takes place
in classical mechanics. Although all variables in the Schroedinger equation depend on only z
in our case, however conservation laws fulfilment for the Hermitian forms under arbitrary
conditions at the initial point may lead to another such line spatial behavior, where all
necessary conservation laws are fulfilled, as it would be shown below.
Therefore the first our task is to define the spatial configuration of the line where all exact
conservation laws are fulfilled for the free particle under arbitrary conditions at the initial
point.
The stationary Schroedinger equation is the second order equation over a set of complex
functions. The wave function and its derivative at the initial point have to be set
independently, therefore they are defined by four real parameters. Connection of the theory
with experiment requires, in particular, to define initial conditions from measurements. It
means that these conditions would be expressed as Hermitian forms which are consistent with
observables to be measured, and vice versa. The complete set of Hermitian forms contains
four ones, and three of them are independent. Therefore two Hermitian forms, ρ and j3, which
are considered in a generally accepted schemes of quantum mechanics, can not be recognized
sufficient for construction of a complete and closed theory.
In an accepted schemes of quantum mechanics the vector j = i(χ∇χ∗ − χ∗∇χ) is associated
with particle momentum (Landau & Lifshitz, 1963), its amplitude coincides with j3 in the
unidimensional case, therefore we shall also connect j3 with momentum. It would be expected
that all other js have a similar sense due to the identity (2.6). One may suppose that an energy
is also included in the set of js on account of its completeness, but due to the circumstance
that the complete set of Hermitian forms includes more variables then it is considered in the
accepted forms of quantum mechanics, a connection between energy and momentum here
does not coincide with this one in the ordinary schemes of quantum mechanics. They coincide
only in the case of j1 = j2 = 0. It may be shown that a wave function has a form of plane
wave under these conditions, j0 and j3 are constant everywhere and they have no periodical
behavior, although the particle de Broglie wave exists.
An energy and momentum of free particle are reserved both in classical and in quantum
mechanics. It is quiet clear that, keeping succession, we have to associate an energy with
the Hermitian form j0, which is positive defined at the same time, as it seen from (2.5).
Such incomplete knowledge on js is sufficient for our aim here, explicit its identification
is more appropriate under more evident alignment of this scheme and the non-Euclidean
superposition principle with special relativity where the group-theoretic requirements are
especially important.
All exact differential conservation laws are fulfilled on the line to be defined, and the identity
(2.6) is also fulfilled there. Moreover, it is the only law containing all observables, on the
one hand, and it is fulfilled independently if these Hermitian forms are constructed on the
base of the Schroedinger equation solution or not, on the other hand. A similar significance
and structure has only the consequence of the Euclidean metric, which under parametric
representation of line X(t), Y(t), Z(t) may be written in form S′2(t) = X′2(t) +Y′2(t) + Z′2(t),
where S(t) is a curve length depending on monotonic parameter t. Requiring consistence of
the identity (2.6) with the consequence of the Euclidean metric, we shall accept a following
correspondence: j0 ∼ S′, j1 ∼ X′, j2 ∼ Y′, j3 ∼ Z′.
Let X(t), Y(t), Z(t) are coordinates of the points where all conservation laws are fulfilled. To
define the line which is formed by ordered sequence of these points, one may use the fact that
a spatial curve is uniquely defined, up to orientation in space, by its curvature and torsion.
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Nonnegative curvature is defined by the first and the second its derivative with respect to
parameter, and the torsion depends also on the third derivative (Poznyak & Shikin, 1990).
Thus, we obtain a following conclusion on the line where all conservation laws are fulfilled:
the quantum particle trajectory is defined uniquely under fulfilling of all exact conservation
laws following from the Schroedinger equation excluding its space orientation, i.e. up to
insignificant circumstance of a coordinate system choice. If some theory based on such
equation does not lead to such trajectory, then it means that the theory does not contain all
necessary observables and (or) some conservation laws are violated.
This line is defined by parameters js, j′s, j′′s . If j3 = const the curvature K1 and the torsion K2

are expressed as (Lunin, 2008)

K1 =

√

j20(j′21 + j′22 )− (j1 j′1 + j2 j′2)
2

j30
, K2 =

j3(j′1 j′′2 − j′2 j′′1 )
j20(j′21 + j′22 )− (j1 j′1 + j2 j′2)

2
. (12)

The group-theoretic properties of transformations under quantum particle motion most
clearly appear in the spinor representation of the Schroedinger equation (2.3). Taking a spinor
in its most general form we have

Φ =
∣

∣

∣

∣

∣

∣

aeiα

beiβ

∣

∣

∣

∣

∣

∣
= ei

(β+α)
2

∣

∣

∣

∣

∣

∣

ae−i
(β−α)

2

bei
(β−α)

2

∣

∣

∣

∣

∣

∣
(13)

with its Hermitian forms
j0 = a2 + b2, j1 = 2ab cos(β − α),
j3 = a2 − b2, j2 = 2ab sin(β − α).

(14)

It is quite clear that they are defined by three independent real parameters a, b,(β − α) and
satisfy to the identity (2.6). Relations (2.13), (2.14) and (2.2) allow one to express χ, χ′, and
also Φ± by means of js.
If the parameter k2 in (2.1) is constant, k′(z) = 0, the term (k′/2k)σ1 in (2.4) is vanished
together with non-commutativity, and Q(z, z0) = exp[ik(z − z0)σ3]. Then the propagator Q
satisfies to Q+σ0Q = σ0 which means conservation j0 in addition to j3. As far as Q+ = Q−1,
then Q belongs to the unitary commutative subgroup of the group SU(1, 1).
It is clear from equations (2.14) that a and b are constant for the free particle, then spinor
components under arbitrary conditions at z0 may be written at any point z as

Φ+ = a0ei[k(z−z0)− β0−α0
2 ], Φ− = b0e−i[k(z−z0)− β0−α0

2 ], (15)

therefore one has free particle observables under correspondent parameters at the z0

j0 = a2
0 + b2

0, j1 = 2a0b0 cos[2kz − (β0 − α0)],
j3 = a2

0 − b2
0, j2 = 2a0b0 sin[2kz − (β0 − α0)].

(16)

The expressions for K1 and K2 are simpler in this case

K1 =

√

j′21 + j′22
j20

, K2 =
j3(j′1 j′′2 − j′2 j′′1 )

j20(j′21 + j′22 )
. (17)
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Taking into account equations (2.16) and (2.17) under condition k(z) = const one may see that
K1(z) and K2(z) satisfy to the following conditions

K1(z) = 2k

√
j2
1(z)+j2

2(z)

j2
0(z)

= 2k

√
j2
1(0)+j2

2(0)

j2
0(0)

= const,

K2(z) = −2k
j3(z)
j2
0(z)

= −2k
j3(0)
j2
0(0)

= const.
(18)

Thus, both the curvature and the torsion of free quantum particle are constant and, being
dependent on js at the initial point, may have arbitrary values. Only the spiral lines have such
properties. If K1 = 0, i.e. j21 + j22 = 0, then trajectory is the straight line; if K2 = 0, i.e. j3 = 0,
then it is situated at the plane, and K1 = 2k/j0. The sign minus in K2 means that the spinor
components (2.15) and its observables correspond to the left-hand spiral line. The action of
the inversion operator σ1 (Lunin, 2002), i.e. permutation of the spinor components, change
the torsion sign, and the left spiral line converts into the right one.
Integrating the expressions (2.16) under corresponding constants choice, then excluding
integration variable z and go over to the particle Z-coordinate, we have the following
expressions for particle coordinates and its path length

X(Z) = −
√

j2
1(0)+j2

2(0)
2k cos[2(k/j3(0))Z + arctan(j1(0)/j2(0))],

Y(Z) =

√
j2
1(0)+j2

2(0)
2k sin[2(k/j3(0))Z + arctan(j1(0)/j2(0))],
Z = Z, S(Z) = [j0(0)/j3(0)]Z.

(19)

Let us consider the main peculiarities of free-particle trajectories. The requirement
2(k/j3(0))Zst = 2π defines the spiral line step Zst. The first two expressions in (2.19) lead
to its radius R: Z2 + Y2 = [j21(0) + j22(0)]/(4k2) ≡ R2 = const. Particle path length along
one step is Sst = π j0(0)/k. Going over to the de Broglie wavelength λ = 2π/k the trajectory
parameters may be expressed as (Lunin, 2008)

Zst = [j3(0)/2]λ, R =

√

j21(0) + j22(0)

4π
λ, Sst = [j0(0)/2]λ. (20)

It is seen from equations (2.20) that the free quantum particle described with the Schroedinger
equation contains also a transverse components of its motion depending on the de Broglie
wavelength. All components of such motion are proportional to this wavelength but they are
also dependent upon the observables js at the initial point. The last circumstance leads, for
example, to the same Sst under different combinations of js(0).
Let notice that variable k entered the Schroedinger equation and defining the de Broglie
wavelength may be expressed as k(z) = −j′2/(2j1) due to equations (2.9). Unrolling surface
of the cylinder onto a plane and applying the Pythagorean theorem to the triangle formed by
legs Zst and 2πR, and hypotenuse Sst, one obtains the equality Z2

st + (2πR)2 = S2
st, which

leads to the identity (2.6) due to the conditions (2.20). The angle between an element of
the cylinder directed along the axis Z and the tangent to the spiral line is determined by

tan θ = (2πR)/Zst =
√

j21 + j22/j3. It coincides with the ratio of the curvature of the spiral line

to its torsion.
Potential variations lead, according to equations (2.9), to variations of j0, j1, j2, they change,
in turn, the curvature and the torsion, i.e. trajectory. Let the particle beginning motion at
z = 0 under arbitrary conditions, moves in area o ≤ z ≤ a under k1 = const, then passing
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The Group Theory and Non-Euclidean Superposition Principle in Quantum Mechanics 9

through the potential step at z = a k1 goes to k2 = const. The propagator expression calculated
according (2.4) (Kolkunov, 1969; 1970) is expressed in this case as

Q(z, 0) = exp (iMσ3) exp (Lσ1) exp (iNσ3), (21)

where N = k1a, M = k2(z − a), L = (1/2) ln(k2/k1) are real parameters. At both sides of
the step the particle trajectories are spiral lines with different parameters. Therefore, since
only transformation of motion is interesting in this case, let us put N = M = 0 in (2.21),
then Q = exp(Lσ1) and Q+ = Q. Such matrix satisfies to conditions Q+σ2Q = σ2 and
Q+σ3Q = σ3, i.e. j2 and j3 are conserved. One has the following transformations in this case

J0 = cosh(2L)j0 + sinh(2L)j1, J1 = sinh(2L)j0 + cosh(2L)j1, J2 = j2, J3 = j3, (22)

then
Zst(k2) = π J3/k2 = π j3/k2,

R(k2) =

√
J2
1+J2

2

2k2
=

√

j2
1+j2

2+sinh(4L)j0 j1+sinh2(2L)(j2
0+j2

1)

2k2
,

Sst(k2) = π J0/k2 = π[cosh(2L)j0 + sinh(2L)j1]/k2.

(23)

It is seen from expressions (2.23) that there are exist conditions dependent on the value L
leading to R = 0. It means that, as far as an arbitrary element of the group SU(1, 1) is
representable in the form (2.21), it is possible a transformation of the spiral particle trajectory
with R �= 0 into the Newtonian free particle trajectory, and vice versa.
Similar consideration of particle motion above right angle potential barrier shows that there
are exist conditions under which all js in front of the barrier go to the same behind it (Lunin,
2008). These conditions coincide with the same ones when the reflection coefficient is zero in
the ordinary forms of quantum mechanics.
Let us notice here a similarity of transformations (2.22) to those in the special relativity.

Fig. 1. Double-slit experiment with a low-intensity source of electrons under different
expositions (Tonomura et al., 1989).

Free particle spiral-like trajectories allow one to propose a qualitative explanation of the
double-slit experiment with single electrons which does not require a particle dualism and
a wave function collapse (Kadomtzev, 2003). Figure 1 shows the results of the double-slit
experiment (Tonomura et al., 1989) under individual electrons when the next particle leaves
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the source after the previous one has already been registered and disappeared. It is seen two
peculiarities there. The first and the main one is the fact that each electron produces only one
point-wise trace, and the second one is the periodic spatial distribution of the traces density
appearing only under enough long expositions.
As it is shown above the question on completeness of observables is not solved both in the
theory and in the experiment. Therefore it is necessary to make some assumptions, especially
on the free particle transverse motion, i.e. on j1 and j2 (Lunin, 2008).
Let us assume that j21 + j22 �= 0 are equal for all particles, i.e. their R are also the same. However
j1 and j2 may be different at the same time, and we assume that they have random values.
Figure 2 shows results of simulation for the experiment under this assumption.

Fig. 2. Simulation of the double-slit experiment for particles moving along helical lines.

There are shown some circles in figure 2a which are cross sections of the cylinder surfaces
where spiral trajectories are situated. The points on one of them show a random positions of
different particles, and only those of particles form a traces on the photographic plate which
go through the point-wise slit S. Therefore one circle leads to one trace, and another circle
leads to another trace and so on, but all of them will create increased traces density near the
circumscribed circle of all previous circles.
It may be said that the isolated spiral lines set one-to-one mapping the point-wise source (or
slit) to the points of the detector plane. This circumstance explain the point-wise traces on the
photographic plate.
The stretched slit is the set of point-wise ones. Figure 2b shows two slits S1, S2 and a set of
corresponding circles described above under the assumption that the distance between slits
is close to twice diameter of the spiral curve. Let us note that the particles having velocity
projections almost parallel to the slits direction go through the slits in relatively more number
then those having perpendicular projections.
Comparing the simulation with the experiment one would take into account the main
experimental factors: a particles source dimensions and angle distribution of particles
velocities. These factors lead to smoothing of the interference-like picture but they can not
lead to disappearance of point-like traces, see fig.2c.
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Combining the simulation results shown in fig. 2b and fig.2c one will get the fig.2d, then
comparing it with the experimental ones in fig.1, one may see a qualitative similarity of them.
It is necessary to emphasize once more that this result has only qualitative character.
Combining in turn fig.2a and fig.2c it may be also explained the old experiment on the
scattering of individual electrons on the hole (Biberman et al., 1949), also only qualitatively, of
course.
It may be said that the systems of small holes or slits are the particles transverse motion
analyzers, good or bad.

3. Non-Euclidean superposition principle

This subject should be considered to be the key question for the group-theoretic structure of
quantum mechanics. Keeping in mind the Feynman scheme, we shall attempt to develop
a similar construction, however taking into account the group-theoretic requirements for
non-commutative propagators, and observables js complete set which are arbitrary at the
initial point of particle motion.
Let the particle is described by the Schroedinger equation ∇2χ(r) + k2(r)χ(r) = 0. In the
case of spatial dependent potential, let us connect an initial and final points ri and r f with
arbitrary piecewise smooth line n defined by tangent unit vector un(r) with initial and final
ones ui and u f . Projecting all vector variables onto this line and keeping in mind an infinite
set of unidimensional equations along such paths, one has the following form of the product
integral along n-th path

Qn(r f , u f ; ri, ui) = T exp
∫

r f

ri

[i(kun)σ3 +
(un∇k)

2k
σ1]dl, (24)

where all variables depend on path length l. We shall call it as n-th partial propagator,
it has the same group-theoretic properties as (2.4), i.e. matrices Qn belong to the same
non-commutative group SU(1, 1) (Lunin, 2002).
To construct the complete propagator taking all paths into account, it is necessary to find
at least the composition of two such non-commutative matrices, which belongs to the same
multiplicative group and unchanging under these matrices permutation. Let us define a
metric of the propagators logarithms space (Lunin, 2002). As far as the product integrals
in (2.4) and (3.1) have the same structure and therefore they define the same groups, we shall
use for simplicity the first one. Considering integrand in (2.4) as vector in of the space to
be defined in orthogonal basis σs (Casanova, 1976), one makes up the first quadratic form
as ds2 = −k2dz2 + dk2/(4k2). This expression defines the plane (k, z) with the Gaussian
curvature CG = −4, i.e. the Lobachevsky plane. Going over to variables u = 1/(2ik), v = z,
one gets the integrand ds and the Kleinian metric form of this plane ds2 with the same
Gaussian curvature

ds =
dvσ3 − duσ1

2u
, ds2 =

du2 + dv2

4u2
. (25)

As far as equations of kind (2.1) describe a number of physical phenomena, let us investigate
the significance of this curvature value. If we multiply (2.3) by dz and go over to variables u, v,
we get the expression dΦ = [(dvσ3 − duσ1)/(2u)]Φ, where the integer 2 defines CG = −4. Let
replace this integer by an arbitrary constant R and return to variables k, z. Then one has an
equation (R/2)Φ′ = [ikσ3 + k′/(2k)σ1]Φ instead of (2.3). Taking (2.2) into account under
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conservation R and returning to equation for χ, we have

χ′′ + k2(z)χ + (
2

R
− 1)[(ik +

k′

2k
)χ′ + ik(−ik +

k′

2k
)χ] = 0.

It is quiet clear that the last equation goes over to (2.1) only under R = 2. As far as a great
number of physical phenomena obey to the equations of the spatial stationary Schroedinger
equation kind, so as the Helmholtz one, and the Gaussian curvature CG = −4 is its
consequence, this curvature value has the exceptional role compared with the role of such
kind equations.
Having determined the propagators logarithms space, or the space of the Lie algebra of the
group SU(1, 1), which is the Lobachevsky plane, it is needed to map the group into this space.
It is necessary for it to map the group elements there as the geometrical objects, and to find
the operation under these objects corresponding to the group operation.
The metric in (3.2) maps the hyperbolic plane onto the upper Euclidean half-plane u > 0 as
the conformal mapping in semi-geodesic orthogonal coordinate system (the Poincare map)
(Bukreev, 1951). Any group element from SU(1, 1) may be expressed in form (2.21), and also
as Q = exp(aσ), then one has the following equality

Q = eiMσ3 eLσ1 eiNσ3 = eaσ = cosh a + (aσ)(sinh a/a), (26)

where (aσ) = a1σ1 + a2σ2 + a3σ3, a2 = a2
1 + a2

2 + a2
3 with real a1, a2 and imaginary a3, a = naa.

It should be noted that the geodesic lines (straight lines) on the Lobachevsky plane in its
representation on the Poincare map are the semicircles with its centers on the horizontal axis
v (see figure 3 below) and euclidean straight lines parallel to axis u. Following to (Lunin, 1994;
1998; 2002), taking an arbitrary point on the Poincare map as initial one, let us map the matrix
exp (iNσ3) as the oriented segment with length N along any geodesic line outgoing from the
initial point. Note that the geodesic vector length a is defined by the matrix trace, as it follows
from (3.3). Then we map the matrix exp (Lσ1) as the next geodesic segment with the initial
point at the end of previous segment and length L along the perpendicular geodesic line. The
matrix exp (iMσ3) is mapped in the similar way.
Let us connect the initial point and the end of the last segment with the geodesic line on the
Poincare map. Then we shall obtain the plane figure named as bi-rectangle, the fourth its side
corresponds to the geodesic vector a in (3.3). Equalities for matrix elements in (3.3) allow one
to obtain all elements of the bi-rectangles or triangles (if N or M is equal to zero).
Thus, the group SU(1, 1) element is mapped as the oriented segment of the geodesic line,
or geodesic vector, on the Poincare map. It is quite clear that the successive addition of the
geodesic vectors corresponds to the group operation of successive matrices multiplication at
the same time. This circumstance explains also the sense of the term "propagator logarithms
space" used above.
To make more clear the geometric sense of the group operation, let us multiply two arbitrary
matrices:

exp(cσ) = exp(bσ) exp(aσ) = cosh b cosh a + (nbna) sinh b sinh a+
+σ{nb sinh b cosh a +na sinh a cosh b + i[nbna] sinh b sinh a}.

(27)

One may see from (3.4) that the resulting geodesic vector c contains the orthogonal component
to the plane defined by vectors a and b, and its length c may be obtained from the expression
cosh c = cosh b cosh a + (nbna) sinh b sinh a. The non-commutativity of the matrices exp(aσ)
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and exp(bσ) is defined by this orthogonal component. It is also seen that the geodesic vectors
of the commutative matrices are situated on the same geodesic line due to [nbna] = 0.
These facts make clear the geometric sense of non-commutativity. Let us note here that the
group SU(1, 1) logarithms space involves the complete three-dimensional Lobachevsky space.
It may be said that the multiplicative non-commutative three-parameter group SU(1, 1) is
isomorphically represented as additive group in the Lobachevsky space with the constant
negative Gaussian curvature being similar to the map of the group SU(2) on the unit sphere.
Let us find the binary commutative composition over the non-commutative group SU(1,1).
Let the matrix QM is the result of the composition to be find of two arbitrary equivalent
non-commutative matrices QA and QB. Let us formulate the requirements for QM:

a)QM ∈ SU(1, 1);
b)QM → QA, i f QB → 1 and QM → QB, i f QA → 1;

c)QM → QM, i f QA → QB and QB → QA.

In accordance with (a) all these matrices are representable as QA = exp(aσ), QB = exp(bσ),
QM = exp(mσ). All geodesic vectors have the common initial point O on the Poincare map
due to (b), see figure 3.

Fig. 3. The Poincare map. Geodesic lines are semicircles with centers on v-axis.

The requirement in (c) would be fulfilled if the vector m goes through the hyperbolic middle
M0 of the oriented segment AB = c connecting the ends of vectors a and b there. Our
task now is to obtain the geodesic vector m, finding at first the triangle OAB median OM0

outgoing from the initial point O. Taking into account that m and c intersect in their midpoints
M0, one has the following relations for triangles OAB, OAM0, and OM0B respectively:

exp(cσ) exp(aσ) = exp(bσ),
exp(cσ/2) exp(aσ) = exp(mσ/2),
exp(cσ/2) exp(mσ/2) = exp(bσ).

These relations lead to the expression to be find

exp(mσ) = {[exp(aσ) exp(−bσ)]1/2 exp(bσ)}2 =
= {[exp(bσ) exp(−aσ)]1/2 exp(aσ)}2.

(28)
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Obviously that exp(mσ) = exp(bσ) if a = 0 and exp(mσ) = exp(aσ) if b = 0.
Since the products and their real powers do not change the group belonging, then the matrix
exp(mσ) also belongs to the same group as both exp(aσ) and exp(bσ). Therefore the
expressions (3.5) set the commutative binary composition over non-Abelian group SU(1,1).
If exp(aσ) and exp(bσ) are commutative then m ≡ a+ b. As long as the group SU(1,1) is the
topological one, then one can expand (3.5) into series under conditions of small a and b, m
is also small in this case. Taking into account the smallness second order, one has m ∼= a+ b

and, independently, m2 ∼= a2 + b2 + 2(ab). Therefore the composition rule (3.5) goes to the
ordinary superposition principle up to the smallness second order. Representing the geodesic
vectors as a = naa and so on, we have the following expressions for the vector m:

nm =
na sinh a +nb sinh b

p
, tanh(m/2) =

p

cosh a + cosh b
, (29)

where p2 = sinh2 a + 2(nanb) sinh a sinh b + sinh2 b.
The composition rule (3.5) may be extended up to the square nonsingular matrices of any
order and also up to an arbitrary Lie groups under condition of existence their matrix
representations:

M = {[AB−1]1/2B}2 = {[BA−1]1/2 A}2.

Extremely important role belongs to the discrete symmetries in physics, especially in quantum
mechanics. Beforehand we mean here the inversion and permutations. Such symmetries
become geometrically apparent and contain particularly rich capabilities in the binary
compositions of the propagators.

It is clear that a → −a leads to QA → Q−1
A . Let us consider the geometric properties of

the binary composition (3.5) on the Poincare map, figure 3. If O is the common point of
both geodesic vectors a and b, then m is the diagonal of the Lobachevsky parallelogram
OAMB. Let us prolong the corresponding geodesic lines to the left hand of the point O, then

we shall get vectors −a and −b, they define the inverse matrices Q−1
A and Q−1

B . The vector
−m corresponds to the inversed parallelogram OA′M′B′ diagonal OM′, then one has the
inversed composition M−1 = {[A−1B]1/2B−1}2. Analogically, if one replaces only one vector
b by −b, then we shall have the parallelogram OADB′ with its diagonal d. It leads to the
composition D = {[AB]1/2B−1}2, which goes also to the inverse one under inversion both A
and B. If vectors a and b are small then d ∼= a− b. Let us emphasize that all vectors a, b,m,
and d ( see fig.3) are situated on the same Lobachevsky plane, all of them do not contain an
orthogonal components to their Lobachevsky plane. It is quit clear from fig.3 that permutation
of the vectors a and b leads to d → −d. In the matrix terms it means that D → D−1 under
permutation of A and B.
We have investigated all discrete symmetries mentioned above which may be represented
in the Lobachevsky plane. However it is not the complete investigation of the geometric
properties of the SU(1, 1) group in the complete Lobachevsky space, it is necessary to
go outside of the Lobachevsky plane to obtain the complete geometric description of
non-commutativity.
For this aim it is necessary to obtain the composition which includes only the term
proportional to the [nbna] in its exponential expression, as it is clear from the expression (3.4).
Omitting cumbersome geometric tracings and also cumbersome algebraic calculations, we
shall bring the results. The composition to be defined has two forms: T = (AB−2 A)1/2 A−1B
and T′ = (AB2 A)1/2 A−1B−1 (here prime means only notation, without any other sense). Let
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us find the geometric sense of the composition T. Representing all matrices in exponential
form one obtains

T = exp(tσ) = cosh t + (ntσ) sinh t = (eaσe−2bσeaσ)1/2e−aσebσ ,

then the parameters of the vector t are expressed as (Lunin & Kogan, 2004; 2009)

nt = i
[nbna]

√

1 − (nbna)2
, tanh t =

√

1 − (nbna)2 tanh b tanh a

1 − (nbna) tanh b tanh a
. (30)

It is seen from formulae (3.7) that vector nt is orthogonal to the plane of both vectors a

and b, and t is equal to zero if they are collinear, i.e. T is the identity matrix under A
and B commutativity. One has to imagine the vectors t and t′ to be perpendicular to the
Lobachevsky plane of the vectors a and b, i.e. to the Poincare map in this case, figure 3. The
geodesic vectors a and b form the triangle on the Lobachevsky plane. Taking into account
the Cagnoli formula expressing the triangle area via its two sides and the angle between them
and comparing it with (3.7), one may see that t defines oriented parallelogram OAMB area.
Of course, there are exist connections between an area value and angle defect δ: tanh t = sin δ,
the vector t is also connected with the Berry phase. If a and b are small then t ∼= i[ba] ∼= −t′,
i.e. parallelograms areas are the same.
Let us investigate the properties of compositions T and T′ with respect to the discrete
symmetries. It is seen from (3.7) that permutation of matrices A and B leads to nt → −nt, i.e.
to T → T−1. If we shall replace both vectors a → −a and b → −b, then both expressions
in (3.7) would not be changed. Geometrically these replacements lead to the transformation
of the parallelogram OAMB into one OA′M′B′, fig.3, with the same orientation and area, i.e.
T → T.
The replacement of only one vector b → −b leads to the parallelogram OADB′ with contrary
directed unit vector nt and with changed area value. Note that this replacement transforms
T → T′ at the same time, then T and T′ have the similar symmetry properties, of course.
Opposite directions of nt and nt′ for adjacent areas express the saddle character of the planes
with negative Gaussian curvature.
One may see that addition of the binary compositions T and T′ to M and D extends the
geometry contents of the binary compositions over the group SU(1, 1) up to the complete
three-dimensional Lobachevsky space.
The symmetry properties of all binary compositions obtained above in the geometric way may
be also verified by means of the ordinary algebraic calculations (Lunin, 2002; Lunin & Kogan,
2009).
All the binary compositions mentioned above may be considered as the
non-Euclidean superposition principle:

M = {[AB−1]1/2B}2 = {[BA−1]1/2 A}2,

D = {[AB]1/2B−1}2,

T = [AB−2 A]1/2 A−1B, T′ = [AB2 A]1/2 A−1B−1,

(31)

applicable to the multiplicative non-Abelian Lie groups of any order. All these compositions
belong to the same groups as both A and B, since real powers do not change the group
belonging. These compositions have the following properties with respect to the discrete
symmetries under non-commutative group elements A and B

i f A → B, B → A, then M → M, D → D−1, T → T−1, T′ → (T′)−1;
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i f A → A−1, B → B−1, then M → M−1, D → D−1, T → T, T′ → T′.

These compositions go over to the ordinary superposition principle in the vicinity of identity
with the same symmetry properties. The group elements A and B may also belong to the
commutative group, the compositions M and D conserve their symmetry properties, both
T and T′ are the identity in this case. The last circumstance allowed one to consider the
compositions T and T′ as the commutators over the multiplicative groups.
In the simple cases of some subgroups of the group SL(2, C), such as SU(2), SU(1, 1), the
non-Euclidean superposition principle has the geometric interpretation in the spaces with
nonzero Gaussian curvature. Such groups may be mapped as additive groups into such spaces
with quit clear geometric sense of the group elements, the operation over the group, and the
compositions discussed above.
It is extremely important to compare the ordinary superposition principle used in a great
number of physical phenomena up to now, and the non-Euclidean superposition principle.
We shall consider the double-slit experiment for this aim.
At first, it is needed to consider the factors which may be different or the same in the
ordinary consideration and proposed here. These factors may be separated with respect to
the experimental and also theoretical ones.
If we are interesting now only to compare two composition rules, we have to set the same
experimental conditions, and to take the common initial theoretical principles, where it is
possible.
From the experimental view point, we regard that stretched slits, as it is usually supposed,
lead to loss of subject clarity. It is clear that different pairs of points along stretched slits, one
or both, may bring any phase shifts at any detector surface fixed points, and this circumstance
has to be taken into account.The last one is not included into the ordinary calculations, it
is carried out only for individual path pairs (Feynman & Hibbs, 1965). Therefore we shall
consider only two point-wise slits here.
The double-slit experiment is supposed to involve all enigmas of quantum mechanics
(Feynman, 1965). However, the ordinary consideration of the experiment does not contain
the propagators non-commutativity, as a rule. As long as this circumstance is one of the
fundamental peculiarity of quantum mechanics, we shall include this one locating two
point-wise slits onto the two media boundary, then the non-commutativity will appear
immediately. Nevertheless, excluding the boundary in the final expressions one may compare
the composition rules under the same conditions.
Relating to the theoretical distinctions it is necessary to take into account a number of factors.
They are following: the Hermitian forms to be compared in the framework of only theory
under its incompleteness in the ordinary schemes; the observables have to be compared
with the experimental results; the scalar or matrix expressions of the propagators in both
approaches; and, of course, the composition rules itself, which have to be roughly consistent
with respect to some limiting cases.
Since it is senseless to compare some part of unknown Hermitian forms set with the complete
one, we shall accept the complete set in both cases.
It is accepted in the ordinary schemes of quantum mechanics to demonstrate only one
observable, the "probability density" ρ = χχ∗ = (j0 + j1)/(2k), with interference pattern.
We regard restriction with only one observable to be insufficient due to reasons discussed in
the second part of the paper, therefore we shall include all observables into consideration.
The scalar character of the propagators in the ordinary schemes, for example in the Feynman
one, we suppose also to be insufficient, then we are forced to use the matrix one.
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The last factor we shall discuss below.
Taking all these assumptions into account, let us consider the double-slit experiment when
two point-like slits are arranged at the two media boundary (Lunin, 1998; 2002). The
propagators along different paths may be written, in accord with the expression (2.21), as

A = exp(aσ) = exp (iMAσ3) exp (Lσ1) exp (iNAσ3),
B = exp(bσ) = exp (iMBσ3) exp (Lσ1) exp (iNBσ3),

(32)

where NA = k1sA, NB = k1sB, MA = k2rA, MB = k2rB, L = (1/2) ln(k2/k1), k1 and k2 are
reciprocals of waves before and behind slits respectively, sA and sB are path lengths from the
source up to slits under k1, rA and rB are the same from slits up to the common point of the
detector surface under k2.
Now let us consider the last factor mentioned above. It is quit clear that one needs at first
to compare the composition M from (3.8) and the sum of A and B. Let us note that the
coincidence of two point-wise slits, i.e. shift one of them to the position of another, and
shutting down one of them have to lead to the same propagator. On the one hand, if we
shall displace the slit B to the position of A we shall have the propagator MA = exp(2aσ)
in the case of the non-Euclidean superposition principle. Under the Euclidean one, using the
sum of propagators, one has 2 exp(aσ), and these matrices have different determinants. On
the other hand, if we shut down the slit B, both propagators would be the same, exp(aσ).
The geometric investigation of this subject (we have no place to prove it here, see (Lunin,
1994)) shows that the composition of propagators would be the first order hyperbolic moment
on the Lobachevsky plane, or the geometric mean, in this and similar cases. It means that
the non-Euclidean complete propagator MNE for double-slit experiment has to be taken as
[AB−1]1/2B with the same group-theoretic properties. The Euclidean one ME would be the
arithmetic mean at the same time, (A + B)/2. Now both propagators are roughly to be
consistent in the double slit experiment, besides the group-theoretic requirements, of course.
Omitting some calculation details, we shall bring the following expressions for them

MNE =
1

2
· eiMAσ3 eLσ1 eiNAσ3 + eiMBσ3 eLσ1 eiNBσ3

√

cos2 (N1−N2)+(M1−M2)
2 − sinh2 L sin(N1 − N2) sin(M1 − M2)

,

ME =
eiMAσ3 eLσ1 eiNAσ3 + eiMBσ3 eLσ1 eiNBσ3

2
.

Since matrices in the numerators of both expressions are the same, and since the observables
are the bilinear Hermitian forms, all observables calculated by means of two composition rules
are distinguished only by factor depending on the problem parameters. Then we have

js(E) = [cos2 (N1 − N2) + (M1 − M2)

2
− sinh2 L sin(N1 − N2) sin(M1 − M2)]js(NE).

As far as j3(NE) is constant everywhere due to fulfilment of the group-theoretic requirements
to the composition M from (3.8), then j3(E) �= const, in particular it depends on coordinates as
it is seen from the expression above. It means that the Euclidean superposition principle leads
to violation of some conservation laws excluding the points where expression in brackets is
equal to unit.
We note here that the calculation of the interference pattern for more number of point-wise
slits requires to obtain the hyperbolic first order moment over corresponding number of
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non-collinear geodesic vectors on the Lobachevsky plane. For example, if one has three slits it
is necessary to find at least the composition of three non-commutative matrices which belongs
to its group and which does not change under permutation of any pair of them.
As far as we do not know any theoretical or experimental results devoted to the double-slit
experiment under double-media conditions, we shall restrict with the homogeneous medium
when k1 = k2, i.e. L = 0. Therefore we shall bring two connections between
js(NE, M), js(E, M) and js(NE, D), js(E, D), where the first pair corresponds to the symmetric
composition M, and the second one corresponds to the antisymmetric composition D:

js(E, M) = [cos2 (N1−N2)+(M1−M2)
2 ]js(NE, M),

js(E, D) = [cos2 (N1+N2)+(M1+M2)
2 ]js(NE, D).

(33)

We remind that j3(NE, D), j0(NE, D) are constant in homogeneous medium in just the same
way as j3(NE, M), j0(NE, M), therefore j3(E, D), j0(E, D) and j3(E, M), j0(E, M) are not
constant. It means that last observables calculated by means of the ordinary superposition
principle lead to violation of the conservation laws, excluding the points where

(N1 − N2) + (M1 − M2) = ±2πn f or M, n = 0, 1...
(N1 + N2) + (M1 + M2) = ±2πm f or D, m = 0, 1...

(34)

The first expressions in (3.10) and (3.11) show that js(E, M) are equal to js(NE, M) at the points
where two paths length difference is multiply to the wave length, i.e. at the points of peaks in
interference pattern.
Two superposition rules are rather compared, now we shall briefly discuss the consequence
of the non-Euclidean superposition principle concerning with the double-slit experiment in
homogeneous medium restricting with symmetric and antisymmetric compositions M and
D. Two observables, j3 and j0, are conserved for both compositions whereas j1 and j2 at the
final point F are dependent upon them at the initial point I as

j1(F, M) = cos[(N1 + M1) + (N2 + M2)]j1(I) + sin[(N1 + M1) + (N2 + M2)]j2(I),
j2(F, M) = − sin[(N1 + M1) + (N2 + M2)]j1(I) + cos[(N1 + M1) + (N2 + M2)]j2(I)

(35)

for composition M, and for composition D as

j1(F, D) = cos[(N1 + M1)− (N2 + M2)]j1(I) + sin[(N1 + M1)− (N2 + M2)]j2(I),
j2(F, D) = − sin[(N1 + M1)− (N2 + M2)]j1(I) + cos[(N1 + M1)− (N2 + M2)]j2(I).

(36)

The expressions (3.12), (3.13) and (2.19), (2.20) define two spiral lines with the same radii
and step but having different torsion. It is interesting to note that the line defined by (3.12)
does not depend on paths permutation whereas another one changes the torsion at the same
time. These two spiral lines have also some other peculiarities, for example all js(F, D) are
conserved under condition (N1 + M1) = (N2 + M2)± 2πn.

4. Irreversibility in quantum mechanics

This problem is considered to be unsolved (Ginzburg, 1999; Kadomtzev, 2003) due to the
fact that equations describing a physical phenomena, in particular the Schroedinger one, in
a closed systems are reversible, they describe such phenomena highly satisfactory, but an
entropy is increasing at the same time. Therefore it seems that a problem of irreversibility is
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first of all the mathematical one, and the reversible equations have to be accepted as the initial
condition.
It is quite clear that the irreversibility may be coupled with interactions. It is also quite clear
that an interactions lead to non-commutativity of a propagators describing processes. We shall
assume that the mathematical explanation of irreversibility may be carried out on the base
of the non-commutative properties of transformations which are contained in the reversible
equations, and the reversibility of equations is only necessary condition for the closed system
reversible evolution, but perfectly insufficient for that. It would be meant that a reversible
equations contain irreversibility in general case. Further we shall follow to the (Lunin &
Kogan, 2004; 2009) where the subject is set forth in more details.
Transformations of solutions for the time-dependent Schroedinger equation in its spinor
representation belong to the SL(2, C) group. It describes a most general spinors
transformations up to unessential scalar factor - matrix determinant. The last one for the
SL(2, C)-group matrix representation is equal to the unit.
Reversibility of the equations means in particular that any transformation has the inverse one,
in just the same way as any group element has the inverse one. In other words, the equation
reversibility and the group description of the transformations are closely connected.
The process is reversible if the system goes through the same sequence of states in reverse
order under time inversion as it went in the straightforward one. It means that all conservation
laws are the same in both processes, i.e. both ones are described by the same group.
Interchange of lower and upper integration limits in the product integral leads to the
propagator inversion Q → Q−1 (Gantmakher, 1988). In other words, if Q corresponds to
the process t1 → t2, then Q−1 corresponds to the process t2 → t1.
As far as irreversibility is the experimental fact, we shall use the density matrix of
pure states J from (2.7) based on observables js, it has no the inverse one. Then the
irreversibility investigation means to investigate the consequences J(t0)...J(t1)...J(t2)...J(t) for
times t0...t1...t2...t under inversion of the last consequence.
Let us assume Φ(t1), Φ(t2) and J(t1), J(t2) are to be the spinors and the density matrices
correspondingly for arbitrary times t1, t2. Let these spinors are connected by matrix Q(t2, t1)
from the group SL(2, C) as Φ(t2) = Q(t2, t1)Φ(t1).Then one has

J(t1) =
1

2

3

∑
s=0

σs{Φ+(t1)σsΦ(t1)}, J(t2) =
1

2

3

∑
s=0

σs{Φ+(t1)Q
+(t2, t1)σsQ(t2, t1)Φ(t1)}. (37)

All propagators in (3.8), excluding T, T′, go to inverse ones under time inversion, they
do not contain irreversibility. Let us consider one of two last compositions from (3.8)
under inversion of both matrices entered it, and prove that T(A−1, B−1) = T(A, B),
i.e. (A−1B2 A−1)1/2 AB−1 = (AB−2 A)1/2 A−1B. Multiplying this equality on the right
subsequently by B, A−1 and raising it to the second power one has

A−1B2 A−1 = (AB−2 A)1/2 A−1B · BA−1 · (AB−2 A)1/2 A−1B · BA−1 =

= (AB−2 A)1/2(AB−2 A)−1(AB−2 A)1/2 A−1B2 A−1 = A−1B2 A−1,

i.e. T → T under A → A−1 and B → B−1. The composition T′ has the same properties.
Thus, we have the following transformations for propagators compositions in time-depending
process t1 → t2 → t1: 1 → Q → 1, if Q is any reversible propagator, and 1 → T → T2 for
irreversible composition T (or T′).
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Considering process t1 → t2 → t1 and replacing Q in the second expression in (4.1) by T2 one
has finally the following expression for the matrix J

J(t1 → t2 → t1) =
1

2

3

∑
s=0

σs{Φ+(t1)(T
2)+σsT2Φ(t1)},

which does not coincide with J(t1) there. It means that the process is irreversible in general
case. However, even this matrix may lead to a reversible process. A comparison of the last
expression with J(t1) in (4.1) shows that such process is also reversible under conditions
(T2)+σsT2 = σs, s = 0, 1, 2, 3, which lead to T2 = σ0, or T = ±σs. As far as T = σ0 under A
and B commutativity, one may see that interaction is the necessary condition for irreversibility,
but insufficient.
As an example of the system in which irreversibility may take place let us consider the
double-slit experiment where point-wise slits are arranged at the two media boundary. A
propagators for it were calculated in (3.9).
The reversibility condition, t = 0, as it is seen from (3.7), leads to the requirement
√

1 − (nbna)2 tanh b tanh a = 0. It means that the process is reversible if at least one vector a
or b is equal to zero, or they are collinear.
Using expressions (3.9) the parameters of the vector a may be expressed as

cosh a = cosh L cos(NA + MA), na1 sinh a = sinh L cos(NA − MA),
na2 sinh a = sinh L sin(NA − MA), na3 sinh a = i cosh L cos(NA + MA),

and similar for the vector b.
If media are identical, i.e. k1 = k2, L = 0, interaction is absent, the propagators A and B
are commutative, then the matrix T = σ0. Therefore only reversible processes take place in
homogeneous media.
If media are inhomogeneous but the propagators satisfy to the condition cosh L cos(NA +
MA) = ±1 or cosh L cos(NB + MB) = ±1, then T = σ0, i.e. one has also reversibility.
Irreversibility takes place for the points where these conditions are violated.
Irreversibility of some process taking place in a closed system has to become apparent to an
observer. It means that some observables, i.e. some Hermitian forms, have to be influenced
by irreversible process.
Let some process in a closed system is irreversible along t1 → t2 → t1, and A and B are two
corresponding non-commutative propagators from SU(1, 1) group representable as
A = exp[(naσ)a], B = exp[(nbσ)b]. We shall also assume for definiteness that (1/2)TrA >

1, (1/2)TrB > 1, the lengths of vectors a and b are real under these conditions.
Let the system evolution is a repeating process mentioned above, and if ∆t = t2 − t1 then
time duration of n-multi-periodic process is 2n∆t and the lengths of vectors a and b are also
increased by 2n times.
Thus, irreversibility has to be appeared as dependence of some observables calculated by
means of the composition T on number of cycles n.
The value (nbna) �= ±1 due to A and B non-commutativity, then the length of the vector t is
positive. The length t̃ of the vector t after n-multiple repetitions of the process will be defined
by

tanh t̃ =
√

1 − (nbna)2 tanh 2nb tanh 2na

1 − (nbna) tanh 2nb tanh 2na
. (38)
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Calculating correspondent matrices on the base of composition T we shall obtain the
expression for j̃0 after n-times repetitions of the process:

j̃0 =
{1 + (1 + 2

t2
3

t2 ) tanh2 t̃}j0 + 2
t1 j1+t2 j2

t tanh t̃ + 2t3
t1 j2−t2 j1

t2 tanh2 t̃

1 − tanh2 t̃
, (39)

where js are the observables at the beginning of process. It was taken into account here that
all ts/t do not depend on n, and, as far as a1, a2 are real and a3 is imaginary and the same for
bs , it is also accepted here t3 → it3, so that t3 in (4.3) is real.
The value j̃0 = Φ+Φ is positive defined, the value j̃0 coincides with j0 at the beginning of
process. It is seen from (4.2) that t̃ is restricted under n → ∞, then j̃0 in (4.3) is positive,
increases and also restricted under this condition. Besides, it is the only positive defined
functional.
There were carried out the geometric analysis of irreversibility, and also the functional j̃0 in
(Lunin & Kogan, 2009). It was shown there that the functional is closely connected with the
area of triangle defined by vectors a and b on the Lobachevsky plane. This area is coupled in
turn with the Berry phase. Such consideration allows also to show that the functional grows
more quickly under interaction increase.
It may be assumed that this functional may be coupled with an entropy.

5. Conclusion

Three subjects connected with quantum mechanics considered above allow one to make some
conclusions. Two of them, the observables set completeness and the superposition principle,
lie in the foundations of quantum mechanics, the third one, an irreversibility, is its essential
consequence.
The first topic of the paper is devoted to an analysis of the conventional quantum mechanics
structure from the view point of requirements of the observables set completeness and
fulfilment of the conservation laws for them. Both last subjects are closely connected among
themselves, and with the group theory, of course.
As long as different observables may be connected with each other in accordance with the
uncertainty relations in the conventional forms of quantum mechanics, then the observables
completeness obtains an exceptional sharpness. If one has no complete set of them then
it is impossible to prove that the theory includes all similar relations, even for the known
observables.
Considering a stationary Schroedinger equation it was defined the complete set of the
Hermitian forms based only on the complex wave function and its derivative. It may be said
that the complete set is a consequence of only the equation and combinatorial analysis. These
Hermitian forms contain only the same variables which are used for probability density and
its current in the ordinary forms of quantum mechanics.
The complete set includes four Hermitian forms, they satisfy to some identity in any case,
therefore it may be considered as the completeness condition, and only three of them are
independent. The set is also applicable to the time-dependent Schroedinger equation as far as
the last one contains only the first order time derivative.
Since the stationary Schroedinger equation is similar to the Helmholtz one, the complete set of
the Hermitian forms is also similar to the Stokes parameters, they satisfy to the same identity.
Obviously, that the complete set contains the parameters used in quantum mechanics now,
and also the hidden parameters discussed there. As far as the set of the Stokes parameters
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is complete and known during many decades, the complete set of the Hermitian forms
connected with the Schroedinger equation and described here is similar to them, one may
say that there are an unused parameters in quantum mechanics but not at all a hidden ones.
The complete set of observables is assumed to have a spatial interpretation. An analysis of
the free particle conservation laws fulfilment under arbitrary initial conditions based on the
complete set of observables shows that a spatial line where all necessary conservation laws
are fulfilled is the spiral line in a general case, such line may be named as the free particle
trajectory. Obviously, that even free quantum particle has a transversal motion components
in this case.
Consideration of the trajectories transformations under some simplest potentials shows that
the spiral line may turn to the straight line under some conditions, and vice versa.
The observables transformation on the step-wise potential which is similar to the Lorentz one
allows one to suspect that such transformation may play a role of a bridge between quantum
mechanics and special relativity.
Combination of the complete set of observables with its spatial interpretation allows one to say
that the quantum particle position is defined uniquely by initial conditions and conservation
laws. An ordinary probabilistic interpretation in quantum mechanics is assumed to be
connected with some unused, and unmeasured of course, parameters containing transversal
components of a particle motion.
The observables completeness or its absence influences also on the wave function
interpretation. The observables at the initial point have to define the wave function and its
derivative there. If some part of observables is unknown, i.e. is not measured or is not
considered at all, then the wave function can not be defined uniquely, even taking into account
a phase factor, therefore any interpretation of the wave function, including probabilistic one,
can not be proved. Such situation takes place now in the conventional quantum mechanics.
In the opposite case, when the complete set of observables is included into the theory, a
quantum particle position is assumed to be uniquely defined. Any interpretation of the wave
function is not necessary in this case although the last one may be expressed via observables,
as well as its derivative.
The observable complete set leads to a definite position of quantum particle. Obviously, to
prove an ordinary probabilistic interpretation in quantum mechanics it is necessary to prove
in turn that it is necessary to exclude from consideration some Hermitian forms which are
constructed on the basis of the same variables, ψ and ∇ψ, as used for construction of ρ and j

in the conventional schemes, and which define a transverse components of quantum particle
motion.
This approach has led to the uniquely defined trajectories of quantum particle on the one
hand, and to the unclassical their configuration, the spiral lines, on the other hand. These
two circumstances has led to an explanation of the point-wise traces on the one hand, and to
a qualitative one of their distribution on the other hand in the double-slit experiment with a
single-particles source without use of a wave function collapse and a particle-wave dualism.
The second topic of the paper is a consideration of the superposition principle in quantum
mechanics from the point of view of the Noether theorems. These theorems require
the rigorous group-theoretic construction of the fundamental physical theories due to the
necessary requirement of the conservation laws fulfilment. The last one is the consequence
of the space symmetries.
The approach proposed in the paper has led to the non-Euclidean superposition principle
which allows one to fulfill these requirements.
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A successive matrix transformations of solutions for the Schroedinger, the Helmholtz and
other similar wave equations are non-commutative in a general case. Such transformations
may be geometrically mapped into a curved spaces, in particular into the Lobachevsky space
with the Gaussian curvature CG = −4 as it was shown above. The problems similar to
interference ones require to use some composition rule for alternative transformations, and
a use of the ordinary superposition principle leads to the compositions on the complex
Euclidean plane, i.e. in the flat space. Therefore one has the situation when we need to
compose the same objects (transformations or solutions) either in the one, curved, space or
in the other, flat, space.
The non-Euclidean superposition principle allows one to compose all transformations,
successive and alternative, in the common space with the Gaussian curvature defined by the
equation.
To compare the ordinary superposition principle and the non-Euclidean one it was considered
the double-slit experiment when both slits are arranged at the two-media boundary. The
approach assumes to consider also a homogeneous medium.
As far as the case with a boundary independently calculated on the base of the ordinary
superposition principle is not known to author, consideration of the conservation laws
fulfilment was carried out on the base of the partial propagators calculated by means of the
product integral, and subsequent comparison of two different rules of their compositions, in
accordance with the ordinary and non-Euclidean superposition principles. Such comparison
was carried out also for the case of the homogeneous medium.
It was shown that the non-Euclidean superposition principle leads to fufilment of the
conservation laws everywhere under presence or absence of a boundary.
The ordinary superposition principle leads to its fulfilment only at the points of peaks of the
interference pattern, and to their violation in the other points.
Two compositions entered the non-Euclidean superposition principle, symmetric and
antisymmetric with respect to permutations, are considered to see a differences to which they
may lead. It may be assumed that these compositions may be connected with bosons and
fermions correspondingly, in particular under conditions of the double-slit experiment with
such kinds particles.
Taking into account expressions (3.12) and (3.13) one may see that they having different
permutation properties lead to different spatial behavior of the j1 and j2 in both cases. The
experiments with particles of different kinds mentioned above, particularly with polarized
ones, i.e. j1 ≃ 0 or j2 ≃ 0 , may demonstrate in principle these differences.
It may be assumed that a differences of similar kind are contained also in the ordinary forms
of quantum mechanics, for example differences for the central peak in interference pattern for
bosons and fermions.
Here it is necessary to take into account that the central peak in the interference pattern is
the same for bosons and fermions in accordance with point of view accepted now (Feynman,
1965).
Such kind experiments in combination with expression ρ = χχ∗ = (j0 + j1)/(2k), which
does not contain j2(F), and expressions (3.12), (3.13) for polarized particles may be found also
useful to compare the probability interpretation of the density ρ in the quantum mechanics
ordinary forms and complete set of observables proposed here experimentally.
Obviously that more rich opportunities appear in the case of the double-slit experiment
arranged at the two-media boundary with polarized particles.
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The last topic considered in the paper concerns with the irreversibility in quantum mechanics.
The problem consists of the circumstance that all the main equations, in particular the
Schroedinger one, are reversible, and they describe a physical phenomena satisfactorily
excluding irreversible processes. A known attempts to solve the problem contain a proposals
to introduce different modifications into existing theory which may lead to the unacceptable
changes concerning with reversible processes taking place simultaneously with irreversible
ones in the closed physical systems.
The approach proposed in this paper and based on the non-Euclidean superposition principle
comes from the reversible Schroedinger equation which includes interactions. Any partial
propagators are reversible in this case, all of them belong to some group therefore any
propagator has the inverse one. Any such propagator turns to the inverse one under time
inversion, as well as some of their compositions entered the non-Euclidean superposition
principle. It means that they do not contain irreversibility, and reversible processes described
with the reversible Schroedinger equation take place in the closed systems even under
interactions.
However, two binary compositions entered the non-Euclidean superposition principle, T and
T′, do not turn into the inverse ones under time inversion, for example T → T under such time
transformation. It means that such kind binary composition is transformed as 1 → T → T2

under t1 → t2 → t1 in general case, and such composition may contain irreversibility.
Thus, a reversibility of the Schroedinger equation is only the necessary condition for a closed
physical system reversible evolution but not the sufficient one, on the one hand. On the other
hand, it is obviously that inclusion into the Schroedinger equation of some irreversible terms
may lead only to the irreversibility for any processes their.
In an opposite way, the non-Euclidean superposition principle assumes coexistence of both
reversible and irreversible processes simultaneously in the closed physical systems described
with the only the reversible Schroedinger equation.
Let us note two circumstances connected with the opportunity to include irreversibility into
the quantum mechanics scheme.
The first one is following: none partial (single) propagators do not contain irreversibility, it is
necessary to find at least some their binary compositions. The second one necessarily implying
interactions in a system, leads to mapping all propagators and their compositions into the
Lobachevsky space, i.e. into the curved space.
It is interesting to compare these circumstances with two conclusions from
(Prigogine & Stengers, 1994) which are the following:
a) Irreversibility expressed by the time arrow is a statistical property. It can not be introduced
in terms of individual paths or wave functions. Therefore it demands a radical withdrawal
from the Newtonian mechanics or from orthodox quantum mechanics based on concepts of
the individual path or wave function;
b) The main assumption that we have to introduce here is the statement that the space with
zero Gaussian curvature, similar to the Minkowski space, does not contain entropy,
which are cited unfortunately only in the reverse translation from Russian.
It would be recognized that these expressions formulate the really necessary conditions of
irreversibility as it was shown above.
The approach stated above allows one to express the following general point of view on the
structure of the fundamental theories.
Taking the exceptional role of the group theory and the Noether theorems in such physical
theories into account the last ones may be split into two classes. The first one consists of
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the theories constructed before the Noether theorems establishment, and the second ones
constructed later.
Evidently that it is difficult to assume the consecutive group-theoretic construction of the
first class theories. In opposite case, the theories of the second class would be assumed to
be the group-theoretic ones, since the Noether theorems were known to the time of their
development.
Therefore it seems to be useful to carry out the group-theoretic analysis of the foundations of
the first class theories, whereas a similar consideration of the second class theories seems to
be unnecessary.
Besides, it would be considered in both cases if the ordinary ( Euclidean) superposition
principle, if it used there, is sufficient for the aims of the theory, or insufficient.
Author is grateful to V. I. Kogan ( Kurchatov, MEPhI) for many years collaboration, and to
V. I. Man’ko (Lebedev) for his active support.
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