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1. Introduction 

The first example of hormonal dependency of breast cancer can be dated back as far as 1896, 
when Dr. G.T. Beatson observed and described the reduction of breast cancer progression in 
a premenopausal patient after bilateral oophorectomy (Beatson 1896). It was an indication 
that the ovaries produced something in a woman’s body that fueled breast cancer growth. 
This phenomenon was reconfirmed in a collected series of patients with advanced breast 
cancer following oophorectomy (Boyd 1900), however there was only a 30% percent 
response. In 1916 Lathrop and Loeb demonstrated in mice, that ovarian function has an 
influence on the growth of mammary glands and tumorigenesis, and that castration of 
immature female mice has delayed the evolution of mammary tumors (Lathrop 1916). 
However, the chemical control mechanisms of breast cancer progression and the relevance 
of ovarian function remained uncertain, until the first animal models were introduced to test 
the effects of oophorectomy and estrogenic properties of different chemical compounds 
under precise laboratory conditions (Allen 1923). This model allowed the indentification the 
ovarian hormone, which induced estrus in oophorectomized mice, estrogen.  
In subsequent years during the 1930s and 1940s many other compounds, including 
diethylstilbestrol, and triphenylethylene derivatives would be identified as estrogens 
utilizing the ovariectomized mouse model (Robson 1937; Dodds 1938). The connection 
between the beneficial effects of oophorectomy as a treatment for advanced breast cancer 
provoked questions about the actual role of estrogen and other estrogenic compounds in 
breast cancer growth. High dose estrogen therapy was the first chemical therapy 
(“chemotherapy”) to treat any cancer successfully. In 1944 Haddow (Haddow 1944) 
published the results of his clinical trial with the synthetic estrogens triphenylchlorethylene, 
triphenylmethylethylene, and diethylstilbestrol. He found that 10 out of 22 post-menopausal 
patients with advanced mammary carcinomas, who were treated with 
triphenylchlorethylene, had significant regression of tumor growth. Five patients out of 14 
who were treated with high dose stilbestrol produced similar responses. The finding that 
high doses of synthetic estrogens induced regression of tumor growth in some, but not all 
postmenopausal patients with breast cancer (30% of patients responded to therapy 
favorably) was similar to the random responsiveness of oophorectomy in premenopausal 
patients with metastatic breast cancer (Boyd 1900). However, Haddow (Haddow 1944) 
noted that the first successful use of a chemical therapy to treat breast and prostate cancers 
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was affiliated with significant systemic side effects, such as nausea, areola pigmentation, 
uterine bleeding, and edema of the lower extremities. At approximately same time Walpole 
was investigating the role of diethylstilbestrol and dienestrol in breast cancer (Walpole 
1948). He confirmed the results obtained by Haddow that estrogens are effective in the 
treatment of breast cancer and can be of benefit for patients, but also noticed that older 
women, and women who received higher doses of estrogens had a better response to 
hormonal therapy (Walpole 1948; Haddow 1950). However, the mechanisms were again 
undefined.  
The first successful attempt to decipher the biochemistry of estrogens in mammals occurred 
a decade later. Tritium-labeled hexestrol was found to accumulate in reproductive organs, 
including mammary glands, in female goats and sheep (Glascock and Hoekstra 1959). This 
finding was a crucial observation to understand the role of estrogens in processes involving 
target tissues, such as the mammary gland. Subsequently this research was translated to the 
clinic with the finding that tritium-labeled hexestrol accumulated at a higher rate in patients 
that favorably respond to adrenalectomy and oophorectomy, comparing to patients that do 
not (Folca et al. 1961). This indicated that patients who would accumulate estrogens better in 
target breast tissue would respond better to surgical castration. However, this technical 
approach was not pursued further. 
During the 1950’s Kennedy (Kennedy and Nathanson 1953) systematically investigated the 

efficacy of synthetic estrogens for the treatment of advanced breast cancer. Kennedy 

examined a variety of different estrogens, however he found no significant differences and 

diethylstilbestrol became the standard drug. However, side effects still remained a concern 

and responses lasted for only about a year in the majority of patients. By the 1960’s, the 

standards for the hormonal treatment of breast cancer were established. Premenopausal 

women were to be treated with ovarian irradiation therapy or bilateral oophorectomy. 

However, based on data from the clinical trials, postmenopausal patients with advanced 

breast cancer were to be treated with high dose of the most potent synthetic estrogenic 

compound diethylstilboestrol (Kennedy 1965). Overall, one could anticipate that 36 % of 

patients would respond favorably to high dose estrogen therapy (Kennedy 1965). However, 

the molecular mechanisms of the anticancer action of estrogen remained elusive. In 1970 

Haddow (Haddow 1970) was not enthusiastic about the overall prospects of chemical 

therapy of breast cancer, he felt that it was important that safer less toxic “estrogens” were 

developed that might extend therapeutic use. There were clues that deciphering the 

mysteries of endocrine therapy, such as unknown mechanisms of tumor regression after 

high-dose estrogen therapy, which could be of major benefit for patient’s treatment. 

Haddow stated: “In spite of the extremely limited practicality of such measure [high dose 

estrogen], the extraordinary extent of tumor regression observed in perhaps 1% of post-

menopausal cases has always been regarded as of major theoretical importance, and it is a 

matter of some disappointment that so much of the underlying mechanisms continues to 

elude us”. However, as noted previously, high dose estrogen therapy was more successful 

as a treatment for breast cancer the farther the woman was from the menopause. Estrogen 

withdrawal somehow played a role in sensitizing tumors to the antitumor actions of 

estrogen, but this fact was not appreciated at that time. We will return to this concept. 

Elwood Jensen predicted the existence of estrogen receptor (ER) in 1962 (Jensen 1962), and 

the isolation and identification of the ER protein by Toft and Gorski occurred in 1966 (Toft 

and Gorski 1966). The mediating role of the ER in the estrogen responsiveness of breast 
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cancer was established, and eventually the ER became the molecular target for targeted 

therapy and prevention of ER-positive breast cancer (Jensen and Jordan 2003). It was 

suggested (Lacassagne 1936) in 1936 that a therapeutic agent to block estrogen action would 

be useful in breast cancer prevention, but there were no clues. Potential candidate 

antiestrogens were only discovered 20 years later in the late 1950s, but these agents were 

identified and screened as contraceptive drugs in laboratory animals. MER25 (Lerner et al. 

1958), which was first reported as a non-steroidal antiestrogen and subsequently found to be 

a post-coital contraceptive in animals (Lerner and Jordan 1990). But the drug was too toxic. 

The first clinically useful compound MRL41 or clomiphene was tested in women; however, 

it was not a contraceptive, but actually induced ovulation. Nevertheless, clinical trials of 

clomiphene in the early 1960’s did move forward to evaluate its activity in the treatment of 

breast cancer, but were terminated because of concerns about the drug’s potential to cause 

cataracts (Jordan 2003). In parallel studies stimulated by the initial reports of the non-

steroidal antiestrogens, ICI 46,474, the pure trans-isomer of a substituted triphenylethylene, 

was discovered at Imperial Chemicals Industry (ICI) Pharmaceuticals (now Astra Zeneca) 

and was described as a postcoital contraceptive in the rat (Harper and Walpole 1967). The 

Head of the Fertility Control program, Arthur Walpole, earlier in his career was interested 

in why only some postmenopausal women with metastatic breast cancer respond favorably 

to high dose estrogen therapy (Walpole 1948). Later Walpole ensured that ICI 46,474 was 

tested in the clinic and placed on the market as an orphan drug while ICI invested in the 

scientific research by others in academia to conduct a systematic study of the anticancer 

actions of tamoxifen and its metabolites (Jordan 2008). This investment reinvented tamoxifen 

as the first anticancer agent specifically targeted to the ER in the tumor and created the 

scientific principles to ultimately establish tamoxifen as the “gold standard” for the adjuvant 

therapy of breast cancer and as the first chemopreventative agent that reduces the incidence of 

breast cancer in women with elevated risk (Fisher et al. 1999; EBCTCG 2005). 

2. Development and clinical application of antihormonal therapy 

Since the clinical application of the laboratory principle of targeting the ER with long-term 
antihormonal therapy (Jordan 2008) to treat breast cancer has become the standard of care, 
two different approaches to adjuvant antihormonal therapy have been developed in the past 
30 years: first, is the blockade of estrogen-stimulated growth (Jensen and Jordan 2003) at the 
tumor ERs with antiestrogens, and the second one, is the use of aromatase inhibitors to 
block estrogen biosynthesis in postmenopausal patients (Jordan and Brodie 2007). 
Tamoxifen was originally referred to as a non-steroidal antiestrogen (Harper and Walpole 
1967). However, as more has become known about its molecular pharmacology (Jordan 2001) 
it has become the pioneering Selective Estrogen Receptor Modulator (SERM). The concept of 
SERM action was defined by four main pieces of laboratory evidence: 1) ER-positive breast 
cancer cells inoculated into athymic mice grew into tumors in response to estradiol, but not to 
tamoxifen (antiestrogenic action), however both estradiol and tamoxifen induced uterine 
weight increase in mice (estrogen action) (Jordan and Robinson 1987); 2) raloxifene (another 
non-steroidal antiestrogen), which is less estrogenic in rat uterus, maintained the bone density 
in ovariectomized rats (estrogen action), as did tamoxifen (Jordan et al. 1987), and prevented 
mammary carcinogenesis (antiestrogenic action) (Gottardis and Jordan 1987); 3) tamoxifen 
blocked estradiol-induced growth of ER-positive breast cancer cells in athymic mice 
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(antiestrogenic action), but induced rapid growth of ER-positive endometrial carcinomas 
(estrogenic action) (Gottardis et al. 1988); 4) raloxifene was less effective in promoting 
endometrial cancer growth than tamoxifen (less estrogenic action in uterine tissue) (Gottardis 
et al. 1990). These laboratory results all translated into clinical practice where it was shown that 
tamoxifen effectively can reduce the incidence of breast cancer in high-risk pre- and 
postmenopausal women, however increases the incidence of blood clots and endometrial 
cancer, which is linked to estrogen-like actions of tamoxifen in these tissues in postmenopausal 
women, who have a low-estrogen environment (Fisher et al. 1998).  
Aromatase inhibitors have an advantage in the therapy of postmenopausal patients over 
tamoxifen, firstly, because there are fewer side effects, such as blood clots or endometrial 
cancer, and aromatase inhibitors have a small, but still significant efficacy in increasing 
disease free survival (Howell et al. 2005). However, most postmenopausal patients 
worldwide continue treatment with tamoxifen, either for economic reasons or because they 
were hysterectomized and also have a low risk of developing blood clots (low body mass 
index and are athletically active). In premenopausal women, long term tamoxifen is the 
antihormonal therapy of choice for the treatment of ductal carcinoma in situ (DCIS) (Fisher 
et al. 1999), ER-positive breast cancer treatment (EBCTCG 2005) and the reduction of breast 
cancer incidence in those premenopausal women at elevated risk (Fisher et al. 1998). It is 
important to stress that premenopausal women treated with tamoxifen do not have 
elevations in endometrial cancer and blood clots, thus risk: benefit ratio is in favor of 
tamoxifen treatment (Gail et al. 1999).  
The development of raloxifene from a laboratory concept (Jordan 2007) to a clinically 
effective drug to prevent both osteoporosis and breast cancer (Cummings et al. 1999; Vogel 
et al. 2006) has created new opportunities for clinical applications of SERMs. Raloxifene is 
the result. However, the biggest advantage of raloxifene is that it does not increase the 
incidence of endometrial cancer (Vogel et al. 2006), which was noted in postmenopausal 
women taking tamoxifen (Fisher et al. 1998). Raloxifene is used primarily for the prevention 
of osteoporosis and for the prevention of breast cancer in high risk postmenopausal women. 
The current clinical trend for the use of antihormonal therapy for the treatment and 
prevention of breast cancer is to employ long-term treatment durations. Currently 
aromatase inhibitors are used for a full 5 years after 5years of tamoxifen (Goss et al. 2005). 
Though, the clinical application of the SERM concept has proven itself to be successful for 
the prevention of osteoporosis and 50% of breast cancers (Vogel et al. 2006; Vogel et al. 
2010), drug resistance remains an important issue arising from long-term SERM treatment. 
Studies have shown that after long-term SERM treatment, the pharmacology of the SERMs 
changes from an inhibitory antiestrogenic state to a stimulatory estrogen-like response 
(Gottardis and Jordan 1988). 

3. Evolution of SERM resistance as deciphered by the laboratory models 

Clinical and laboratory studies have identified possible mechanisms for the acquired 

resistance to SERMs, and tamoxifen. Acquired resistance to SERMs is unique as the tumors 

are SERM stimulated for growth (Howell et al. 1992). The first laboratory model (Gottardis 

and Jordan 1988; Gottardis et al. 1988; Gottardis et al. 1990) of transplantable tamoxifen 

resistant cells demonstrated that 1) tamoxifen or estrogen can cause tumors to grow, 2) 

tumors require a liganded receptor to grow, 3) an aromatase inhibitors (estrogen 

deprivation) or a pure antiestrogen that causes ER degradation would be useful second line 
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agents, 4) there was cross resistance with other SERMs (O'Regan et al. 2002). Currently, 

numerous model systems exist to study SERM resistance. Some are engineered to increase 

the likelihood of resistance (Osborne et al. 2003) and others are engineered by transfection of 

the aromatase gene to study resistance to aromatase inhibitors and compare them with 

tamoxifen (Brodie et al. 2003). In contrast, others have chosen to develop models naturally 

through selective pressure either in vivo or in vitro. The natural selection approach is to 

either continuously transplant the resulting SERM resistant breast cancer into SERM-treated 

athymic animals (Wolf and Jordan 1993; Lee et al. 2000) or to employ strategies in vitro that use 

continuous SERM treatment (Herman and Katzenellenbogen 1996; Liu et al. 2003; Park et al. 

2005) or long term estrogen deprivation in culture (Song et al. 2001; Lewis et al. 2005). Distinct 

phases of resistance were elucidated with the use of unique models of tamoxifen-resistant 

breast cancer developed in vivo, in order to better understand the biological consequences of 

extended antiestrogen treatment on the survival of breast cancer. The model for the treatment 

phase was developed by injecting ERǂ-positive MCF-7 cells into athymic mice and 

supplementing them with post-menopausal doses of estradiol (E2) (86–93 pg/ml) (Robinson 

and Jordan 1989), which were estradiol-stimulated and tamoxifen (TAM)-inhibited (Figure 1).  
 

Treatment         Phase I          Phase II             Phase III+

ER

ER +ER +

1. E2 Inhibited

2. SERM-stimulated

ER +

1. E2 or SERM-

stimulated 

1. E2 inhibited1. E2 stimulated

2. SERM-inhibited

Evolution of SERM resistance

  

Fig. 1. Evolution of SERM resistance as observed in animal models. 

With short term treatment (<2 years) with tamoxifen Phase I TAM-resistant breast tumors 
developed, which were stimulated to grow by both E2 and tamoxifen (Figure 1) (Gottardis 
and Jordan 1988; Osborne et al. 1991). The novel model of Phase II resistance to tamoxifen 
was developed by long-term treatment (>5 years) of breast tumors with tamoxifen (MCF-
7TAMLT). These MCF-7TAMLT tumors were stimulated to grow with tamoxifen, but 
paradoxically were inhibited by estradiol (Figure 1) (Wolf and Jordan 1993; Yao et al. 2000; 
Osipo et al. 2003). The phase when all known therapies fail and only E2-inhibit the growth is 
referred to as phase III resistance (Figure 1) (Jordan 2004). Interestingly, during the 
progression from the treatment phase to Phase III resistance, a cyclic phenomenon was 
observed where initially estradiol-inhibited growth of Phase II TAM-resistant tumors 
followed by re-sensitization to estradiol as a growth stimulant (Yao et al. 2000). These new 
estradiol-stimulated MCF-7 tumors from Phase II tamoxifen-resistant tumors were inhibited 
by treatment with either TAM or fulvestrant demonstrating complete reversal of drug 
resistance to tamoxifen (Yao et al. 2000). A similar phenomenon was observed with 
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raloxifen-resistance (Balaburski et al. 2010). In addition to SERM-resistant tumors, estradiol, 
at physiologic concentrations, has also been shown to induce apoptosis in long term 
estrogen deprived (LTED) breast cancer cells in vitro and in vivo. We noted previously, that 
in the past, pharmacologic estrogen was employed in therapy of advanced breast cancer that 
resulted in favorable responses with regression of disease (Haddow 1944). Estrogen therapy 
yields as high as 40% response rate as first-line treatment in patients with hormonally 
sensitive breast cancer with metastatic disease (Ingle et al. 1981) and approximately 31% in 
patients heavily pre-treated with previous endocrine therapies (Lonning et al. 2001). The 
unique aspect of current laboratory findings is that physiologic estrogen can induce tumor 
regression in long-term anti-hormone drug resistance (Wolf and Jordan 1993; Yao et al. 2000; 
Song et al. 2001; Jordan and Ford 2011). But what are the mechanisms? 
 

Cytochrome C

Caspase 9

Apaf1

Caspase 6

Caspase 7

Apoptosis

Estradiol
FasL

Fas

FADD

Caspase 8

NF-κB

HER2/neu

Death Receptor 

pathway

ER
E2

Bax

Bim

P53

NOXA

GADD45
GADD45

Bak

Mitochondria-mediated

pathway

ER
Activated 

receptor

Unliganded

receptor

Bcl-2

Mitochondria

E2

Known mechanisms of estrogen-induced apoptosis in LTED breast cancer cells

 

Fig. 2. Mechanisms of estrogen-induced apoptosis in Long-Term Estrogen Deprived (LTED) 
breast cancer cells. Both FasR/FasL death-signaling and mitochondrial pathways are involved. 

4. Mechanism of estrogen-induced apoptosis 

To investigate the mechnisms of estradiol-induced apoptosis SERM-stimulated models (Liu 

et al. 2003; Osipo et al. 2003) or long-term estrogen deprived MCF-7 breast cancer cell lines 

(Song et al. 2001; Lewis et al. 2005; Lewis et al. 2005) have been interrogated. A link between 

estradiol-induced apoptosis and activation of the FasR/FasL death-signaling pathway was 

demonstrated in tamoxifen-stimulated breast cancer tumors by inducing the death receptor 
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Fas with physiologic levels of estradiol and suppressing the antiapoptotic/prosurvival 

factors NF-κB and HER2/neu (Osipo et al. 2003; Lewis et al. 2005). A similar finding was 

reported (Liu et al. 2003) for raloxifene-resistant tumor cells where the growth of raloxifene-

resistant MCF-7/Ral cells in vitro and in vivo was repressed by estradiol via mechanism 

involving increased Fas expression and decreased NF-κB activity. Furthermore, MCF-7 cells 

deprived of estrogen for up to 24 months (MCF-7LTED) in vitro expressed high levels of Fas 

compared to the parental MCF-7 cells, which do not express Fas and treatment of the MCF-

7/LTED cells with estradiol resulted in a marked increase in Fas ligand (FasL) in these cells 

(Song et al. 2001). It was also noted that mitochondrial pathway could play a role in 

mediating estrogen induced apoptosis as the basal expression levels of Bcl-2 were higher in 

these cells than in the parental MCF-7 cells. Estradiol induced apoptosis occurs in a LTED 

breast cancer cell line named MCF-7:5C by neutralization of the Bcl-2/Bcl-XL proteins, and 

upregulation of proapoptotic proteins such as Bax, Bak and Bim, which proves the role of 

intrinsic mitochondrial pathway (Lewis et al. 2005) (Figure 2).  

In MCF-7:5C cells the expression of several pro-apoptotic proteins—including Bax, Bak, 
Bim, Noxa, Puma, and p53—are markedly increased with estradiol treatment and blockade 
of Bax and Bim expression using siRNAs almost completely reversed the apoptotic effect of 
estradiol. Estradiol treatment also led to a loss of mitochondrial potential and a dramatic 
increase in the release of cytochrome c from the mitochondria, which resulted in activation 
of caspases and cleavage of PARP. Furthermore, overexpression of anti-apoptotic Bcl-xL was 
able to protect MCF-7:5C cells from estradiol-induced apoptosis. This particular study was 
the first to show a link between estradiol-induced cell death and activation of the 
mitochondrial apoptotic pathway using a breast cancer cell model resistant to estrogen 
withdrawal (Lewis et al. 2005). Besides the action on the mitohodrial pathway, Bcl-2 
overexpression increases cellular glutathione (GSH) level which is associated with increased 
resistance to chemotherapy-induced apoptosis (Voehringer 1999). GSH is a water-soluble 
tripeptide composed of glutamine, cysteine, and glycine. It is the most abundant 
intracellular small molecule thiol present in mammalian cells and it serves as a potent 
intracellular antioxidant protecting cells from toxins such as free radicals (Schroder et al. 
1996; Anderson et al. 1999). Changes in GSH homeostasis have been implicated in the 
etiology and progression of some diseases and breast cancer (Townsend et al. 2003) and 
studies have shown that elevated levels of GSH prevent apoptotic cell death whereas 
depletion of GSH facilitates apoptosis (Anderson et al. 1999). Our laboratory has found 
evidence which suggests that GSH participates in retarding apoptosis in antihormone-
resistant MCF-7:2A human breast cancer cells, which have ~60% elevated levels of GSH 
compared to wild-type MCF-7 cells and unable to undergo estrogen-induced apoptosis 
within 1 week unlike MCF-7:5C cells, and that depletion of GSH by 100 µM of L-buthionine 
sulfoximine (BSO), a potent inhibitor of glutathione biosynthesis, sensitizes these resistant 
cells to estradiol-induced apoptosis (Lewis-Wambi et al. 2008). However, the question arises 
as to the actual mechanism of the apoptotic trigger mediated by the ER complex. 

5. Structure-function relationship studies for deciphering estrogen-induced 
apoptosis 

The fact that SERMs do not affect the spontaneous growth of MCF-7:5C cells, but can 

completely block estradiol-induced apoptosis, was an important clue that the shape of the 
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ER can be modulated to prevent apoptosis. Extensive structure-function relationship studies 

were initially used to develop a molecular model of estrogen and antiestrogen action 

(Lieberman et al. 1983; Jordan et al. 1984; Jordan et al. 1986). The hypothetical model 

presumed the envelopment of a planar estrogen within the ligand-binding domain (LBD) of 

the ER complex. In contrast, the three-dimensional triphenylethylene binding in the LBD 

cavity prevents full ER’s activation by keeping the LBD open. This structural perturbation of 

the ER complex is achieved by a correctly positioned bulky side chain on the SERM. This 

model was enhanced by the subsequent studies to solve the X-ray crystallography of the 

LBD ER’s bound with an estrogen or an antiestrogen (Brzozowski et al. 1997; Shiau et al. 

1998). The LBD of ERǂ is formed by H2-H11 helices and the hairpin ǃ-sheet, while H12, in 

the agonist bound conformation closes over the LBD cavity filled with E2. E2 is aligned in 

the cavity by hydrogen bonds at both ends of the ligand, particularly the 3-OH group at the 

A-ring end of E2. This allows hydrophobic van der Waals contacts along the lipophilic rings 

of E2, in particular between Phe404 and E2’s A-ring, to promote a low energy conformation 

(Brzozowski et al. 1997). This results in sealing of the ligand-binding cavity by H12, and 

exposes the AF-2 motif at the surface of the receptor for interaction with coactivators to 

promote transcriptional transactivation. In contrast, 4-hydroxytamoxifen binds to ER’s LBD 

to block the closure of the cavity by relocating H12 away from the binding pocket, thus 

preventing coactivator molecules from binding to the appropriate site on the external 

surface of the complex, which produces an antiestrogenic effect (Shiau et al. 1998). 

Therefore, it is the external shape of the ERs that is being modulated by the ligand which 

dictates the binding of coactivator molecules. In other words, the shape of the ligand 

actually causes the receptor to change shape and programs the ER complex to be able to 

bind coregulator molecules. However, the simple model of a coregulator controlling the 

biology of an ER complex is not that simple. The modulation of the estrogen target gene is in 

fact, regulated by a dynamic process of assembly and destruction of transcription complex 

at the promoter site of a target gene. After ER is bound to an agonist ligand, its conformation 

changes allowing coregulator molecules to bind to the complex, for example, SRC-3. SRC-3 

is a core coactivator that also attracts other coregulators that do not directly bind to ER, such 

as p300/CBP histone acetyltransferase, CARM1 methyltransferase, and ubiquitin ligases 

UbC and UbL. All of these coregulators perform specific subreactions within the protein 

complex of ER and DNA necessary for transcription of target genes, such as chromatin 

remodeling through methylation and acetylation modifications, and also direct their 

enzymatic activity towards adjacent factors, which promote dissociation of the coactivator 

complex and subsequent ubiquitinilation of select components for proteosomal degradation. 

As a result, this allows the next cycle of coactivator-receptor-DNA interactions to proceed 

and the binding and degradation of transcription complexes sustaining the gene 

transcription (Lonard et al. 2000). However, although AF-2 is deactivated by 4OHTAM, the 

4OHTAM:ERǂ complex has estrogen-like activity (Levenson et al. 1998), whereas raloxifene 

does not (Levenson et al. 1997). This is believed to be because the side chain of raloxifene 

shields and neutralizes asp351 to block estrogen action (Levenson and Jordan 1998). In 

contrast the side chain of tamoxifen is too short. It appears that when helix 12 is not 

positioned correctly the exposed asp351 can interact with AF-1 to produce estrogen action. 

This estrogen-like activity can be inhibited by substituting asp351 for glycine an uncharged 

amino acid (MacGregor Schafer et al. 2000). However, knowledge of the structure of the 
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4OHTAM: ER LBD complex (Shiau et al. 1998) led to the idea that all estrogens may not be 

the same in their interactions with ER (Jordan et al. 2001). Previous studies suggest that non-

planar TPEs with a bulky phenyl substituent prevents helix-12 from completely sealing the 

LBD pocket (Jordan et al. 2001). This physical event creates a putative ‘anti-estrogen like’ 

configuration within the complex. However, the complex is not anti-estrogenic because 

Asp351 is exposed to communicate with AF-1 thus causing estrogen-like action. Therefore, 

there are putative Class I (planar) and Class II (non-planar) estrogens (Jordan et al. 2001). A 

similar classification and conclusion has been proposed (Gust et al. 2001), but the biological 

consequences of this classification were unknown until recently.  

To further address the hypothesis that the shape of the ER complex can be controlled by the 
shape of an estrogen, and thereby altering its functional properties, such as induction of 
apoptosis, a range of hydroxylated TPEs was synthesized (Figure 3) to establish new tools to 
investigate the relationship of shape with estrogenic activity through the exposure of asp351 
(Maximov et al. 2010).  
 

1

(3OHTPE)

2 3

4 5

(Ethox-TPE)

Endoxifen

Synthesized non-steroidal estrogens

 

Fig. 3. Synthesized class II non-steroidal estrogens. All estrogens are hydroxylated 

derivatives of triphenylethylene; 1 – 3-hyrdoxytriphenylethylene (3OHTPE),  

2- bisphenoltripenylethylene, 3 – E-dihydroxytriphenylethylene,  

4- Z-dihydroxytriphenylethylene, 5- ethoxytripenylethylene, and Endoxifen (a metabolite of 

the antiestrogenic triphenylethylene tamoxifen with high affinity for the estrogen receprtor). 

We compared and contrasted the estrogen-like properties of the hydroxylated TPEs to 
promote proliferation in the ERǂ-positive human breast cancer cell line MCF-7:WS8 cells 
(Figure 4A), which are hypersensitive to the proliferative actions of E2. Compounds were 
compared with the tamoxifen metabolites 4-OHT and endoxifen. Results show that our 
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MCF-7:WS8 human breast cancer cells were exquisitely sensitive to E2 which produced a 
concentration-dependent increase in growth, and all of the TPE’s were potent agonists with 
the ability to stimulate MCF-7:WS8 breast cancer cell growth, however, their agonist 
potency was less compared to E2. The metabolites, 4-OHT and endoxifen, had no significant 
agonist effect in MCF-7:WS8 cells, however, these compounds at 1 µM were able to 
completely inhibit estradiol-stimulated MCF-7:WS8 breast cancer cell growth, thus 
confirming their role as antiestrogens (data not shown). To determine the ability of the test 
TPEs to activate the ER, MCF-7:WS8 cells were transiently transfected with an ERE-
luciferase reporter gene encoding the firefly reporter gene with 5 consecutive Estrogen 
Responsive Elements (EREs) under the control of a TATA promoter. The binding of ligand-
activated ER complex at the EREs in the promoter of the luciferase gene activates 
transcription. The measurement of the luciferase expression levels permits a determination 
of agonist activity of the TPE:ER complex. All the phenolic TPEs were estrogenic and 
induced the increase of ERE-luciferase activity, but were less potent compared to E2. To 
confirm and advance the hypothesis that the shape of the estrogen ER complex was different 
for planar and nonplanar (TPE –like) estrogens, series of tested phenolic TPEs were 
evaluated in the ER-negative breast cancer cell line T47D:C42 (Pink et al. 1996) which was 
transiently transfected with an ERE luciferase plasmid and either the wild-type ER or the 
D351G mutant ER plasmids. Previously it was found that the mutant D351G ER completely 
suppressed estrogen-like properties of 4-OHT at an endogenous TGFǂ target 
gene(MacGregor Schafer et al. 2000). We established that in the presence of the wild-type ER 
all of the tested TPE compounds were potent agonists with the ability to significantly 
enhance ERE luciferase activity (Figure 4C). In contrast, when the D351G mutant ER gene 
was transfected with the ERE luciferase reporter only the planar E2 was estrogenic whereas 
the TPEs did not activate the ERE reporter gene (Figure 4D). These results confirm the 
importance of Asp351 in ER activation by TPE ligands to trigger estrogen action. To further 
confirm the hypothesis, the best “fits” of the tested TPEs and endoxifen, obtained from 
docking simulations ran against the antagonist conformation of the ER, were superimposed 
on the experimental agonist conformation of the ER. Overall the TPEs are unlikely to be 
accommodated in the agonist conformation of the ER due to the sterical clashes between 
“Leu crown”, mostly Leu525 and Leu540, helix 12 and ligands, indicating, that these ligands 
most likely bind to ER’s conformation more closely related with the antagonist form. X-ray 
crystallography of ER-4OHTAM and ER-Raloxifene complexes, demonstrating that the 
presence of the alkyaminoethoxy sidechain of 4OHTAM is crucial for the ER to gain an 
antagonistic conformation by displacing the H12 of the receptor by 4OHTAM’s bulky 
sidechain, thus preventing the binding of the coactivators (Shiau et al. 1998). The absence of 
the alkyaminoethoxy sidechain on the tested TPEs does not allow these compounds to act as 
antiestrogens, like 4-OHT or endoxifen, which posseses the alkyaminoethoxy sidechain 
(Shiau et al. 1998). However, the fact that these TPEs were able to significantly induce 
growth and ERE activation in MCF-7:WS8 cells demonstrated that they are still full agonists, 
despite the changes in biological potencies of the tested TPEs, due to repositioning of the 
hydroxyl groups and addition of the ethoxy group. Thus cell growth is a very sensitive 
property of the ligand:ER complex and can occur minimally with an AF-1 function alone in 
the case of TPEs but also with the possibility for interacting with a perturbated LBD. 4OHT 
does not stimulate growth so possibly a corepressor binds in the case of a SERM:ER 
complex. An interesting aspect of the study (Maximov et al. 2010) is the importance of 
Asp351 in activation of the ER thereby acting as a molecular test for the presumed structure 
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A. B.

C. D.  

Fig. 4. A: Agonist activity in MCF-7:WS8 cells of synthesized TPEs and E2 and anti-

estrogens 4-OHT and Endoxifen; B: E2 induces apoptosis in long-term estrogen deprived 

MCF-7:5C cells and synthesized TPEs are unable to act as full agonists resembling more 

anti-estrogens 4-OHT and Endoxifen; C: E2 and all TPEs are able to increase the activity of 

luciferase in T47D:C4:2 cells transiently transfected with wild-type ER DNA construct; D: E2 

is the only agonist in D351G ER mutant T47D:C4:2 cells, as TPEs are unable to increase the 

luciferase activity in cells expressing the mutant form of ER, indicating the importance of 

Asp351 of the ER for activation with non-planar TPEs. 

of the TPE:ER complex. Based on the X-ray crystallography of the ER in complex with 
4OHTAM (Shiau et al. 1998) and raloxifene (Brzozowski et al. 1997), it was determined that 
the basic side chains of these antiestrogens are in proximity of Asp351 in the ER. It was 
hypothesized that this interaction with raloxifene actually neutralizes and shields Asp351 
preventing it from interacting with ligand-independent activating function 1 (AF-1). In 
contrast, 4OHTAM possesses some estrogenic activity, because the side chain is too short 
(Shiau et al. 1998). Substitution of Asp351 with Glycine which is a non-charged aminoacid, 
leads to loss of estrogenic activity of the ER bound with 4OHTAM (MacGregor Schafer et al. 
2000; Levenson et al. 2001). Results from ERE luciferase assays in T47:C4:2 cells transiently 
transfed with wild type and D351G mutant ER expression plasmids demonstrated that wild 
type ER was activated by all of the tested TPEs, however substitution of Asp351 by Gly 
prevented the increase of ERE luciferase activity by all TPEs and only planar E2, which does 
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not interact with Asp351 at all, or exposes it on the surface of the complex, was able to 
activate ERE in D351G ER transfected cells. This confirms and expands the classification of 
estrogens, where planar estrogens such as E2 are classified as class I and all TPE-related 
estrogens are classified as class II estrogens based on the mechanism of activation of the ER 
(Jordan et al. 2001). 
Further we tested the hypothesis that, the shape of the ER complex with either planar 
estrogens (Class I) or angular estrogens (Class II), can modulate the apoptotic actions of 

estrogen through the shape of the resulting complex. In this study MCF-7:5C cells were 
employed to investigate the actions of 4-OHT and our model TPEs on estradiol-induced 

apoptosis. As estrogen-induced apoptosis can be reversed in a concentration related manner 
by the nonsteroidal antiestrogen 4-OHT, paradoxically, all tested TPEs were able to reverse 

the apoptotic effect of estradiol in MCF-7:5C cells, at the same time the tested TPEs alone 
were not able to induce apoptosis in these cells significantly (Figure 4B). However, the 

tested TPEs have still retained their ability to induce ERE-luciferase activity in MCF-7:5C 
cells, indicating that these compounds are still agonists of the ER in these cells, but 

biologically acted as antagonists. Besides differences in biological effects of TPEs in MCF-7 
cells and MCF-7:5C cells, biochemical effects of tested TPEs on ER complex similar to those 

with 4-OHT were studied. 4-OHT is known to retard the destruction of the 4-OHT ER 
complex (Pink and Jordan 1996; Wijayaratne and McDonnell 2001). Similarly, the TPEs do 

not facilitate the rapid destruction of the TPE:ER complex, as it was shown via Western 
blotting that the TPE:ER levels are analogous to 4-OHT:ER levels rather than estradiol ER-

like, where ER is rapidly degraded. As it was noted previously, ER degradation plays a 
crucial role in estrogen-mediated gene expression. It was previously shown that ER protein 

degradation is proteosome mediated (Lonard et al. 2000; Reid et al. 2003), and ER 
coactivator SRC3/AIB1 links the transcriptional activity of the receptor and its proteosome 

degradation (Shao et al. 2004). Our results indicate that the transcriptional activity of ER, 
based on qRT-PCR results, is similar on the pS2 gene in both MCF-7:WS8 cells and MCF-

7:5C cells with the tested TPE compounds, and based on our ChIP assay results for 
evaluating the ER’s recruitment on the pS2 gene promoter, the E2:ER complex has robust 

binding in the promoter region and SRC-3 is detected presumably bound to the ER complex, 
however, 4-OHT:ER complexes only have modest binding of ERǂ and virtually no SRC-3 in 

the promoter region, at the same time, the TPEs permit some binding of the TPE:ER 
complexes in the promoter region but there are lower levels of SRC-3 and a reduced ability 

to stimulate PS2 mRNA synthesis (Figure 5).  
We believe that the changed conformation of the TPE:ER complex, prevents the complete 

closure of H12 over the ligand-binding cavity and thus does not allow co-activators to bind 

to the incompletely open AF-2 motif on the ER’s surface. Indeed, LeClercq’s group 

(Bourgoin-Voillard et al. 2010) have recently confirmed and extended our molecular 

classifications of estrogens, with a larger series of compounds and have also shown that an 

angular TPE does not cause the destruction of the ER complex in a manner analogous to 

estradiol when MCF-7 cells are examined by immunohistochemistry for the ER, and that the 

putative Class II estrogens that do not permit the appropriate sealing of the LBD with helix 

12 do not efficiently bind co-activators, therefore our respective studies are in agreement.  

In summary, the proposed hypothesis that the TPE-ER complex significantly changes the 

shape of the ER to adopt a conformation that mimics that adopted by 4-OHT when it binds 

to the ER. A co-activator now has difficulty in binding to the TPE-ER complex 
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appropriately, but whereas this does affect cell replication, it dramatically impairs the events 

that must be triggered to cause apoptosis. Future studies will confirm or refute our 

hypothesis based upon the known intrinsic activity of mutant ERs and their capacity to 

investigate estrogen-target genes. 
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Fig. 5. A&B: ChIP analysis performed in MCF-7:WS8 cells with pS2 promoter region was 
pulled down via anti-ERǂ antibody (A) and anti-SRC3/AIB1 antibody (B); C&D: ChIP 
analysis performed in MCF-7:5C cells with pS2 promoter region pulled down via anti-ERǂ 
antibody (C) and anti-SRC3/AIB1 antibody (D). All results indicate that in both cell lines 
tested TPEs and E2 recruit ERǂ complex to the pS2 promoter region, but interestingly, class 
II estrogens are unable to co-recruit sufficient amount of SRC-3 co-activator, unlike E2. 

6. Relevance to current clinical research 

Laboratory studies show that low concentrations of estrogen can cause apoptotic death of 

breast tumor cells, following estrogen deprivation with antihormonal treatment. This has 

translated very well into the clinic, and recent clinical trials have demonstrated that low-

dose estrogen treatment can effectively be utilized after the formation of resistance to 

antihormonal treatment. Ellis and colleagues (Ellis et al. 2009) have shown, that a daily dose 

of 6 mg of estradiol could stop the growth of tumors or even cause them to shrink in about 

25% of women with metastatic breast cancer that had developed resistance to antihormonal 

therapy. At the same time, these results correlate with earlier results obtained by Loenning 

and coworkers (Lonning et al. 2001), who have studied the efficacy of high dose of DES on 

the responsiveness of metastatic breast cancer following exhaustive antihormonal treatment 

www.intechopen.com



 
Targeting New Pathways and Cell Death in Breast Cancer 

 

16

with tamoxifen, aromatase inhibitors and etc. 4 out of 32 patients had complete responses 

(Lonning et al. 2001) and 1 patient after 5 year treatment with DES had no recurrence for a 

following 6 years (Lonning 2009). The question at that moment remains whether estrogen at 

physiologic concentrations can be efficient as antitumor agent in estrogen-deprived breast 

tumors. As mentioned previously, Ellis and coworkers have demonstrated that an 

equivalent clinical benefit for high (30 mg daily) and low (6 mg daily) dose of estradiol in 

metastatic breast cancer patients who had failed aromatase inhibitor therapy, which is long-

term estrogen deprivation. Overall, the results demonstrate that low dose estrogen therapy 

has fewer systemic sideffects, but the same efficacy as a treatment for long-term 

antihormone resistant breast cancer as high dode estrogen therapy. This can be seen as 

“replacement with” physiologic estrogen to premenopausal levels. The benefit-risk ratio is 

in favor of low-dose estrogen therapy. These results correlate well with results from WHI 

trial of estrogen-replacement therapy (ERT) in hysterectomized postmemopausal women 

(LaCroix et al. 2011). The WHI results show a sustained reduction in the incidence of breast 

cancer in postmenopausal women up to 5 years after the intervention with conjugated equine 

estrogens for 5 years prior. It was demonstrated that the group of patients receiving 

conjugated equine estrogens had incidence of breast cancer 0.27% in comparison to the control 

group of patients the incidence was 0.35%. The idea that woman’s own estrogen can act as an 

antitumor agent after estrogen-deprivation to prevent metastization and tumor growth (Wolf 

and Jordan 1993) has lead to incorporation into the Study of Letrozole Extension (SOLE) trial. 

This trial is addressing the question whether regular drug holydays can decrease recurrence of 

breast cancer by physiologic estrogen after deprivation with aromatase inhibitor letrozole. 

Subsequent trials may have to use ERT for a few weeks to trigger apoptosis. 

7. Conclusion 

Taken together, the demonstrations of the apoptotic actions of estrogen as a potential 
anticancer agent in postmenopausal breast cancer patients, now provides a rationale to 
further explore and decipher mechanisms of estrogen-induced apoptosis. There is a 
possibility that future studies on the molecular mechanism of estrogen-induced apoptosis 
will help to indentify new more safer and specific agents for breast cancer therapy.  
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