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1. Introduction

In Ref.-(9), the authors study and solve the time-dependent Schrödinger equation

i
∂ψ

∂t
= H (t)ψ (1)

where

H = −a (t)
∂2

∂x2
+ b (t) x2 − i

(
c (t) x

∂

∂x
+ d (t)

)
(2)

and where a (t) , b (t) , c (t) , and d (t) are real-valued functions of time t only; see Refs.-(9),
(10), (11),(29), (35), (39), (49), (50), and Ref.-(51) for a general approach and currently known
explicit solutions. The solution (see Ref.-(9) for details ) is given by

ψ (x, t) =
∫

∞

−∞

G (x, y, t) ψ0 (y) dy (3)

where the Green’s function, or particular solution is given by

G (x, y, t) =
1√

2πiµ (t)
ei(α(t)x2+β(t)xy+γ(t)y2). (4)

The time-dependent functions are found via a substitution method that reduces eqs.- (1)-(2)
to a system of differential equations (see Ref. (9)):

dα

dt
+ b (t) + 2c (t) α + 4a (t) α2 = 0, (5)

dβ

dt
+ (c (t) + 4a (t) α (t)) β = 0, (6)

dγ

dt
+ a (t) β2 (t) = 0, (7)

where the first equation is the familiar Riccati nonlinear differential equation; see, for example,
Refs.-(21), (45), (56). This system is explicitly integrable up to the function µ (t) which satisfies
the following so-called characteristic equation

µ′′ − τ (t) µ′ + 4σ (t) µ = 0 (8)
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2 Will-be-set-by-IN-TECH

with

τ (t) =
a′

a
− 2c + 4d, σ (t) = ab − cd + d2 +

d

2

(
a′

a
−

d′

d

)
. (9)

This equation must be solved subject to the initial data

µ (0) = 0, µ′ (0) = 2a (0) �= 0 (10)

in order to satisfy the initial condition for the corresponding Green’s function. The
time-dependent coefficients are given by the following equations:

α (t) =
1

4a (t)

µ′ (t)

µ (t)
−

d (t)

2a (t)
, (11)

β (t) = −
1

µ (t)
exp

(
−

∫ t

0
(c (τ)− 2d (τ)) dτ

)
, (12)

γ (t) =
a (t)

µ (t) µ′ (t)
exp

(
−2

∫ t

0
(c (τ)− 2d (τ)) dτ

)
+

d (0)

2a (0)
(13)

−4
∫ t

0

a (τ) σ (τ)

(µ′ (τ))2

(
exp

(
−2

∫ τ

0
(c (λ)− 2d (λ)) dλ

))
dτ.

Time dependence in the Hamiltonian has been studied in the context of various applications
such as uniform magnetic fields Refs.-(9), (16), (28), (31), (32), (34), (36), time-periodic
potentials and quantum dots Ref.-(8) (see also Ref.-(12) for a list of references and
applications). Here, we present a general time-dependent Hamiltonian that has applications
to the study of quantum devices such as quantum dots. Often described as artificial atoms,
quantum dots are tools that allow the study of quantum behavior at the nanometer scale (see
Ref.-(23)). This size is larger than the typical atomic scale that exhibits quantum behavior.
Because of the larger size, the physics are closer to classical mechanics but still small enough
to show quantum phenomena (see Ref.-(23)). Furthermore, their use extends into biological
applications. In particular quantum dots are used as fluorescent probes in biological detection
since these devices provide bright, stable, and sharp fluorescence (see Ref.-(6)).
Using methods similar to the approach in Ref.-(12), we discuss the uniqueness of Schwartz
solutions to the Schrödinger Equation of this quantum dot Hamiltonian. In Ref.-(12) the
authors seek to find Quantum Integrals of motion of various time-dependent Hamiltonians.
Specifically, the authors seek quantum integrals of motion for the time-dependent Schrödinger
equation

i
∂ψ

∂t
= H (t)ψ (14)

with variable quadratic Hamiltonians of the form

H = a (t) p2 + b (t) x2 + d (t) (px + xp) , (15)

where p = −i∂/∂x, ℏ = 1 and a (t) , b (t) , d (t) are some real-valued functions of time only
(see, for example, Refs.-(13), (30), (34), (36), (37), (57), (58) and references therein). A related
energy operator E is defined in a traditional way as a quadratic in p and x operator that has
constant expectation values (see Ref.-(16)):

d

dt
〈E〉 =

d

dt

∫
∞

−∞

ψ∗Eψ dx = 0. (16)

254 Theoretical Concepts of Quantum Mechanics
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Solutions for Time-Dependent Schrödinger Equations with Applications to Quantum Dots 3

Such quadratic invariants are not unique. In Ref.-(12), the simplest energy operators are
constructed for several integrable models of the damped and modified quantum oscillators.
Then an extension of the familiar Lewis–Riesenfeld quadratic invariant is given to the
most general case of the variable non-self-adjoint quadratic Hamiltonian (see also Refs.-(30),
(57), (58)). The authors use the Invariants to construct positive operators that help prove
uniqueness of the corresponding Cauchy initial value problem (IVP) for the models as a small
contribution to the area of evolution equations.
In the present paper, the author will follow a similar approach in first proving the uniqueness
of the IVP for a reduced Hamiltonian (see eq.-(20)). Then the author will use a gauge
transformation to extend the uniqueness to IVP of the Quantum Dot Hamiltonian, eq.-(17).
Furthermore, the gauge transformation will also simplify the general solution previously
obtained in Ref.-(9).

2. A quantum dot model

Essentially, a quantum dot is a small box with electrons. The box is coupled via tunnel barriers
to a source and drain reservoir (see Refs.-(23), (17)) with which particles can be exchanged.
When the size of this so-called box is comparable to the wavelength of the electrons that
occupy it, the energy spectrum is discrete, resembling atoms. This is why quantum dots
are artificial atoms in a sense. Vladimiro Mujica at Arizona State University has suggested
that the following model is of use to Floquet Theory as well as the theory of Semiconductor
quantum dots:

H = a (t) p2 + b (t) x2 − id (t) . (17)

This Hamiltonian is seen in photon-assisted tunneling in double-well structures and quantum
dots (see Ref.-(8) and Refs.-(25), (26), (44), (19), (55)). In particular, the authors in Ref.-(8)
consider a single-electron tunneling through double-well structures. The schrödinger
equation proposed by the authors has a Hamiltonian of the form of eq.-(17) where b (t) = 0
and

d (t) = i (ν + ζ cos ωt) .

Specifically, they use a single-electron Schrödinger equation with time-periodic potential with
oscillating barriers. The potential with oscillating barriers is given by

V (x, t) =

⎧
⎨
⎩

0 (emitter and collector)
VB + V1 cos ωt (layers of barriers)

VW (layers of well)
(18)

or with the oscillating wells it is given by

V (x, t) =

⎧
⎨
⎩

0 (emitter and collector)
VB (layers of barriers)

VW + V1 cos ωt (layers of well)
(19)

where VB and VW are the height and depth of the static barrier and well respectively. V1 cos ωt
is the applied field with amplitude V1 and frequency ω.

2.1 Uniqueness

We wish to obtain uniqueness of solutions of eq.-(1) for eq.-(17) in Schwartz Space. We follow
the approach of quantum integrals in Ref.-(12) to first prove the uniqueness of such solutions

255Solutions for Time-Dependent Schrödinger Equations with Applications to Quantum Dots
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4 Will-be-set-by-IN-TECH

for the following Hamiltonian:

H0 = a (t) p2 + b (t) x2. (20)

In particular, we will show that for eq.-(20),

〈H0〉 = 0 when ψ (x, 0) = 0. (21)

We first recall that

〈Q〉 =
∫

∞

−∞

ψ∗ (x, t) Q [ψ (x, t)] dx (22)

Since, we have that ψ is in Schwartz space (see the Fourier Transform on R in Ref.-(48)), it
follows that

〈H0〉 = a (t)
〈

p2
〉
+ b (t)

〈
x2
〉

< ∞. (23)

as long as both functions a (t) and b (t) are bounded. Thus, to prove eq.-(21) , we will show
that 〈

p2
〉
=

〈
x2
〉
= 0 when ψ (x, 0) = 0. (24)

Again, since ψ is in Schwartz space, we have that

d

dt
〈Q〉 =

∫
∞

−∞

∂

∂t
(ψ∗ (x, t) Q [ψ (x, t)] ) dx =

1

i

〈
QH − H†Q

〉
(25)

for Q = p, x, px, xp, p2and x2.
Given eq.-(25) we have the following ODE system:

d

dt

〈
p2
〉
= −2b (t) 〈px + xp〉 (26)

d

dt

〈
x2
〉
= 2a (t) 〈px + xp〉

d

dt
〈px + xp〉 = 4a (t)

〈
p2
〉
− 4b (t)

〈
x2
〉

.

If ψ (x, 0) = 0, then
〈

p2
〉

0
= 0 (27)

〈
x2
〉

0
= 0

〈px + xp〉0 = 0.

According to the general theory of homogeneous linear systems of ODE’s, we have that
〈

p2
〉
= 0 (28)

〈
x2
〉
= 0

〈px + xp〉 = 0.

Thus, we have shown that eq.-(24) holds, thereby proving eq.-(21). We then use the following
(see Ref.-(12)) lemma:

256 Theoretical Concepts of Quantum Mechanics

www.intechopen.com



Solutions for Time-Dependent Schrödinger Equations with Applications to Quantum Dots 5

Lemma 1. Suppose that the expectation value

〈H0〉 = 〈ψ, H0ψ〉 ≥ 0 (29)

for a positive quadratic operator

H0 = f (t) (α (t) p + β (t) x)2 + g (t) x2 ( f (t) ≥ 0, g (t) > 0) (30)

(α (t) and β (t) are real-valued functions) vanishes for all t ∈ [0, T) :

〈H0〉 = 〈H0〉 (t) = 〈H0〉 (0) = 0, (31)

when ψ (x, 0) = 0 almost everywhere. Then the corresponding Cauchy initial value problem

i
∂ψ

∂t
= Hψ, ψ (x, 0) = ϕ (x) (32)

may have only one solution in Schwartz space.

Since we have proven eq.-(21), we have that H0 satisfies this lemma, thus proving uniqueness
of Schwartz solutions for eq.-(20). By using the gauge-transformation approach in Ref.-(11)
we state the following lemma:

Lemma 2. Let ψ̃ (x, t), with ψ̃ (x, 0) in Schwartz space, solve the following time-dependent
Schrödinger equation:

i
∂ψ̃

∂t
= H̃ψ̃, (33)

where

H̃ = −a (t)
∂2

∂x2
+ b (t) x2 − ic (t) x

∂

∂x
. (34)

Then

ψ (x, t) = ψ̃ (x, t) exp

(
−

∫ t

0
d (s) ds

)
(35)

solves eqs.-(1)-(2) for

ψ (x, 0) = ψ̃ (x, 0) . (36)

Proof. Let ψ (x, t) = ψ̃ (x, t) exp
(
−
∫ t

0 d (s) ds
)

and assume ψ̃ (x, t) solves (33)-(34), where

ψ̃ (x, 0) is in Schwartz space. We differentiate ψ (x, t) with respect to time:

i
∂ψ

∂t
= i

∂ψ̃

∂t
exp

(
−

∫ t

0
d (s) ds

)
− id (t) ψ̃ (x, t) exp

(
−

∫ t

0
d (s) ds

)
. (37)

For H given by (2) and H̃ given by (34), we have

H = H̃ − id (t) , (38)

and

i
∂ψ

∂t
= H̃

[
ψ̃
]

exp

(
−

∫ t

0
d (s) ds

)
− id (t)ψ. (39)

Since

H̃
[
ψ̃
]

exp

(
−

∫ t

0
d (s) ds

)
= H̃

[
ψ̃ exp

(
−

∫ t

0
d (s) ds

)]
= H̃ [ψ] , (40)

257Solutions for Time-Dependent Schrödinger Equations with Applications to Quantum Dots
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we have that

i
∂ψ

∂t
= H̃ [ψ]− id (t)ψ = Hψ. (41)

By the method of Ref.-(9) for d = 0 we can find ψ̃ (x, t): We simply generate the Green’s

function for ψ̃ (x, t) by substituting d = 0 in eq.-(2). This leads us to a simpler form of the
solution previously obtained in Ref.-(9) for eqs.-(1)-(2). Namely,

ψ (x, t) = exp

(
−

∫ t

0
d (s) ds

) ∫
∞

−∞

G (x, y, t) ψ0 (y) dy (42)

where

G (x, y, t) =
1√

2πiµ (t)
ei(α(t)x2+β(t)xy+γ(t)y2) (43)

with

α (t) =
1

4a (t)

µ′ (t)

µ (t)
, (44)

β (t) = −
1

µ (t)
exp

(
−

∫ t

0
c (τ) dτ

)
, (45)

γ (t) =
a (t)

µ (t) µ′ (t)
exp

(
−2

∫ t

0
c (τ) dτ

)

−4
∫ t

0

a (τ) σ̃ (τ)

(µ′ (τ))2

(
exp

(
−2

∫ τ

0
c (λ) dλ

))
dτ.

and µ (t) is the solution of a reduced characteristic equation given by

µ′′ − τ̃ (t) µ′ + 4σ̃ (t) µ = 0, (46)

where

τ̃ (t) =
a′

a
− 2c, (47)

σ̃ (t) = ab (48)

and initial conditions are given by eq.-(10).
The Schwartz requirement on the initial condition is necessary to show that eq.-(3) is in fact
the solution of eqs.-(1)-(2) since we can justify the interchanging of the time-derivative and
integral operators. In particular, we note that

∣∣∣∣
∂

∂t
G (x, y, t)ψ0 (y)

∣∣∣∣ =
∣∣∣∣

∂

∂t

[
A (t) ei(α(t)x2+β(t)xy+γ(t)y2)ψ0 (y)

]∣∣∣∣ . (49)

Here,

A (t) =
1√

2πiµ (t)
. (50)

Thus, eq.-(49) reduces to ∣∣∣∣
(

∂A

∂t
+ Ai

∂S

∂t

)
ψ0 (y)

∣∣∣∣ , (51)

where
S (x, y, t) = α (t) x2 + β (t) xy + γ (t) y2. (52)

258 Theoretical Concepts of Quantum Mechanics
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Since ψ0 (y) is in Schwartz space, eq.-(51) is also in Schwartz space. It follows that the
time-derivative operator can be exchanged with the integral (see Ref.-(1)).
We state the following extension Corollary:

Corollary 3. Let ψ̃ (x, t), with ψ̃ (x, 0) uniquely solve eqs.-(33)-(34). Then eq.-(35) uniquely solves
eqs.-(1)-(2) for eq.-(36).

This extends the uniqueness of Schwartz Space solutions to eq.-(1) for eq.-(17).

3. Invariants

In Ref.-(12), the authors seek the quantum integrals of motion or dynamical invariants for
different time-dependent Hamiltonians. We recall a familiar definition (see, for example,
Refs.-(16), (38)). We say that a quadratic operator

E = A (t) p2 + B (t) x2 + C (t) (px + xp) (53)

is a quadratic dynamical invariant of eq.-(2) if

d 〈E〉

dt
= 0 (54)

for eq.-(2). We recall from Ref.-(11) that the expectation value of an operator A in quantum
mechanics is given by the formula

〈E〉 =
∫

∞

−∞

ψ∗ (x, t) E (t)ψ (x, t) dx, (55)

where the wave function satisfies the time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ. (56)

The time derivative of this expectation value can be written as

i
d

dt
〈E〉 = i

〈
∂E

∂t

〉
+

〈
EH − H†E

〉
, (57)

where H† is the Hermitian adjoint of the Hamiltonian operator H. Our formula is a simple
extension of the well-known expression Refs.-(28), (40), (47) to the case of a nonself-adjoint
Hamiltonian.
Lemma 1 provides us with a Corollary regarding the relationship between invariants of
gauge-related Hamiltonians.

Corollary 4. Let Ẽ be a dynamical invariant of eq.-(34). If d (t) is a real-valued function, then

E = Ẽ exp

(∫ t

0
2d (s) ds

)
(58)

is an invariant of eq.-(2). If d (t) = id̃ (t) where d̃ (t) is a real-valued function, then Ẽ is an invariant
of eq.-(2).

Conclusion 5. While Schrödinger equations have been widely used in quantum mechanics and
other related fields such as quantum electrodynamics, Schrödinger equations with time-dependent

259Solutions for Time-Dependent Schrödinger Equations with Applications to Quantum Dots
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Hamiltonians continue to have applications in a wide area of related fields. It is thus appropriate to
consider IVPs that have potential applications to devices such as Quantum Dots. It is thus important
to understand the physics of these devices as we realize their great potential in the usage of imaging and
other biological applications. Furthermore, quantum dots give us a glimpse of phenomena that unifies
classical mechanics with quantum mechanics and thus deserve study in order to further the theoretical
understandings of the laws that govern the universe.
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