
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



8 

Application of a Microarray-Based Assay for the 
Study of Genetic Diversity of West Nile Virus 

Andriyan Grinev, Zhong Lu, Vladimir Chizhikov and Maria Rios 
Center for Biologics Evaluation and Research,  

US Food and Drug Administration 
USA 

1. Introduction 

1.1 Molecular virology and epidemiology of West Nile virus 

West Nile virus (family Flaviviridae, genus Flavivirus, WNV) is a small, enveloped, single 

stranded, positive RNA genome virus. WNV is a member of the Japanese encephalitis 

serogroup, which includes St Louis encephalitis virus (SLEV), Japanese encephalitis virus 

(JEV), Murray Valley encephalitis virus (MVEV), Kunjin virus (KUNV), and Usutu virus 

(USUV), which have all been shown to cause disease in humans. The virion consists of an 

envelope and prM-M dimers surrounding an icosahedral capsid of approximately 50 nm in 

size (Beasley, 2005). The WNV genomic RNA is approximately 11 kb in length, and contains 

10 genes within a single open reading frame (ORF) that encodes for a single polyprotein 

flanked by 5’ and 3’ untranslated regions (UTR). The approximately 3430 amino acid WNV 

polyprotein is processed by cellular proteases and by the viral NS2B-NS3 protease into 3 

structural and 7 non-structural proteins (NS) (Fig. 1).  

 

Fig. 1. Scheme of WNV genome and virion composition. The 11 kb positive RNA genome 

contains a single ORF encoding the 3 structural proteins that form the virus particle and the 

7 non-structural proteins required for virus replication and immune evasion. 
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The structural proteins i.e., capsid (C), premembrane-membrane (prM-M), and envelope (E), 
interact with the viral genomic RNA and with the host cell membrane to assemble viral 
particles. The structural proteins are not only essential for virion assembly and release, but 
they are also the major targets for virus neutralizing antibodies. The seven viral 
nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) are all necessary for 
genome replication (Khromykh et al., 2000). NS1 is a secreted glycoprotein implicated in 
immune evasion (Schlesinger, 2006). NS2A plays a role in virus assembly as well as 
inhibiting IFN-β promoter activation (Leung et al., 2008; Mackenzie et al., 1998). NS3 
contains an ATP-dependent helicase, and in conjunction with the NS2B protein, functions as 
a serine protease, which is required for virus polyprotein processing (Chappell et al., 2005; 
Clum et al., 1997; Falgout et al., 1991). NS4A is responsible for a rapid expansion and 
modification of the endoplasmic reticulum that helps establish replication domains 
(Khromykh et al., 1998; Mackenzie et al., 1998). NS4B blocks the IFN response (Evans et al., 
2007; Munoz-Jordan et al., 2005). NS5 is a methyltransferase and RNA-dependent RNA 
polymerase (Beasley, 2005; Egloff et al., 2002).  

The untranslated regions (UTR) are involved in translation and viral RNA replication and 
likely play an important role in genome packaging. Both the 5’ UTR and the 3’ UTR in the 
WNV genome form highly conserved secondary and tertiary structures, some elements of 
which are similar among mosquito-borne flaviviruses. The cyclization of the flavivirus 
genome is necessary for viral RNA replication. In addition to base pairing between 5′-3′ 
UAR and 5′-3′ CS specific sequences involved in cyclization, a third stretch of nucleotides 
was identified to form a double-stranded region between the 5′ and 3′ UTRs (Friebe & 
Harris, 2010). Different functional regions have been described inside the 5’UTR and 3′UTR 
of flaviviruses based on such factors as nucleotide content, degree of sequence conservation, 
occurrence of repeated sequence motifs, and predicted secondary structure (Gritsun & 
Gould, 2007; Markoff, 2003; Proutski et al., 1997; Tajima et al., 2006). The 5′ end of the WNV 
genomic RNA has a type I cap structure (m7GpppAmp) mediating cap-dependent 
translation. The 5’UTR contains two functional elements, the stem-loop A (SLA) and capsid-
coding region hairpin (cHP) essential for RNA replication. The 3’UTR is generally divided 
into three regions based on the differences in the level of conservation: (1) the variable 
region is located immediately after the ORF; (2) the intermediate region has a moderate level 
of conservation and contains several hairpin motifs; (3) the conserved 3’-terminal region 
contains a cyclization sequences and stable stem-loop structure (Bryant et al., 2005; Markoff, 
2003). These regions are believed to contain sequences that confer identity of the flaviviruses as 
demonstrated by attempts to exchange portions of the 3’UTR between WNV and dengue virus 
(DENV) that resulted in chimeric viruses which were unable to replicate (Yu et al., 2008).  

WNV is maintained in nature by transmission between mosquitoes and birds, but it can also 
infect humans, other mammals (Beasley, 2005; Petersen & Marfin, 2002) and reptiles (Klenk 
et al., 2004) by mosquito bite (Fig.2). Culex spp. mosquitoes are the main vectors of WNV, 
although the virus has also been found in at least 43 other mosquito species (Granwehr et 
al., 2004; Higgs et al., 2004; Petersen et al., 2001). WNV can be transmitted vertically and 
overwinter in hibernating female mosquitoes, providing the mechanisms for viral 
persistence and reemergence each spring (Nasci et. al, 2001). WNV has spread within many 
bird species, including crows, magpies, and jays, house sparrows, house finches, grackles, 
and others representing 63 species, 30 families and 14 orders (Kramer & Bernard, 2001). 
They are all primarily competent reservoirs for WNV infection. By contrast, mammals 
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including humans and horses are “dead-end” hosts in this enzootic cycle. They do not 
develop prolonged high-level viremia, so the concentration of the virus in blood is 
insufficient to infect a feeding mosquito. Most human infections are asymptomatic (~80%). 
The severity of symptomatic cases ranges from flu-like illness (~20% of infections) to severe 
neurological disease (~ 1%) (Hayes & Gubler, 2006). Additional modes of transmission were 
identified in 2002, including human-to-human by blood transfusion, breast-feeding, 
transplacental transmission, and by organ transplants extending the impact of WNV to 
blood safety and other areas of public health worldwide (Austgen et al., 2004; Pealer et al., 
2003; Sbrana et al., 2005).  

 

Fig. 2. Scheme of WNV transmission cycle. The maintenance of WNV in nature depends on 
an enzootic cycle involving many avian and mosquito species. Humans and other animals 
are incidental hosts that can become infected by WNV-infected mosquito bites. The virus 
can be also transmitted from human to human by blood transfusion and by solid organ 
transplantation. 

Historically, since its isolation in Uganda in 1937, WNV outbreaks occurred in Africa, 
Europe, the Middle East, and caused a rare and mild febrile illness in humans and horses. A 
significant geographical expansion occurred starting from 1999 when the virus was 
introduced into North America. First detected in the U.S. in 1999, WNV has become 
endemic, causing yearly summer outbreaks. In 2002, the virus spread westward and the 
number of reported human cases increased dramatically. The North American epidemics of 
2002 and 2003 represent the largest WNV outbreaks ever reported. WNV now is the most 
widespread arbovirus in the world (Kramer et al., 2008). The spread of the virus and 
intensity of the outbreak was correlated with the appearance of a new genotype with higher 
virulence and ability to disseminate in mosquitoes (Beasley, 2005). From the first outbreak in 
1999 through 2010, WNV is estimated to have infected ~4 million humans in the US, causing 
over 30,000 serious illnesses, including 12,729 neuroinvasive disease cases with 1,206 deaths 
reported to the CDC (http://www.cdc.gov/ncidod/dvbid/westnile/). The virus has also 
been detected in the continental U.S. and in several areas of Canada, Central and South 
America, and the Caribbean. The persistence of WNV indicates that it has become endemic 
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in the Western Hemisphere (Kramer et al., 2008). The pattern of yearly reoccurring 
outbreaks in North America differs from that of sporadic outbreaks observed in Europe and 
Africa. However, in recent years, WNV epidemics in humans and horses have become more 
frequent in several Southern European countries, and these epidemics could potentially be 
associated with an emergence of new viral genotypes (Chevalier et al. 2011). The speed with 
which the virus spread over the world triggered great interest and prompted a detailed 
investigation of the genetic evolution of the virus in search of the cause of its rapid 
adaptability. 

Based on phylogenetic analyses, WNV has been initially divided into two major genetic 

lineages (Lanciotti et al., 2002). Lineage 1 included viruses circulating in Europe, Israel, 

United States, India, Russia, and Australia, while the Lineage 2 contained strains that 

circulated in sub-Saharan Africa and Madagascar. Lineage 1 was further divided into 3 sub-

clades: 1a (including strains from Africa, Europe, US, Middle East, and Russia), 1b (Kunjin 

strain from Australia), and 1c (India) (Lanciotti et al., 2002). WNV has now been reported to 

have at least five distinct lineages based on phylogenetic analysis of all known full WNV 

genome sequences of viral isolates that correlates well with the geographical points of their 

isolation from various regions around the world including the U.S. (Davis et al., 2005; 

Herring et al., 2007; Grinev et al., 2008a; McMullen, 2011), Europe and Mediterranean 

(Parreira et al., 2007), and Africa (Botha et al., 2008).  

In 2001 a new WNV genotype, named WN02, emerged in the US. The new genotype became 

prevalent in 2002, eventually displacing the ancestor genotype NY99, which is believed to 

have been introduced to the New World from the Middle East (Davis et al., 2005; Herring et 

al., 2007; Lanciotti et al., 1999). When compared to the WN99 genotype, the WN02 genotype 

possesses a few fixed silent nucleotide mutations and one amino acid substitution in the E 

protein (E-V159A). The highest rate of nucleotide sequence divergence among viruses 

isolated from 2002-2010 varies in the range of 0.4% - 0.6% (Davis et al., 2005; Ebel et al., 2004; 

Grinev et al., 2008a; McMullen et al., 2011). It is noteworthy that 80% of the nucleotide 

changes are observed in the structural regions represented by U<->C transitions; 75% 

among them are silent mutations (Grinev et al., 2008a). The possible explanation for the 

rapid displacement of the WN99 genotype by the new dominant genotype WN02 is due to 

the ability of the new viruses to more efficiently proliferate in domestic mosquitoes (Jerzak 

et al., 2005; Moudy et al., 2007). Phylogenetic analysis of modern WNV isolates 

demonstrates the existence of at least two subtypes of WN02 genotype co-circulating in 

North America. In addition to the common E-V159A amino acid substitution two other 

substitutions have become fixed in the significant part of North American WNV 

population: NS4a-A85T and NS5-K318R. Positive selection of these two amino acid 

substitutions potentially could impact viral fitness, phenotype and virulence (McMullen 

et al., 2011). As indicated by sequence analysis of new WNV genetic variants isolated in 

different areas of the US, the virus continues to diverge from the precursor isolate. Thus, 

changes in the WNV genome and viral proteins have the potential to negatively affect the 

sensitivity of screening and diagnostic assays currently used for virus detection, and to 

impact the development of vaccines and potential antiviral therapeutic agents. Therefore, 

development of new methods able to rapidly detect the emergence of WNV genetic 

variants is critical for epidemiological surveillance.  
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1.2 Basics of nucleotide microarrays 

The monitoring and surveillance of pathogens is highly dependent on the capability of 
detection technology to simultaneously monitor multiple genomic signatures specific for 
different genetic variants of the pathogen. One of the approaches that enable this type of 
analysis is microarray technology. Generally, nucleotide microarrays are microscopic slides 
loaded with hundreds or thousands of pathogen-specific probes (DNA fragments or 
synthetic oligonucleotides) which can specifically hybridize with the target molecules to 
produce either quantitative (gene expression) or qualitative (diagnostic) data. DNA 
microarray technology provides an opportunity to perform parallel nucleic acid 
hybridization with a large number of immobilized oligonucleotides on a small surface area. 
Microarrays have the unique potential to simultaneously detect and identify defined 
pathogens, as well as to detect mutations within the complete viral genomes and target 
areas of a pathogen’s genome. It provides a significant advantage for the field of clinical 
microbiology and molecular epidemiological studies. Printed microarrays historically were 
the first arrays utilized for detection of mutations in many research laboratories and they are 
so-called because of the “printing” of the probes onto the surface of a glass microscope slide 
(Fig. 3).  

 

 

Fig. 3. Schematic outline of a printed microarray experiment. Microarray probes are spotted 

onto a surface of glass slide. In this example, the target sample and quality control sample 

(QC) with different fluorescent labeling were mixed and hybridized to the microarray 

probes. The efficiency of hybridization is monitored through measurement of the 

fluorescent signal from each spot by using a laser microarray scanner equipped with two 

lasers: 632 nm and 543 nm for excitation of Cy5 and Cy3 dyes respectively. The obtained 

fluorescent images are analyzed using specific computer software. 
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Chemically activated glass slides are commonly used for microarrays because they permit 

irreversible attachment of microarray probes, allow for efficient hybridization kinetics 

between probes and analyzed targets, and have a low background fluorescence level 

(Cheung et al., 1999). Printed arrays can be produced using double-stranded DNA (dsDNA) 

fragments or oligonucleotides. For dsDNA microarrays, the probes usually consist of PCR 

products (amplicons) obtained using primers designed from a known genomic sequence or 

shotgun library clones. The double-stranded probes must be denatured prior to 

hybridization, either using a special printing buffer or after immobilization on the glass 

surface (Tomiuk et al., 2001). These microarrays containing relatively long 200-800 bp 

dsDNA probes usually demonstrate a high sensitivity but are not very useful for detection 

of minor genetic differences (e.g., single nucleotide mutations) between the probe and target 

nucleic acid (Hager et al., 2006). In contrast to dsDNA microarray probes, the length of 

oligonucleotide probes usually ranges from 20 to 80 nucleotides. Use of shorter probe 

lengths increases the microarray specificity and enables efficient detection of minor genetic 

changes between the probe and target (Chou et al., 2004). For more efficient attachment of 

oligonucleotide probes to the functional groups on the surface of chemically activated glass 

slides (usually aldehyde, epoxy, and succinimide groups), the 5’ or 3’ end of the probes 

contain primary amino groups introduced during chemical synthesis.  

Microarray technology has been used to study gene expression in clinical and biological 

samples, detect and genotype pathogens (Honma et al., 2007; Wade et al., 2004), detect 

single base pair mismatches (Anthony et al., 2003; Hacia et al., 1999), design genomic maps 

(Roerig et al., 2005), and study viral evolution (Cherkasova et al., 2003). 

The methods based on combination of initial PCR amplification of target genetic material 

followed by hybridization of amplicons with specific microarray oligonucleotide probes 

allowed for reconstitution of instant mutation profiles and determination of evolutionary 

divergence of individual viral isolates (Neverov et al., 2006). The microarrays consisting of 

multiple individual short oligoprobes were shown to be an efficient and sensitive genetic 

method for detection of single point mutations in viral and bacterial genomes (Chizhikov et 

al., 2002; Grinev et al., 2008b; Laassri et al., 2003, 2005, 2007; Volokhov et al., 2002). 

Microarray assays can also help simultaneously detect and identify the genotype and strain 

of common food-borne viruses without using PCR (Chen et al., 2011). In general, microarray 

technology can be easily implemented for detection and genotyping of any pathogen. 

Recently a pan-Microbial Detection Array was designed to detect all known viruses and 

bacteria (Gardner et al., 2010). Although further improvements, optimizations, and 

automation are still needed to fully implement the microarray technique in routine research 

and clinical practices, the potential role of these robust technologies in rapid diagnostics of 

multiple viral and bacterial pathogens is indisputable (Miller, 2009).  

2. Material and methods 

2.1 Plasma samples 

The microarray development and evaluation study included the analysis of a total of 34 

plasma specimens from blood donor units identified as positive for WNV by nucleic acid 

tests used to screen blood donations (Table 1).  
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Isolate ID Year Location Passage GenBank No. 

FDA/HU-02 2002 NY FFP,P1-P3 AY646354 
ARC10-02 2002 MI P1 AY795965 
ARC12-02 2002 OH P1 DQ666453 
ARC16-02 2002 IN P1 DQ666456 
BSL5-03 2003 UT P1 DQ005530 
BSL9-03 2003 TX P1 DQ666458 

BSL62-03 2003 SD P2 DQ666460 
RMS1-03 2003 MN P1 DQ666462 
RMS2-03 2003 IN P1 DQ666463 
RMS3-03 2003 IN P1 DQ666464 
RMS4-03 2003 IA P1 DQ666465 
BSL2-04 2004 AZ P1 DQ666467 
BSL4-04 2004 AZ P2 DQ666468 
BSL6-04 2004 AZ P1 DQ666469 
BSL7-04 2004 AZ P2 DQ666470 
BSL8-04 2004 AZ P2 DQ666471 
GCTX1 2005 TX P1 DQ666449 
GCTX2 2005 TX P1 DQ666450 
BSL2-05 2005 SD P1 DQ666452 
BSL6-05 2005 AZ P1 DQ666472 
BSL9-05 2005 TX P1 DQ666473 

BSL10-05 2005 LA P1 DQ666474 

BSL13-05 2005 AZ P1 DQ666451 

ARC140-07 2007 ID P1 JF957168 

BSL2-09 2009 NV P1 JF957175 

BSL5-09 2009 AZ P1 JF957176 

BSL6-09 2009 NV P1 JF957177 

BSL11-09 2009 NV P1 JF957178 

BSL18-09 2009 LA P1 JF957179 

BSL20-09 2009 NV P1 JF957180 

BSL22-09 2009 SD P1 JF957181 

BSL24-09 2009 TX P1 JF957182 

BSL27-09 2009 TX P1 JF957183 

CO7-09 2009 CO P1 JF957184 

Table 1. WNV isolates used for microarray assay validation. FFP indicates fresh frozen plasma 

sample. Passage P1 indicates first isolation in Vero cells; P2 and P3 indicates subsequent virus 

passages. Isolates in boldface were used for the full genome array validation. 

These samples were collected in different geographic locations of the continental U.S. from 

the 2002-2009 epidemic seasons under IRB approved informed consent. In addition to 23 

previously published isolates, which were used for structural region investigation (Grinev et 

al., 2008b), 11 WNV isolates from 2007 and 2009 were used to conduct microarray analyses 

of their full genomes in order to detect emerged genetic differences in comparison with that 

of the reference WNV strain NY99. 

www.intechopen.com



Viral Genomes – Molecular Structure,  
Diversity, Gene Expression Mechanisms and Host-Virus Interactions 

 

164 

2.2 Viral isolates  

West Nile virus isolation from tested plasma samples was performed using Vero cells. 

Vero cells were plated in T75 flasks and grown to 85% confluence in EMEM (GIBCO BRL, 

Gaithersburg, MD, USA) supplemented with 5% fetal bovine serum (FBS) (Hyclone, 

Logan, UT) and 10µg/mL of penicillin/streptomycin (GIBCO). For viral isolation, growth 

medium was removed, 500 µl of each plasma sample were added to individual flasks and 

the total volume was adjusted to 5 ml with fresh medium. Vero cells were incubated with 

the viral inoculum for 2 hours, either at room temperature under gentle rocking or at 37oC 

with mixing every 10-15 min. After incubation, 10 ml of fresh medium were added, and 

the cultures were additionally incubated at 37 ºC in 5% CO2, and observed daily under 

phase microscopy for gross morphological degeneration i.e., cytopathic effect (CPE). 

Supernatants were harvested when extensive CPE was observed. Harvested supernatants 

were centrifuged to remove cell debris and aliquots were frozen at –80 ºC until further 

analysis. 

2.3 RNA extraction  

Total RNA was extracted from 1-3 ml of plasma samples with Trizol reagent (Invitrogen, 

Carlsbad, CA), according to the manufacturer protocol with additional step of ethanol 

precipitation. Viral RNA from 140 µl of infected Vero cell culture supernatants was 

extracted by using the QiaAMP viral RNA extraction kit (Qiagen, Valencia, CA), according 

to the manufacturer protocol. Each RNA sample was dissolved in 60 µl of RNase-free water 

and stored at -80◦C. 

2.4 Reverse transcription  

Reverse transcription was performed in 20-40 µl reaction volume at 47◦C for 2 h using a 

mixture of specific reverse primers (Table 2) and SuperScript III (Invitrogen, Carlsbad, CA) 

reverse transcription system according to the manufacturer's instructions. 2-3 µl of the 

reaction mixture were used for the subsequent DNA amplification. 

2.5 PCR amplification 

PCR fragments covering the entire structural region of the FDA-Hu2002 plasma sample 
were amplified by semi-nested PCR (Figure 4) from cDNA using the Hi-Fidelity PCR system 
(Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. Primers used for 
PCR amplification are shown in Table 2.  

cDNA was amplified in the first round of PCR in a GeneAmp 9700 thermocycler (Applied 

Biosystems Inc., Foster City, CA) using the following protocol: denaturation at 94 °C for 30 

s., 35 cycles of 30 s at 94 °C, 30 s at 50 °C, and 2 min at 68 °C. The final extension was carried 

out at 68 °C for 7 min. PCR products were purified using the QIAquick PCR Purification Kit 

(Qiagen Valencia, CA), according to the manufacturer’s protocol. 5 µl of the 1st round PCR 

product was used for the 2nd round of amplification with reverse primers containing the T7 

RNA polymerase promoter sequence at the 5' ends tagged to the WNV sequence using the 

cycling program described above and the protocol for Hi-Fidelity PCR kit. 
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Table 2. Forward and reverse primers used for PCR amplification of different regions of 
WNV genome. Numbers in brackets indicates the primer position in the NY99 genome. 
Reverse primers marked as ‘m’ contained the T7 RNA polymerase promoter sequence. 
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Viral RNA samples isolated from Vero cell culture supernatants were amplified using forward 
and T7 tagged reverse primers (Table 2) using the OneStep RT-PCR Kit (Qiagen Valencia, CA), 
according to the manufacturer’s Q-Solution protocol with the 40 cycle program as 
recommended. PCR products were separated by electrophoresis in 0.8% agarose gel prepared 
in 1×TAE buffer containing 0.2 mg/ml of ethidium bromide. The stained DNA fragments 
were excised under UV light. PCR products were purified using the MinElute Gel Extraction 
Kit (Qiagen Valencia, CA), according to the manufacturer’s protocol, and stored at -20 °C. 
DNA fragments were used for the subsequent RNA synthesis using T7 RNA polymerase. 

2.6 Preparation of fluorescently labeled WNV RNA for hybridization  

The scheme for preparation of fluorescently labeled RNA samples is shown in Figure 4. 

Single-stranded RNA (ssRNA) samples used for hybridization were synthesized by T7 

polymerase-driven transcription of the PCR products using the MEGA script T7 High Yield 

Transcription Kit (Ambion, Austin, TX) according to the manufacturer's instructions. The 

MICROMAX ASAP RNA Labeling Kit (Perkin Elmer, Boston, MA) was used to incorporate 

Cy3 fluorophore into the ssRNA molecules. Fluorescently labeled ssRNA samples were 

purified from unincorporated dye using the Centrisep Spin Columns (Princeton 

Separations, Adelphia, NJ), dried under vacuum, and solubilized in the MICROMAX 

Hybridization Buffer III at a final concentration of 0.5-1.0 µM. The Cy5 antisense-QC 

oligonucleotide was prepared by 5’-end labeling with indocarbocyanine (Cy5)-dCTP during 

synthesis. The Cy5-antisense QC oligonucleotide was purified by high performance liquid 

chromatography (HPLC). 

2.7 Microarray oligoprobe design and microchip fabrication  

Oligonucleotide probes (oligoprobes) were designed on the basis of the nucleotide sequence 

of the reference strain NY99 (GenBank accession no.: AF196835) using the OligoScan 

software. A total of 1274 oligoprobes overlapping by half-lengths, with melting 

temperatures around 50°C, were designed for microarray-based detection of single point 

mutations in the entire WNV genome. Each oligoprobe spotting mixture contained 20 µM 

specific oligoprobe and 1 µM quality control (QC) oligonucleotide in 1× printing buffer (150 

mM sodium phosphate, pH 8.5). The probes were used to print five identical arrays (each 

array contained triplicate set of oligoprobes) per each amine-binding glass slide (CodeLink, 

Amersham Biosciences, Piscataway, NJ) using a contact microspotting robot PIXSYS 5500 

(Cartesian Technologies, Inc.) and a ChipMaker microspotting device equipped with CMP-7 

pins delivering approximately 2 to 3 nl of a spotting mixture per spot (Tele-Chem 

International Inc.). Normally, the size of spots did not exceed 250 μm in diameter. After 

printing slides were processed and stored according to the manufacturer’s protocol. Thus, 

each microarray slide could be used for simultaneous analysis of five RNA samples. The 

array layout is shown in Fig. 4. The quality of each lot of printed slides was tested by 

hybridizing the last printed slide with Cy5-labeled antisense QC oligonucleotide.  

2.8 Hybridization conditions 

Hybridization between microarray oligoprobes and fluorescently labeled ssRNA samples 
was performed for 1 hour at 50°C. Before hybridization, Cy3-labeled ssRNA samples was 
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mixed with the Cy5-QC oligonucleotide at a molar ratio of 10 to 1, followed by denaturing 
at 95°C for 2 min and rapid chilling on ice. The area of each array on the slide was covered 
with a separate 20×9-mm glass cover-slip containing two rails of 35µm (±10µm) in height 
(Erie Scientific, Portsmouth, NH) that created a tiny “hybridization chamber” between the 
rail-elevated cover-slip and microarray slide. Each hybridization mixture (approximately 5-7 
µl) was gently loaded by pipette into this space; the slides were placed in a hybridization 
cassette (Tele-Chem International, Inc., Sunnyvale, CA) to minimize sample evaporation 
and hybridized for 1 hour at 50°C. After hybridization, the slides were washed twice for 5 
min with 2× SSC with 0.1% SDS pre-warmed to 50°C, then once for 2 min with 0.2× SSC 
buffer and once for 1 min with 0.1× SSC buffer all at room temperature followed by 
centrifugation at 1000 rpm for 5 min to remove any traces of the buffer. 

 

Fig. 4. Scheme of preparation of Cy3 fluorescently labeled RNA samples. The Cy3 image 
shows the design of array and the results of hybridization experiment. Each microarray 
slide contained five identical arrays for analysis of five different RNA samples including the 
reference WNV isolate NY99 and four clinical samples (S1-S4). 

2.9 Microarray scanning and image analysis 

The fluorescent images of processed microarray slides were generated using GenePix 4100 
(Axon Instruments) and ScanArray 5000 (Perkin Elmer) scanners equipped with two lasers 
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operating at 632 nm (for excitation of Cy5 dye) and 543 nm (for excitation of Cy3 dye). 
Images were analyzed using ScanArray Express 2.1 (Perkin Elmer) and GenePix 3.0 (Axon 
Instruments) software. Each spot was defined by manual positioning of a grid over the array 
image. Atypical and empty spots were manually flagged and excluded from further 
analysis. Background fluorescence readings obtained from the region surrounding each spot 
were subtracted, and the net value of the Cy3 fluorescence signal from each oligoprobe was 
divided by the Cy5 signal value from the QC probe of the same spot to minimize the effect 
of spot size variation on resulting data. Data files generated by ScanArray Express and 
GenePix software were exported into MS Excel. To identify positions in the WNV genome 
where mutations occurred, the intensities of fluorescent signals from each array spot 
obtained for tested WNV isolates were compared with that of the reference NY99 isolate. 
The fluorescent signal ratio values between the reference NY99 and the tested sample were 
normalized using a linear regression model. A signal intensity ratio threshold from 
reference spots, specific to each microarray printing lot, was defined as an average ratio plus 
two standard deviation values. Any spots showing a ratio greater than the threshold value 
for a particular printing lot (i.e. considerably lower signal than reference isolate NY99) 
potentially indicated the presence of a mutation in the genomic area covered by the 
oligoprobe of that spot. 

2.10 Validation of the microarray results 

Validation of the microarrays was performed by comparing microarray results with the 

sequencing data obtained for the tested WNV isolate. Direct sequencing of PCR products 

was described previously by Grinev et al. (2008a). 

3. Results and discussion  

3.1 Optimization of the WNV microarray assay 

The objective of this study was to develop and assess the feasibility of a DNA microarray 

approach for rapid throughput detection of spontaneous nucleotide mutations in the 

genome of WNV. A microarray containing a set of 1274 oligoprobes overlapping by half of 

their lengths (overlapping factor = 2) was developed and evaluated by assessing the ability 

of microarray to detect all identified mutations in 34 clinical isolates of WNV that were 

previously sequenced in our laboratory (Fig. 5).  

In fact, optimization of an oligonucleotide microarray assay is a multi-parametric task. Thus, 
the fluorescent signal from the microarray oligoprobes hybridized to the fluorescently 
labeled target is known to depend on several factors including the sequence of oligoprobes, 
the character of mutations, and the position of the mismatched nucleotide in the oligoprobe, 
as well as the propensity of the RNA hybridization target to form a secondary structure 
(Relogio et al., 2002; Liu et al., 2005; Naiser et al., 2008). The goal of the optimization process 
was to determine the hybridization conditions which would enable the sensitive and 
specific hybridization of the target RNA to the vast majority of oligoprobes composing the 
WNV microarray. In our study, we optimized the temperature and time of hybridization, 
the stringency of post-hybridization washing conditions, the image scanning settings (PMT 
and laser power) to achieve the most efficient discrimination for each probe. It should be 
noted that the different oligoprobes have slightly different melting temperatures with the 
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hybridization target that also contributes to the difference in sensitivity-specificity balance 
for each oligoprobe and its targets.  

 

Fig. 5. Scheme of the WNV microarray assay. Five arrays containing 1274 oligoprobes 

overlapped by half-lengths that covered the entire genome of WNV are shown. The Cy3 

hybridization images show the layout of the printed arrays, each oligoprobe was spotted in 

triplicate. The analysis of the hybridization profile of WNV isolate ID140 from the 2007 U.S. 

epidemic is shown as a chart of hybridization signal ratios (y-axis) between the reference 

isolate NY99 and the tested isolate. Oligoprobe numbers are shown on the x-axis.  

The oligoprobes were designed to have similar thermodynamic characteristics to ensure 

uniform hybridization signals from all microarray probes. The design of the microarray 

probes was performed using the OligoScan software, which is capable of selecting multiple 

oligonucleotide probes with similar thermodynamic features. The microarray contained 

overlapping oligoprobes of 15-26 bp in length with melting temperatures around 50°C, 

which was previously shown to be optimal for the detection of single nucleotide mutations 

and deletions-insertions (Laassri et al., 2005, 2007). The predicted melting temperatures of 

the oligoprobes varied from 49.7°C to 52.6°C. Therefore, an optimization of hybridization 

temperature that would provide efficient hybridization and high specificity for each spot on 

the array is required. We evaluated three hybridization temperatures: 47, 50 and 53°C. 

During the optimization process we determined that hybridization and washing of the 

microarrays at 50°C resulted in better discrimination between perfect matches and 

mismatches for most of the spots of the array. 

The synthetic 5’-aminated oligoprobes were printed on CodeLink Activated slides, 
previously shown to be suitable slides for detection of single nucleotide mismatches (Laassri 
et al., 2007). Five arrays containing triplicate sets of oligoprobes were printed on each slide 
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to allow for simultaneous analysis of four target samples in each hybridization experiment. 
One array on each separate slide was always hybridized with the fluorescently labeled RNA 
prepared using the reference WN-NY99 strain while other four arrays were used for 
hybridization with fluorescently labeled RNAs prepared from the WNV isolates to be tested. 
To assess the reproducibility of microarray fabrication, all hybridizations were repeated 
twice using different slides. The hybridization temperature and time, post-hybridization 
washing and the detector setting were optimized. The MS Excel worksheet was developed 
as a result of analysis of each scan image and data obtained from triplicates of each 
oligoprobe averaged by the median. The values from each microarray spot were normalized 
by the signal from the quality controls. The normalized signals from the reference array 
were then divided by the relevant signals obtained from the sample array. The occurrence of 
mismatches between oligoprobe and fluorescently labeled RNA target resulted in significant 
reduction of the hybridization signal in comparison with a perfect matching pair. Thus, the 
monitoring of the ratios of hybridization signals from unknown samples and the reference 
samples could be used as a tool for detection of spontaneous mutations in the target region 
of the WNV genome. The scheme of microarray experiments is shown on Figure 5. 

DNA microarray technology provides an opportunity to perform parallel nucleic acid 

hybridization with a large number of immobilized oligonucleotides on a small surface area.  

DNA microarrays containing short oligonucleotide probes (15-25 nt) provide a greater 
discrimination power compared to microarrays composed of larger oligonucleotides or 
PCR-amplified DNA fragments. The strongest signal ratios between perfect matched and 
mismatched sequences were observed when mutations were located near the center of an 
oligoprobe, and the shortest probes always had better discriminatory power (Urakawa et al., 
2003). Although the microarray hybridization method provides limited information about 
the position of mutations in the analyzed genomic region when compared to sequencing, it 
has the significant advantage of allowing the identification of “hot spots” where random 
mutations occur within short (a few nucleotides) areas. It also may allow for the detection of 
those mutations even when they occur at relatively low levels (up to 1%) as in the case of 
mixtures of quasispecies that cannot be detected by traditional direct sequencing methods 
(Cherkasova et al., 2003; Leberre at al., 2007). The efficiency of microarrays for identification 
and discrimination of closely related bacteria and viruses has been previously demonstrated 
(Chizhikov et al., 2002; Hsia et al., 2007; Laassri et al., 2003; Nordström et al., 2005; Volokhov 
et al., 2002; Wade et al., 2004). The use of oligonucleotide microchips for screening of 
random mutations is based on the ability of microarrays to identify the presence of single-
nucleotide mutations in the hybridization template (Hacia et al., 1999; Urakawa et al., 2003). 

3.2 Optimization of hybridization probes 

In general, single-base-pair discrimination can be achieved by optimization of hybridization 
or array washing conditions. However, optimization of washing conditions does not 
guarantee the equal efficiency of mismatch detection for all designed oligoprobes, which is 
likely to be caused by nature and position of the particular mutation or even formation of 
the secondary and tertiary structures in the hybridization mixture. The increase of size of the 
RNA template tends to increase the complexity of the secondary structure of the RNA 
molecule, and may affect the efficiency of hybridization of the RNA template with the 
microarray oligoprobes. Therefore, the RNA template may be subdivided into shorter 
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overlapping templates covering the full length of the larger template. The use of a 
hybridization RNA target of approximately 2500 nucleotides covering the entire structural 
region of WNV resulted in a twofold reduction of some hybridization signals when 
compared to the use of a mixture of three overlapping RNA templates in the equivalent 
molar concentrations. The typical results of this experiment are shown in Figure 6.  

 

Fig. 6. The analysis of microarray hybridization is shown as a chart that contains the 
oligoprobe numbers on the x-axis. The y-axis shows the signal ratio values between the 
isolate NY99 and two isolates from 2005: BSL13-05; and GCTX2-05. The results for 
hybridization using a mixture of three overlapping RNAs covering the whole structural 
region of WNV and 5’UTR are shown in blue. The results for hybridization using the one 
long RNA covering the whole structural region of WNV and 5’UTR are shown in red. 

Consequently, mixtures of three RNA templates (instead of one long RNA target) were 
normally used for hybridization with microarray to ensure the high efficiency of mutation 
discrimination. The initial use of in-house printed arrays represented a convenient model for 
the development and optimization of mutation-detecting microarrays. However, the low 
densities of in-house printed arrays usually force the use of a substantial number of slides 
for a single hybridization experiment. It is quite laborious and relatively expensive. After 
optimization of the microarray system including the set of oligoprobes and hybridization 
conditions, a high density array can be prepared using a well developed system like the 
widely used GeneChip produced by Affymetrix, which relies on in situ synthesis of all 
oligoprobes covering the entire WNV genome in a single array. In contrast to the printed 
oligonucleotide arrays described above, the oligonucleotide probes for high-density arrays 
are synthesized directly on the surface of the microarray, which is usually a small quartz 
wafer. Because in situ-synthesized probes normally form a very tiny spots, multiple 
overlapping probes for each target may be included to improve sensitivity, specificity, and 
statistical accuracy. On the other hand, the use of a single array and mixture of RNA probes 
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in a single experiment requires additional optimization of hybridization conditions. We 
found a loss of some signals while using a template composed of a mixture of 15 
overlapping RNAs covering the entire WNV genome, probably due to formation of double 
stranded molecules between complementary parts of the WNV genome such as the 
cyclization sequences in the 5’ and 3’ UTRs and tight secondary structure formation. The 
usage of a number of shorter RNAs produced by multiplex PCR of a target region as a 
hybridization template might reduce this negative effect and improve the signal, as would 
chemical defragmentation of the long RNA probe.  

3.3 Evaluation of genetic stability of West Nile Virus after isolation in Vero cell culture 

Our study required WNV isolation from human plasma samples in Vero cell cultures 
because of the low concentration of WNV and limited volume of starting material available 
from many of the specimens. It was shown previously that genetic changes in flaviviruses 
can be induced by consecutive passages in Vero cell cultures. For example, multiple passage 
of Dengue virus (DENV), which is closely related to WNV, in Vero cells has resulted in 
emergence of mutants with amino acid changes in E and occasionally in prM, but not in C. 
Some nucleotide mutations were detected after the first five passages (Lee et al., 1997). 
Further studies showed that three nucleotide mutations (two in E and one in NS1 proteins) 
that resulted in two amino acid alterations (one each in E and NS1) emerged in the DENV 
genome after 20 continuous passages in Vero cells. Additional passage of the virus for 30 
passages caused four nucleotide changes (two each in E and NS1) that resulted in three 
amino acid substitutions (one in E and two in NS1) (Chen et al., 2003).  

In order to investigate whether viral isolation using three consecutive passages in Vero cells 
resulted in genetic changes in the WNV genome, we cultivated the isolate FDA/HU-02 and 
compared the sequence and microarray results for the three passages (P1, P2 and P3). Total 
RNA samples were isolated from aliquots of the original plasma and from each of the 
passages 1-3. RNA samples were reverse transcribed and amplified by PCR using WNV-
specific primers designed to cover the complete structural region of the virus, followed by 
PCR product purification, direct sequencing, and microarray hybridization. We found no 
significant changes in fluorescent signal ratio values obtained in one slide microarray 
hybridization experiment for each original plasma sample and the RNA isolated from each 
of the Vero cell culture passages. We also performed comparative sequence analysis of the 
aforementioned viral samples. There was no difference between the genomic sequence 
obtained from the isolate FDA-Hu2002 (P1) and two passages (P2 and P3) when compared 
to the genomic sequence obtained from RNA extracted from the original plasma sample. 
These results are in good concordance with the genetic stability data previously published 
for the chimeric Dengue and Yellow Fever-Dengue vaccine candidates passaged 10-20 times 
in Vero cells (Guirakhoo et al., 2004; Butrapet et al., 2006). Therefore we assume that WNV 
isolates generated from human specimens by a few passages in Vero cells represented the 
original virus, and that the structural region was not changed during a low number of serial 
passages in Vero cell cultures.  

3.4 Evaluation of oligonucleotide microarray using clinical WNV isolates 

The ability of microarray to detect mutations in the target regions was evaluated by testing 34 
previously sequenced WNV isolates obtained in the course of the 2002 - 2009 US epidemics.  
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Table 3. Fixed nucleotide mutations and ratios of hybridization signals normalized against 

the reference isolate NY99. Unique mutations are not shown.  

23 WNV isolates from 2002-2005 epidemic seasons we used to evaluate the first array 

containing oligoprobes covering the structural region. Fluorescent signal ratios for all 

mutations ranged from 4.4 to 85.5 depending on the position of the mismatch within the 

oligoprobe and the character of the mismatched nucleotide (Grinev et al., 2008b). Table 3 

shows the positions of identified nucleotide mutations and ratios of hybridization signals 

from the respective hybridization templates normalized against the reference isolate NY99 

for 24 fixed mutations determined in the complete genomes of isolates from 2007 and 2009 

epidemics. All 11 completely sequenced isolates from this study shared 12 nucleotide 

mutations including a non-silent mutation in Env T1442C. Ten more common mutations 

were detected in 4 isolates ARC140-07, BSL5-09, BSL6-09 and BSL11-09. The signal ratios 

for these mutations varied in the range 3.1-73.9. The fluorescence signal ratios produced 

by single nucleotide mutations in all hybridization experiments exceeded the 

experimentally determined cut-off threshold value ranging from 0.2 to 2.1 when 

compared to that of completely matched pairs. The ratio value over 2.1 can be considered 

as an indication on the potential mutation in a specific genomic region pointing to the 

need for additional analysis of this region by sequence analysis. This approach has the 

advantage of substantially reducing the numbers and length of sequences required for 

proper surveillance studies. The results of our study showed that the WNV microarray 

was able to unambiguously detect all mutations in the viral genome previously identified 

by routine sequencing analysis. 
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4. Conclusion 

Viral adaptation through fixation of spontaneous mutations is an important factor 
potentially associated with reoccurrence of WNV outbreaks in the New World. The 
emergence of new genetic variants of WNV raise issues of public health importance because 
they may affect the sensitivity of both screening and diagnostic assays, as well as the 
development of vaccines and drugs. We have developed and optimized a WNV microarray 
assay, which enabled simple monitoring of WNV genetic variability and rapid detection of 
any nucleotide mutation within the entire viral genome. Our microarray system potentially 
can serve as a high throughput, rapid and effective approach for the identification of WNV 
mutations, and characterization of circulating WNV genetic variants. 

5. Acknowledgments 

We would like to thank Drs Caren Chancey, German Anez Gutierrez and Robert Duncan for 
helpful discussion and review of the manuscript, Dr Majid Laassri for technical assistance, 
and Dr Konstantin Chumakov for OligoScan software. 

6. References 

Anthony, R.M.; Schuitema, A.R.; Chan, A.B.; Boender, P.J.; Klatser, P.R. & Oskam, L. (2003). 
Effect of secondary structure on single nucleotide polymorphism detection with a 
porous microarray matrix; implications for probe selection. Biotechniques, Vol.34, 
No.5, (May 2003), pp. 1082–1086, 1088–1089, ISSN 0736-6205 

Austgen, L.E.; Bowen, R.A.; Bunning, M.L.; Davis, B.S.; Mitchell, C.J. & Chang, GJ. (2004). 
Experimental infection of cats and dogs with West Nile virus. Emerging Infectious 
Diseases, Vol.10, No.1, (January 2004), pp. 82-86, ISSN 1080-6040 

Beasley, D.W. (2005). Recent advances in the molecular biology of West Nile virus. Current 
Molecular Medicine, Vol.5, No.8, (December 2005), pp. 835-850, ISSN 1566-5240 

Botha, E.M.; Markotter, W.; Wolfaardt, M.; Paweska, J.T.; Swanepoel, R.; Palacios, G.; Nel, 
L.H. & Venter, M. (2008). Genetic determinants of virulence in pathogenic lineage 2 
West Nile virus strains. Emerging Infectious Diseases, Vol.14, No.2, (February 2008), 
pp. 222-230, ISSN 1080-6040 

Bryant, J.E.; Vasconcelos, P.F.; Rijnbrand, R.C.; Mutebi, J.P.; Higgs, S. & Barrett, D.T. (2005). 
Size heterogeneity in the 3’ noncoding region of South American isolates of yellow 
fever virus. Journal of Virology, Vol.79, No.6, (March 2005), pp. 3807–3821, ISSN 
0022-538X 

Butrapet, S.; Kinney, R.M. & Huang, C.Y. (2006). Determining genetic stabilities of chimeric 
dengue vaccine candidates based on dengue 2 PDK-53 virus by sequencing and 
quantitative TaqMAMA. Journal of Virological Methods, Vol.131, No.1, (January 
2006), pp. 1-9, ISSN 0166-0934 

Chappell, K. J.; Nall, T. A.; Stoermer, M. J.; Fang, N. X.; Tyndall, J. D.; Fairlie, D. P. & Young, 
P.R. (2005). Site-directed mutagenesis and kinetic studies of the West Nile Virus 
NS3 protease identify key enzyme–substrate interactions. Journal of Biological 
Chemistry, Vol. 280, No.4, (January 2005), pp. 2896–2903, ISSN 0021-9258 

www.intechopen.com



 
Application of a Microarray-Based Assay for the Study of Genetic Diversity of West Nile Virus 

 

175 

Chen, H.; Mammel, M.; Kulka, M.; Patel, I.; Jackson, S. & Goswami,B.B. (2011). Detection 
and identification of common food-borne viruses with a tiling microarray. Open 
Virology Journal, No.5, (May 2011), pp. 52-59, ISSN 1874-3579  

Chen, W.J.; Wu, H.R. & Chiou, S.S. (2003). E/NS1 modifications of dengue 2 virus after 
serial passages in mammalian and/or mosquito cells. Intervirology, Vol. 46, No.5, 
(May 2003), pp. 289-295, ISSN 0300-5526 

Cherkasova, E.; Laassri, M.; Chizhikov, V.; Korotkova, E.; Dragunsky, E.; Agol, V.I. & 
Chumakov, K. (2003). Microarray analysis of evolution of RNA viruses: Evidence of 
circulation of virulent highly divergent vaccine-derived polioviruses. Proceedings of 
the National Academy of Sciences, USA, Vol.100, No.16, (August 2003), pp. 9398-9403, 
ISSN 0027-8424 

Cheung, V. G.; Morley, M.; Aguilar, F.; Massimi, A.; Kucherlapati, R. & Childs, G. (1999). 
Making and reading microarrays. Nature Genetics, Vol.21, No.1(Suppl), (January 
1999), pp. 15–19, ISSN 1061-4036 

Chevalier, V.; Lecollinet, S. & Durand, B. (2011). West Nile Virus in Europe: A Comparison 
of Surveillance System Designs in a Changing Epidemiological Context. Vector-
Borne and Zoonotic Diseases, (May 2011) [Epub ahead of print] ISSN 1530-3667 

Chizhikov, V.; Wagner, M.; Ivshina, A.; Hoshino, Y.; Kapikian, A.Z. & Chumakov, K. (2002). 
Detection and genotyping of human group A rotaviruses by oligonucleotide 
microarray hybridization. Journal of Clinical Microbiology, Vol.40, No.7, (July 2002), 
pp. 2398-2407, ISSN 0095-1137 

Clum, S.; Ebner, K.E. & Padmanabhan, R. (1997). Co-translational membrane insertion of the 
serine proteinase precursor NS2B–NS3(Pro) of dengue virus type 2 is required for 
efficient in vitro processing and is mediated through the hydrophobic regions of 
NS2B. Journal of Biological Chemistry, Vol.272, No.49, (December 1997), pp. 30715–
30723, ISSN 0021-9258 

Chou, C.C.; Chen, C.H.; Lee, T.T. & Peck, K. (2004). Optimization of probe length and the 
number of probes per gene for optimal microarray analysis of gene expression. 
Nucleic Acids Research, Vol.32, No.12, (July 2004), pp. e99, ISSN 0305-1048 

Davis, C.T.; Ebel, G.D.; Lanciotti, R.S.; Brault, A.C.; Guzman, H.; Siirin, M.; Lambert, A.; 
Parsons, R.E.; Beasley, D.W.; Novak, R.J.; Elizondo-Quiroga, D.; Green, E.N.; 
Young, D.S.; Stark, L.M.; Drebot, M.A.; Artsob, H.; Tesh, R.B.; Kramer, L.D. & 
Barrett A.D. (2005). Phylogenetic analysis of North American West Nile virus 
isolates, 2001-2004: evidence for the emergence of a dominant genotype. Virology, 
Vol.342, No.2, (November 2005), pp. 252-265, ISSN 0042-6822 

Ebel, G.D.; Carricaburu, J.; Young, D.; Bernard, K.A. & Kramer, L.D. (2004). Genetic and 
phenotypic variation of West Nile virus in New York, 2000-2003. American Journal of 
Tropical Medicine and Hygiene, Vol.71, No.4, (October 2004), pp. 493-500, ISSN 0002-
9637 

Egloff, M.P.; Benarroch, D.; Selisko, B.; Romette, J.L. & Canard B. (2002). An RNA cap 
(nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal 
structure and functional characterization. EMBO Journal, Vol.21, No.11, (June 2002), 
pp. 2757–2768, ISSN 0261-4189 

Evans, J.D. & Seeger, C. (2007). Differential effects of mutations in NS4B on West Nile virus 
replication and inhibition of interferon signaling. Journal of Virology, Vol.81, No.21, 
(November 2007), pp. 11809–11816, ISSN 0022-538X 

www.intechopen.com



Viral Genomes – Molecular Structure,  
Diversity, Gene Expression Mechanisms and Host-Virus Interactions 

 

176 

Falgout, B.; Pethel, M.; Zhang, Y.M. & Lai C. J. (1991). Both nonstructural proteins NS2B and 
NS3 are required for the proteolytic processing of Dengue virus nonstructural 
proteins Journal of Virology, Vol.65, No.5, (May 1991), pp. 2467–2475, ISSN 0022-
538X 

Friebe, P. & Harris, E. (2010). Interplay of RNA elements in the dengue virus 5' and 3' ends 
required for viral RNA replication. Journal of Virology, Vol.84, No.12, (June 2010), 
pp. 6103-6118, ISSN 0022-538X  

Gardner, S.N.; Jaing, C.J.; McLoughlin, K.S. & Slezak, T.R. (2010). A microbial detection 
array (MDA) for viral and bacterial detection. BMC Genomics, No.11, (November 
2010), pp. 668, ISSN 1471-2164 

Granwehr, B.P.; Lillibridge, K.M.; Higgs, S.; Mason, P.W.; Aronson, J.F.; Campbell, G.A. & 
Barrett, A.D. (2004). West Nile virus: where are we now? Lancet Infectious Diseases, 
Vol.4, No.9, (September 2004), pp. 547–556, ISSN 1473-3099 

Grinev, A.; Daniel, S.; Stramer, S.; Rossmann, S.; Caglioti, S. & Rios, M. (2008a). Genetic 
variability ofWest Nile virus in US blood donors, 2002–2005. Emerging Infectious 
Diseases, Vol.14, No.3, (March 2008), pp. 436-444, ISSN 1080-6040 

Grinev, A.; Daniel, S.; Laassri, M.; Chumakov, K.; Chizhikov, V. & Rios M. (2008b). 
Microarray-based assay for the detection of genetic variations of structural genes of 
West Nile virus. Journal of Virological Methods, Vol.154, No.1-2, (December 2008), pp. 
27-40, ISSN 0166-0934 

Gritsun, T.S. & Gould, E.A. (2007). Direct repeats in the flavivirus 3' untranslated region; a 
strategy for survival in the environment? Virology, Vol.358, No.2, (February 2007), 
pp. 258-265, ISSN 0042-6822 

Guirakhoo, F.; Pugachev, K.; Zhang, Z.; Myers, G.; Levenbook, I.; Draper, K.; Lang, J.; Ocran, 
S.; Mitchell, F.; Parsons, M.; Brown, N.; Brandler, S.; Fournier, C.; Barrere, B.; Rizvi, 
F.; Travassos, A.; Nichols, R.; Trent, D. & Monath, T. (2004). Safety and efficacy of 
chimeric yellow Fever-dengue virus tetravalent vaccine formulations in nonhuman 
primates. Journal of Virology, Vol.78, No.9, (May 2004), pp. 4761-4775, ISSN 0022-
538X 

Hacia, J.G.; Fan, J.B.; Ryder, O.; Jin, L.; Edgemon, K.; Ghandour, G.; Mayer, R.A.; Sun, B.; 
Hsie, L.; Robbins, C.M.; Brody, L.C.; Wang, D.; Lander, E.S.; Lipshutz, R.; Fodor, 
S.P. & Collins, F.S. (1999). Determination of ancestral alleles for human single-
nucleotide polymorphisms using high-density oligonucleotide arrays. Nature 
Genetics, Vol.22, No.2, (June 1999), pp. 164–167, ISSN 1061-4036 

Hager, J. (2006). Making and using spotted DNA microarrays in an academic core 
laboratory. Methods in Enzymology, Vol.410 (2006), pp. 135–168, ISSN 0076-6879 

Hayes, E.B. & Gubler, D.J. (2006). West Nile virus: epidemiology and clinical features of an 
emerging epidemic in the United States. Annual Review of Medicine, Vol.57, (2006), 
pp. 181-194, ISSN 0066-4219 

Herring, B.L.; Bernardin, F.; Caglioti, S.; Stramer, S.; Tobler, L.; Andrews, W.; Cheng, L.; 
Rampersad, S.; Cameron, C.; Saldanha, J.; Busch, M.P. & Delwart, E. (2007). 
Phylogenetic analysis of WNV in North American blood donors during the 2003-
2004 epidemic seasons. Virology, Vol.363, No.1, (June 2007), pp. 220-228, ISSN 0042-
6822 

Higgs, S.; Snow, K. & Gould, E. (2004). The potential for West Nile virus to establish outside 
of its natural range: a consideration of potential mosquito vectors in the United 

www.intechopen.com



 
Application of a Microarray-Based Assay for the Study of Genetic Diversity of West Nile Virus 

 

177 

Kingdom. Transactions of the Royal Society of Tropical Medicine and Hygiene, Vol.98, 
No.2, (February 2004), pp. 82–87, ISSN 0035-9203 

Honma, S.; Chizhikov, V.; Santos, N.; Tatsumi, M.; Timenetsky Mdo, C.; Linhares, A.C.; 
Mascarenhas, J.D.; Ushijima, H.; Armah, G.E.; Gentsch, J.R.& Hoshino, Y. (2007). 
Development and validation of DNA microarray for genotyping group A rotavirus 
VP4 (P(4), P(6), P(8), P(9), and P(14)) and VP7 (G1 to G6, G8 to G10, and G12) genes. 
Journal of Clinical Microbiology,Vol.45, No.8, (August 2007), pp.2641-2648, ISSN 0095-
1137 

Hsia, C.C.; Chizhikov, V.E.; Yang, A.X.; Selvapandiyan, A.; Hewlett, I.; Duncan, R.; Puri, 
R.K.; Nakhasi, H.L. & Kaplan, G.G. (2007). Microarray multiplex assay for the 
simultaneous detection and discrimination of hepatitis B, hepatitis C, and human 
immunodeficiency type-1 viruses in human blood samples. Biochemical and 
Biophysical Research Communications, Vol.356, No.4, (May 2007) pp. 1017-1023, ISSN 
0006-291X 

Jerzak, G.; Bernard, K.A.; Kramer, L.D. & Ebel, G.D. (2005). Genetic variation in West Nile 
virus from naturally infected mosquitoes and birds suggests quasispecies structure 
and strong purifying selection.Journal of General Virology, Vol.86, No.8 (August 
2005), pp. 2175–2183, ISSN 0022-1317 

Klenk, K.; Snow, J.; Morgan, K.; Bowen, R.; Stephens, M.; Foster, F.; Gordy, P.; Beckett, S.; 
Komar, N.; Gubler, D. & Bunning, M. (2004). Alligators as West Nile virus 
amplifiers. Emerging Infectious Diseases, Vol.10, No.12, (December 2004), pp. 2150-
2155, ISSN 1080-6040 

Kramer L.D. & Bernard, K.A. (2001). West Nile virus infection in birds and mammals. 
Annals of the New York Academy of Sciences, Vol.951, ( December 2001), pp. 84-93, 
ISSN: 0077-8923 

Kramer, L.D.; Styer, L.M. & Ebel, G.D. (2008). A Global Perspective on the Epidemiology of 
West Nile Virus. Annual Review of Entomology, Vol.53, (2008), pp. 61-81, ISSN 0066-
4170 

Khromykh, A.A.; Kenney, M.T. & Westaway, E.G. (1998). trans-Complementation of 
flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing 
BHK cells. Journal of Virology, Vol.72, No.9, (September 1998), pp. 7270–7279, ISSN 
0022-538X 

Khromykh, A.A.; Sedlak, P.L. & Westaway, E.G. (2000). cis- and trans-acting elements in 
flavivirus RNA replication. Journal of Virology, Vol.74, No.7, (July 2000), pp. 3253–
3263, ISSN 0022-538X  

Laassri, M.; Chizhikov, V.; Mikheev, M.; Shchelkunov, S. & Chumakov, K. (2003). Detection 
and discrimination of orthopoxviruses using microarrays of immobilized 
oligonucleotides. Journal of Virological Methods, Vol.112, No.1-2, (September 2003), 
pp. 67–78, ISSN 0166-0934 

Laassri, M.; Dragunsky, E.; Enterline, J.; Eremeeva, T.; Ivanova, O.; Lottenbach, K.; Belshe, R. 
& Chumakov, K. (2005). Genomic analysis of vaccine-derived poliovirus strains in 
stool specimens by combination of full-length PCR and oligonucleotide microarray 
hybridization. Journal of Clinical Microbiology, Vol.43, No.6, (June 2005), pp. 2886–
2894, ISSN 0095-1137 

Laassri, M.; Meseda, C.A.; Williams, O.; Merchlinsky, M.; Weir, J.P. & Chumakov, K. (2007). 
Microarray assay for evaluation of the genetic stability of modified vaccinia virus 

www.intechopen.com



Viral Genomes – Molecular Structure,  
Diversity, Gene Expression Mechanisms and Host-Virus Interactions 

 

178 

Ankara B5R gene. Journal of Medical Virology, Vol.79, No.6, (June 2007), pp. 791-802, 
ISSN 0146-6615 

Lanciotti, R.S.; Roehrig, J.T.; Deubel, V.; Smith, J.; Parker, M.; Steele, K.; Crise, B.; Volpe, 
K.E.; Crabtree, M.B.; Scherret, J.H.; Hall, R.A.; MacKenzie, J.S.; Cropp, C.B.; 
Panigrahy, B.; Ostlund, E.; Schmitt, B.; Malkinson, M.; Banet, C.; Weissman, J.; 
Komar, N.; Savage, H.M.; Stone, W.; McNamara, T. & Gubler, D.J. (1999). Origin of 
the West Nile virus responsible for an outbreak of encephalitis in the northeastern 
United States. Science, Vol.286, No.5448, pp. 2333-2337, ISSN 0036-8075 

Lanciotti, R.S.; Ebel, G.D.; Deubel, V.; Kerst, A.J.; Murri, S.; Meyer, R.; Bowen, M.; 
McKinney, N.; Morrill, W.E.; Crabtree, M.B.; Kramer, L.D. & Roehrig, J.T. (2002). 
Complete genome sequences and phylogenetic analysis of West Nile virus strains 
isolated from the United States, Europe, and the Middle East. Virology, Vol.298, 
No.1, (June 2002), pp. 96-105, ISSN 0042-6822 

Leberre, V.; Baranowski, E.; Deplanche, M.; Trouilh, L. & François, J.M. (2007). Detection of 
minority variants within bovine respiratory syncytial virus populations using 
oligonucleotide-based microarrays. Journal of Virological Methods, Vol.148, No.1-2, 
(March 2007), pp. 271-276, ISSN 0166-0934  

Lee, E.; Weir, R.C. & Dalgarno, L. (1997). Changes in the dengue virus major envelope 
protein on passaging and their localization on the three-dimensional structure of 
the protein. Virology, Vol.232, No.2, pp. 281-290, ISSN 0042-6822  

Leung, J.Y.; Pijlman, G.P.; Kondratieva, N.; Hyde, J.; Mackenzie, J.M. & Khromykh, A.A. 
(2008). Role of nonstructural protein NS2A in flavivirus assembly. Journal of 
Virology,; Vol.82, No.10, (October 2008), pp. 4731–4741, ISSN 0022-538X 

Liu, S.; Li, Y.; Fu, X.; Qiu, M.; Jiang, B.; Wu, H.; Li, R.; Mao, Y. & Xie Y. (2005). Analysis of 
the factors affecting the accuracy of detection for single base alterations by 
oligonucleotide microarray. Experimental and Molecular Medicine , Vol.37, No.2, 
(April 2005), pp. 71-77, ISSN 1226-3613 

Mackenzie, J.M.; Khromykh, A.A.; Jones, M.K. & Westaway, E.G. (1998). Subcellular 
localization and some biochemical properties of the flavivirus Kunjin nonstructural 
proteins NS2A and NS4A. Virology, (June 1998), Vol.245, No.2, pp. 203–215, ISSN 
0042-6822  

Markoff L. (2003). 5'- and 3'-noncoding regions in flavivirus RNA. Advances in virus research, 
Vol.59, pp. 177-228, ISSN 0065-3527 

McMullen, A.R.; May, F.J.; Li, L.; Guzman, H.; Bueno, R. Jr; Dennett, J.A.; Tesh, R.B. & 
Barrett, A.D. (2011). Evolution of new genotype of west nile virus in north America. 
Emerging Infectious Diseases,;Vol.17, No.5, (May 2011), pp. 785-93, ISSN 1080-6040 

Miller, M. B. (2009). Solid and liquid phase array technologies. In Molecular microbiology: 
diagnostic principles and practice, 2nd ed., ASM Press, Washington, DC, ISBN 978-
155-5814-7-7  

Moudy, R.M.; Meola, M.A.; Morin, L.L.; Ebel, G.D. & Kramer, L.D. A newly emergent 
genotype of West Nile virus is transmitted earlier and more efficiently by Culex 
mosquitoes. American Journal of Tropical Medicine and Hygiene, Vol.77, No.2, (August 
2007), pp. 365–370, ISSN 0002-9637 

Muñoz-Jordán, J.L.; Laurent-Rolle, M.; Ashour, J.; Martínez-Sobrido, L.; Ashok, M.; Lipkin, 
W.I. & García-Sastre, A. (2005). Inhibition of alpha/beta interferon signaling by the 

www.intechopen.com



 
Application of a Microarray-Based Assay for the Study of Genetic Diversity of West Nile Virus 

 

179 

NS4B protein of flaviviruses. Journal of Virology, Vol.79, No.13, ( July 2005), pp. 
8004–8013, ISSN 0022-538X  

Naiser, T.; Ehler, O.; Kayser, J.; Mai, T.; Michel, W. & Ott, A. (2008). Impact of point-
mutations on the hybridization affinity of surface-bound DNA/DNA and 
RNA/DNA oligonucleotide-duplexes: comparison of single base mismatches and 
base bulges. BMC Biotechnology, Vol.8, (May 2008), pp. 48, ISSN 1472-6750 

Nasci, R.S.; Savage, H.M.; White, D.J.; Miller, J.R.; Cropp, B.C.; Godsey, M.S.; Kerst, A.J.; 
Bennett, P.; Gottfried, K. & Lanciotti RS. (2001). West Nile virus in overwintering 
Culex mosquitoes, New York City, 2000. Emerging Infectious Diseases, Vol.7, No.4, 
(July-August 2001), pp. 742–744, ISSN 1080-6040 

Neverov, A.A.; Riddell, M.A.; Moss, W.J.; Volokhov, D.V.; Rota, P.A.; Lowe, L.E.; Chibo, D.; 
Smit, S.B.; Griffin, D.E.; Chumakov, K.M. & Chizhikov, V.E. (2006). Genotyping of 
measles virus in clinical specimens on the basis of oligonucleotide microarray 
hybridization patterns. Journal of Clinical Microbiology, Vol.44, No.10, (October 
2006), pp. 3752-3759, ISSN 0095-1137 

Nordström, H.; Falk, K.I.; Lindegren, G.; Mouzavi-Jazi, M.; Waldén, A.; Elgh, F.; Nilsson, 
P.& Lundkvist, A. (2005). DNA microarray technique for detection and 
identification of seven flaviviruses pathogenic for man. Journal of Clinical 
Microbiology, Vol.77, No.4, (December 2005), pp. 528-540, ISSN 0095-1137 

Parreira, R.; Severino, P.; Freitas, F.; Piedade, J.; Almeida, A.P. & Esteves A. (2007). Two 
distinct introductions of the West Nile virus in Portugal disclosed by phylogenetic 
analysis of genomic sequences. Vector-Borne and Zoonotic Diseases, Vol.7, No.3, (Fall 
2007), pp. 344-352, ISSN: 1530-3667 

Pealer, L.N.; Marfin, A.A.; Petersen, L.R.; Lanciotti, R.S.; Page, P.L.; Stramer, S.L.; Stobierski, 
M.G.; Signs, K.; Newman, B.; Kapoor, H.; Goodman, J.L. & Chamberland, M.E. 
(2003).West Nile Virus Transmission Investigation Team. Transmission of West 
Nile virus through blood transfusion in the United States in 2002. The New England 
Journal of Medicine, Vol.349, No.13, pp. 1205-1206. ISSN 0028-4793 

Petersen, L.R. & Roehrig, J.T. (2001).West Nile Virus: a reemerging global pathogen. 
Emerging Infectious Diseases, Vol.7, No.4, (July-August 2001), pp. 611–614, ISSN 
1080-6040 

Petersen, L.R. & Marfin, A.A. (2002). West Nile virus: a primer for the clinician. Annals of 
Internal Medicine, Vol.137, No.3, (August 2002), pp. 173-179, ISSN 0003-4819 

Proutski, V.; Gould, E.A. & Holmes, E.C. (1997). Secondary structure of the 3' untranslated 
region of flaviviruses: similarities and differences. Nucleic Acids Research, Vol.25, 
No.6, (March 1997), pp. 1194-1202, ISSN 0305-1048 

Relógio, A.; Schwager, C.; Richter, A.; Ansorge, W. & Valcárcel, J. (2002). Optimization of  
oligonucleotide-based DNA microarrays. Nucleic Acids Research, Vol.30, No.11, 
(June 2002), pp. e51, ISSN 0305-1048 

Roerig, P.; Nessling, M.; Radlwimmer, B.; Joos, S.; Wrobel, G.; Schwaenen, C.; Reifenberger, 
G. & Lichter, P. (2005). Molecular classification of human gliomas using matrix-
based comparative genomic hybridization. International Journal of Cancer, Vol.117, 
No.1, (October 2005), pp. 2095-2103, ISSN 0020-7136 

Sbrana, E.; Tonry, J.H.; Xiao, S.Y.; da Rosa, A.P.; Higgs, S. & Tesh, R.B. (2005). Oral 
transmission of West Nile virus in a hamster model. The American Journal of Tropical 
Medicine and Hygiene, Vol.72, No.3, (March 2005), pp. 325-329, ISSN 0002-9637 

www.intechopen.com



Viral Genomes – Molecular Structure,  
Diversity, Gene Expression Mechanisms and Host-Virus Interactions 

 

180 

Schlesinger, J.J. (2006). Flavivirus nonstructural protein NS1: complementary surprises. 
Proceedings of the National Academy of Sciences of the USA, Vol.103, No.50, (December 
206), pp. 18879–18880, ISSN 0027-8424 

Tajima, S.; Nukui, Y.; Ito, M.; Takasaki, T. & Kurane, I. (2006). Nineteen nucleotides in the 
variable region of 3' non-translated region are dispensable for the replication of 
dengue type 1 virus in vitro. Virus Research, Vol.116, No.1-2, (March 2006), pp. 38-
44, ISSN 0168-1702 

Tomiuk, S. & Hofmann, K. (2001). Microarray probe selection strategies. Briefings in 
bioinformatics, Vol.2, No.4, (December 2001), pp. 329–340, ISSN 1467- 5463 

Urakawa, H.; El Fantroussi, S.; Smidt, H.; Smoot, J.C.; Tribou, E.H.; Kelly, J.J.; Noble, P.A. & 
Stahl, D.A. (2003). Optimization of single-base-pair mismatch discrimination in 
oligonucleotide microarrays. Applied and Environmental Microbiology, Vol.69, No.5, 
(May 2003), pp. 2848-2856, ISSN 0099-2240 

Volokhov, D.; Rasooly, A.; Chumakov, K. & Chizhikov, V. (2002). Identification of Listeria 
species by microarray-based assay. Journal of Clinical Microbiology, Vol.44, No.12, 
(December 2005), pp. 4720–4728, ISSN 0095-1137  

Wade, M.M.; Volokhov, D.; Peredelchuk, M.; Chizhikov, V. & Zhang, Y. (2004). Accurate 
mapping of mutations of pyrazinamide-resistant Mycobacterium tuberculosis 
strains with a scanning-frame oligonucleotide microarray. Diagnostic Microbiology 
and Infectious Disease, Vol.49, No.2, (June 2004), pp. 89–97, ISSN: 0732-8893 

Yu, L.; Nomaguchi, M.; Padmanabhan, R. & Markoff, L. (2008). Specific requirements for 
elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral 
replicatio. Virology, Vol.374, No.1, (April 2008), pp. 170-185, ISSN 0042-6822  

www.intechopen.com



Viral Genomes - Molecular Structure, Diversity, Gene Expression

Mechanisms and Host-Virus Interactions

Edited by Prof. Maria Garcia

ISBN 978-953-51-0098-0

Hard cover, 302 pages

Publisher InTech

Published online 24, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Viruses are small infectious agents that can replicate only inside the living cells of susceptible organisms. The

understanding of the molecular events underlying the infectious process has been of central interest to

improve strategies aimed at combating viral diseases of medical, veterinary and agricultural importance. Some

of the viruses cause dreadful diseases, while others are also of interest as tools for gene transduction and

expression and in non-poluting insect pest management strategies. The contributions in this book provide the

reader with a perspective on the wide spectrum of virus-host systems. They are organized in sections based

on the major topics covered: viral genomes organization, regulation of replication and gene expression,

genome diversity and evolution, virus-host interactions, including clinically relevant features. The chapters also

cover a wide range of technical approaches, including high throughput methods to assess genome variation or

stability. This book should appeal to all those interested in fundamental and applied aspects of virology.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Andriyan Grinev, Zhong Lu, Vladimir Chizhikov and Maria Rios (2012). Application of a Microarray-Based

Assay for the Study of Genetic Diversity of West Nile Virus, Viral Genomes - Molecular Structure, Diversity,

Gene Expression Mechanisms and Host-Virus Interactions, Prof. Maria Garcia (Ed.), ISBN: 978-953-51-0098-

0, InTech, Available from: http://www.intechopen.com/books/viral-genomes-molecular-structure-diversity-gene-

expression-mechanisms-and-host-virus-interactions/application-of-a-microarray-based-assay-for-the-study-of-

genetic-diversity-of-west-nile-virus



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


