
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Complementarity in Quantum Mechanics and
Classical Statistical Mechanics

Luisberis Velazquez Abad and Sergio Curilef Huichalaf
Departamento de Física, Universidad Católica del Norte

Chile

1. Introduction

Roughly speaking, complementarity can be understood as the coexistence of multiple
properties in the behavior of an object that seem to be contradictory. Although it is possible to
switch among different descriptions of these properties, in principle, it is impossible to view
them, at the same time, despite their simultaneous coexistence. Therefore, the consideration of
all these contradictory properties is absolutely necessary to provide a complete characterization
of the object. In physics, complementarity represents a basic principle of quantum theory
proposed by Niels Bohr (1; 2), which is closely identified with the Copenhagen interpretation.
This notion refers to effects such as the so-called wave-particle duality. In an analogous
perspective as the finite character of the speed of light c implies the impossibility of a sharp
separation between the notions of space and time, the finite character of the quantum of action
h̄ implies the impossibility of a sharp separation between the behavior of a quantum system
and its interaction with the measuring instruments.
In the early days of quantum mechanics, Bohr understood that complementarity cannot be a
unique feature of quantum theories (3; 4). In fact, he suggested that the thermodynamical
quantities of temperature T and energy E should be complementary in the same way as
position q and momentum p in quantum mechanics. According to thermodynamics, the
energy E and the temperature T can be simultaneously defined for a thermodynamic system
in equilibrium. However, a complete and different viewpoint for the energy-temperature
relationship is provided in the framework of classical statistical mechanics (5). Inspired on
Gibbs canonical ensemble, Bohr claimed that a definite temperature T can only be attributed
to the system if it is submerged into a heat bath1, in which case fluctuations of energy E are
unavoidable. Conversely, a definite energy E can only be assigned when the system is put
into energetic isolation, thus excluding the simultaneous determination of its temperature T.
At first glance, the above reasonings are remarkably analogous to the Bohr’s arguments
that support the complementary character between the coordinates q and momentum p.
Dimensional analysis suggests the relevance of the following uncertainty relation (6):

∆E∆(1/T) ≥ kB, (1)

where kB is the Boltzmann’s constant, which can play in statistical mechanics the counterpart
role of the Planck’s constant h̄ in quantum mechanics. Recently (7–9), we have shown that

1 A heat bath is a huge extensive system driven by short-range forces, whose heat capacity C is so large
that it can be practically regarded infinite, e.g.: the natural environment.
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Bohr’s arguments about the complementary character between energy and temperature, as
well as the inequality of Eq.(1), are not strictly correct. However, the essential idea of Bohr is
relevant enough: uncertainty relations can be present in any physical theory with a statistical
formulation. In fact, the notion of complementarity is intrinsically associated with the statistical
nature of a given physical theory.
The main interest of this chapter is to present some general arguments that support the
statistical relevance of complementarity, which is illustrated in the case of classical statistical
mechanics. Our discussion does not only demonstrate the existence of complementary
relations involving thermodynamic variables (7–9), but also the existence of a remarkable
analogy between the conceptual features of quantum mechanics and classical statistical
mechanics.
This chapter is organized as follows. For comparison purposes, we shall start this
discussion presenting in section 2 a general overview about the orthodox interpretation
of complementarity of quantum mechanics. In section 3, we analyze some relevant
uncertainty-like inequalities in two approaches of classical probability theory: fluctuation theory
(5) and Fisher’s inference theory (10; 11). These results will be applied in section 4 for the analysis
of complementary relations in classical statistical mechanics. Finally, some concluding
remarks and open problems are commented in section 5.

2. Complementarity in quantum mechanics: A general overview

2.1 Complementary descriptions and complementary quantities

Quantum mechanics is a theory hallmarked by the complementarity between two descriptions
that are unified in classical physics (1; 2):

1. Space-time description: the parametrization in terms of coordinates q and time t;

2. Dynamical description: This description in based on the applicability of the dynamical
conservation laws, where enter dynamical quantities as the energy and the momentum.

The breakdown of classical notions as the concept of point particle trajectory [q(t), p(t)]
was clearly evidenced in Davisson and Germer experiment and other similar experiences
(12). To illustrate that electrons and other microparticles undergo interference and diffraction
phenomena like the ordinary waves, in Fig.1 a schematic representation of electron
interference by double-slits apparatus is shown (13). According to this experience, the
measurement results can only be described using classical notions compatible with its
corpuscular representations, that is, in terms of the space-time description, e.g.: a spot in a
photographic plate, a recoil of some movable part of the instrument, etc. Moreover, these
experimental results are generally unpredictable, that is, they show an intrinsic statistical nature
that is governed by the wave behavior dynamics. According to these experiments, there is
no a sharp separation between the undulatory-statistical behavior of microparticles and the
space-time description associated with the interaction with the measuring instruments.
Besides the existence of complementary descriptions, it is possible to talk about the notion of
complementary quantities. Position q and momentum p, as well as time t and energy E, are
relevant examples complementary quantities. Any experimental setup aimed to study the
exchange of energy E and momentum p between microparticles must involve a measure in a
finite region of the space-time for the definition of wave frequency ω and vector k entering in
de Broglie’s relations (14):

E = h̄ω and p = h̄k. (2)

2 Theoretical Concepts of Quantum Mechanics
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Fig. 1. Schematic representation of electron interference by double-slit apparatus using an
incident beam with low intensity. Sending electrons through a double-slit apparatus one at a
time results in single spot appearing on the photographic plate. However, an interference
pattern progressively emerges when the number N of electrons impacted on the plate is
increased. The emergence of an interference pattern suggested that each electron was
interfering with itself, and therefore in some sense the electron had to be going through both
slits at once. Clearly, this interpretation contradicts the classical notion of particles trajectory.

Conversely, any attempt of locating the collision between microparticles in the space-time
more accurately would exclude a precise determination in regards the balance of momentum
p and energy E. Quantitatively, such complementarity is characterized in terms of uncertainty
relations (2):

∆q∆p ≥ h̄ and ∆t∆E ≥ h̄, (3)

which are associated with the known Heisenberg’s uncertainty principle: if one tries to describe
the dynamical state of a microparticle by methods of classical mechanics, then precision
of such description is limited. In fact, the classical state of microparticle turns out to be
badly defined. While the coordinate-momentum uncertainty forbids the classical notion of
trajectory, the energy-time uncertainty accounts for that a state, existing for a short time ∆t,
cannot have a definite energy E.

2.2 Principles of quantum mechanics

2.2.1 The wave function Ψ and its physical relevance

Dynamical description of a quantum system is performed in terms of the so-called the wave
function Ψ (12). For example, such as the frequency ω and wave vector k observed in electron
diffraction experiments are related to dynamical variables as energy E and momentum p in
terms of de Broglie’s relations (2). Accordingly, the wave function Ψ(q, t) associated with a
free microparticle (as the electrons in a beam with very low intensity) behaves as follows:

Ψ(q, t) = C exp [−i(Et − p · q)/h̄] . (4)

Historically, de Broglie proposed the relations (2) as a direct generalization of quantum
hypothesis of light developed by Planck and Einstein for any kind of microparticles (14). The

3Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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experimental confirmation of these wave-particle duality for any kind of matter revealed the
unity of material world. In fact, wave-particle duality is a property of matter as universal as
the fact that any kind of matter is able to produce a gravitational interaction.
While the state of a system in classical mechanics is determined by the knowledge of the
positions q and momenta p of all its constituents, the state of a system in the framework
of quantum mechanics is determined by the knowledge of its wave function Ψ(q, t) (or
its generalization Ψ(q1, q2, . . . , qn, t) for a system with many constituents, notation that is
omitted hereafter for the sake of simplicity). In fact, the knowledge of the wave function
Ψ(q, t0) in an initial instant t0 allows the prediction of its future evolution prior to the
realization of a measurement (12). The wave function Ψ(q, t) is a complex function whose
modulus |Ψ(q, t)|2 describes the probability density, in an absolute or relative sense, to detect a
microparticle at the position q as a result of a measurement at the time t (15). Such a statistical
relevance of the wave function Ψ(q, t) about its relation with the experimental results is the
most condensed expression of complementarity of quantum phenomena.
Due to its statistical relevance, the reconstruction of the wave function Ψ(q, t) from a given
experimental situation demands the notion of statistical ensemble (12). In electron diffraction
experiments, each electron in the beam manifests undulatory properties in its dynamical
behavior. However, the interaction of this microparticle with a measuring instrument (a
classical object as a photographic plate) radically affects its initial state, e.g.: electron is
forced to localize in a very narrow region (the spot). In this case, a single measuring
process is useless to reveal the wave properties of its previous quantum state. To rebuild
the wave function Ψ (up to the precision of an unimportant constant complex factor eiφ),
it is necessary to perform infinite repeated measurements of the quantum system under the
same initial conditions. Abstractly, this procedure is equivalent to consider simultaneous
measurements over a quantum statistical ensemble: such as an infinite set of identical copies
of the quantum system, which have been previously prepared under the same experimental
procedure2. Due to the important role of measurements in the knowledge state of quantum
systems, quantum mechanics is a physical theory that allows us to predict the results of certain
experimental measurements taken over a quantum statistical ensemble that it has been previously
prepared under certain experimental criteria (12).

2.2.2 The superposition principle

To explains interference phenomena observed in the double-slit experiments, the wave
function Ψ(q, t) of a quantum system should satisfy the superposition principle (12):

Ψ(q, t) = ∑
α

aαΨα(q, t). (5)

Here, Ψα(q, t) represents the normalized wave function associated with the α-th independent
state. As example, Ψα(q, t) could represent the wave function contribution associated with
each slit during electron interference experiments; while the modulus |aα|2 of the complex
amplitudes aα are proportional to incident beam intensities Iα, or equivalently, the probability
pα that a given electron crosses through the α-th slit.

2 This ensemble definition corresponds to the so-called pure quantum state, whose description is
performed in terms of the wave function Ψ. A more general extension is the mixed statistical ensemble
that corresponds to the so-called mixed quantum state, whose description is performed in terms of the
density matrix ρ̂. The consideration of the density matrix is the natural description of quantum statistical
mechanics.

4 Theoretical Concepts of Quantum Mechanics
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Superposition principle is the most important hypothesis with a positive content of quantum
theory. In particular, it evidences that dynamical equations of the wave function Ψ(q, t)
should exhibit a linear character. By itself, the superposition principle allows to assume linear
algebra as the mathematical apparatus of quantum mechanics. Thus, the wave function
Ψ(q, t) can be regarded as a complex vector in a Hilbert space H. Under this interpretation,
the superposition formula (5) can be regarded as a decomposition of a vector Ψ in a basis of
independent vectors {Ψα}. The normalization of the wave function Ψ can be interpreted as
the vectorial norm:

‖Ψ‖2 =
∫

Ψ∗(q, t)Ψ(q, t)dq = ∑
αβ

gαβa∗αaβ = 1. (6)

Here, the matrix elements gαβ denote the scalar product (complex) between different basis
elements:

gαβ =
∫

Ψ∗
α(q, t)Ψβ(q, t)dq, (7)

which accounts for the existence of interference effects during the experimental
measurements. As expected, the interference matrix, gαβ, is a hermitian matrix, gαβ = g∗βα.

The basis {Ψα(q, t)} is said to be orthonormal if their elements satisfy orthogonality condition:

∫

Ψ∗
α(q, t)Ψβ(q, t)dq = δαβ, (8)

where δαβ represents Kroneker delta (for a basis with discrete elements) or a Dirac delta
functions (for the basis with continuous elements).The basis of independent states is complete
if any admissible state Ψ ∈ H can be represented with this basis. In particular, a basis with
independent orthogonal elements is complete if it satisfies the completeness condition:

∑
α

Ψ∗
α(q̃, t)Ψα(q, t) = δ (q̃ − q) . (9)

2.2.3 The correspondence principle

Other important hypothesis of quantum mechanics is the correspondence principle. We assume
the following suitable statement: the wave-function Ψ(q, t) can be approximated in the
quasi-classic limit h̄ → 0 as follows (12):

Ψ(q, t) ∼ exp [iS(q, t)/h̄] , (10)

where S(q, t) is the classical action of the system associated with the known Hamilton-Jacobi
theory of classical mechanics. Physically, this principle expresses that quantum mechanics
contains classical mechanics as an asymptotic theory. At the same time, it states that quantum
mechanics should be formulated under the correspondence with classical mechanics.
Physically speaking, it is impossible to introduce a consistent quantum mechanics formulation
without the consideration of classical notions. Precisely, this is a very consequence of
the complementarity between the dynamical description performed in terms of the wave
function Ψ and the space-time classical description associated with the results of experimental
measurements. The completeness of quantum description performed in terms of the wave
function Ψ demands both the presence of quantum statistical ensemble and classical objects
that play the role of measuring instruments.
Historically, correspondence principle was formally introduced by Bohr in 1920 (16), although
he previously made use of it as early as 1913 in developing his model of the atom

5Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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(17). According to this principle, quantum description should be consistent with classical
description in the limit of large quantum numbers. In the framework of Schrödinger’s wave
mechanics, this principle appears as a suitable generalization of the so-called optics-mechanical
analogy (18). In geometric optics, the light propagation is described in the so-called rays
approximation. According to the Fermat’s principle, the ray trajectories extremize the optical
length ℓ [q(s)]:

ℓ [q(s)] =
∫ s2

s1

n [q(s)] ds → δℓ [q(s)] = 0, (11)

which is calculated along the curve q(s) with fixed extreme points q(s1) = P and q(s2) = Q.
Here, n(q) is the refraction index of the optical medium and ds = |dq|. Equivalently, the rays
propagation can be described by Eikonal equation:

|∇ϕ(q)|2 = k2
0n2(q), (12)

where ϕ(q) is the phase of the undulatory function u(q, t) = a(q, t) exp [−iωt + iϕ(q)] in
the wave optics, k0 = ω/c and c are the modulus of the wave vector and the speed of light
in vacuum, respectively. The phase ϕ(q) allows to obtain the wave vector k(q) within the
optical medium:

k(q) = ∇ϕ(q) → k(q) = |k(q)| = k0n(q), (13)

which provides the orientation of the ray propagation:

dq(s)

ds
=

k(q)

|k(q)|
. (14)

Equation (12) can be derived from the wave equation:

n2(q)
∂2

c2∂t2
u(q, t) = ∇2u(q, t) (15)

considering the approximations
∣

∣∂2a(q, t)/∂t2
∣

∣ ≪ ω2 |a(q, t)| and
∣

∣∇2a(q, t)
∣

∣ ≪

k2(q) |a(q, t)|. Remarkably, Eikonal equation (12) is equivalent in the mathematical sense to
the Hamilton-Jacobi equation for a conservative mechanical system:

1

2m
|∇W(q)|2 = E − V(q), (16)

where W(q) is the reduced action that appears in the classical action S(q, t) = W(q) − Et.
Analogously, Fresnel’s principle is a counterpart of Maupertuis’ principle:

δ
∫

√

2m [E − V(q)]ds = 0. (17)

In quantum mechanics, the optics-mechanics analogy suggests the way that quantum theory
asymptotically drops to classical mechanics in the limit h̄ → 0. Specifically, the total phase
ϕ(q, t) = ϕ(q)− ωt of the wave function Ψ(q, t) ∼ exp [iϕ(q, t)] should be proportional to
the classical action of Hamilton-Jacobi theory, ϕ(q, t) ∼ S(q, t)/h̄, consideration that leads to
expression (10).

6 Theoretical Concepts of Quantum Mechanics
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2.2.4 Operators of physical observables and Schrödinger equation

Physical interpretation of the wave function Ψ(q, t) implies that the expectation value of any
arbitrary function A(q) that is defined on the space coordinates q is expressed as follows:

〈A〉 =
∫

|Ψ(q, t)|2 A(q)dq. (18)

For calculating the expectation value of an arbitrary physical observable O, the previous
expression should be extended to a bilinear form in term of the wave function Ψ(q, t) (19):

〈O〉 =
∫

Ψ∗(q, t)O(q, q̃, t)Ψ(q̃, t)dqdq̃, (19)

where O(q, q̃, t) is the kernel of the physical observable O. As already commented, there exist
some physical observables, e.g.: the momentum p, whose determination demands repetitions
of measurements in a finite region of the space sufficient for the manifestation of wave
properties of the function Ψ(q, t). Precisely, this type of procedure involves a comparison or
correlation between different points of the space (q, q̃), which is accounted for by the kernel
O(q, q̃, t). Due to the expectation value of any physical observable O is a real number, the
kernel O(q, q̃, t) should obey the hermitian condition:

O∗(q̃, q, t) = O(q, q̃, t). (20)

As commented before, superposition principle (5) has naturally introduced the linear algebra
on a Hilbert space H as the mathematical apparatus of quantum mechanics. Using the
decomposition of the wave function Ψ into a certain basis {Ψα}, it is possible to obtain the
following expressions:

〈O〉 = ∑
αβ

a∗αOαβaβ, (21)

where:

Oαβ =
∫

Ψ∗
α(q, t)O(q, q̃, t)Ψβ(q̃, t)dq̃dq. (22)

Notice that hermitian condition (20) implies the hermitian character of operator matrix
elements, O∗

βα = Oαβ. The application of the kernel O(q, q̃, t) over a wave function Ψ(q, t):

Φ(q, t) =
∫

O(q, q̃, t)Ψ(q̃, t)dq̃ (23)

yields a new vector Φ(q, t) of the Hilbert space, Φ(q, t) ∈ H. Formally, this operation is
equivalent to associate each physical observable O with a linear operator Ô:

Ô

(

∑
α

aαΨα

)

= ∑
α

aαÔΨα, (24)

where:

ÔΨ(q, t) ≡
∫

O(q, q̃, t)Ψ(q̃, t)dq̃. (25)

This last notation convention allows to rephrase expression (19) for calculating the physical
expectation values into the following familiar form:

〈O〉 =
∫

Ψ∗(q, t)ÔΨ(q, t)dq. (26)

7Complementarity in Quantum Mechanics and Classical Statistical Mechanics

www.intechopen.com



8 Will-be-set-by-IN-TECH

The application of the physical operator Ô on any element Ψβ of the orthonormal basis, {Ψα},
can be decomposed into the same basis:

ÔΨβ = ∑
α

OαβΨα. (27)

Moreover, the kernel O(q̃, q, t) can be expressed in this orthonormal basis as follows:

O(q̃, q, t) = ∑
αβ

Ψα(q̃, t)OαβΨ∗
β(q, t). (28)

Denoting by Tmα the transformation matrix elements from the basis {Ψα} to a new basis {Ψm}:

Ψα = ∑
m

TmαΨm, (29)

the operator matrix elements Omn in this new basis can be expressed as follows:

Omn = ∑
αβ

TmαOαβT−1
βn . (30)

Using an appropriate transformation, the operator matrix elements can be expressed into a
diagonal form: Omn = Omδmn. Such a basis can be regarded as the proper representation of the
physical operator Ô, which corresponds to the eigenvalues problem:

ÔΨm(q, t) = OmΨm(q, t). (31)

The eigenvalues Om conform the spectrum of the physical operator Ô, that is, its admissible
values observed in the experiment. On the other hand, the set of eigenfunctions {Ψm} can
be used to introduce a basis in the Hilbert space H, whenever it represents a complete set
of functions. Using this basis of eigenfunctions, it is possible to obtain some remarkable
results. For example, the expectation value of physical observable O can be expressed into
the ordinary expression:

〈O〉 = ∑
m

Om pm, (32)

where pm = |am|
2 is the probability of the m-th eigenstate. Using the hermitian character of

any physical operator Ô+ = Ô, it is possible to obtain the following result:

(Om − On)
∫

Ψ∗
m(q, t)Ψn(q, t)dq = 0. (33)

If Om = On, the corresponding eigenfunctions Ψm(q, t) and Ψn(q, t) are orthogonal.
Additionally, if two physical operators Â and B̂ possesses the same spectrum of
eigenfunctions, the commutator of these operators:

[Â, B̂] = ÂB̂ − B̂Â (34)

identically vanishes:
[Â, B̂] = 0. (35)

Such an operational identity is shown as follows. Considering a general function Ψ ∈ H and
its representation using the complete orthonormal basis {Ψm}:

Ψ = ∑
m

amΨm, (36)

8 Theoretical Concepts of Quantum Mechanics
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one obtains the following relation:

[Â, B̂]Ψ = ∑
m

am(ÂB̂ − B̂Â)Ψm = ∑
m

am(AmBm − Bm Am)Ψm = 0. (37)

Clearly, a complete orthonormal basis {Ψm} in the Hilbert space H is conformed by the
eigenfunctions of all admissible and independent physical operators that commute among
them.
According to expression (18), the operators of spatial coordinates q and their functions A(q)
are simply given by these coordinates, q̂ = q and Â(q) = A(q). The introduction of physical
operators in quantum mechanics is precisely based on the correspondence with classical
mechanics. Relevant examples are the physical operators of energy and momentum (19):

Ê = ih̄
∂

∂t
and p̂ = −ih̄∇. (38)

Clearly, the wave function of the free microparticle (4) is just the eigenfunction of these
operators. Using the quasi-classical expression of the wave function (10), these operators drop
to their classical definitions in the Hamilton-Jacobi theory (18):

p̂Ψ(q, t) ∼ p̂ exp [iS(q, t)/h̄] ⇒ p = ∇S(q, t), (39)

ÊΨ(q, t) ∼ Ê exp [iS(q, t)/h̄] ⇒ −
∂

∂t
S(q, t) = H(q, p, t), (40)

where H(q, p, t) is the Hamiltonian, which represents the energy E in the case of a
conservative mechanical system H(q, p, t) = H(q, p) = E. In the framework of
Hamilton-Jacobi theory, the system dynamics is described by the following equation:

∂

∂t
S(q, t) + H (q,∇S(q, t), t) . (41)

Its quantum mechanics counterpart is the well-known Schrödinger equation (19):

ih̄
∂

∂t
Ψ(q, t) = ĤΨ(q, t) (42)

where Ĥ = H(q, p̂, t) is the corresponding operator of the system Hamiltonian.

2.3 Derivation of complementary relations

Let us introduce the scalar z-product between two arbitrary vectors Ψ1 and Ψ2 of the Hilbert
space H:

Ψ1 ⊗
z

Ψ2 =
1

2
z 〈Ψ1|Ψ2〉+

1

2
z∗ 〈Ψ2|Ψ1〉 , (43)

where 〈Ψ1|Ψ2〉 denotes:

〈Ψ1|Ψ2〉 ≡
∫

Ψ∗
1(q, t)Ψ2(q, t)dq. (44)

The scalar z-product is always real for any Ψ1 and Ψ2 ∈ H and obeys the following properties:

1. Linearity:
Ψ ⊗

z
(Ψ1 + Ψ2) = Ψ ⊗

z
Ψ1 + Ψ ⊗

z
Ψ2, (45)

9Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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2. Homogeneity:
Ψ1 ⊗

z
(wΨ2) = Ψ1 ⊗

zw
Ψ2, (46)

3. z-Symmetry:
Ψ1 ⊗

z
Ψ2 = Ψ2 ⊗

z∗
Ψ1 (47)

4. Nonnegative definition: if ℜ(z) > 0 then:

Ψ ⊗
z

Ψ ≥ 0 and Ψ ⊗
z

Ψ = 0 ⇒ Ψ = 0. (48)

Denoting as Ψ1 ⊗ Ψ2 the case z = 1, it is easy to obtain the following relation:

Ψ ⊗
z

Ψ = ℜ(z)Ψ ⊗ Ψ = ℜ(z) ‖Ψ‖2 , (49)

where ‖Ψ‖2 = 〈Ψ|Ψ〉 denotes the norm of the vector Ψ ∈ H. Considering w = |w| eiφ, the
inequality

(Ψ1 + wΨ2)⊗ (Ψ1 + wΨ2) ≥ 0 (50)

can be rewritten as follows:

Ψ1 ⊗ Ψ1 + |w|2 Ψ2 ⊗ Ψ2 + 2 |w|Ψ1 ⊗
eiφ

Ψ2 ≥ 0. (51)

The nonnegative definition of the previous expression demands the applicability of the
following inequality:

‖Ψ1‖
2 ‖Ψ2‖

2 ≥

(

Ψ1 ⊗
eiφ

Ψ2

)2

, (52)

which represents a special form of the Cauchy-Schwartz inequality. Considering two physical
operators Â and B̂ with vanishing expectation values 〈A〉 = 〈B〉 = 0, and considering Ψ1 =
ÂΨ and Ψ2 = B̂Ψ, it is possible to obtain the following expression:

Ψ1 ⊗
eiφ

Ψ2 =
1

2
cos φ 〈CA〉 −

1

2
sin φ 〈C〉 , (53)

where 〈CA〉 and 〈C〉 are the expectation values of physical operators ĈA and Ĉ:

ĈA =
{

Â, B̂
}

= ÂB̂ + B̂Â and iĈ =
[

Â, B̂
]

= ÂB̂ − B̂Â. (54)

Introducing the statistical uncertainty ∆O =
√

〈(O − 〈O〉)2〉 of the physical observable O,
inequality (52) can be rewritten as follows:

∆A∆B ≥
1

2
|cos φ 〈CA〉 − sin φ 〈C〉| . (55)

Relevant particular cases of the previous result are the following inequalities:

∆A∆B ≥
1

2
|〈CA〉| , ∆A∆B ≥

1

2
|〈C〉| , (56)

∆A∆B ≥
1

2

√

〈CA〉
2 + 〈C〉2. (57)

10 Theoretical Concepts of Quantum Mechanics
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Accordingly, the product of statistical uncertainties of two physical observables A and B
are inferior bounded by the commutator Ĉ, or the anti-commutator ĈA of their respective
operators. The commutator form of Eq.(56) was firstly obtained by Robertson in 1929 (20),
who generalizes a particular result derived by Kennard (21):

∆qi∆pi ≥
1

2
h̄, (58)

using the commutator relations:
[

q̂i, p̂j

]

= iδi
j h̄. (59)

The inequality of Eq.(57) was finally obtained by Schrödinger (22) and it is now referred
to as Robertson-Schrodinger inequality. Historically, Kennard’s result in (58) was the first
rigorous mathematical demonstration about the uncertainty relation between coordinates
and momentum, which provided evidences that Heisenberg’s uncertainty relations can be
obtained as direct consequences of statistical character of the algebraic apparatus of quantum
mechanics.

3. Relevant inequalities in classical probability theory

Hereafter, let us consider a generic classical distribution function:

dp(I|θ) = ρ(I|θ)dI (60)

where I = (I1, I2, . . . In) denotes a set of continuous stochastic variables driven by a set
θ = (θ1, θ2, . . . θm) of the control parameters. Let us denote by Mθ the compact manifold
constituted by all admissible values of the variables I that are accessible for a fixed θ ∈ P ,
where P is the compact manifold of all admissible values of control parameters θ. Moreover,
let us admit that the probability density ρ(I|θ) obeys some general mathematical conditions
as normalization, differentiability, as well as regular boundary conditions as:

lim
I→Ib

ρ(I|θ) = lim
I→Ib

∂

∂Ii
ρ(I|θ) = 0, (61)

where Ib is any point located at the boundary ∂Mθ of the manifold Mθ . The parametric
family of distribution functions of Eq.(60) can be analyzed by two different perspectives:

• The study of fluctuating behavior of stochastic variables I ∈ Mθ , which is the main interest
of fluctuation theory;

• The analysis of the relationship between this fluctuating behavior and the external
influence described in terms of parameters θ ∈ P , which is the interest of inference theory.

3.1 Fluctuation theory

The probability density ρ(I|θ) can be employed to introduce the generalized differential forces
ηi(I|θ) as follows (8; 9):

ηi(I|θ) = −
∂

∂Ii
log ρ(I|θ). (62)

By definition, the quantities ηi(I|θ) vanish in those stationary points Ī where the probability
density ρ(I|θ) exhibits its local maxima or its local minima. In statistical mechanics, the global
(local) maximum of the probability density is commonly regarded as a stable (metastable)
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equilibrium configuration. These notable points can be obtained from the maximization of
the logarithm of the probability density ρ(I|θ), which leads to the following stationary and
stability equilibrium conditions:

ηi( Ī|θ) = 0, and
∂

∂Ii
ηj( Ī|θ) ≻ 0, (63)

where the notation Aij ≻ 0 indicates the positive definition of the matrix Aij. In general, the
differential generalized forces ηi(I|θ) characterize the deviation of a given point I ∈ Mθ from
these local equilibrium configurations. As stochastic variables, the differential generalized
forces ηi(I|θ) obey the following fluctuation theorems (8; 9):

〈ηi(I|θ)〉 = 0,

〈

∂

∂Ii
ηj(I|θ)

〉

=
〈

ηi(I|θ)ηj(I|θ)
〉

,
〈

ηi(I|θ)δI j
〉

= δ
j
i , (64)

where δ
j
i is the Kronecker delta. These fluctuation theorems are directly derived from the

following identity:
〈

∂

∂Ii
A(I|θ)

〉

= 〈ηi(I|θ)A(I|θ)〉 (65)

substituting the cases A(I|θ) = 1, Ii and ηi, respectively. Here, A(I) is a differentiable function

defined on the continuous variables I with definite expectation values
〈

∂A(I|θ)/∂Ii
〉

that

obeys the following boundary condition:

lim
I→Ib

A(I)ρ(I|θ) = 0. (66)

Moreover, equation (65) follows from the integral expression:

∫

Mθ

∂υj(I|θ)

∂I j
ρ(I|θ)dI = −

∫

Mθ

υj(I|θ)
∂ρ(I|θ)

∂I j
dI +

∮

∂Mθ

ρ(I|θ)υj(I|θ) · dΣj,

that is derived from the intrinsic exterior calculus of the manifold Mθ and the imposition of the

constraint υj(I|θ) ≡ δ
j
i A(I|θ). Since the self-correlation matrix Mij(θ) =

〈

ηi(I|θ)ηj(I|θ)
〉

is

always a positive definite matrix, the first and second identities are counterpart expressions
of the stationary and stability equilibrium conditions of Eq.(63) in the form of statistical
expectation values. The third identity shows the statistical independence among the variable
Ii and a generalized differential force component ηj(I|θ) with j = i, as well as the existence

of a certain statistical complementarity between Ii and its conjugated generalized differential

force ηi(I|θ). Using the Cauchy-Schwartz inequality 〈δxδy〉2 ≤
〈

δx2
〉 〈

δy2
〉

, one obtains the
following uncertainty-like relation (8; 9):

∆Ii∆ηi ≥ 1, (67)

where ∆x =
√

〈δx2〉 denotes the standard deviation of the quantity x. The previous result is
improved by the following inequality:

〈

δIiδI j
〉

− Mij(θ) ≻ 0, (68)
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which puts a lower bound to the self-correlation matrix Cij =
〈

δIiδI j
〉

of the stochastic

variables I. This result can be directly obtained from the positive definition of the

self-correlation matrix Qij(θ) =
〈

δqiδqj
〉

, where δqi = δIi − Mij(θ)ηj(I|θ), with Mij(θ) being

the inverse of the self-correlation matrix Mij(θ) =
〈

ηi(I|θ)ηj(I|θ)
〉

.

3.2 Inference theory

Inference theory addresses the problem of deciding how well a set of outcomes I =
(I1, I2, . . . , Is), which is obtained from s independent measurements, fits to a proposed
probability distribution dp (I|θ) = ρ (I|θ) dI. If the probability distribution is characterized by
one or more parameters θ = (θ1, θ2, . . . θm), this problem is equivalent to infer their values
from the observed outcomes I. To make inferences about the parameters θ, one constructs
estimators, i.e., functions θ̂α(I) = θ̂α (I1, I2, . . . , Is) of the outcomes of m independent
repeated measurements (10; 11). The values of these functions represent the best guess for
θ. Commonly, there exist several criteria imposed on estimators to ensure that their values
constitute good estimates for θ, such as unbiasedness,

〈

θ̂α
〉

= θα, efficiency,
〈

(θ̂α − θα)2
〉

→
minimum, etc. One of the most popular estimators employed in practical applications are the
maximal likelihood estimators θ̂ml (10), which are obtained introducing the likelihood function:

̺ (I|θ) = ρ(I1|θ)ρ(I2|θ) . . . ρ(Im|θ) (69)

and demanding the condition ̺
(

I|θ̂ml

)

→ maximum. This procedure leads to the following
stationary and stability conditions:

υα(I|θ̂ml) = 0,
∂

∂θα
υβ(I|θ̂ml) ≻ 0. (70)

where the quantities υα(I|θ) are referred to in the literature as the score vector components:

υα(I|θ) = −
∂

∂θα
log ̺ (I|θ) . (71)

As stochastic quantities, the score vector components υα(I|θ) obey the following identities:

〈υα(I|θ)〉 = 0,

〈

∂

∂θα
υβ(I|θ)

〉

=
〈

υα(I|θ)υβ(I|θ)
〉

,
〈

θ̂α(I)υβ(I|θ)
〉

= −δα
β, (72)

where θ̂α(I) represents an unbiased estimator for the α-th parameter θα. Moreover,
expectation values 〈A(I)〉 are defined as follows:

〈A(I)〉 =
∫

Ms
θ

A(I)̺ (I|θ) dI , (73)

where dI = ∏i dIi and Ms
θ = Mθ ⊗Mθ . . .Mθ (s times the external product of the manifold

Mθ). The fluctuation expressions (72) are derived from the mathematical identity:

〈∂α A (I|θ)〉 − ∂α 〈A (I| θ)〉 = 〈A (I| θ) υα (I| θ)〉 , (74)

which is obtained from Eq.(73) taking the partial derivative ∂α = ∂/∂θα. The first
two identities can be regarded as the stationary and stability conditions of maximal
likelihood estimators of Eq.(70) written in term of statistical expectation values. Using the
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Inference theory Fluctuation theory

score vector components:

υα(I|θ) = − ∂
∂θα log ̺ (I|θ)

generalized differential forces:

ηi(I|θ) = − ∂
∂Ii log ρ(I|θ)

conditions for likelihood estimators :

υα(I|θ̂ml) = 0, ∂
∂θα υβ(I|θ̂ml) ≻ 0

thermodynamic equilibrium conditions:

ηi( Ī|θ) = 0, ∂
∂Ii ηj( Ī|θ) ≻ 0

inference fluctuation theorems:
〈υα(I|θ)〉 = 0

〈

∂
∂θα υβ(I|θ)

〉

=
〈

υα(I|θ)υβ(I|θ)
〉

〈

υα(I|θ)δθ̂β
〉

= −δ
β
α

equilibrium fluctuation theorems:
〈ηi(I|θ)〉 = 0

〈

∂
∂Ii ηj(I|θ)

〉

=
〈

ηi(I|θ)ηj(I|θ)
〉

〈

ηi(I|θ)δI j(I|θ)
〉

= δ
j
i

Table 1. Fluctuation theory and inference theory can be regarded as dual counterpart
statistical approaches.

Cauchy-Schwartz inequality, the third relation states a strong fluctuation relation between
unbiased estimators and the score vector components:

∆υα∆θ̂α ≥ 1, (75)

which can be generalized by the following inequality:

〈

δθ̂αδθ̂β
〉

− g
αβ
F (θ) ≻ 0. (76)

Here, g
αβ
F (θ) denotes the inverse matrix of the Fisher’s inference matrix (10):

gF
αβ(θ) =

〈

υα(I|θ)υβ(I|θ)
〉

. (77)

Eq.(76) is the famous Cramer-Rao theorem of inference theory (11), which puts a lower bound
to the efficiency of any unbiased estimators θ̂α.
As clearly shown in Table 1, fluctuation theory and inference theory can be regarded as dual
counterpart statistical approaches (9). In fact, there exists a direct correspondence among
their respective definitions and theorems. As naturally expected, inequalities of Eqs.(67) and
(75) could be employed to introduce uncertainty relations in a given physical theory with a
statistical mathematical apparatus.

4. Complementarity in classical statistical mechanics

Previously, many specialists proposed different attempts to support the existence of
an energy-temperature complementarity inspired on Bohr’s arguments referred to in the
introductory section. Relevant examples of these attempts were proposed by Rosenfeld
(23), Mandelbrot (24), Gilmore (25), Lindhard (26), Lavenda (27), Schölg (28), among other
authors. Remarkably, the versions of this relation which have appeared in the literature give
different interpretations of the uncertainty in temperature ∆ (1/T) and often employ widely
different theoretical frameworks, ranging from statistical thermodynamics to modern theories
of statistical inference. Despite of all devoted effort, this work has not led to a consensus in the
literature, as clearly discussed in the most recent review by J. Uffink and J. van Lith (6).
An obvious objection is that the mathematical structure of quantum theories is radically
different from that of classical physical theories. In fact, classical theories are not developed
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using an operational formulation. Remarkably, the previous section evidences that any physical
theory with a classical statistical apparatus could support the existence of quantities with a
complementary character. Let us analyze the consequences of the uncertainty-like inequalities
(67) and (75) in the question about the energy-temperature complementarity in the framework
of classical statistical mechanics.

4.1 Energy-temperature complementarity in the framework of inference theory

Mandelbrot was the first to propose an inference interpretation of the Bohr’s hypotheses about
the energy-temperature complementarity (29). Starting from the canonical ensemble (CE):

dpCE(E|β) = exp (−βE/kB)Ω(E)dE/Z(β), (78)

where β = 1/T, and applying the Cramer-Rao theorem (75), this author obtains the following
uncertainty-like inequality:

∆β̂∆E ≥ kB, (79)

where ∆β̂ is just the uncertainty of the inverse temperature parameter β associated with its
determination via an inferential procedure from a single measurement (s = 1), while ∆E is
the statistical uncertainty of the energy. This type of inference interpretation of uncertainty
relations can be extended in the framework of Boltzmann-Gibbs distributions (BG):

dpBG(E, X|β, ξ) = exp [−(βE + ξX)/kB]Ω(E, X)dE/Z(β, ξ), (80)

to the other pairs of conjugated thermodynamic variables:

∆ξ̂∆X ≥ kB, (81)

where ξ = βY. Here, X represents a generalized displacement (volume V, magnetization M,
etc.) while Y is its conjugated generalized force (pressure p, magnetic field H, etc.). Nowadays,
this type of inference arguments have been also employed in modern interpretations of
quantum uncertainty relations (30–32).
There exist many attempts in the literature to support the energy-temperature
complementarity starting from conventional statistical ensembles as (78) or (80), which
are reviewed by Uffink and van Lith in Ref.(6). As already commented by these authors, the
inequality (79) cannot be taken as a proper uncertainty relation. In fact, it is impossible to
reduce to zero the energy uncertainty ∆E → 0 to observe an indetermination of the inverse
temperature ∆β̂ → ∞ because ∆E is fixed in the canonical ensemble (78). Consequently,
the present inference arguments are useless to support the existence of a complementarity
between thermal contact and energetic isolation, as it was originally suggested by Bohr. In our
opinion, all these attempts are condemned to fail due to a common misunderstanding of the
temperature concept.

4.2 Remarks on the temperature notion

Many investigators, including Bohr (3), Landau (5) and Kittel (33), assumed that a definite
temperature can only be attribute to a system when it is put in thermal contact with a heat
bath. Although this is the temperature notion commonly employed in thermal physics, this
viewpoint implies that the temperature of an isolated system is imperfectly defined. This
opinion is explicitly expressed in the last paragraph of section §112 of the known Landau &
Lifshitz treatise (5). By itself, this idea is counterfactual, since it could not be possible to attribute
a definite temperature for the system acting as a heat reservoir when it is put into energetic

15Complementarity in Quantum Mechanics and Classical Statistical Mechanics

www.intechopen.com



16 Will-be-set-by-IN-TECH

isolation. Conversely, the temperature notion of an isolated system admits an unambiguous
definition in terms of the famous Boltzmann’s interpretation of thermodynamic entropy:

S = kB log W →
1

T
=

∂S

∂E
, (82)

where W is the number of microstates compatible with a given macroscopic configuration,
e.g.: W = Sp [δ (E −H)] ǫ0, with ǫ0 being a small energy constant that makes W a
dimensionless quantity. One realizes after revising the Gibbs’ derivation of canonical
ensemble (78) from the microcanonical basis that the temperature T appearing as a parameter
in the canonical distribution (78) is just the microcanonical temperature (82) of the heat reservoir
when its size N is sent to the thermodynamic limit N → ∞. Although such a parameter
characterizes the internal conditions of the heat reservoir and its thermodynamic influence
on the system under consideration, the same one cannot provide a correct definition for the
internal temperature of the system. While the difference between the temperature appearing
in the canonical ensemble (78) and the one associated with the microcanonical ensemble (82)
is irrelevant in most of everyday practical situations involving extensive systems, this is not
the case of small systems. In fact, microcanonical temperature (82) appears as the only way to
explain the existence of negative heat capacities C < 0:

∂

∂E

(

1

T

)

= −
1

T2C
⇒ C = −

(

∂S

∂E

)2

/

(

∂2S

∂E2

)

(83)

through the convex character of the entropy (34), ∂2S/∂E2 > 0. Analyzing the microcanonical
notion of temperature (82), one can realize that only a macroscopic system has a definite
temperature into conditions of energetic isolation. According to this second viewpoint, the system
energy E and temperature T cannot manifest a complementary relationship. However, a
careful analysis reveals that this preliminary conclusion is false.
According to definition (82), temperature is a concept with classical and statistical relevance.
Temperature is a classical notion because of the entropy S should be a continuous function
on the system energy E. In the framework of quantum systems, this requirement demands
the validity of the continuous approximation for the system density of states Ω(E) =
Sp

[

δ
(

E − Ĥ
)]

. Those quantum systems unable to satisfy this last requirement cannot support
an intrinsic value of temperature T. By itself, this is the main reason why the temperature
of thermal physics is generally assumed in the framework of quantum theories. On the
other hand, temperature manifests a statistical relevance because of its definition demands
the notion of statistical ensemble: a set of identical copies of the system compatible with
the given macroscopic states. Although it is possible to apply definition (82) to predict
temperature T(E) as a function on the system energy E, the practical determination of
energy-temperature relation is restricted by the statistical relevance of temperature. In the
framework of thermodynamics, the determination of temperature T and the energy E, as
well as other conjugated thermodynamic quantities, is based on the interaction of this system
with a measuring instruments, e.g.: a thermometer, a barometer, etc. Such experimental
measurements always involve an uncontrollable perturbation of the initial internal state of
the system, which means that thermodynamic quantities as energy E and temperature T are
only determined in an imperfect way.
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4.3 Energy-temperature complementarity in the framework of fluctuation theory

To arrive at a proper uncertainty relation among thermodynamic variables, it is necessary to
start from a general equilibrium situation where the external influence acting on the system
under analysis can be controlled, at will, by the observer. In classical fluctuation theory, as
example, the specific form of the distribution function dp(I|θ) is taken from the Einstein’s
postulate (5):

dp(I|θ) = A exp [S(I|θ)/kB] dI, (84)

which describes the fluctuating behavior of a closed system with total entropy S(I|θ). Let
us admits that the system under analysis and the measuring instrument conform a closed
system. The separability of these two systems admits the additivity of the total entropy
S(I|θ) = S(I) + Sm(I|θ), where Sm(I|θ) are S(I) are the contributions of the measuring
instrument and the system, respectively.
For convenience, it is worth introducing the generalized differential operators η̂i

η̂i = −kB
∂

∂Ii
→ η̂iρ(I|θ) = ηi(I|θ)ρ(I|θ), (85)

which act over the probability density ρ(I|θ) associated with the statistical ensemble (84),
providing in this way the difference ηi(I|θ) of the generalized forces ζ = (β, ξ):

ηi(I|θ) = ζm
i − ζi (86)

between the system and the measuring instrument:

ζi =
∂S(I)

∂Ii
and ζm

i = −
∂Sm(I|θ)

∂Ii
. (87)

Clearly, the vanishing of the expectation values 〈ηi(I|θ)〉 drop to the known thermodynamic
equilibrium conditions:

〈ζm
i 〉 = 〈ζi〉 , (88)

which are written in the form of statistical expectation values. In particular, the condition of
thermal equilibrium is expressed as follows:

〈

1

T

〉

=

〈

1

Tm

〉

, (89)

where T and Tm are the temperatures of the system and the measuring instrument
(thermometer), respectively. Analogously, the condition of mechanical equilibrium:

〈 p

T

〉

=

〈

pm

Tm

〉

, (90)

where p and pm are the internal pressures of the system and its measuring instrument
(barometer). The application of inequality (67) leads to a special interpretation of the notion
of complementarity between conjugated thermodynamic quantities:

∆(ζm
i − ζi)∆Ii ≥ kB. (91)

Particular examples of these inequalities are the energy-temperature uncertainty relation (8):

∆(1/T − 1/Tm)∆E ≥ kB, (92)
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and the volume-pressure uncertainty relation:

∆(p/T − pm/Tm)∆V ≥ kB. (93)

These inequalities express the impossibility to perform an exact experimental determination of
conjugated thermodynamic variables (e.g.: energy E and temperature T or volume V and pressure
p, etc.) using any experimental procedure based on the thermodynamic equilibrium with a measuring
instrument. Conversely to inference uncertainty relations (79) and (81), the system statistical
uncertainties ∆E and ∆V can now be modified at will changing the experimental setup, that
is, modifying the properties of the measuring instrument.

4.4 Analogies between quantum mechanics and classical statistical mechanics

A simple comparison between classical statistical mechanics and quantum mechanics involves
several analogies between these statistical theories (see in Table 2). Physical theories as
classical mechanics and thermodynamics assume a simultaneous definition of complementary
variables like the coordinate and the momentum (q, p) or the energy and the inverse
temperature (E, 1/T). A different situation is found in those applications where the relevant
constants as the quantum of action h̄ or the Boltzmann’s constant kB are not so small.
According to uncertainty relations shown in equations (3) and (92), the thermodynamic state
(E, 1/T) of a small thermodynamic system is badly defined in an analogous way that a
quantum system cannot support the classical notion of particle trajectory [q(t), p(t)].
Apparently, uncertainty relations can be associated with the coexistence of variables with different
relevance in a statistical theory. In one hand, we have the variables parameterizing the results
of experimental measurements: space-time coordinates (t, q) or the mechanical macroscopic
observables I = (Ii). On the other hand, we have their conjugated variables associated
with the dynamical description: the energy-momentum (E, p) or the generalized differential
forces η = (ηi). These variables control the respective deterministic dynamics: while the
energy E and the momentum p constrain the trajectory q(t) of a classical mechanic system,
the inverse temperature differences, η = 1/Tm − 1/T, drives the dynamics of the system
energy E(t) (i.e.: the energy interchange) and its tendency towards the equilibrium. Similarly,
the experimental determination of these dynamical variables demands the consideration of
many repeated measurements due to their explicit statistical significance in the framework of
their respective statistical theories.
According to the comparison presented in Table 2, the classical action S(q, t) and the
thermodynamic entropy S(I|θ) can be regarded as two counterpart statistical functions.
Interestingly, while the expression (10) describing the relation between the wave function
Ψ(q, t) and the classical action S(q, t) is simply an asymptotic expression applicable in the
quasi-classic limit where S(q, t) ≫ h̄, Einstein’s postulate (84) is conventionally assumed
as an exact expression in classical fluctuation theory. The underlying analogy suggests that
Einstein’s postulate (84) should be interpreted as an asymptotic expression obtained in the
limit S(I|θ) ≫ kB of a more general statistical mechanics theory. This requirement is always
satisfied in conventional applications of classical fluctuation theory, which deal with the small
fluctuating behavior of large thermodynamic systems. Accordingly, this important hypothesis
of classical fluctuation theory should lost its applicability in the case of small thermodynamic
systems. In the framework of such a general statistical theory, Planck’s constant kB could be
regarded as the quantum of entropy.
Classical mechanics provides a precise description for the systems with large quantum
numbers, or equivalently, in the limit h̄ → 0. Similarly, thermodynamics appears as a suitable
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Comparison
criterium

Quantum mechanics
Classical

statistical mechanics

parametrization
space-time

coordinates (t, q)

mechanical macroscopic

observables I =
(

Ii
)

probabilistic
description

wave function
ψ (q, t)

distribution function
dp(I|θ) = ρ (I|θ) dI

relevant physical
hypothesis

Correspondence principle:
ψ (q, t) ∼ exp [iS (q, t) /h̄],
where S (q, t) is the action

Einstein’s postulate:
ρ (I|θ) ∼ exp [S (I|θ) /kB],

where S (I|θ) is the entropy

evolution
dynamical

conservation laws
tendency towards

thermodynamic equilibrium

conjugated
variables

energy E = ∂S (q, t) /∂t
momenta p =∂S (q, t) /∂q

differential forces

ηi = ∂S (I|θ) /∂Ii

complementary
quantities

(q, t) versus (p, E) Ii versus ηi

operator
representation

q̂i = qi and p̂i = −ih̄ ∂
∂qi Îi = Ii and η̂i = −kB

∂
∂Ii

commutation and
uncertainty relations

[

q̂j, p̂i

]

= ih̄δ
j
i

∆qi∆pi ≥ h̄/2

[

Î j, η̂i

]

= δ
j
i kB

∆Ii∆ηi ≥ kB

deterministic theory classical mechanics thermodynamics

Table 2. Comparison between quantum mechanics and classical statistical mechanics.
Despite their different mathematical structures and physical relevance, these theories exhibit
several analogies as consequence of their statistical nature.

treatment for systems with a large number N of degrees of freedom, or equivalently the
limit kB → 0. It is always claimed that quantum mechanics occupies an unusual place
among physical theories: classical mechanics is contained as a limiting case, yet at the
same time it requires this limit for its own formulation. However, it is easy to realize that
this is not a unique feature of quantum mechanics. In fact, classical statistical mechanics
also contains thermodynamics as a limiting case. Moreover, classical statistical mechanics
requires thermodynamic notions for its own formulation, which is particularly evident in
classical fluctuation theory. The interpretation of the generalized differential forces, η(I|θ) =
−kB∂I log ρ(I|θ), as the difference between the generalized forces ζi and ζm

i of the measuring
instrument and the system shown in equation (86) is precisely based on the correspondence
of classical statistical mechanics with thermodynamics through Einstein’s postulate (84).
Analogously, both statistical theories demand the presence of a second system with a
well-defined deterministic description. Any measuring instrument to study quantum mechanics
is just a system that obeys classical mechanics with a sufficient accuracy, e.g.: a photographic
plate. Analogously, a measuring instrument in classical statistical mechanics is a system
that exhibits an accurate thermodynamical description, e.g.: a thermometer should exhibit a
well-defined temperature dependence of its thermometric variable. If the systems under study
are sufficiently small, any direct measurement involves an uncontrollable perturbation of
their initial state. In particular, any experimental setup aimed to determine temperature T
must involve an energy interchange via a thermal contact, which affects the internal energy E.
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Conversely, it is necessary energetic isolation to preserve the internal energy E, thus excluding
a direct determination of its temperature T.
While the classical statistical mechanics is probability theory that deals with quantities with a
real character, the quantum mechanics is formulated in terms of complex probability amplitudes
that obey the superposition principle. Despite this obvious difference, both statistical theories
admit the correspondence of the physical observables with certain operators. Determination
of the energy E and the momentum p demands repeated measurements in a finite region
of the space-time sufficient for observing the wave properties of the function Ψ(q, t). The
system temperature determination also demands the exploration of a finite energy region
sufficient for determining the probability density ρ(I|θ). Mathematically, these experimental
procedures can be associated with differential operators: the quantum operators Ê = ih̄∂t,
p̂ = −ih̄∇ and the statistical mechanics operator η̂ = −kB∂I . It is easy to realize that
the complementary character between the macroscopic observables Ii and the generalized
differential forces ηi can be related to the fact that their respective operators Îi = Ii and

η̂i = −kB∂Ii do not commute
[

Îi, η̂i

]

= kB:

∫

Mθ

[

Îi, η̂i

]

ρ(I|θ)dI ≡
∫

Mθ

Îi η̂iρ(I|θ)dI = kB ⇒
〈

δIiδηi

〉

= kB ⇒ ∆Ii∆ηi ≥ kB. (94)

There exist other differences between these statistical theories. For example, variables and
functions describing the measuring instruments explicitly appear in probability description
of classical statistical mechanics; e.g.: the entropy contribution of the measuring instrument
Sm(I|θ) and the generalized forces ζm

i . Conversely, the measuring instruments do not
appear in this explicit way in the formalism of quantum mechanics. The nature of the
measuring instruments are specified in the concrete representation of the wave function

Ψ. For example, the quantity |Ψ(q, t)|2 written in the coordinate-representation measures
the probability density to detect a microparticle at the position q using an appropriate

measuring instrument to obtain this quantity. Analogously, the quantity |Ψ(p, t)|2 expressed
in the momentum-representation describes the probability density to detect a particle with
momentum p using an appropriate instrument that measures a recoil effect.

5. Final remarks

Classical statistical mechanics and quantum theory are two formulations with different
mathematical structure and physical relevance. However, these physical theories
are hallmarked by the existence of uncertainty relations between conjugated quantities.
Relevant examples are the coordinate-momentum uncertainty ∆q∆p ≥ h̄/2 and the
energy-temperature uncertainty ∆E∆(1/T − 1/Tm) ≥ kB. According to the arguments
discussed along this chapter, complementarity has appeared as an unavoidable consequence
of the statistical apparatus of a given physical theory. Remarkably, classical statistical
mechanics and quantum mechanics shared many analogies with regards to their conceptual
features: (1) Both statistical theories need the correspondence with a deterministic theory for
their own formulation, namely, classical mechanics and thermodynamics; (2) The measuring
instruments play a role in the existence of complementary quantities; (3) Finally, physical
observables admit the correspondence with appropriate operators, where the existence of
complementary quantities can be related to their noncommutative character.
As an open problem, it is worth remarking that the present comparison between classical
statistical mechanics and quantum mechanics is still uncomplete. Although the analysis
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of complementarity has been focused in those systems in thermodynamic equilibrium, the
operational interpretation discussed in this chapter strongly suggests the existence of a
counterpart of Schrödinger equation (42) in classical statistical mechanics. In principle, this
counterpart dynamics should describe the system evolutions towards the thermodynamic
equilibrium, a statistical theory where Einstein’s postulate (84) appears as a correspondence
principle in the thermodynamic limit kB → 0.
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