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1. Introduction 

As has happened in the last century with many plant diseases, the nature of the causal 
agents, particularly viruses, was not determined and studied until a few decades ago. Thus, 
an old disease named citrus psorosis was first described in 1891, but it was almost a century 
later when the viral agent was observed by immune electron microscopy as a novel spiral-
filamentous particle (Derrick et al., 1988). In 1994, the real morphology of Citrus psorosis 
virus (CPsV) was observed by Robert G. Milne using negative staining electron microscopy; 
describing circular particles of different configurations resemble that of the tenuiviruses and 
the nucleocapsids of members of the family Bunyaviridae (Garcia et al., 1994). Due to the 
shape of the particles, they were called Ophiovirus, derived from the Greek “ophios”, a 
serpent, referring to the snaky appearance of the virions (Figure 1, a).  

Subsequently, in Japan, another ophiovirus is recognized in tulip, Tulip mild mottle mosaic 
virus (TMMMV) (Morikawa et al., 1995), and later, Robert G. Milne, a “virus hunter” (as 
once he called himself), found particles with similar morphology in diseased plants of 
lettuce and ranunculus (Milne, 2000). Thus began the study of the ophioviruses Ranunculus 
white mottle virus (RWMV) (Vaira et al., 1997), Mirafiori lettuce big-vein virus (MiLBVV) 
(Roggero et al., 2000), Lettuce ring necrosis virus (LRNV) (Torok et al., 2002, 2003) and Freesia 
sneak virus (FreSV) (Vaira et al., 2006). Most, if not all these viruses have been found around 
the world (Roistacher 1993; Navarro et al., 2004; Martin et al., 2006; Ghazal et al., 2008; Vaira 
et al., 2007, 2009; Plesko et al., 2009; Barcala Tabarrozzi et al., 2010). 

1.1 Old diseases affecting major crops 

In citrus: Citrus psorosis virus, the type member of the family 

The first observation of symptoms of citrus psorosis disease was reported in 1891 (Swingle 
and Webber, 1896), and the first experimental evidence about that infectious disease 
transmitted by grafting in citrus trees was published in 1933 by H.S. Fawcett. Psorosis 
disease development is slow; it may take several years to manifest symptoms. Typical 
psorosis symptoms are bark-scaling of trunk and main branches, and more severe as 
rampant bark-scaling even on small limbs and twigs. Gum may accumulate below the bark 
scales and may impregnate the xylem producing wood staining and vessel occlusion. These 
symptoms have been used for field diagnosis of Psorosis (Roistacher, 1993). Chlorotic flecks 
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and spots on young leaves can be observed in spring time in the field, and in infected 
seedlings in the greenhouse. (For symptoms and diagnosis of psorosis disease, see an 
excellent review of Alioto et al., 2007). The disease has been reported from many citrus-
growing areas all over the world (Roistacher, 1993). Trees affected with psorosis have been 
less productive causing damage to citrus industry in the Mediterranean basin, and in some 
areas of South America. In the ´80s, in Argentina and Uruguay it was a serious disease 
causing annual losses of about 5% of trees (Larocca 1985, Danós 1990) and the disease is still 
present as recently reported by Zanek et al (2006). There are reports of naturally spreading 
of psorosis in Argentina (Pujol and Beñatena, 1965), Uruguay (Campiglia et al., 1976), and in 
Texas, USA (Timmer and Garnsey, 1980). The suspected vector is unknown although the 
pattern of spread suggests an aerial vector (Beñatena and Portillo, 1984; Diamante et al., 
1984). On the other hand, other ophioviruses are soil-transmitted by a root-infecting fungus 
from the Olpidium genus (see later in this section). Citrus psorosis virus has probably been 
vegetatively propagated for centuries around the world from citrus to citrus, and it could 
have lost any putative original capacity to be transmitted by Olpidium, and at the same time 
acquiring the ability of transmission by an aerial vector. Therefore, further studies are 
necessary to clarify this matter and to identify the natural vector of CPsV.  

The first ophiovirus described was discovered in citrus, but most of them has been found in 

ornamental plants as ranunculus (dicotyledonous), freesia, tulips and lachenalia 

(monocotyledonous), and lettuce (dicotyledonous). 

In ornamental plants: Tulip mild mottle mosaic virus, Ranunculus white mottle virus and Freesia 
sneak virus 

Since 1979 the occurrence of mild mottle mosaic disease in tulip is described, and in 1989 it 

is reported for the first time in Japan by Yamamoto et al. (1989) as a virus-like disease of 

tulip, and as a soil-borne disease by Morikawa et al., (1993). In 1995, Morikawa and co-

workers found a new virus recognized on tulip (Tulipa gesneriana L., hybrids, Liliaceae) 

producing symptoms of venial chlorotic mottle mosaic on leaves and color-removing mottle 

on flower buds. They mechanically transmitted the virus in tulip and species as Chenopodium 

quinoa, Tetragonia expansa, Nicotiana tabacum and Nicotiana benthamiana, but it could not be 

back-inoculated from C. quinoa to tulip (Morikawa et al., 1995). The authors found that the 

disease spreads through bulbs of tulip and might be soil-borne. In 1998 Drs. T. Natsuaki and 

T. Morikawa (Utsunomiya University, Japan) have indicated that the vector of TMMMV is 

Olpidium brassicae (pers. comm.). 

Other ornamental disease caused by an ophiovirus was found in ranunculus and anemone. 

In 1996 A.M. Vaira and co-workers described a new virus found in a plant of Ranunculus 

hyb. (cv. Grazia) collected in Liguria, Northern of Italy, in 1990. The symptoms described in 

ranunculus plants were mosaic, mottle and distortion of leaves and stems, giving the name 

Ranunculus white mottle virus. For years the virus was consistently isolated from plants and 

found in mixed infection with potyvirus (Vaira et al., 1997, 2009). They could mechanically 

transmit the virus to several herbaceous hosts (N. benthamiana and N. clevelandii), and by 

EM, in negative stain the particle morphology appeared similar to CPsV, Tenuivirus and 

Bunyaviridae (Vaira et al., 1996, 1997). So far, there are no reports about a vector for RWMV. 

A severe disease called freesia leaf necrosis (FLN) has been known in freesia cultures for 
forty years in Europe (Verbeek and Meekes, 2005) but its causal agent was not identified 

www.intechopen.com



 
Ophioviruses: State of the Art 

 

71 

until 2006 by Vaira et al., (2006). The authors found freesias (Freesia refracta hybrids, 
Iridaceae) with symptoms of FLN in the area around Sanremo (Italy), and later, in lachenalia 
cultivars (Lachenalia hyb., Hyacinthaceae) in South Africa (Vaira et. al, 2007). By electron 
microscopy the authors found an ophiovirus which is associated to this disease, which 
presents chlorotic inter-veinal lesions on the leaves, later coalescing and becoming sunken 
and necrotic. FLN is soil-transmitted as mild mottle mosaic disease in tulip (van Dorst, 1975; 
Vaira et al., 2006). 

In lettuce: Mirafiori lettuce big-vein virus and Lettuce ring necrosis virus 

Lettuce (Lactuca sativa) is other natural host for ophioviruses. In 1934 lettuce big-vein disease 
(BV) was described as possibly caused by a virus (Jagger et al., 1934). Big-vein is one of the 
most important diseases of lettuce crops worldwide. The symptoms, as the name refers are 
vein enlargement with chlorotic regions around the vascular tissue, making the plant no 
suitable for the market and producing important looses. The virus named Lettuce big-vein 
virus (LBVV), the type species of the genus Varicosavirus (van Regenmortel et al., 2000), was 
initially associated with big-vein disease (Kuwata et al., 1984). LBVV a rod-shaped virion 
transmitted by Olpidium brassicae (Kuwata et al., 1984; Vetten et al., 1987; Huijberts et al., 
1990), but this varicosavirus had not been isolated or rigorously demonstrated to cause the 
disease. In big-vein affected lettuce the presence of unsuspected second virus with particles 
morphologically resembled those of ophioviruses was discovered by R. G. Milne and co-
workers (Roggero et al., 2000). That ophiovirus was named Mirafiori lettuce virus (MiLV) 
since it was detected in Mirafiori, Turin (Italy). In 2002, Lot and co-workers demonstrated 
that the lettuce infected with MiLV alone consistently developed big-vein symptoms 
regardless of the presence or absence of LBVV (Lot et al., 2002). This important evidence 
showed that MiLV but not LBVV is the true causal agent of this disease, although both 
viruses are present in the diseased lettuce-plants. Later these viruses were renamed as 
Mirafiori lettuce big-vein virus (MiLBVV) and Lettuce big-vein associated virus (LBVaV) by the 
International Committee on Taxonomy of Viruses (ICTV). Recently, it has been determinate 
that both viruses are transmitted by Olpidium virulentus, a noncrucifer strain of Olpidium 
brassicae (Sasaya and Koganezawa, 2006). 

Lettuce ring necrosis is still a serious disease producing coalescent necrotic rings and ring-
like patterns on middle leaves of plants observed in greenhouses during winter and 
transmitted by the zoospores of O. brassicae (Bos et al., 1996). The disease was first described 
in The Netherlands and in Belgium as “kring necrosis” and observed in France where it was 
called “maladie des taches orangées”. 

As happened with LBVaV, a rod-shaped non-enveloped virus was tentatively named lettuce 
ring necrosis virus (LRNV) and both were closely associated to the diseases (Huijberts et al., 
1990). In 2002, Torok et al. associated for the first time an ophiovirus with lettuce ring 
necrosis disease, and in 2003, the same authors published the molecular characterization of a 
this new ophiovirus (Torok et al., 2003). Later, the genome of LRNV was sequenced but no 
further analysis has been published so far. 

1.2 Morphology of the ophiovirus particles – In vitro stability 

Robert G. Milne described the particles as circles of at least two different contour lengths, 
the shortest length about 760 nm, and the largest about four times longer with 3 nm in 
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diameter when appear in a circular form (Figure 1,a) (Garcia et al., 1994). The circles can 
collapse to form pseudolinear duplex structures, coiled filamentous about 9-10 nm in 
diameter. The presence of this pseudolinear form seems to be associated with long 
incubation (one to several days) in vitro (Milne et al., 1996). Figure 1, b shows a model of 
different configurations the particles can adopt, resemble that of the tenuiviruses and the 
nucleocapsids of members of the family Bunyaviridae (Garcia et al., 1994, Milne et al., 1996) 
(see Vaira et al., (1997) for EM photos of different RWMV forms). Thin sections of N. 
clevelandii leaf tissue infected with RWMV were observed by Vaira et al., (1997) using EM 
immunogold against RWMV coat protein, but no inclusions neither enveloped particles 
were found. The label was abundant in the cytoplasm of parenchyma cells, but the nuclei, 
chloroplast, mitochondria and microbodies were unlabelled (Vaira et al., 1997). So far, that 
has been the unique observation of any ophiovirus in thin sections. Attempts have been 
done to see CPsV particles in different tissues but they resulted unsuccessful (R.G. Milne, 
Peña E. and Kitajima E., pers. communications). 

Ophiovirus particles are unstable in CsCl and in phosphotungstate but not in 2% aqueous 
uranyl acetate. Besides, the particle structure remains intact in cesium sulphate (D. Alioto, E. 
Luisoni and R.G. Milne, unpublished data). In order to purify and separate the smaller from 
the larger particles, virions of CPsV can be ultracentrifuged in sucrose or cesium sulphate 
density gradients (Derrick et al., 1988; Garcia et al., 1991, Sanchez de la Torre et al., 1998). 
The buoyant density in cesium sulfate is 1.22 g/cm3 for RWMV and MiLBVV (Vaira et al., 
1997; Roggero et al. 2000). The particles have limited stability at pH below 8 (Garcia et al., 
1991), and the infectivity does not survive in crude sap held at room temperature for more 
than 2 hr or 12-24 hr at 4 °C in the case of CPsV (Garcia et al., 1991) and TMMMV 
(Morikawa et al., 1995). Particle structure survives limited treatment with organic solvents 
and nonionic or zwitterionic detergents (Garcia et al., 1991; Roggero et al., 2000). 

 

 

Fig. 1. a. Ophiovirus morphology: naked filamentous nucleocapsids. Circles of at least two 
different contour lengths, negatively stained in 1% uranyl acetate. Large (left) and small (right) 
particles. Bar = 100 nm. b. Wire models (not to scale) of possible forms for ophiovirus particles, 
representing larger and smaller particles in the circular and pseudolinear form. The putative 
"panhandle" structure is indicated by arrow (Milne et al., 1996 with modifications). 

a b 
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2. Genome organization, sequence analysis and putative proteins 

Ophioviruses genome is divided into three or four individually encapsidated segments 

(Figure 2). CPsV, RWMV and FreSV have 3 RNAs (named as RNA 1, 2 and 3) and for 

MiLBVV and LRNV a fourth RNA has been reported (named as RNA 4). 

The available information about ophiovirus genes and putative proteins are based on the 

sequences of CPsV, MiLBVV and LRNV, which are the ophioviruses completely sequenced 

so far. Partial sequences of RNA 3 of all ophiovirus species and the RNA-dependent RNA 

polymerase (RdRp) module of the RWMV RNA 1 are also available in database. Using 

ophiovirus-specific primers based on a highly conserved sequence of RNA 1, Vaira and co-

workers (2003) amplified a 136 bp fragment detecting all ophiovirus species, making this 

RT-PCR the selected method to find new ophioviruses. All 136bp-fragment sequences are 

available in database. 

 

 

Fig. 2. Genome organization of ophiovirus. The length of the RNA segments and the 

predicted sizes of the ORF products are indicated. –ve sense: negative stranded RNA (viral 

RNA, vRNA), +ve sense: positive stranded RNA (viral complementary RNA, vcRNA). CPsV 

and RWMV have 3 RNAs. MiLBVV and LRNV contain 4 RNAs. The +ve sense of RNA 4 

belongs to MiLBVV; LRNV contains only the 38K ORF (see the text). CP: coat protein. RdRp: 

RNA dependent-RNA polymerase. 

In purified virus preparations the negative strand RNAs are the more abundant. The 
positive strands of all RNAs are also encapsidated although in much less amount. The size 
of RNA 1 is 8.2 kb for CPsV, 7.8 kb for MiLBVV, 7.6 kb for LRNV and 7.5 kb for RWMV 
(Naum et al. 2003; van der Wilk et al., 2002; Vaira et al., 1997; Torok et al., 2003). RNA 2 is 
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about 1.8 kb for RWMV, MiLBVV and LRNV, 1.7 for FreSV and 1.6 kb for CPsV, and the 
RNA 3 is 1.3-1.5 kb for all ophioviruses (Vaira et al., 1997; van der Wilk et al., 2002; Torok et 
al., 2003; Sanchez de la Torre et al., 2002). The fourth genomic RNA reported for MiLBVV 
and LRNV is about 1.4 kb (van der Wilk et al., 2002; Torok et al., 2003).  

In the RNA 1, a protein of 22-25 kDa of unknown function is encoded in the 5´ region of the 
positive strand. Separated by an intergenic region of hundred nucleotides a large ORF of 
RNA 1 is encoded (see Figure 2). The 109-nt intergenic region observed for CPsV (isolate 
CPV 4 from Florida, USA) is rich in A-U (88.3%) and contains 18-nt sequence (UUAAAA)3 
that could form a hairpin loop. Near the end of the intergenic region, a typical AAUAAA 
polyadenylation signal is found 12 nt upstream of the putative CA start polyadenylation site 
(Naum et al., 2003). However, these sequences were not found for the CPsV Spanish isolate 
P-121 (Martín et al., 2005), neither for MiLBVV (intergenic region of 147 nt, 66% of A+U), 
and LRNV (intergenic region of 80 nt, 65 % of A+U), making it unlikely that were involved 
in conserved functions among ophioviruses. 

The largest ORF of the RNA 1 encode a protein of 261K for LRNV, 263K for MiLBVV and 
280K for CPsV containing the core polymerase module with the five conserved motifs of the 
RdRp active site (van der Wilk et al., 2002; Naum et al., 2003; Vaira et al., 2003). The 
ophiovirus RdRp are highly conserved among them, mainly in the module sequence (see 
section 4). Two regions of the RdRp may be regarded as a bipartite nuclear localization 
signal (NLS) in the CPsV (Naum et al., 2003; Martín et al., 2005), and at least one NLS was 
also found in MiLBVV and RWMV polymerases (van der Wilk et al., 2002; Vaira et al., 2003). 

A protein about 50-55 kDa of unknown function is encoded by RNA 2 in the positive strand 
of the ophioviruses CPsV, MiLBVV and LRNV (Sanchez de la Torre et al., 2002; van der 
Wilk et al., 2002; Torok et al., 2003). The 54K protein of CPsV has been detected in infected 
tissue confirming its size and coding assignment (Peña E. J. unpublished results). It is 
probably involved in virion movement and suppression of post transcriptional gene 
silencing (PTGS), the antiviral defence mechanism of the plant (Robles Luna and Peña 
personal communication). These two mentioned functions seem to be shared with the 24K 
protein of CPsV. Sequence analyses of the 54K protein and the homologous 50K and 55K 
proteins from LRNV and MiLBVV contain a conserved NLS, as the RdRp of ophioviruses 
CPsV, MiLBVV and RWMV, suggesting that part of the cycle might occur in the nucleus. 
Similarity among 50-55K and 22-25K proteins is lower than that found among CPs, and is 
very high among the RdRp module sequence (see section 4). 

In the viral complementary RNA 2 of MiLBVV an additional minor ORF encodes a putative 
protein of about 10kDa (see Figure 2), but its function is unknown. In the RNA 2 of CPsV 
and LRNV this small protein is absent, and so far, it is unknown whether this putative 
protein is present in RWMV and FreSV genomes. In case the 10kDa polypeptide were not 
present in these viruses, MiLBVV would be the unique ophiovirus with ambisense RNA 2.  

Negative and positive stranded RNAs of ophioviruses are encapsidated in a single coat 

protein of 43-50 kDa (Garcia et al., 1991; Vaira et al., 1997; Barthe et al., 1998). Using 

antibody obtained against purified virion particles and expressing RNA 2 and RNA 3 coded 

proteins in E. coli, Sanchez de la Torre et al., (1998) demonstrated that the coat protein of 

CPsV is encoded in the RNA 3. The protein encoded by MiLBVV RNA3 has similar 

molecular mass and high sequence similarity (44.6%) with the coat protein of CPsV, thus, it 
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is presumed that coat protein of MiLBVV is also encoded by RNA 3 (van der Wilk et al., 

2002). The CPs of MiLBVV and TMMMV are closer with 80% homology. Attempts to find 

similarities, with the exception of CPsV, some serological relationship between TMMMV 

and MiLBVV, and between RWMV and MiLBVV, have been found indicating that some 

epitopes in the capsid proteins among most of the ophiovirus are conserved (Roggero et al., 

2000). In general, different isolates of the same ophiovirus specie showed highly conserved 

amino acid sequences in the coat protein as showed for CPsV (Martín et al, 2006) and 

MiLBV (Navarro et al., 2004), and less conserved among the different ophiovirus species.  

Other than structural function of the coat protein can be assumed. Transmission facilitated 

by fungus zoospores has been reported for Tombusviridae family, involving coat protein 

(McLean et al., 1994), and even oligosaccharides as shown by Kakani et al, (2003). Rochon et 

al., (2004) proposed a model for the tombusvirus Cucumber necrosis virus transmission in 

which it binds to Olpidium bornovanus zoospores, showing that specific sites on the capsid as 

well as on the zoospore are involved. They also remark that the mechanism of the 

tombusvirus coat protein binding to the fungus is similar to poliovirus/host cell interactions 

and related viruses such as influenza, suggesting evolutionary conservation of functional 

features of plant and animal virus capsids. 

MiLBVV and LRNV present a fourth RNA of negative polarity (van der Wilk et al., 2002; 

Torok et al., 2003, Torok et al., 2010). The RNA 4 of LRNV encodes a potential protein of 38 

kDa, and the RNA 4 of MiLBVV one of 37kDa (p37). MiLBVV has an additional ORF of 10.6 

kDa with a 38 nt overlapping sequence with the p37 (see Figure 2). This second ORF is 

proposed to be expressed by a +1 translational frameshift of p37, but lacks an initiation 

codon (van der Wilk et al., 2002). So far, the functions of these putative proteins are 

unknown. 

3. The question about circular structures – A "panhandle" structure? 

As mentioned before, virions of the ophioviruses appear circularized. The same morphology 

is observed for tenui- and phleboviruses particles, suggesting that ophiovirus can adopt a 

panhandle structure formed by the pairing of the conserved 5' and 3' ends of each genomic 

RNA (see Figure 1.b). Looking for this structure the 3´ and 5´ terminal sequences of CPsV, 

MiLBVV and LRNV have been checked (Figure 3). In CPsV, the first 12 nt of 5´ end of 

vcRNAs were found almost identical in the three RNAs, but unexpectedly no identity 

among the three RNAs at their 3´ ends was found (Figure 3.a), and were not able to form 

self-complementary panhandle structures between the 3´ and 5´ends of each RNA (Naum et 

al., 2003). Figure 3. b shows the alignment of the 3´ and 5´ends sequences of the four RNAs 

of LRNV presenting higher identities among the RNAs 1, 2 and 3, and less with the RNA 4. 

In the case of MiLBVV, both 5´and 3´ ends are conserved among the four viral RNAs. Both 

MiLBVV and LRNV do not anneal to perfect panhandle structures (Figure 3.c). Instead, van 

der Wilk et al., (2002) found that MiLBVV RNAs ends are able to fold into structures faintly 

resembling the “corkscrew” conformation of Orthomyxoviridae RNA termini. In the case of 

LRNV partial pairing of the conserved 5´ and 3’ ends of genomic RNAs can be found and a 

“corkscrew” conformation can also be inferred. However, since this structure was not found 

for CPsV, alternative explanations for the circular structure of CPsV particles are required.  
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Fig. 3. Alignment of the 3´ and 5´ ends of positive stranded RNAs of CPsV, LRNV and 
MiLBVV. Thirty terminal nucleotides of 5´ and 3´ ends of vcRNAs (a) CPsV (b) LRNV and 
(c) MiLBVV. Identical nucleotides are denoted with asterisks. The conserved 5´ terminal 
sequences among the three ophioviruses and 3´end of MiLBVV and LRNV are underlined. 

Comparing among RNA termini of these ophioviruses it is noted that 5´ terminal sequences 
GAUWNWUUUW (where N is any nucleotide and W is A or U) and 3´end of MiLBVV and 
LRNV (UAUCA 3´) are quite conserved (see Figure 3, underlined sequences). 

4. The analysis of the putative RdRp – Taxonomical relationship with the 
negative-stranded RNA viruses 

The aa sequence of the large ORF of RNA 1 ophioviruses was aligned with the RdRp aa 
sequences of members of the Paramyxoviridae, Rhabdoviridae, Bornaviridae and Filoviridae 
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families and Varicosavirus as reported by Naum et al, 2003, indicating that this protein is the 
putative RNA polymerase (Figure 4.a). The predicted 260-280K protein contains the core 
polymerase module with the five conserved motifs proposed to be part of the RdRp active 
site (Poch et al., 1989; Muller et al., 1994), and conserved residues recognized in all 
compared negative-stranded RNA viruses. Among the ophioviruses CPsV, MiLBVV, 
RWMV and LRNV, the aa sequences of the polymerase module is highly conserved (Figure 
4.b). However, instead of the GDNQ of most of the non-segmented viruses present, the four 
ophioviruses have the SDD sequence in motif C, which is a signature for segmented 
negative-stranded RNA virus families Orthomyxoviridae, Arenaviridae and Bunyaviridae.  
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Fig. 4. a. Alignment of the core RdRp modules of some representative members of families 

Borna-, Filo-, Paramyxo- and Rhabdoviridae, and of the members of family Ophioviridae 

(CPsV, MiLBVV and RWMV). Conserved residues recognized previously in premotif A 

and motifs A, B, C and D, are shown in bold letters and additional strictly conserved 

residues are underlined. Numbers on the left of premotif A indicate the starting position, 

and numbers within brackets refer to the intervening sequences between motifs not 

represented. b. Alignment of the complete RdRp polymerase module of CPsV, MiLBVV, 

RWMV and LRNV ophioviruses. Identical residues are denoted with asterisks and similar 

residues by colons and dots. Virus acronyms are indicated in the legend of figure 5. Naum 

et al., (2003) with modifications. 

These data support grouping these four viruses in the same genus, Ophiovirus, previously 

advanced on the basis of their similar virion morphology including TMMMV (Milne et al., 

2000), and later FreSV (Vaira et al., 2011).  

The amino sequence of the RdRp active site was exploited to study the phylogenetic 

relationships among the ophioviruses and other representative negative-stranded RNA 

viruses of families Borna-, Filo-, Paramyxo-, Rhabdo-, Orthomyxo-, Bunya- and Arenaviridae, and 

Tenuivirus. Figure 5 shows that ophioviruses CPsV, MiLBVV and RWMV appear as a 

monophyletic group that is separated from the other negative-stranded RNA viruses, 

reinforcing the taxonomic relatedness of the group. 
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Fig. 5. Unrooted phylogenetic tree showing the relationship among representative negative-
stranded RNA viruses, from the Mononegaviales order, Tenuivirus, Arenavirus genera and the 
ophiovirus CPsV, MiLBVV and RWMV, Ophioviridae family, based on their conserved RdRp 
modules (see Figure 4.a). Branch lengths are proportional to genetic distances between 
sequences. The tree was generated by the neighbor-joining method and bootstrap values 
(indicated for each branch node) were estimated using 100 replicas. Branch lengths are 
proportional to genetic distances between sequences and the scale bar represents 
substitutions per amino acid site. Borna disease virus (BDV), Marburg virus (MARV), Zaire 
Ebola virus (ZEBOV), Sendai virus (SeV), Mumps virus (MuV), Newcastle disease virus 
(NDV), Measles virus (MEV), Canine distemper virus (CDV), Nipah virus (NIV), Human 
respiratory syncytial virus (HRSV), Turkey rhinotracheitis virus (TRTV), Vesicular 
stomatitis Indiana virus (VSIV), Vesicular stomatitis New Jersey virus (VSNJV), Bovine 
ephemeral fever virus (BEFV), Infectious hematopoietic necrosis virus (IHNV), Lettuce 
necrotic yellows virus (LNYV), Northern cereal mosaic virus (NCMV), Sonchus yellow net 
virus (SYNV), Rice yellow stunt virus (RYSV), Lettuce big-vein associated virus (LBVaV), 
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Influenza A virus (FLUAV), Influenza B virus (FLUBV), Influenza C virus (FLUCV), 
Thogoto virus (THOV), Dhori virus (DHOV), Infectious salmon anemia virus (ISAV), 
Bunyamwera virus (BUNV), La Crosse virus (LACV), Hantaan virus (HTNV), Puumala 
virus (PUUV), Sin nombre virus (SNV), Seoul virus (SEOV), Dugbe virus (DUGV), Rift 
Valley fever virus (RVFV), Toscana virus (TOSV), Uukeniemi virus (UUKV), Tomato 
spotted wilt virus (TSWV), Rice stripe virus (RSV), Lymphocytic choriomeningitis virus 
(LCMV), and Tacaribe virus (TCRV). Naum et al., (2003) with modifications. 

As mentioned, ophioviruses possess two ORFs in the same strand of RNA 1, with the RdRp 
located downstream the intergenic region (see figure 2), which is a distinct genomic 
structure of all segmented- and negative stranded RNA viruses. 

Taken all these characteristics, the family Ophioviridae has been proposed to the ICTV Ninth 
Report (Vaira et al., 2011), with only one genus recognized, Ophiovirus, containing six 
species: CPsV, TMMMV, RWMV, FreSV and MiLBVV, without an order assigned. 
Moreover, the phylogenetic analysis done by Vaira et al., (2003) with the 45 aa strings 
derived from the 136nt fragment amplified from the available isolates of CPsV, RWMV, 
LRNV and FreSV supported the positions of these ophioviruses as distinct species, and a 
closer relationship between MiLBVV and TMMMV species.  

5. Cultivars and transgenic lines resistant to ophiovirus  

Since most of the ophiovirus are soil-transmitted, the cultivation of commercially important 
species addresses the challenge of the disease control searching for resistant cultivars 
economically important. In Japan, natural resistance has been found in tulip cultivars for 
tulip mild mottle mosaic disease. Bulb lots of 214 cultivars were tested, some of which were 
resistant to TMMMV, although resistance varies greatly among them (Morikawa et al., 
2004). In Virginia, USA, Hansen el at., (2009) have been reported that in freesia cvs. 
‘Honeymoon’and ‘Santana’ mixed infection with the potyvirus Freesia mosaic virus, and the 
ophiovirus FreSV can be found and probably making more difficult to control the disease. 

Big-vein diseased lettuce plants are infected with MiLBVV, and usually together with the 
varicosavirus LBVaV (Lot et al., 2002; Navarro et al., 2004; Plesko et al., 2009; Barcala 
Tabarrozzi et al., 2010). To control this disease resistant cultivars have been developed by 
conventional breeding method, like the cultivars Thompson and Pacific, using several 
resistant sources (Ryder 1981; Ryder and Robinson, 1991, 1995). However, although with 
some cultivars losses were reduced, do not exhibit high levels of resistance and do not 
eliminate the disease. More recently, partial big-vein resistance was identified in Lactuca 
sativa cultivars Great Lakes 65, Pavane, Margarita. In the same work, Lactuca virosa, which is 
not used in the market, was found ophio- and varicosavirus-free and big-vein symptomless 
(Hayes et al., 2006). Big-vein resistance breeding efforts using this line has been reported 
(Hayes et al., 2004) generating L. virosa–L. sativa hybrid but variation for the frequency of 
symptomatic plants was found. 

In last 20 years, different strategies using transgenic plants have been developed 
successfully to gain virus resistance cultivars (Sudarshana et al. 2007; Prins et al., 2008). The 
most widely used have been protein-mediated (pathogen-derived resistance, PDR) and 
more recently RNAi-mediated resistance by post-transcriptional gene silencing (PTGS) 
mechanism (e.g. Jan et al., 2000; Shimizu et al., 2009; Fahim et al., 2010). Expression of the 
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coat protein gene of several RNA viruses were shown to confer virus resistance in 
experimental and natural hosts, and later, other virus-derived sequences in sense or 
antisense constructs carrying the movement protein or RdRp genes were expressed also 
conferring resistance against virus. Transgenic plants carrying the coat protein gene have 
resulted successes, which could indicate that the CP is involved in early events of virus 
infection (Reyes et al., 2011). However, it is not predictable which viral genes is the best to 
confer resistance (Morroni et al., 2008; Kamo et al., 2010). 

The first attempt to get resistance against ophioviruses was done on lettuce (Lactuca sativa L) 
by agro-transformation expressing the coat protein gene of LBVaV in sense or antisense 
orientations. Interestingly, some of the lines were susceptible to LBVaV, but line A-2 was 
resistant to MiLBVV without big-vein symptoms regardless of the presence or absence of 
LBVaV (Kawazu and Fujiyama, 2006). In this line the LBVaV coat protein-mRNA derived 
from the transgene was not detected, probably due to RNA silencing. However, the 
mechanism by which line A-2 was resistant to MiLBVV is not clear, since there is no 
significant sequence homology between the transgene (LBVaV coat protein gene) and the 
MiLBVV coat protein gene. Later, lettuce was transformed with inverted repeats of a coat 
protein gene fragment of MiLBVV and two lines resulted resistant to this virus (Kawazu et 
al. 2009). These lines showed resistance to big-vein symptom expression but were 
susceptible to LBVaV. Moreover, MiLBVV was detected in roots but not in leaves of one of 
the lines after inoculation, suggesting that resistance to MiLBVV is less effective in roots 
than in leaves. Furthermore, T3, T4, and T5 generations showed high resistance to this 
ophiovirus and big-vein symptoms expression indicating that high resistance to lettuce big-
vein disease is stably inherited (Kawazu et al., 2010). 

Citrus plants do not present natural resistant species including oranges, mandarins and 
grapefruits, as well as hybrids and citrus relatives used as rootstock (Roistacher, 1993), 
promoting the generation of new alternatives of control. Transformation of woody plants 
present disadvantages as the time consuming in transformation procedure and 
multiplication. Lines are propagated by bud grafting onto seedlings used as rootstocks 
generating replicates of each line. For challenge, transgenic scions are infected by grafting 
using infective tissue. For citrus psorosis disease the first work was done by Zanek et al., 
(2008) producing 21 independent lines of transgenic sweet orange (cp-lines) expressing low 
and variable amounts of CPsV coat protein (isolate CPV4). In these lines no correlation 
between copy number and transgene expression was found and no significant differences 
were observed in the response to virus challenge among the lines or among the replicates. 
Although two different viral loads were evaluated to challenge the transgenic plants, no 
resistance or tolerance was found in any line after one year of continuous observations. An 
inherent difficulty in this assay is that as long the rootstock is susceptible to CPsV, the virus 
could move to the rootstock and replicate. Thus, viruses could be delivered to the scion as a 
continuous challenge overcoming the protection. Applying PDR strategy but using different 
viral genes, sweet orange transgenic lines were generated expressing the 54k and 24k genes 
of CPV 4 isolate (Reyes et al., 2011a). In these assays fourteen lines were selected including 
new cp-lines. These plants were evaluated for their acquired resistance against two isolates, 
PsA (CPV 4) and PsB (CPsV 189-34), which differ in symptoms severity. These lines were 
susceptible to both isolates when graft-infected, although one of them carrying the cp gene 
(CP-96 line) containing two copies of the transgene and expressing a low level of the coat 
protein showed a delay in symptom expression when inoculated with the PsB isolate. 
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Therefore, other transgenic approach was applied developing CPsV-resistant sweet orange 
plants. In order to trigger the PTGS prior to CPsV infection, transgenic sweet orange plants 
producing intron-hairpin RNA transcripts corresponding to cp, 54k or 24k genes were 
generated. Lines carrying the ihpRNA derived from the cp gene (ihpCP, lines 10 and 15) 
provided a high level of virus resistance, but ihp54K and ihp24K lines resulted variable or 
highly susceptible to CPsV respectively (Reyes et al., 2011b). The siRNAs accumulation level 
was not directly correlated to the degree of the triggered virus resistance among the 
different lines, and no significant difference was observed between inoculated and non-
inoculated ihpCP resistant lines, indicating that in these plants the virus has been controlled 
probably immediately after the virus enter to the cells. Moreover, these results support the 
idea that not all regions of the viral genome yield the same level of resistance applying 
pathogen-derived-resistance strategy (Valkonen et al., 2002). For negative-stranded RNA 
viruses as tospovirus, replication is regulated by the CP concentration at the point of 
switching from mRNA production to replication of the genome (Storms, 1998). In the case of 
CPsV and MiLBVV the coat protein could be early involved in these functions, and its 
absence could impede viral replication. Moreover, all these results indicate that pre-
activation of the RNA-silencing machinery against the cp gene seems to be one alternative to 
prevent other ophiovirus infections. 

6. Concluding remarks 

Ophioviruses are the causal agent of old diseases as citrus psorosis and big-vein affecting 
major crops (citrus, ornamental plants and lettuce). Most of the ophioviruses are soil-
transmitted by a root-infecting fungus Olpidium, and in the case of CPsV an aerial vector is 
also suspected, although there are no evidences so far. The virions are circles of at least two 
different contour lengths, particles can form pseudolinear duplex structures, and the coiled 
filamentous are about 9-10 nm in diameter. Ophiovirus genome is divided into three or four 
individually encapsidated segments. CPsV, RWMV and FreSV have 3 RNAs and MiLBVV 
and LRNV have a fourth RNA. In the RNA 1, a protein of 22-25 kDa of unknown function is 
encoded in the 5´ region of the positive strand. Separated by an intergenic region of hundred 
nucleotides, the large ORF of RNA 1 encodes the putative RNA-dependent RNA 
polymerase of about 260K- 280K. Two regions of the RdRp of CPsV may be regarded as a 
bipartite nuclear localization signal (NLS), one of them conserved in MiLBVV and RWMV. 
A protein about 50-55 kDa is encoded by vcRNA 2 of CPsV, MiLBVV and LRNV, probably 
involved in virion movement and suppression of post transcriptional gene silencing (PTGS). 
A conserved NLS sequence of the RNA 2 of CPsV, LRNV and MiLBVV is present, 
suggesting that part of the cycle might occur in the nucleus. In the vcRNA 2 of MiLBVV an 
additional putative protein of unknown function is encoded. Viral and viral complementary 
RNAs of ophioviruses are encapsidated in a single coat protein of 43-50 kDa, which is 
encoded in the RNA 3. RNA 4 of MiLBVV and LRNV encode a potential protein of 37-38 
kDa, and an additional ORF in MiLBVV overlapping with the sequence of the p37, both of 
unknown function. The 5´and 3´ terminal sequences of MiLBVV are conserved among the 
four viral RNAs, but they do not anneal to perfect panhandle structures, which is expected 
to form according to the circular morphology. Instead, a “corkscrew” conformation similar 
to the Orthomyxoviridae RNA termini has been suggested. Similarly, for LRNV partial 
pairing of the 5´ with the 3’ end sequences of genomic RNAs can be found and a 
“corkscrew” conformation could be inferred, but this structure was not found in CPsV. 
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Moreover, comparing among RNA termini among ophiovirus genomes, it is noted that 
among  5´ terminal sequences of CPsV, MiLBVV and LRNV, and between 3´ ends of 
MiLBVV and LRNV, the sequences are highly conserved. The amino sequence of the RdRp 
active site was exploited to study the phylogenetic relationships among the ophioviruses 
and other representative negative-stranded RNA viruses, forming a new family 
Ophioviridae, without order assigned, including five species. 

For some cultivars of tulip and lettuce a natural resistance source has been used in breeding 
programs to gain resistant plants. However, that resistance has been variable and not 
enough to control these diseases. In the case of CPsV and MiLBVV pre-activation of the 
RNA-silencing machinery against the cp gene seems a good alternative to prevent 
ophiovirus infection in citrus and lettuce, and probably applicable in ornamental plants. 
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