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1. Introduction 

Physics has always had several different domains of application in on-going development, 
and physicists have always striven for unification among its different domains. Unification 
is usually achieved through development of so-called ‘covering theories’. In the nineteenth 
century, the stunning example was Maxwell’s Electrodynamics (MED), which unified 
electricity and magnetism as one domain of theory. Another major domain of theory then 
present was Newton’s Mechanics (NM), which in the eighteenth century had really 
launched modern physics as a mathematical discipline. 
At the turn of the twentieth century, NM and MED were well in place, and were fulfilling 
many technologically important requirements. But there seemed to be an incompatibility 
between them. The problem concerned their invariance with respect to choice of reference 
frame: NM exhibited invariance if the allowed reference frames were all connected through 
Galilean transformations, whereas MED exhibited invariance if the allowed reference frames 
were all connected through Lorentz transformations. It looked as though one of these two 
theories must be more nearly correct than the other, but it was not clear which one was the 
better one. 
That problem seemed resolved with the advent of Einstein’s Special Relativity Theory (SRT). 
SRT was believed to capture the true meaning of MED concerning the behavior of light 
signals, and SRT was certainly an endorsement of Lorentz transformation, so SRT was 
believed to offer the one possible revision of NM that could make mechanics fully consistent 
with MED. 
But meanwhile, new phenomena were being discovered at the micro scale of physics, and 
they often seemed inexplicable with any known theory, whether NM, SRT, or MED. These 
were phenomena suggesting quantization of light, quantized atomic states, atomic, 
molecular and crystal structures, radioactivity, etc. 
So at almost the same time as one problem seemed to be resolved, other problems were 
emerging. Since the earlier situation between NM and MED had demanded that Physics allow 
two seemingly discordant theories to co-exist until some good argument could replace one of 
them, the situation then presented by the new phenomena being discovered naturally invited 
the development of another potentially discordant theory: Quantum Mechanics (QM). 
The discovery of the photoelectric effect, and the introduction of the idea of the photon, 
initiated QM. Almost immediately, QM was developed to handle the Hydrogen atom, and 
the ground state thereof, the stability of which was thought to be impossible with MED. 
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Accepting that apparent incompatibility with MED, and even embracing it, researchers 
moved on to excited states, to other atoms, then to molecules, and reactions, and to all the 
rest of the complexity that today makes up modern Quantum Chemistry (QC). 
Also, experimenters got into sub-atomic elementary particles, especially electrons and 
positrons, their annihilation and creation, along with creation and annihilation of photons. 
All that led to Quantum Electrodynamics (QED). 
So today physics still has several different bodies of theory, aimed at several different 
domains of application. On the one hand, we have QM for atomic and other micro-system 
interactions. It has at least two identifiable parts: QC for interactions at the level of atoms 
and molecules, and QED for interactions at the level of elementary particles. And on the 
other hand, we have Einstein’s relativity theory (RT) for physics at human scale and larger. 
It too has two parts: SRT for electromagnetic interactions, and general relativity theory 
(GRT) for gravitational interactions. 
QM and RT are the major pillars of twentieth century physics. And they are not entirely 
compatible. QM features wave-like entities with seemingly instantaneous correlations 
between the states of even quite distant entities, whereas RT features point-like entities 
interacting via fields propagating at a finite speed. 
So are we defeated in the quest for unification in Physics? Apparently many people hope 
not, as they do vigorously pursue various forms of unification. The prominent one sought 
today is Quantum Gravity (QG). It would be the twenty-first century capstone for the two 
twentieth-century pillars of QM and RT. But it is not yet fully in sight. 
In the pursuit of unification, one often sees phrases like ‘Theory of Everything’. The 
objective of this Chapter is certainly modest by comparison!  It just notes some observations 
about the status of available theories, and discusses the removal of some incompatibilities 
between the available theories that arose only because of unfortunate choices. 
Because QM is relatively new, there are still lots of alternative approaches being developed 
in parallel. Putz (2009) gives us one very big and recent anthology about them, and this 
book will give another even more recent one. The QM atmosphere is clearly right for 
generating new illumination that can facilitate new observations about physics overall. 
The first observation driving the present work is just this: QED is arguably the most 
successful theory that modern Physics possesses. The fact that QED now exists, and that is 
has the name that it has, naturally begs the question: How could there have been any real 
disconnect between MED1 and early QM? 
It is this author’s belief that Nature is not so perverse. Connections between different 
domains of theory are still possible to find, even though the diligent search that was 
conducted a century ago did not find them. We have developed more tools now. Every new 
tool developed should invite us to revisit the old problems. 
Section 2 talks about the photon from the point of view of MED. It explores the implications 
of the finite energy, which characterizes a photon. It finds a plausible model for the photon 
expressed in terms of MED. 
The second observation is just this: If MED can connect better with QM, then shouldn’t SRT 
also connect better with QM? After all, how much difference can there be between a photon 
in QM and a light signal in SRT? 

                                                 
1 Note that I speak of MED, not of Classical Electrodynamics (CED) in general. CED involves, not only 
the works of Maxwell, but also those of a large number of other individuals. I am inclined to trust 
results from Maxwell, but question some of those from other authors, as reported in the present work. 
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Section 3 explores the implications of modeling the light signal in SRT in the same way as 
the photon in QM. The photon model suggests a slight alteration to Einstein’s second 
postulate, and thereby produces a slightly altered version of SRT. 
The third observation is just this: If SRT is to be altered, however slightly, in response to the 
photon concept from QM, isn’t it then possible that the revised SRT can be used to better 
explain some things about QM that presently seem mysterious? 
Section 4 talks about what the photon/signal model implies about atoms: the stability of 
atoms, the occurrence of Planck’s constant.  
The fourth observation is this: Much of science works on scaling laws. It is in that spirit that 
we should look for scaling laws about atoms, and thereby reduce the effort of looking at 
each element as a particular special-case problem for detailed calculations. 
Section 5 talks about the inferences from to the story about all isotopes of Hydrogen, all 
elements beyond Hydrogen, and the ions of any element; the possible nature of ‘excited’ 
atomic states, and the character of the light spectrum that an element produces. 
The fifth observation is this: If QM can be better connected to SRT, then where does that 
leave its relationship with NM? Early QM was basically NM, although not for particles 
possessing momentum and energy in the classical way, but rather for waves, with an 
amplitude factor and a phase factor, in the latter of which momentum and energy appeared 
as variables. Is that formulation now completely outdated on account of a rift between NM 
and MED? 
Section 6 establishes that there was no necessary disconnect even between NM and MED. It 
argues that, with an adequately extended notation to support an extended tensor calculus, 
Maxwell’s equations can be seen to be invariant in form, even under Galilean transformation. 
(It is useful here to distinguish two kinds of invariance: ‘form invariance’ for symbolic 
equations, and ‘number invariance’ for individual symbols that have numerical values.) 
The last observation is the ‘meta’ observation about the present work: Physics in general can 
become significantly more unified throughout because of some specific developments 
surrounding QM. 
Section 7 summarizes the several specific conclusions implied by the present work. Boiled 
down to one sentence, these conclusions come to this: the existence of apparent discord 
between theories that are addressed to different problem domains within Physics sometimes 
means that there exists a more productive way to pose one or more of the theories involved. 

2. Maxwell’s electrodynamics and QM’s photons 

It often seems that MED, a theory largely about spatially extended EM fields, has little in 
common with QM, a theory largely about discrete material systems and the discrete photons 
that they emit and absorb. Photons are imagined to be the opposite of spatially extended; 
i.e., localized, like the matter particles that emit and absorb them. 
So our mental picture for a photon in its interactions with matter is rather bullet-like: the 
photon is shot out of a source, travels through space, and hits a receiver that absorbs it. But 
the travel part of the story is unobservable. So we imagine that the photon in flight is 
possibly wavelike, in accord with Maxwell theory. Certainly the evidence for that is present, 
in the form of interference effects, even with small numbers of photons. So the photon is 
assigned a quality of ‘duality’. This is a rather mysterious way of describing a photon. 
What seems missing here is an adequate model for the photon throughout its life history, 
expressed in terms of EM fields. The purpose of this Section is to develop one. 
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I like to begin the development of such a history with a waveform consisting of finite energy 
distributed in a three-dimensional Gaussian peak located very close to a source that has 
emitted it. This three-dimensional Gaussian peak is limited in all three spatial directions so 
as to integrate to a finite total energy.  
To allow subsequent propagation, the energy has to be divided between two orthogonal 
fields, electric and magnetic. To allow circular polarization, the energy has to be further 
divided between real and imaginary parts, real being alive now, and imaginary becoming 
alive a quarter of an oscillation cycle later.  
Given such a start, the whole life history of a photon can then develop in the manner that 
Maxwell’s equations allow. Describing that development is the objective of the following 
Sub-Sections. 

2.1 Waveform development 

The first step in the life history of a photon is its development from a spatially localized 
energy bundle that is emitted from a source into a spatially extended waveform that travels 
through space. To help think about this problem, it is useful to recall some phenomenology 
familiar from physics at a more macroscopic scale. 
1. One phenomenon very well known for light modeled as EM waves is the spreading 

transverse to the propagation direction known as of ‘diffraction’. Diffraction is the 
result of some sort of limitation transverse to the propagation direction. Historically, the 
limitation has been due to a finite aperture through which the light propagates. The 
light spreads out from the aperture, more-so the smaller the aperture is. In the photon 
model discussed here, the limitation is softer than an aperture edge, but a limitation 
nevertheless: it is the finite spread of the Gaussian waveform in the two directions 
transverse to the propagation direction. The more narrow the Gaussian peak is, the 
more spread there will be. 
But sideways spreading is not the main requirement for a photon model; spreading in 
the longitudinal direction is what is most needed. Could longitudinal spreading be 
caused in a manner similar to diffraction, by the initial waveform limitation in the 
longitudinal direction? 

2. The closest familiar analog for longitudinal spreading is known as ‘dispersion’. This 
word refers to the ‘blurring’ effect that any frequency dependence the propagation 
speed through the medium entails. For example, a signal pulse in a medium looses its 
sharp edges because those sharp edges imply superposition of many different 
wavelengths, and hence different frequencies, which the medium may affect differently. 
In Earth’s atmosphere, or ocean, square waves can turn to blob waves because of 
dispersion. 
But we don’t have the traditional medium-induced frequency dispersion for a photon 
in free space. So ‘dispersion’ isn’t a close analog for any effect that may be induced by 
longitudinal limitation due to the finite spread of the Gaussian waveform in the 
longitudinal direction.  
For the photon model, we need to find and combine just the useful features from both 
the diffraction and dispersion ideas. Here is a workable approach. Diffraction comes 
out of optical system response in the spatial domain. Dispersion comes out of 
transmission system response in the temporal domain. Maxwell’s equations link space 
and time variation together. So we look at pulse profiles in the longitudinal direction, 
and allow Maxwell’s equations to work on them.  
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Let us begin a scenario with a single pulse in E . Let it have a Gaussian profile along the 
propagation direction, say x , with 2exp( )E x  . We can apply Maxwell’s equations, and 
watch what happens. The Gaussian is the so-called ‘generating function’ for the infinite set 
of Hermite polynomials, all of which have very regularly spaced zero crossings. What 
happens is that the single pulse in E  (an even function) generates a double pulse in B  (an 
odd function), which in turn generates a triple pulse in E  (another even function), and so 
on; that is, all the derivatives in play generate successively higher-order Hermite 
polynomials multiplying the Gaussian. Meanwhile, all the E B  Poynting vectors in play 
support general spreading of the Gaussian. With each step, the emergent functions look 
more and more like wavelets, and the individual peaks in the wavelets stay about the same 
width as more of them accrue, so the wavelength for the emergent wavelet becomes more 
and more defined. Figure 1 illustrates this behavior at the stage where E  has developed five 
peaks (four zero crossings). Series 1 is the original input Gaussian function, Series 2 is the 
Gaussian after the overall spreading has developed to this point, and Series 3 is the wavelet 
that has emerged in the process; i.e. the spread-out Gaussian times the fourth-order Hermit 
polynomial generated. 
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Fig. 1. A wavelet develops when an EM pulse is acted upon by Maxwell’s equations. 

What we have so far is only one eighth of the story needed to fully represent a photon: 
development from a pulse into a waveform. We have told the story for one pulse in E . If we 
would match that with another pulse in B , we would have overall propagation along with 
waveform development. That would bring us to one quarter of the whole story of the 
photon. If we would match that with two more pulses, E  and B  pointing at 90  in space 
from the first pair and coming ‘alive’ a quarter cycle out of phase with the first pair, we 
would have the circular polarization characteristic of photons, but we would still have just 
half the story. So let us move on, and seek the other half. 
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2.2 Waveform regression 

The remaining half of the story of the photon is about waveform regression. How does this 
complex structure of four Hermite polynomials multiplied by their generating Gaussian 
unwind, and go back to being a set of four pulses, so that it can be absorbed into a receiver? 
Again, let us refer to some similar but more familiar phenomenology: 
3. A third phenomenon possible for light modeled as EM waves is ‘focusing’. This is what 

we have optical lenses and shaped mirrors for. It works somewhat contrary to 
transverse spreading, gathering incident energy into a smaller area transverse to the 
propagation direction. Of course we don’t have any lenses or mirrors in the photon 
model, but we shall find a mechanism that produces a similar effect. 

4. A fourth phenomenon possible for light modeled as EM waves is ‘pulse restoration’. 
This is what transmission lines have ‘repeater stations’ for. A communication signal 
degraded by dispersion can be reconstituted when passed through an intelligent filter. 
Of course we don’t have any filters in a photon model, but we shall find a mechanism 
that produces a similar effect. 

The ‘similar effect’ comes from the imposition of boundary conditions in the longitudinal 
direction. The Gaussian pulse that was used to describe the waveform development part of 
the scenario was somewhat unrealistic in that its tails extended to infinity. There is no way 
that a localized source could emit an energy pulse whose tails would extend to infinity. It is 
somewhat more realistic to imagine the equivalent of a mirror at the source, and another 
mirror at the eventual receiver, to confine the waveform like a wave in a box, with zero 
amplitude at the surface of each mirror and everywhere beyond.  
With such boundary conditions imposed, the analytic functions involved in the model are 
no longer the simple Gaussian and the simple Hermite polynomials that it generates. Now 
we have not one, but three, Gaussians, the extra two being needed to cancel the first one at 
the two boundaries. Correspondingly, we always have at least three (actually six) Hermite 
polynomials alive at any given time. That is a loss of mathematical simplicity. But there is a 
gain of conceptual simplicity. It is easy to envision that the propagation scenario has some 
symmetry about its mid point. The waveform will spread until its central peak is halfway 
between the source and the receiver. After that, the mirror at the receiver will be more 
significant than the mirror at the source, causing the waveform to start ‘piling up’ near the 
receiver, and eventually end up as a pulse near the receiver, similar to the pulse originally 
launched near the source.  
This ‘regressing waveform’ is somewhat reminiscent of ‘advanced’ solutions to Maxwell’s 
equations going backwards in time. These were introduced many times in the early 20th 
century, but particularly popularized in the mid 20th century by Wheeler and Feynman 
(1945 and 1949).2 What we have here is quite different though. There are no differential 

                                                 
2 Wheeler and Feynman were looking to time symmetry as the basis for an electromagnetic 
generalization of instantaneous (Newtonian) gravitational interaction. There are important differences 
between the regressing waveforms introduced above and the Wheeler-Feynman advanced solutions: 1) 
Wheeler and Feynman were looking at interactions between essentially point sources and receivers, and 
so had to be looking at spherically expanding retarded solutions and spherically contracting advanced 
solutions, not at essentially one-dimensional expanding and contracting wavelets. 2) The Wheeler-
Feynman expansion or contraction is related to the spherical area of a wave front, not the waveform in 
the radial propagation direction. 3) A lengthy discussion of the paradox of advanced actions is 
necessitated in the Wheeler-Feynman work, whereas the ‘regressing’ solutions introduced here are not 
in fact ‘advanced’ at all; they are just regressing, in real time, in the propagation direction. 
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equations running backwards in time; there is just ‘piling up’ of a solution to differential 
equations in response to a boundary condition. 

2.3 The photon model in terms of EM fields 

Taken together, the waveform development followed by the waveform regression suggest a 

photon model in terms of EM fields that exhibits continuous evolution: it goes from a state 

of pulse-like localization near its source, to a state of wave-like extension in space during its 

travel, and then back to a state of pulse-like localization near its receiver. 

Observe that with this photon model, ‘light in flight’ develops its wavelength only during 

its flight. It doesn’t have it to start with, and it gives it up at the end. So light at emission, or 

reception, has a position, but no wavelength, whereas light in flight has a wavelength, but 

no position. Thus the model expresses a ‘wave-particle duality’ for light. 

Observe too that this photon model exhibits a form of QM ‘complementarity’, or uncertainty 

relationship. Consider that, under Fourier transformation, Gaussians map into Gaussians, 

and that the product of the spreads of such Gaussians is a constant. In the process of wave 

train development, a Gaussian in position space x  spreads out, while its corresponding 

Gaussian in wave number space k  sharpens up. 
Inasmuch as the discovery of photons was the point of departure for the development of 

QM, having this photon model expressed in terms of Maxwell fields is a first step in 

reconciling MED with QM. But there is much more to do, because the bigger problem for 

MED was not the photon itself, but rather the atom that emitted or absorbed it. It looked as 

though MED could never explain an atom being stable in its ground state, much less 

anything about its excited states. To find any reconciliation there, we must move on. 

3. EM signals as photons 

Every neutral atom contains at least two particles, and generally a lot more. Prior to QM, 

electromagnetic forces were presumed to hold such a system together, but there was clearly 

a problem with that understanding.  

The simplest atom is the Hydrogen atom, with just one electron circulating about a nucleus 

consisting of just one proton. So consider the Hydrogen atom. The electron circulates and so 

accelerates, and that must generate radiation. It was assumed that this radiation would rob 

the atomic system of energy, and thereby cause the collapse of the atom. 

So it was assumed that Maxwell’s EMT is simply incompatible with the stability of atoms. 

The solution then was to postulate the existence of a different regime of physics in which 

that wouldn’t happen. But was that really necessary? The purpose of this Section is to argue 

that it was not. 

The underlying belief in inevitability of atomic collapse reflects a belief that the 

electrodynamic forces within the atom are essentially central, and therefore cannot affect the 

energy budget of the atom. This latter belief traces to the turn of the 20th century, when A. 

Liénard (1898) and E. Wiechert (1901) developed models for the potentials and fields created 

by rapidly moving charges. Although Liénard and Wiechert worked independently, they 

made the same assumption, and they got the same results, and so confirmed each other. 

This Section looks at those results, and thereby develops a motivation to look back at their 

underlying assumption. 
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3.1 Standard formulae for scalar and vector potentials 

Expressed in Gaussian units, the Liénard-Wiechert (LW) scalar and vector potentials at 
position r  and time t  are 

  retarded
( , ) 1 /t e R r    and   

retarded
( , ) /t e R    A r


 (1) 

where  1   


n , 


 is source velocity normalized by c , and / Rn R  (a unit vector), 

and R  source( / )t R c r r  (an implicit definition for the terminology ‘retarded’). The LW 

fields obtained from those potentials are then 

2

3 2 3

retarded

( )(1 )
( , ) ( )

d
t e

dtR c R

  
 

   
      

   

n n
E x n

 


 and retarded( , ) ( , )t t B r n E r  (2) 

The LW fields have some interesting properties. The 1 / R  fields are radiation fields, and 

they make a Poynting vector (energy flow per unit area per unit time) that lies along 

retardedn : 

   2
radiative radiative radiative retarded radiative radiative retarded( )

4 4 4

c c c
E

  
     P E B E n E n  (3) 

But the 21 / R  fields are Coulomb-Ampère fields, and the Coulomb field does not lie along 

retardedn  as one might naively expect; instead, it lies along retarded( )n


. Assume that 


 

does not change much over the total field propagation time, in which case retarded( )n


 is 

virtually indistinguishable from presentn . So then the Coulomb field and the radiation are 

arriving to the observer from different directions.  
One can feel moved to check this surprising result. Fortunately, one can look up the original 
sources, obtain translations if necessary, and verify the original algebra. There is no problem 

with the algebra. There are also numerous re-derivations that use more modern techniques 
involving the Dirac delta function and the Heaviside step function. These are ‘generalized’ 
functions of some parameter that, when driven to infinity, produces an infinite pulse or a 
unit step. One can study these re-derivations too. One finds various re-orderings of the 

mathematical operators ‘differentiate’, ‘integrate’, and ‘go to parameter limit’. These re-
orderings are dodgy because the generalized functions lack the mathematical property of 
uniform convergence, so these operations don’t necessarily commute; it is possible to 

change the result by changing operation order. But even so, such findings do not change the 
fact that the original LW derivations, although pedestrian, were correct. 
If a problem exists with this LW result, then there is really only one place where it can arise: 
in the initial assumption; namely, that electromagnetic fields propagate like bullets shot at 
speed c . But this is the very same assumption that Einstein later formalized as his Second 

Postulate (1905, 1907). He just called them “signals” rather than “fields”.  
The LW idea of bullets shot at speed c  is the foundation for Special Relativity Theory (SRT). 

(Indeed, SRT offers one of the modern ways to re-derive the LW results.) But SRT is also the 
foundation for General Relativity Theory (GRT). SRT and GRT together make one of the two 
great pillars of 20th century Physics: Relativity Theory (RT). So questioning the LW 
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assumption is not just questioning the LW results; it is questioning the founding assumption 
of SRT, and so threatening this whole pillar of 20th century theory. 
Many people have just accepted that this is just ‘the way things are’ with classical field 

theory, and with SRT, and with all of relativity theory as well. But what if one wanted to 

describe the same scenarios in a thoroughly modern way, with photons instead of radiation 

fields, and virtual photons instead of Coulomb-Ampère fields? Could anyone really accept 

the idea that the real photons and the virtual photons created by the same space-time event 

would arrive at a detector from different directions? 

But one needn’t accept any such thing, given the photon model in terms of Maxwell fields 

developed in Sect. 2. In short, since we have a model for photons in terms of fields, we 

should be able to reverse engineer a model for fields in terms of photons. So what does the 

photon model developed in Sect. 2 imply? Observe that the developing wavelet can move at 

speed c  relative to the source, and the regressing wavelet can move at speed c  relative to 

the receiver. Applying this idea can help to modify the LW results appropriately. 

3.2 Updated formulae for scalar and vector potentials 

Recall that with the photon model developed in terms of Maxwell fields in Sect. 2, the life 

history of the photon has a symmetry point in the middle. Before the mid point of the 

propagation scenario, the waveform is developing, and after the mid point of the 

propagation scenario the waveform is regressing. That makes the mid point very important. 

So far as the receiver is concerned, nothing that happened before the midpoint affects the 

signal he receives. The source position and velocity information he receives is determined, 

not by the specification ‘retarded’, but rather by the specification ‘half retarded’. 

With this new specification, the scalar and vector potentials become: 

  half retarded
( , ) 1 /t e R r    and   

half retarded
(r, ) /t e R    A


 (4) 

The fields become: 

2

3 2 3

half retarded

( )(1 )
( , ) ( )

d
t e

dtR c R

  
 

   
      

   

n n
E r n

 


 

 and   half retarded( , ) ( , )t t B r n E r  

(5)

 

The Poynting vector ( , )tP r  becomes: 

 
 radiative radiative radiative half retarded radiative

2
radiative half retarded

4 4

( )
4

c c

c
E

 



   



E B E n E

n

 (6) 

Observe that now the direction of the Coulomb field is 

half retarded present half retarded half retarded( ) ( ) n n n


  and the direction of the Poynting vector 

is half retardedn  too. So now, the Coulomb field and the Poynting vector are reconciled to the 
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same direction. That is the first big gift from the photon model in terms of EM fields given in 
Sect. 2.  
And the gifts of photon model in terms of EM fields go well beyond this rather arcane 

problem about field direction. The photon model in terms of EM fields eliminates the central 

mystery of Einstein’s SRT: having just one light speed relative to however many different 

observers there may be. This is complexity at the level of ‘multiplicity’, much more daunting 

than the complexity at the level of the mere ‘duality’ that is found in modern QM. 

4. EM fields within atoms 

An noted in Sect. 2, atoms were the really big problem for Maxwell’s EMT. Now armed with 

some new information about EMT, it is appropriate the revisit the problem about atoms. We 

turn again to Hydrogen. From Sect. 3 can infer that at least two processes go on inside the 

Hydrogen atom, and we shall discover shortly that there are actually three. Only one is 

familiar. The other two challenge familiar concepts of ‘conservation’ that originally grew out 

of Newtonian mechanics. But electromagnetism is not Newtonian mechanics. In 

electromagnetic problems, the concepts of momentum and energy ‘conservation’ have to 

include the momentum and energy of fields, as well as those of matter. Momentum and 

energy can both be exchanged between matter and fields. ‘Conservation’ applies only to the 

system overall, not to matter alone (nor to fields alone either). 

4.1 Energy loss due to far-field radiation 

The first process that occurs with the Hydrogen atom is the familiar energy loss from the 

atom due to far-field radiation. There will be a far-field power radiated (energy loss per unit 

time) of magnitude 
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, (7) 

where   means ‘solid angle’. Because the full 4  of solid angle captures opposing 

directions of n , contributions to the integral from the vector 


 visible in the integrand 

cancel out. Contributions to the integral that come from the dot product 


n  that is hidden 

in the 6  factor may not be zero at every moment, but they time-average to zero. So let us 

simplify the expression for far-field power radiated by setting 


 to zero. We have: 

 

2
2

radiated

4
4

e d
P d

c dt




 
    

 
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

, (8) 

It evaluates to the well-known Larmor result: 
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4.2 Energy gain due to internal torquing 

The second process that occurs in the Hydrogen atom is a not previously noticed energy 
gain due to internal torquing. This process occurs because the Coulomb force within the 
atom is not central; it is along half retardedn , and not along retarded present( ) n n


.  

The power inflow to the electron is torquing e eP T  , where e  is the electron orbit 

frequency, and eT  is the magnitude of the torque on the electron, given by e e e T r F  

where er  is the electron orbit radius, and eF  is the tangential force on the electron. But that 

is not all. The proton also orbits at frequency e , and experiences its own torque, given by 

p p p T r F , where pr  is the proton orbit radius (tiny) and pF  is the tangential force on the 

proton (huge), with the result that the magnitude pT  is the same as eT . The total torque on 

the system is e p e2T T T T   . It is determined by the angle between er  and eF , which is 

given by p e e p e e/ 2 ( / ) / 2r c m m r c   . So torque T   2
e p e e e p( / )( / ) ( )m m r c e r r   and 

power received is 

 
2 2

4 3e e e
torqing p e p

p e p

( / ) ( )
( )

m r e
P e m c r r

m c r r


  


. (10) 

The existence of such a process is why the concept of ‘balance’ emerges: there can be a 
balance between gain of energy due to internal torquing and the inevitable loss of energy 
due to radiation. But we are not done with radiation yet. 

4.3 Extra radiation due to Thomas rotation 

The fact that the electron and the proton have such different masses, and orbit at such 
different radii, means that the EM forces within the atom are not only not central; they are 
not even balanced. This situation has another major implications: The system as a whole 
experiences a net force. That means the system center of mass (C of M) can move. This sort 
of effect does not occur in Newtonian mechanics due to the fact that Newtonian mechanics 
assumes infinite signal propagation speed.  
Looking in more detail, the unbalanced forces in the Hydrogen atom must cause the C of M 
of the whole atom to traverse its own circular orbit, on top of the orbits of the electron and 
proton individually. This is an additional source of accelerations, and hence of radiation. It 
evidently makes even worse the original problem of putative energy loss by radiation that 
prompted the development of QM. But on the other hand, the torque on the system is a 
candidate mechanism to compensate the rate of energy loss due to radiation, even if there is 
a lot more radiation than originally thought.. 
The details are worked out quantitatively as follows. First ask what the circulation can do to 
the radiation. Some 20 years after the advent of SRT, a relevant kinematic truth about 
systems traversing circular paths was uncovered by L.H. Thomas (1927), in connection with 
explaining the then anomalous magnetic moment of the electron: 1/2 its expected value. He 
showed that a coordinate frame attached to a particle driven around a circle naturally 
rotates at half the imposed circular revolution rate.  
Applied to the scenario of the electron orbiting the proton, the gradually rotating ,x y  

coordinate frame of the electron means that the electron sees the proton moving only half as 
fast as an external observer would see it. That fact explained the electron’s anomalous 
magnetic moment, and so was received with great interest in its day. But the fact of Thomas 
rotation has since slipped to the status of mere curiosity, because Dirac theory has replaced 
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it as the favored explanation for the magnetic moment problem. Now, however, there is a 
new problem in which to consider Thomas rotation: the case of the C of M of a whole 
Hydrogen atom being driven in a circle by unbalanced forces. In this scenario, the gradually 
rotating local ,x y  coordinate frame of the C of M means that the atom system doing its 

internal orbiting at frequency e  relative to the C of M will be judged by an external 

observer to be orbiting twice as fast, at frequency e2    relative to inertial space. This 

perhaps surprising result can be established in at least three ways: 1) by analogy to the old 
electron-magnetic-moment problem; 2) by construction from e  in the C of M system as the 

power series   e  1 1 1

2 4 8
(1 ...)    e 2  ; 3) by observation that in inertial space 

  must satisfy the algebraic relation 
1

e 2
      , which implies e2   . 

The relation e2    means the far field radiation power, if it really ever manifested itself 

in the far field, would be even stronger than classically predicted. The classical Larmor 

formula for radiation power from a charge e  ( e  in electrostatic units) is 2 2 32 / 3P e a c , 

where a  is total acceleration. For the classical electron-proton system, most of the radiation 

would be from the electron, orbiting with 2
e e ea r  , e  given by the Coulomb force 

e
2

e em r    2 2
e e p/( )F e r r  . But with e2   , the effective total acceleration is 2

e 2a a   . 

The total radiation power is then 

  
2

4 2 5 6 2 3 4
total radiated e e e p3

2
2 2 / 3 ( )

3

e
P a e m c r r

c
   . (11) 

Now posit a balance between the energy gain rate due to the torque and the energy loss rate 

due to the radiation. The balance requires torquing total radiatedP P , or 

 4 3 5 6 2 3 4
p e p e e p( / ) ( ) (2 / ) 3 ( )e m c r r e m c r r   . (12) 

This equation can be solved for 

 2 2 2 9
e p p e32 3 5.5 10r r m e m c     . (13) 

Compare that value to the accepted value 9
e p 5.28 10r r    cm. The match is fairly close, 

running just about 4% high. That means the concept of torque vs. radiation does a fairly 
good job predicting the ground state of Hydrogen. 

4.4 Unification of physics via Planck’s constant 

In conventional QM, e pr r  is expressed in terms of Planck’s constant h , which is 
presumed to be a fundamental constant of Nature: 

 2 2 2
e p 4r r h e   . (14) 

Here   is the so-called ‘reduced mass’, defined by 1 1 1
e pm m    , which makes em  . 

Using that approximation and equating the two expressions (13) and (14) for e pr r  implies 

 
2

p e128 / 3
e

h m m
c


 . (15) 
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This expression comes to a value of 346.77 10  Joule-sec, about 2% high compared to the 

accepted value of 346.626176 10  Joule-sec. This reasonable degree of closeness suggests 

that Planck’s constant may reasonably be considered a possible function of other 

fundamental constants of Nature, and so not itself an independent fundamental constant of 

Nature. Or the situation may reasonably be considered the other way around: that some 

other fundamental constant of Nature is really a function of Planck’s constant. Either way, 

we would have one less independent fundamental constant of Nature, and that would mean 

one more degree of unification among the different branches of physics.  

But of course, the expression for h  developed here can fulfill such aspirations only if the 

theory being developed can do a great deal more than just match the ground state of 

Hydrogen. Worthy targets for additional work include: anticipating the story for isotopes of 

Hydrogen, anticipating from there what happens with other elements, explaining the 

excited states of Hydrogen and their resulting spectral lines, anticipating from there the 

spectral features of some other elements, and characterizing the behavior of the full database 

on ionization potentials of all elements, and much more. It all constitutes a developing 

research area that I refer to as ‘Algebraic Chemistry’. 

5. Extensions and extrapolations from hydrogen 

5.1 Larger nuclear mass 

The negative energy of the electron in the ground state of the Hydrogen is 

 2 2 2 5
e p e p( ) 3 2e r r c m m  . (16) 

This is the energy that would have to be provided to liberate the electron, or ionize the atom: 
the ‘ionization potential’.  

Eq. (16) provides the basis from which to build corresponding expressions for other entities. 

For example, the extension to Deuterium and/or Tritium requires that the proton mass pm  

be replaced with a more generic nuclear mass M , and that pr  be replaced by Mr . Then we 

have for the ionization potential of this more massive system: 

 2 2 2 5
e e( ) 3 2Me r r c m M  . (17) 

5.2 Arbitrary nuclear charge 

The extension of the model to a neutral atom with nuclear charge number Z  involves Z  

electrons as well. To develop the mathematical model, we must return to the expressions for 

torquingP  and total radiatedP , Eqs. (10) and (11). All the factors of 2e  change to 2 2Z e , and the 

factor of 2
em  changes to 2 2

eZ m . The equality torquing total radiatedP P  becomes 

4
torquingZ P  6 2

total radiated( / )Z Z P  4
total radiatedZ P . So nothing happens to the equality 

between torquingP  and total radiatedP , Eq. (12). But for the more charged system, the energy Eq. 

(17) becomes  

 2 2 2 2 2 5
e p e( ) 3 2Z e r r Z c m M  . (18) 
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This scaled-up expression represents the magnitude of the total ionization potential of the 
system involving Z  protons and Z  electrons. What is then comparable to the ionization 
potential for removing a single electron is: 

    2 2 2 5 2 2 5
e e e( ) 3 2 ( / ) 3 2MZ e r r Z c m M Z M c m     . (19) 

Thus in the math we find a /Z M  scaling law. What do we find in the actual data? 
Something much more complicated, and indeed so complicated that we would be unlikely 
ever to figure it out without the clue that /Z M  is part of the story. The involvement of M  
means the involvement of isotopes, and unwanted complexity. So the clue tells us to look at 
ionization potentials, not in raw form, but scaled by /M Z , to remove the /Z M  factor that 
the math anticipates.  
Figure 2 shows the pattern found. Seven orders of ionization are included. There is a 
fascinating, but lengthy, story about ionization orders 2 and up; see Whitney (2012). The 
part of it that will be most important for the present development is obvious from Fig. 2: the 
energy required to completely strip the atom scales with 2Z .  
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Fig. 2. Ionization potentials, scaled by /M Z  and modeled algebraically.  

With their /M Z  scaling, all of the IP ’s can be represented in terms of a baseline value 
equal to that of Hydrogen, 1,1IP , and an increment 1,ZIP . The increment arises from 
interactions just between the electrons, quite apart from the nucleus. The electron-on-
electron increments are very regular in their behavior. First of all, every period exhibits a 
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general rise, and by the same factor of 7 / 2 . Second, there is a general drop from one 
period to the next, for the first three periods, and all by the same factor of 7 /8 .  
Then within periods, there is a very regular pattern. There are sub-period rises keyed to the 
traditional ‘angular momentum’ quantum number l , and to a non-traditional parameter N  
that goes 1,2,2,3,3,4,4  for periods 1  through 7 , and gives the number of elements in a 
period as 22N . For 0l  , we have:  

 incremental rise total rise fraction    , and   2fraction (2 1) / ( ) /l N N l l     . (20) 

The following Table details the behavior fractional rises in First-order IP ’s over all sub-

periods: 

period: : : fraction: : fraction: : fraction: : fraction:

1 1 0 1

2 2 0 1 / 2 1 3 / 4

3 2 0 1 / 3 1 3 / 4

4 3 0 1 / 4 2 5 /18 1 2 / 3

5 3 0 1 / 4 2 5 /18 1 2 / 3

6 4 0 1 / 4 3 7 / 48 2 5 /16 1 9 /16

7 4 0 1 / 4 3 7 / 48 2 5 /16 1 9 /16

N l l l l
 

The scaled ionization potentials are called IP ’s. They are meant to be ‘population generic’; 
that is, the information they contain concerning one element can be applied to a calculation 
about another element in a different state of ionization, or excitation, by applying the /Z M  
appropriate for the second element and its state. 

5.3 Unequal counts for electrons and protons 
Let us first consider ionization sates. These are important for applications in Chemistry, 
since chemical reactions involve ions. With all this regularity displayed in Fig. 1, it should be 
possible to use it to help predict the energy budget for all sorts of chemical reactions. We 
just need a rational way to extrapolate from all the formulae representing the regularities for 
single electrons being removed from neutral atoms to formulae for electrons being removed 
from, or added to, ions of all sorts.  

Generally, if an atom is in an ionized state, then in place of just Z  we have an electron count 

eZ  distinct from the proton count pZ . The electron-on-electron interaction does not involve 
the nucleus, and so always scales with e /Z M . But electron-nucleus interaction previously 
represented by 1,1( / )Z M IP  now has to involve both eZ  and pZ . We have for the total 
system  

    2 2 2 5
p e e p e e( ) 3 2MZ Z e r r Z Z M c m   . (21) 

What is then generally comparable to the nuclear-orbit part of the ionization potential for 
removing a single electron? To develop an answer to this question, we must return again to 
the expressions for torquingP  and total radiatedP , Eqs. (10) and (11). Clearly, all of the factors of 
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2e  change to 2
p eZ Z e . It is as if all factors of e  changed to p eZ Z e . Removal of one electron 

is then like removal of one p eZ Z e  charge. What is comparable to the ionization potential 

for removing a single electron from the ion is then 

    2 2 2 5
p e e p e e( ) 3 2MZ Z e r r Z Z M c m   . (22) 

Thus for ions, we see in the math a p e p( )Z Z M Z  scaling law for that part of the ionization 
potential that reflects electron-nucleus interaction, 1,1IP . So for computations we use: 

 1,1 1,1 p e p/ ( )IP Z M IP Z Z M Z . (23) 

For the other part of the ionization potential, that reflecting just the electron-on-electron 
interactions, 1,ZIP , the relevant Z  is eZ . But the relevant M  is still p( )M Z , the only 
significant mass in the problem. So for computations we use: 

 
e1, 1, e p/ ( )Z ZIP Z M IP Z M Z   . (24) 

This basic information can help one to model the energy budget for any chemical reaction. 
To assist readers who want to try this out, the necessary data displayed by Fig. 1 is tabulated 
in numerical form as Appendix 1 at the end of this Chapter. 

Here is one small example. Recall the comment about Fig. 1 that, for nuclear charge 2Z   
and up, the energy required to completely strip the atom scales with 2Z . The actual formula 
plotted on Fig. 1 goes 

 2 2
, 1,12 2 14.250Z ZIP IP Z Z     . (25) 

The resulting ,Z ZIP  is population-generic. The corresponding element-specific quantity is 

,Z ZIP  multiplied by the factor p/ ( )Z M Z . Thus the element-specific energy requirement for 
total stripping is 3

p2 14.250 / ( )Z M Z  eV’s. 
We can now compare the total energy required to strip an atom one electron at a time with 
the energy required to strip it of its electrons all at once. The two elements Helium and 
Lithium are good examples because they represent the extremes of very high first-order 
ionization potential and very low first-order ionization potential. The data for them in 
numerical form comes from Appendix 1. Here is how the calculations go: 

Helium: ( p 2Z  , p 2( ) 4.003M Z M  ) 

Write Formulae: 

2 2He He :  1,1 2 1,2 22 / 2 /IP M IP M    ; +
2 2He He :  1,1 22 1IP M  . 

Insert Data: 

2 2He He :  14.250 2 / 4.003 35.625 2 / 4.003   ; +
2 2He He :  14.250 1.4142 4.003 . 

Evaluate Formulae: 

2 2He He :  7.1197 17.7992 24.9189  ; +
2 2He He :  5.0343 . 
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Evaluate Total Stripping One-at-a-Time: 

2 2He He :  24.9189 5.0343 29.9532  eV’s. 

Compare to Total Stripping All-at-Once: 

3 3 3
p 22 14.250 / ( ) 2 14.250 2 / 2 14.250 2 / 4.003 56.957Z M Z M         eV’s. 

Lithium: ( p 3Z  , p 3( ) 6.941M Z M  ) 

Write Formulae: 

+
3 3Li Li :  1,1 3 1,3 3 1,2 33 / 3 / 2 /IP M IP M IP M       ;  

+ ++
3 3Li Li :  1,1 3 1,2 33 2 2 /IP M IP M     ; ++ 3+

3 3Li Li :  1,1 33 1IP M  . 

Insert Data:  

+
3 3Li Li :  14.250 3 /6.941 ( 1.781) 3 /6.941 35.625 2 /6.941      ; 

+ ++
3 3Li Li :  14.250 2.449 6.941 35.625 2 /6.941   ; ++ 3+

3 3Li Li :  14.250 1.7321 6.941 . 

Evaluate Formulae: 

+
3 3Li Li :  6.1591 0.7698 10.2651 4.8758     ;  

+ ++
3 3Li Li :  5.0278 10.2651 15.2929  ; ++ 3+

3 3Li Li :  3.5560 . 

Evaluate Total Stripping One-at-a-Time: 

3+
3 3Li Li :  4.8758 15.2929 3.5560 13.9731    eV’s. 

Compare to Total Stripping All-at-Once: 

3 3 3
3 32 14.250 3 / ( ) 2 14.250 3 / 2 14.250 3 /6.941 110.8630M Z M         eV’s. 

In these two examples, we see that removal of all the electrons, all at once, takes much more 
energy than removing the electrons one electron at a time. It is plain to see that total stripping 
all-at-once is a vigorous, even violent, event. It is the stuff of special-purpose laboratory or 
field investigation. By contrast, total stripping one-at-a-time is a gentle process. The one-at-a-
time process is an example of the stuff of ordinary production Chemistry. 

5.4 Excited states - hydrogen 

Now let us begin to consider excitation states. These are key for understanding emission or 
absorption spectra, a fabulously rich source of data about atoms. But atomic spectra are 
complicated. The standard way to begin to understand them is mathematically, from the 
family of solutions provided by the differential equation that Schrödinger postulated for the 
abstract wave function characterizing the electron in the Hydrogen atom. 
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The standard QM view is that the Hydrogen atom has multiple ‘stable states’, each with 
negative energy, E , determined largely by a principle quantum number 1,2,3...n    
according to 2

1 /nE E n   . The idea is that the electron can reside in an upper state 
( 1n  ), but only rather precariously, and when it teeters and falls back to the ground state 
( 1n  ), a photon is emitted. 
But the Hydrogen atom has only two constituent particles, the electron and the proton, and 

thus very few classical degrees of freedom. That fact makes it difficult to imagine an infinite 

multiplicity of different ‘states’ that a Hydrogen atom could exhibit. We are left to ponder a 

mystery of mathematical QM. So it is tempting to try to develop an additional, more 

immediately physical, way of understanding the spectral complexity that we see. Consider 

the possibility that individual Hydrogen atoms may not, by themselves, actually have 

excited states. Instead, the term ‘excited state’ may be better applied to a system that 

involves several Hydrogen atoms.  

Key to this idea is that charges can form entities called ‘charge clusters’. [Concerning charge 

clusters at the macro scale of laboratory experiments and field observations: see, for 

example, Beckmann (1990), Aspden (1990), Piestrup and Puthoff (1998).]   

Evidence concerning the probable existence of charge clusters at the micro scale of atoms is 

plainly visible in the data on IP ’s (Fig. 1): some electron counts are very stable and hard to 

break apart (e.g. noble gasses), while some electron counts are very un-stable and hard to 

keep together (e.g. alkali metals). Why would electron counts matter so much if the electrons 

were not in deep relationships with each other? 
But how can electrons outwit electrostatic repulsion? Once given the clue that they evidently 

can do this, it becomes possible to imagine how they might do it. The key is that electrostatic 

repulsion dominates in a static situation. In a dynamic situation, electrons may move at 

speeds exceeding light speed (Remember, Sect. 3 cast doubt on the founding postulate of 

SRT, and SRT is all there is to forbid superluminal speeds.). If so, a repulsion signal from 

one electron may reach another electron only by the time the first electron has moved so 

much that the repulsion from its ‘then’ position has become the attraction to its ‘now’ 

position. In fact, multiple electrons can form circulating ring structures that are quite stable 

(for details, see Whitney 2012).  

So consider the possibility that an excited state of Hydrogen is actually Hn  neutral 

Hydrogen atoms, with the Hn  electrons in a negative charge cluster, and the Hn  protons in 

a positive charge cluster, making a kind of ‘super’ Hydrogen atom; i.e., Hydrogen with 

every factor of electron mass em , proton mass pm  and charge e  scaled by Hn . The 

torquing power 4 3
p e p( / ) ( )TP e m c r r   then scales by 4 3

H H H( ) ( )n n n , and the radiation 

power RP   5 6 3 2 4
e e p2 3 ( ) ( )e c m r r  scales by 6 2 4

H H H( ) ( ) ( )n n n . The solution for system 

radius 2 2 2
e p p e32 / 3( )r r m e m c   then becomes: 

 
H H

2 2 2
e p H p H H e e p32( )( ) / 3( ) ( )n n Hr r n m n e n m c n r r    . (26) 

i.e., the system radius is scales with Hn . The system orbital energy 

2
1 1 2 2 2 2

1 e p2 2
e p

3( ) 32
( )

e
E e m c m e

r r
    


 becomes 
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H

22
1 1 2 2 2 2H

H e p2 2H e p

( )
3( ) 32

( )
n

en
E n e m c m en r r

      
. (27) 

i.e., the system orbital energy also scales with Hn . This result is the same as if the atoms 
were isolated, instead of being organized into a big system with two charge clusters. This 
suggests that the energy available for generating photons by de-excitation isn’t ‘orbital’ at 
all, but is instead the energy tied up in forming the charge clusters out of the multiple 
electrons and the multiple protons from the multiple Hydrogen atoms.  

What can we infer about such charge clusters? As in the modeling of IP ’s for ions, we can 

again consider Fig. 1 as a source of information about electron clusters of sizes up to 118, 

quite apart from the particular element that the information is located with. From Fig. 1, It is 

clear that most of the IP ’s are positive, meaning their electron clusters are hard to break. 

So despite being made of same-sign charges, most of them exist in negative energy states. 

The ones that are particularly hard to break are the ones associated with the noble gasses: 

Z  2, 10, 18, 36, 54, 86, (118) . These elements are at the ends of periods on the periodic table, 

and the lengths of the periods themselves are: 2, 8, 8, 18, 18, 32, (32) . (Parentheses mean we 

haven’t discovered, or created, that element yet.)  The implication is that excited states of 

Hydrogen existing in the form of ‘super Hydrogen’ would most frequently exist with 

H 2, 8, 18, 32, ...n   

Can we anticipate what would happen when any such excited state de-excites? Suppose we 

started with H 32n  . It could, for example, decompose into 18, 8, 2, 2, and 1, 1; i.e. some less 

excited states and a couple of ground-state atoms; 6 daughter systems in all. Suppose that 

for every such daughter produced, there is a photon released. Exactly how might that work? 

Observe that four daughters are in states that are even more negative than the starting state, 

so those are no problem. But two daughters are in the ground states, which is not more 

negative than the starting state. So energy from the other daughters has to be enlisted to 

create any photons there.  
For any Hn , there may be a de-excitation path, or paths, for which the energy budget is 
insufficient, in which case those paths won’t be taken. There may also be de-excitation paths 
for which the energy budget is more than sufficient, in which case there will be, not only 
spectral radiation, but also a bit of heat radiation. Very rarely, there might be a de-excitation 
path for which the energy budget is just exactly right. 
The spectral lines that occur with Hydrogen (or any element) are typically characterized in 

part by differences in inverse square integers. The integers involved are traditionally 

understood in terms of the familiar radial quantum number n . Is it possible to understand 

them also in terms of the Hn  used here? 
Recall that if one then chooses to model the behavior of Hydrogen ‘excitation’ in terms of a 
single Hydrogen atom with discrete radial states identified with the radial quantum number 
n , then the orbit-radius scaling has to be the quadratic scaling 1r  2

1nr n r  of standard 
QM, not the linear orbit-radius scaling e pr r 

H H e p( )nr n r r   of the present model. So 
why does one way of looking at the problem involve a quadratic 2n , while the other way of 
looking at it involves a linear Hn ? 
Recall that there was good reason to suggest highest probability for the values 

H 2, 8, 18, 32,...n   corresponding to the lengths of the rows in the Periodic Table. These row 
lengths can be characterized as 22N  for 1, 2,  2, 3, 3, 4, (4)N  . So Hn  actually does encode 
something that is quadratic, namely the 2N , and is therefore similar to the quadratic 2n .  
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5.5 Beyond both hydrogen and ground states: Spectroscopy 

In spectroscopy, we observe light created when an atomic system relaxes in some way. For 
elements beyond Hydrogen, the spectral lines that occur are often characterized in part by 
the so-called Rydberg factor: 

 
2 4 2

e
3

e

2

1 /

m e Z
R

m Mch


 


. (28) 

The R  is traditionally interpreted as the energy needed for total removal of one electron 
from the ground state to infinity, leaving an ion. The energy needed for an electron to get 
from a state labeled 1n  to a higher state labeled 2 1n n , and conversely the energy released 
when it goes back to 1n , is then modeled as 

 2 2
1 21 /( ) 1 /( )E R n n         .  (29) 

Observe that R  contains a factor of 2Z , just like the IP ’s for total ionization, ,Z ZIP  of Eq. 

(25) do. That means R  is referring to the absolutely largest photon energy that the system 

could ever possibly be imagined deliver: starting from a state of total ionization, i.e. a naked 

nucleus, and having the entire electron population return in one fell swoop, with the 

emission of just one photon for the whole job. That scenario could never actually happen. 

One-at-a-time electron return is the only plausible return scenario. The inverse square 

integers in the square bracket bring E  down to values appropriate for one-at-a-time 

scenarios. 
Observe that the Rydberg model for spectral lines already conflicts with an older model for 
the atom developed from the PT; i.e., electron ‘shells’ enclosing the nucleus, inner shells 
filled, and at most one outer shell unfilled; partially filled for most elements, and completely 
filled for noble gasses. The older PT-based model suggests shielding of the nucleus by the 
filled inner shells of electrons. But the occurrence of a 2Z  in R , even for large 1n  and 2n  
in E , means there is no shielding of the nucleus. So electrons must be in tight clusters, 
rather than nucleus-enclosing shells. 
Observe that R  does not contain any /Z M  factor like the IP  model contains. Instead, it 
has a factor  

 e e1 (1 / ) /( )m M M M m   , (30) 

which is essentially unity. At the time when R  was formulated, most of the known trans-

Hydrogenic elements had 2M Z , and the factor of / 1 / 2Z M   could be absorbed into 

an external constant factor, the 2 4 3
e2 m e ch  in R . That is no longer the case today. We 

know about heavy elements for which 2.5M Z , or / 2 / 5Z M . So now it would be 

better to use the function /Z M  instead of the number 1 / 2 . An extra bonus would be that 

Hydrogen, with / 1Z M  , would be included. 

Now consider that spectral lines might not to arise from de-ionizing one ion of one atom, but 
rather from de-exciting a system involving multiple neutral atoms. In this description, the 

1n  and 2n  are not identifiers of different states of one atom, but rather numbers of atoms 
organized into super atoms. Otherwise, nothing really changes. However we interpret their 
meaning, the predicted spectral lines remain the same. 
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6. Unification between Newton and Maxwell 

This last technical Section of this Chapter returns to the first physics disunity mentioned in 

the Introduction: the seemingly different coordinate-transformation properties of Newton’s 

Laws for mechanics and Maxwell’s equations for electrodynamics. Newton’s laws are form 

invariant under Galilean transformations. But Maxwell’s equations are generally thought to 

be form invariant only under Lorentz transformations. Especially, they are thought to be not 

form invariant under Galilean transformations. 

So a curious situation exists within physics today. It is generally expected that the equations 

of physics should be tensor equations. By definition of the word ‘tensor’, a tensor equation is 

form invariant under arbitrary changes of reference frame, assuming no singularities or 

other cruel and unusual circumstances in the transformation or its inverse transformation. 

That means a tensor equation should be form invariant under arbitrary, though reasonably 

well-behaved, space-time transformations.  

So, are Maxwell’s equations really tensor equations? Or not? Mathematicians have good 

reason to challenge the believed tensor status of Maxwell’s equations, while physicists have 

good reason to challenge the believed requirement for invariance under anything other than 

Lorentz transformation. But the situation is not generally acknowledged. It is the proverbial 

‘elephant in the living room’. 

Clarifying this situation can assist physics in becoming more unified from its beginning to 

its present. And mathematics has lots of applicable tools; see Kiein (2009). The present work 

offers an approach that is also mathematical, but a lot more elementary. Maybe it will 

communicate to different readers. 

The problem, I believe, is of a type with which QM has some history. QM appears to be the 

first branch of physics that well and truly needed complex numbers. They may have been 

used in physics before QM, but they were only one of the tools available for the problems 

then at hand. Sines and cosines could generally handle any problem just as well as complex 

exponentials could handle it. But with QM, complex exponentials became truly essential for 

doing physics. 

The history of mathematics has been a tale of increasing range of objects included in the 

discussion. It began with real, positive integers; it grew with the inclusion of zero and 

negative integers, and grew again with the inclusion of all rational numbers, and again with 

the inclusion of all irrational numbers. Then it grew with the inclusion of imaginary 

numbers, thus creating complex numbers. This was the first of a number of ‘doublings’ of 

the number of dimensions attributed to mathematical objects. [See Rowlands (2007).] After 

complex numbers, we got quaternions, and bi-quaternions, or octonians, and there is no 

reason to suppose that further doublings will not continue to prove useful. 

Complex numbers make possible operations that are not possible without them. Consider, 
for example, the square root of 3 . It cannot be evaluated within the real number system, 
but in the complex number system, it is just 3i .  
I believe ‘doublings’ are generally like this: they make possible operations that were not 

possible without them. There appears to be today an opportunity for a doubling in the realm 

of tensor calculus. There are presently exactly two tensor-transformation behaviors 

identified, called ‘contravariant’ and ‘covariant’. It appears that tensor calculus can be 

usefully extended through a doubling of the number of transformation behaviors that can be 

described, from two to four. It appears that such a doubling can resolve the apparent 
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conflict between Newtonian and Maxwellian physics: it can make possible a display 

showing how Maxwell’s equations can actually be form invariant under arbitrary 

coordinate transformations. 

6.1 The opportunity offered by tensor notation 

The display of four transformation behaviors requires the use of four tensor index 

positions. So in addition to the usual contravariant (index up-right) and covariant (index 

down-right) positions on the right side of a tensor symbol, we need to us the positions 

available on the left side: index up-left and index down-left. Since left-side index positions 

have not been in used in this new way before, they need new names designed for the 

purpose. To recall the move from right to left, let us use the prefix ‘trans’. So let the up-left 

index position be called ‘transcontravariant’, and let the down-left index position be 

called ‘transcovariant’). 

All the transformations are describing what happens to tensor merates when the frame of 

reference changes; i.e. when the basis unit vectors defining the frame of references are 

replaced with other basis unit vectors. The transformations discussed here are arbitrary 

within the specifications that make the connections between reference frames reasonably 

well behaved; the individual relationships are differentiable and reversible, the matrix 

representations of them are invertible and unimodular. 

I mention both tensors and matrices because they are equivalent notation schemes that 

can be used interchangeably for describing systems of linear equations. Tensor notation is 

useful for making a compact statement of a whole mathematical situation. Matrix notation 

is useful for separating a whole mathematical situation into constituent parts for 

calculations. Individual linear equations are useful for focusing on individual parts of the 

mathematical problem. Human beings do have strong personal preferences about which 

approach to use, but all of these approaches should agree on the basic facts of a given 

situation, so any of these approaches should be acceptable. In the present work, all 

approaches will be used. That way, everyone can find something to like, and everyone can 

find something to dislike!  

In the case of the matrix displays and the linear equations, the presentation does save a little 

space by ignoring two spatial dimensions and focusing on one spatial dimension (call it 1) 

and the temporal dimension (call it 0). 

6.2 Transformation of a contravariant object 

The most familiar transformation is the contravariant one. The prefix ‘contra’ means these 
tensor merates change opposite to the way the basis unit vectors of the reference frame 

change. For an arbitrary input vector X , the transformation reads /X x x X        , 

where we see the transformation as partial derivatives of coordinates, new with respect to 

old. Equivalently X T X  
 , where we see the transformation written as the tensor T 

 . 

Also equivalently, we have
0 0 0 0

0 1

1 1 1 1
0 1

               

                

X T T X

X T T X

     
     

          
, where we see everything, the input and 

output vectors and the transformation, in matrix format. Or equivalently, we have 
0 0 0 0 1

0 1X T X T X   and 1 1 0 1 1
0 1X T X T X   as two separate linear equations. 
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For the contravariant transformation matrix 
0 0
0 1

1 1
0 1

        

        

T T

T T

 
 
  

 one can define a reverse 

transformation matrix 
0 0
0 1

1 1
0 1

       

       

R R

R R

 
 
  

, wherein 0 0
0 0R T  and 1 1

1 1R T , but 0 0
1 1R T   and 

1 1
0 0R T  . Applied to X , the reverse transformation R

  takes X  back to X : 

X R X  
 . That is to say: 0 0 0 0 1

0 1X R X R X   and 1 1 0 1 1
0 1X R X R X  . Expressed in matrix 

form, the reverse transformation is the inverse transformation: 
0 0 0 0

0 1

1 1 1 1
0 1

               

               

X R R X

X R R X

     
     

          
, or 

0 0 0 0
0 1 0 1

1 1 1 1
0 1 0 1

                 1   0 
 0   1                

R R T T

R R T T

     
     

        
. The distinction between the words reverse and inverse is nil in 

the contravariant context. But it becomes important in the next context. 

6.3 Transformation of a covariant object 

The prefix ‘contra’ means reverse to the prefix ‘co’. The covariant transformation goes the 

same way the basis unit vectors change. So the covariant transformation X C X
    in 

matrix format 
0 1

0 0 0 0

0 1
1 1 1 1

               

               

X C C X

X C C X

     
     

          
 uses transformation matrix C  equal to the reverse 

contravariant transformation matrix R :
0 0

0 0 1 0

1 1
1 0 1 1

             

             

X R R X

X R R X

     
     

          
, or equivalently 

0 0
0 0 0 1 1X R X R X   and 1 1

1 0 0 1 1X R X R X  . It is generally assumed that this is the same as 

saying the covariant transformation is the inverse to the contravariant transformation. 

Notice however that the off-diagonal merates 1 0
0 1C R , and 0 1

1 0C R  have indices switched 

around. This is because C  operates on a covariant object, whereas, in its original definition, 

R  operated on a contravariant object. 

The index switching makes no difference if we limit attention to transformations that are 

space-time symmetric, i.e. Lorentz transformations. But if we wish to investigate any other 

type of transformation, we have to investigate whether the switch makes a difference. 

Consider the inner product X X
 . Under Lorentz transformation, it is preserved, equal to 

X X X X 
  . But if we do not have space-time symmetry, is it still preserved? This 

question has to be answered by testing. 

Laying out the problem in matrix format, we have to make one of the vectors, say the 

covariant one, a row vector, and then we have to test: 

  
0

0 1 0 11

   
               

   

X
X X X X

X

 
       

0 1 0 0 0
0 0 0 1

0 1 1 1 1
1 1 0 1

                   

                   

R R T T X

R R T T X

     
     
          

 
0

0 1 1

   
?        

   

X
X X

X

 
   

  
 (31) 
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Observe that the R  matrix is transposed from what it would need to be to make the RT  

matrix product collapse to the identity. So the inner product X X
  is generally not 

preserved if we do not have space-time symmetry. 

6.4 Transformations for objects of four types 

In order to recover the general availability of preserved inner products, the two additional 
transformation behaviors are defined. The transcovariant transformation is defined as the 
transposed inverse of the contravariant one. The transcontravariant transformation is 
defined as the transposed inverse of the covariant one. 
Recall that this discussion began with the contravariant transformation written in the tensor 

notation /X x x X        . The discussion soon became complicated enough to merit 

introduction of more detailed notation that can clearly distinguish the four cases. The 
following Table illustrates the expanded tensor notation: 
 

 
 
 
 

directreverse

direct reverse

 
contravariant,transcontravariant, 

//

transcovariant, covariant,

/ /

X T X x x XX T X x x X

X C X x x X X C X x x X

          


     
       

                    

                    
 

 
 
 
 
The Table is organized for user convenience, with the position of information corresponding 
to the index position: upper right for contravariant, lower right for covariant, lower left for 
transcovariant, and upper left for transcontravariant. The index position assigned to an 
object determines the transformation law that it follows. 
Now let two arbitrary numbers with magnitude less than unity be represented by the letters 

A  and B  (chosen from the word ‘arbitrary’!). Let the arbitrary numbers represent in turn 
the off-diagonal elements of transformation matrices. The following table shows the 
corresponding matrix notation: 
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0 0 0 0

1 1 1 1

0

1

contravariant,transcontravariant,

      1                1          1 1

      1       1 1 1               

transcovariant,

      1   1

1   

X A X X B X

B AAB ABX X X X

X

ABX

           
                              

 
 

  

 0 0 0

1 11

covariant,

          1         1

     1           1     1   
A X X B X

B X A XABX

         
                  

 

 
 

Observe that this Table uses negative signs on the arbitrary A  and B  in the contravariant 
and transcontravariant cases, positive signs in the covariant and transcovariant cases. This 
sign choice is used to help recall the prefixes ‘contra’ and ‘co’. Observe too that if B A , we 
have space-time symmetry, which is the case of Lorentz transformations. And observe 
finally that if 0B  , we have universal time, which is the case of Galilean transformations. 
But A  and B  are arbitrary, and so can also represent other transformations as yet 
unnamed. 

6.5 Transformations for invariant objects 

The underlying purpose of tensor calculus is to focus on mathematical objects that are 

‘coordinate free’, or ‘frame independent’, or ‘invariant’ (whether in form or in numerical 

value), – all expressions meaning that coordinate transformation does not change anything 

fundamental about an object so-described: values of scalars, or relationships expressed as 

equations involving tensors.  
The user of tensor calculus expects certain behaviors. There should be number invariant 
inner products of vectors and of higher-order tensors. The ‘unity’, or ‘Kronecker delta’ is not 
presently regarded as a real tensor, but can be accepted as one if it can be demonstrated 
number invariant. Finally, the user will certainly expect a number invariant ‘metric tensor’, 
the essential tool for manipulating index positions to develop tensor equations. Displaying 
that all these expectations can be met in the case of arbitrary transformations, not just 
Lorentz transformations, is the objective of this Sub-Section. 

The matrix notation is useful in checking out the transformation of all these entities. For 
example, the preserved inner product of a vector X  with itself looks like (note the 
transpositions for operating on row vectors): 

 
0

0 1
1

   
 

   

X
XX X X

X


  

 
 
  

 
0 1

  1     1
       

     1 1

B
X X

AAB





 
  

 
0

0 1
1

  1         
       

     1     

B X
X X

A X






  
      

 
0

0 1
1

   
       

   

X
X X XX

X




 
 
  

. (32) 
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or 

00 1

1

   
       

   

X
XX X X

X


  

       
0 1

  1      1
       

     1 1

B
X X

AAB





       
0

1

 1         

     1     

B X

A X






   
   
   

00 1

1

   
       

   

X
X X XX

X




       
. (33) 

The more familiar inner product X X
  is preserved with Lorentz transformations, but not 

with arbitrary transformations. So it shouldn’t be considered any kind of ‘invariant’. The 

same is true of the unfamiliar ( )( )X X
 . 

With the extended tensor notation, we can identify the index positions that definitely make 
a number invariant Kronecker delta. It looks like (note the transpositions for operating on 
row vectors): 

 
 1       1   0 1

     1   0   1 1

A

BAB


   

        

 1       1   0 
     1   0   1 

A

B


   
       

. (34) 

or 

 
 1       1   0 1

     1   0   1 1

A

BAB



   

        

 1       1   0 
     1   0   1 

A

B



   

       
. (35) 

The more familiar 
  is preserved with Lorentz transformations, but not with arbitrary 

transformations. That is why it does not qualify as a tensor. The same is true of the 

unfamiliar 
  . 

Some readers will be surprised to see the present argument using the Lorentz metric, 

 1    0 
 0    1 
 
  

, without accepting a limitation to Loentz transformations. It is widely supposed 

that the Lorentz metric requires Lorentz transformations, and/or Lorentz transformations 

require the Lorentz metric. But such a connection is not in fact mandatory.  

The generally preserved forms of the Lorentz metric tensor look like (note the transpositions 
for operating on row vectors): 

 
  1       1    0 1

     1   0    1 1

A
g

BAB
     

         

  1       1     1

     1       1 1

A A

B BAB

    
       

  1       1    0 
      1  0    1

A
g

B
    

         
. (36) 

and 

 
 1     1    0 1

     1   0    1 1

A
g

BAB
 

   
         

 1       1     1

     1       1 1

A A

B BAB

    
       

  1       1    0 
      1   0    1 

A
g

B  
   

         
. (37) 

The more familiar g  and g  are preserved with Lorentz transformations, but not with 

arbitrary transformations. They shouldn’t be considered any kind of ‘invariant’. The same is 

true of the unfamiliar g  and g . 
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The number invariant g   and g   can function to raise and lower indices on objects. For 

example, ( )X g X
    and ( ) X g X  

 , or ( ) ( )X g X  
  and ( ) ( )b

a a bX g X . 

One can also write additional index assignments for g . Altogether, there are 10 possible 

assignments, as there are 4 3 / 2 6   with indices in different corners, and 4 with indices in 

the same corner. 

Two of the additional index assignments look like g  and g
 . These two entities cannot 

do anything to an index except change its name. For example, ( )X X g  
  and 

( )X X g
   , or ( ) ( )X g X

    and ( ) ( )X g X  
 . So g  and g

  are just 

equivalent to the number invariant 
  and    already noted above. 

Further additional index assignments on g  create entities that can serve to convert a regular 

index into a trans one, or a trans one into a regular one. None of these entities are number 
invariant, but in practice, that does not matter. The user does not convert just a single object; 
the user converts a whole tensor equation. The index-converting g  entities typically occur 

in pairs, and the pairs contract to number invariant objects. When they don’t occur in pairs, 
they do occur on both sides of an equation, and cannot affect the issue of equation form 
invariance. 

Another two of these of g ’s are g  and g
 . They function to do ( )X g X  

  and 

( )X g X
   , or ( )X g X

    and ( )X g X  
 . As a pair, they contract to 

( )( )g g g  
   , or to ( )( )g g g  

   , both of which are number invariant. 

The final four indexed g ’s are g , g , g , and g . They can all function to change a 

regular index into a trans one, or a trans one into a regular one, but with a twist: ‘co’ goes to 

‘contra’, or ‘contra’ goes to ‘co’. That is, ( ) X g X 
  , ( ) X g X

  , ( )g X X 
   and 

( )g X X
  . As noted above, the contractions ( )( )g g g 

   and ( )( )g g g 
   are 

number invariant. 
The bottom line is this: to be sure of invariance under arbitrary transformation, not just 
Lorentz transformation, always contract a regular index with a trans index.  

6.6 General invariance for Maxwell’s equations 

Maxwell’s equations in current tensor notation read: 

 
4

F J
c

 



     and   0D 

  . (38) 

The two-index F  and D  tensors refer to the electromagnetic field and the ‘dual’ 

thereof. The electromagnetic field tensor F  has merates that are components of the three-

dimensional electric and magnetic field vectors, E  and B . The D  is the dual to F , 

whose merates are components of B  and E . The one-index tensors J  and   refer to the 

source charge-current density vector and the differential operator vector. The indices   and 

  take the four values 0,1,2,3 . 
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The seeming limitation of Maxwell’s equations to invariance only under Lorentz 
transformation arises entirely from the differential operator being written as a covariant 
vector. In the extended tensor algebra, this operator is identified as transcovariant, and then 
Maxwell’s equations look like: 

 
4

( )F J
c

 



     and   ( ) 0D 

   . (39) 

Written this way, Maxwell’s equations are manifestly form invariant, not only under 
Lorentz transformation, but also under any arbitrary (just well-behaved) transformation, 
including Galilean transformation. 

7. Conclusions 

About Maxwell’s equations and photons: Photons have a life history that begins with 
emission as an electromagnetic pulse pulse, proceeds with development into a waveform, 
then changes into regression back to a pulse, and ends with absorption by a receiver. This 
life history of the photon can be modeled by imagining some mirrors that apply boundary 
conditions corresponding to the desired scenario, feeding a Gaussian pulse at the source to 
Maxwell’s equations, watching Hermite polynomials then emerge, and then finally pile up 
at the receiver.  
About EM signals and photons: The life history of the photon suggests that the 
assumption upon which Einstein’s SRT is founded is over-simplified. If we will make the 
founding assumption more realistic, then we will get more believable results. The more 
believable results can help us reconcile SRT with the QM of atoms. We can understand 
why Planck’s constant occurs. It represents the balance between competing phenomena: 
on the one hand, energy loss due to radiation from accelerating charges; on the other 
hand, energy gain due to internal torquing within the atomic system due to finite speed of 
signal propagation. 
About Atoms: Viewed in the right way, chemical and spectroscopic data reveal a 
tremendous amount of regularity. So we are well enabled to interpolate and extrapolate for 
situations where actual data is not available. We can analyze scenarios where electrons are 
subtracted from or added to an atom, all at once, or one at a time; whatever we need. But 
take care: in the existing literature, the distinction between ‘all-at-once’ and ‘one-at-a-time’ is 
often obscure, so be careful.  
About Maxwell and Newton: There should have been no conflict between Maxwell’s 
equations and Newton’s equations over the issue of transformation invariance. Maxwell’s 
equations are form invariant under Galilean transformations, just as they are form invariant 
under Lorentz transformations. Physics does not have conflicts. Only people have conflicts. 
And people can resolve their conflicts. The conflict perceived in the case of Newton vs. 
Maxwell is resolved with an extension of mathematical formalism.  
About Physics in General: This work has shown that SRT deserves a moment of caution, 
and the reader may reasonably worry that GRT deserves some caution too. So it may be 
premature to develop a theory of quantum gravity. Placing the QG capstone onto the RT 
and QM pillars of 20th century physics may produce something that resembles the ancient 
constructions at Stonehenge, but not the Gothic cathedrals of Europe, much less anything 
modern. 
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8. Appendix 1. Numerical data on ionization potentials for all elements 

 
 
 
 
 
 
 
 

 

Charge Mass Ionization Ionization Model Model

Element

H 1 1.008

He 2 4.003

Li 3 6.941

Be 4 9.012

B 5 10.811

C 6 12.011

N 7 14.007

O 8 15.999

F 9 18.998

Ne 10 20.180

Na 11 22.990

Mg 12 24.305

Al 13 26.982

Si 14 28.086

P 15 30.974

S 16 32.066

Cl 17 3

Ar 18

IP

Z M


Potential Potential /

13.610 13.718

24.606 49.244

5.394 12.480

9.326 21.011

8.309 17.966

11.266 22.551

14.544 29.101

13.631 27.260

17.438 36.810

21.587 43.562

5.145 10.753

7.656

5.996

8.154

10.498

10.373

5.453 12.977

39.948 15.778

M Z
14.250 0

49.875 35.625

12.469 1.781

23.327 9.077

17.055 2.805

21.570 7.320

27.281 13.031

27.281 13.031

34.504 20.25

43.641

10.910

15.506 16.565

12.444 14.923

16.357 18.874

21.677 23.871

20.790 23.871

27.063 30.192

35.017 38.186

IP IP



4

29.391

3.340

2.315

0.673

4.624

9.621

9.621

15.942

23.936



 

 
 
 
 
 
 
 

Periods 1, 2 and 3. 
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Charge Mass Ionization Ionization Model Model

Element

K 19 39.098

Ca 20 40.078

Sc 21 44.956

Ti 22 47.867

V 23 50.942

Cr 24 51.996

Mn 25 54.938

Fe 26 55.845

Co 27 58.933

Ni 28 58.693

Cu 29 63.546

Zn 30 65.390

Ga 31 69.723

Ge 32

As 33

Se 34

Br 35

Kr 36

IP

Z M


Potential Potential /

4.346 8.944

6.120 12.265

6.546 14.013

6.826 14.851

6.743 14.934

6.774 14.676

7.438 16.345

7.873 16.911

7.863 17.163

7.645 16.

7.728

9.398

6.006

72.610 7.905

74.922 9.824

78.960 9.761

79.904 11.826

83.800 14.015

M Z
9.546 4.704

13.057 1.193

13.057 1.193

13.638 0.612

14.244 0.006

14.877 0.627

15.539 1.

15.539

16.229

026 16.951

16.934 17.705

20.485 18.492

13.509 14.494

17.936 17.860

22.303 22.007

22.669 22.007

26.998 27.116

32.623 33.412

IP IP






289

1.289

1.980

2.701

3.455

4.242

0.244

3.610

7.757

7.757

12.866

19.162
 

 
 
 
 
 
 
 
 
 

Period 4. 
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Charge Mass Ionization Ionization Model Model

Element

Rb 37 85.468

Sr 38 87.620

Y 39 88.906

Zr 40 91.224

Nb 41 92.906

Mo 42 95.940

Tc 43 98.000

Ru 44 101.070

Rh 45 102.906

Pd 46 106.420

Ag 47 107.868

Cd 48 112.411

In 49 1

Sn 50

Sb 51

Te 52

I 53

Xe 54

IP

Z M


Potential Potential /

4.180 9.657

5.695 13.132

6.390 14.567

6.846 15.614

6.888 15.608

7.106 16.232

7.282 16.597

7.376 16.9

7.469

8.351

7.583

9.004

14.818 5.788

118.710 7.355

121.760 8.651

127.600 9.015

126.904 10.456

131.290 12.137

M Z
9.546 4.704

13.057 1.193

13.057 1.193

13.638 0.612

14.244 0

14.877

15.539

42 15.539

17.080 16.230

19.319 16.951

17.403 17.705

21.087 18.492

13.563 14.494

17.462 17.860

20.655 22.007

22.120 22.007

25.037 27.116

29.508 33.412

IP IP




 .006

0.627

1.289

1.289

1.980

2.701

3.455

4.242

0.244

3.610

7.757

7.757

12.866

19.162
 

 
 
 
 
 
 
 
 

Period 5. 
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Charge Mass Ionization Ionization Model Model

Element

Cs 55 132.905

Ba 56 137.327

La 57 138.906

Ce 58

Pr 59

Nd 60

Pm 61

Sm 62

Eu 63

Gd 64

Tb 65

Dy 66

Ho 67

Er 68

Tm 69

Yb 70

Lu 71

Hf 72

Ta 73

W 74

Re 75

Os 76

Ir 77

Pt 78

Au 79

Hg 80

Tl 81

Pb 82

Bi 83

Po 84

At 85

Rn 86

IP

Z M



140.116

140.908

144.240

145.000

150.360

151.964

157.250

158.925

162.500

164.930

167.260

168.934

170.040

174.967

178.490

180.948

183.840

186.207

190.230

192.217

195.076

196.967

200.530

204.383

207.200

208.980

209.000

210.000

222.

Potential Potential /

3.900 9.425

5.218 12.796

5.581 13.600

5.477 1

5.425

5.498

5.550

5.633

5.674

6.141

5.851

5.934

6.027

6.110

6.183

6.255

5.436

7.054

7.894

7.988

7.884

8.714

9.129

9.025

9.232

10.446

6.110

7.427

7.293

8.423

000 10.757

M Z
9.546

13.057

12.393

3.232 12.583

12.957 12.776

13.217 12

13.192

13.660

13.687

15.089

14.305

14.609

14.836

15.029

15.137

15.463

13.395

17.487

19.568

19.844

19.574

21.811

22.788

22.571

23.019

26.184

15.417

18.768

18.361

20.958

27.769

IP

4.704

1.192

1.857

1.667

1.474

.972 1.278

13.171

13.374

13.579

13.579

13.787

13.999

14.213

14.431

14.653

14.878

17.860

18.755

19.696

20.684

21.721

21.721

22.811

23.955

25.156

26.418

16.515

19.696

23.490

23.490

28.015

33.412

IP






1.079

0.876

0.671

0.671

0.463

0.251

0.037

0.181

0.403

0.627

3.610

4.505

5.446

6.434

7.471

7.471

8.560

9.705

10.906

12.168

2.265

5.446

9.240

9.240

13.765

19.164








 

 

Period 6. 
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Charge Mass Ionization Ionization Model Model

Element

Fr 87

Ra 88

Ac 89

Th 90

Pa 91

U 92

Np 93

Pu 94

Am 95

Cm 96

Bk 97

Cf 98

Es 99

Fm 100

Md 101

No 102

Lf 103

Rf 104

Db 105

Sg 106

Bh 107

Hs 108

Mt 109

Uun 110

Uuu 111

Uub 112

??? 113

??? 114

??? 1

???

???

???

IP

Z


Potential

223.000

226.000 5.280

227.000 6.950

232.038 6.089

231.036 5.892

238.029 6.203

237.000 6.276

244.000 6.068

243.000 5.996

247.000 6.027

247.000 6.234

251.000 6.307

252.000 6.421

257.000 6.504

258.000 6.

259.000

15

116

117

118

M Potential /

9.546

13.560 13.057

17.727 12.393

15.699 12.583

14.959 12.776

16.050 12.972

15.994 13.171

15.752 13.374

15.337 13.579

15.507 13.579

15.875 13.787

16.154 13.999

16.345 14.213

16.716 14.431

587 16.827 14.6

6.660 16.911

M Z IP
4.704

1.193

1.857

1.667

1.474

1.277

1.079

0.876

0.671

0.671

0.463

0.251

0.037

0.181

53 0.403

14.877 0.627

17.859

18.755

19.696

20.684

21.721

21.721

22.811

23.955

25.156

26.418

16.515

17.019

23.490

23.490

28.015

33.412

IP














3.610

4.505

5.446

6.434

7.471

7.471

8.561

9.705

10.906

12.168

2.265

2.769

9.240

9.240

13.765

19.162

 

 

Period 7. 

www.intechopen.com



 
Theoretical Concepts of Quantum Mechanics 

 

160 

9. Acknowledgments 

The author thanks colleagues for deep and intense conversations on the topics discussed 
here, especially Dr. Peter Enders, Dr. Yuri Keilman, Dr. Robert Kiehn, Prof. Zbigniew 
Oziewicz, and Dr. Tom Phipps.  

10. References 

Aspden, H. (1990) ‘Electron Clusters’ (Correspondence) Galilean Electrodynamics vol. 1, 81-82.  
Beckmann, P. (1990), “Electron Clusters”, Galilean Electrodynamics vol. 1, 55-58 (1990); see also 

vol. 1, 82.  
Kiein, R. M. (2009), Non-Equilibrium Systems and Irreversible Processes, Vol. 4, Adventures in 

Applied Topology, especially Sect. 2.2.3,  
 http://www22.pair.com/csdc/kok/ebookvol4.pdf. 
Piestrup, M.A., Puthoff, H.E., & Ebert, P.J. (1998). Correlated Emissions of Electrons, Galilean 

Electrodynamics vol. 9, 43-49. 
Putz, M. V., Ed., (2009) Quantum Frontiers of Atoms and Molecules, Nova Science Publishers, 

New York. 
Rowlands, P. (2007), Zero to Infinity – The Foundations of Physics, Chapter 16, The Factor 2 and 

Duality, World Scientific, New Jersey, London, etc. 
Thomas, L.H. (1927), The Kinematics of an electron with an Axis, Phil. Mag. S. 7, 3 (13) 1-22. 
Wheeler, J.A., and Feynman, R.P. (1945). Interaction with the Absorber as the Mechanism of 

Radiation, Revs. Mod. Phys., 17 (2 & 3) 157-181. 
Wheeler, J.A., and Feynman, R.P. (1949). Classical Electrodynamics in Terms of Direct 

Interparticle Action, Revs. Mod. Phys., 21 (3) 425-433. 
Whitney, C.K. (2012). Algebraic Chemistry: Applications and Origins, Nova Science Publishers. 

www.intechopen.com



Theoretical Concepts of Quantum Mechanics

Edited by Prof. Mohammad Reza Pahlavani

ISBN 978-953-51-0088-1

Hard cover, 598 pages

Publisher InTech

Published online 24, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Quantum theory as a scientific revolution profoundly influenced human thought about the universe and

governed forces of nature. Perhaps the historical development of quantum mechanics mimics the history of

human scientific struggles from their beginning. This book, which brought together an international community

of invited authors, represents a rich account of foundation, scientific history of quantum mechanics, relativistic

quantum mechanics and field theory, and different methods to solve the Schrodinger equation. We wish for

this collected volume to become an important reference for students and researchers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Cynthia Kolb Whitney (2012). Better Unification for Physics in General Through Quantum Mechanics in

Particular, Theoretical Concepts of Quantum Mechanics, Prof. Mohammad Reza Pahlavani (Ed.), ISBN: 978-

953-51-0088-1, InTech, Available from: http://www.intechopen.com/books/theoretical-concepts-of-quantum-

mechanics/better-unification-for-physics-in-general-through-quantum-mechanics-in-particular-



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


