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1. Introduction 

Immunotherapy of tuberculosis (TB) has long been considered to be a potential adjunct to 

chemotherapy, by targeting ‘persister’ organisms which are generated during 

chemotherapy. In this chapter, we briefly review the current immunotherapeutic 

approaches in TB and then focus in more detail on a novel form of combined 

immunotherapy (CIT), comprising an IgA monoclonal antibody (mAb) against the -

crystallin (Acr) antigen,  IFN- and anti-IL-4 antibodies. CIT treatment significantly reduced 

new pulmonary infection and also the post-chemotherapy relapse in Mycobacterium 

tuberculosis infected BALB/c mice. Translation of this approach toward application in 

humans has been advanced by the development and characterization of a novel human 

IgA1 mAb which was generated by co-transfecting the V domains of the Acr-binding 2E9 

scFv clone and IgA1 constant region domains into CHO-K1 cells. The monomeric 2E9IgA1 

has strong binding affinities for Acr and for the human FcRI/CD89 receptor. Intranasal 

inoculation of affinity purified 2E9IgA, and mouse IFN- inhibited M. tuberculosis 

pulmonary infection and granuloma formation in the lungs of CD89 transgenic, but not in 

littermate control mice. 2E9IgA1 also inhibited infection of human whole blood and 

monocyte cultures. Demonstration of the mandatory role of the FcRI/CD89 receptor for 

passive protection is novel and important for the elucidation of mechanisms of IgA action. 

Further development of the described new human mAb is required for the translation of 

immunotherapy for the control of TB in humans.  

2. Immunotherapy of TB 

TB is a major killer, causing 1.5 million deaths annually, with the majority occurring in 
developing countries, also bearing the brunt of the rampant HIV epidemic.  Although TB 
chemotherapy is highly effective, it is very protracted, lasting for six months or longer. This 
impacts negatively on completion rates, and defaulting leads to the emergence and spread 
of multi-drug resistant (MDR) strains of tubercle bacilli. Although new drugs have been 
proposed for treatment [1], the need for new therapies is of major concern in the fight 
against the MDR-TB. Arresting the global TB epidemic and also reducing the incidence of 
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MDR-TB could be achieved by shortening the duration of the treatment. Since combined 
drug and immunotherapy treatments probably carry the greatest potential, several 
immunotherapeutic approaches have been considered, with the three described below 
receiving most attention. 

2.1 Immunotherapeutic vaccines 

One of the first immunotherapeutic applications of vaccines to show some promise in a 
clinical trial was the heat-killed Mycobacterium vaccae [2]. Its mode of action has been 
proposed to be an enhancement of Th1 and down-regulation of Th2 cytokine expression. 
Multiple doses of vaccine are required to achieve faster bacteriological conversion, 
improved radiological picture and recovery of body weight.  However, subsequent clinical 
trials with M. vaccae produced inconclusive (reviewed in [3]), or negative results [4, 5].  
Plasmid DNA expressing mycobacterial antigens have also been evaluated for their 
therapeutic capacity. Thus, Hsp65-based DNA vaccine prevented the post-chemotherapy 
relapse in mice [6], while an Ag85-expressing DNA vaccine was  effective in one  [7], but not 
in another [8] study. A detoxified extract of M. tuberculosis in liposome form (termed RUTI), 
prevented post-chemotherapy relapse in the ‘Cornell model’, and was proposed for the 
immunoprophylactic treatment of latent tuberculous infection [9]; this vaccine has recently 
undergone a phase 1 clinical trial in Spain (Cardona-PJ, personal communication). 

2.2 Cytokine therapy 

Cytokines are highly pleiotropic proteins that can promote host immune defence 

mechanisms. For effective treatment of mycobacterial infections, the administered cytokines 

must first reach their target cells, bind to the specific receptors and finally, activate an intact 

signal transduction pathway to elicit a cellular response. Due to their pleiotropic activities, 

the dose and route of administration must be carefully considered, in order to avoid the risk 

of toxicity and other unwanted pharmacological effects. Several cytokines have been 

considered for treatment of mycobacterial infections, including IFN-, Il-2, IL-12, GM-CSF 

(granulocyte-macrophage colony-stimulating factor) and G-CSF (granulocyte colony-

stimulating factor). In TB patients, Th1 cytokines are produced at high levels at the site of 

infection, but the systemic response is characterised by high levels of Th2 and reduced levels 

of Th1 cytokines [10, 11]. Given the established protective role of Th1 immunity to 

intracellular pathogens, this provides a strong rationale for using these cytokines as 

immunotherapeutic adjunct treatment for TB. Two small clinical trials utilising recombinant 

IL-2 reported a definitive benefit in TB patients [12, 13]. However, a subsequent large-scale 

randomized IL-2 trial of HIV-negative TB patients yielded disappointingly negative results. 

Paradoxically, it even appeared that IL-2 had a detrimental effect on bacillary clearance, 

probably due to IL-2-mediated induction of CD25 + regulatory T cells [14]. These studies 

show that although the cytokines carry a significant therapeutic potential, their application 

for treatment of TB is yet to be fully explored.  

2.3 Monoclonal antibodies 

Historically, the view that protective immunity against TB is imparted exclusively by T cells, 
but not by antibodies has been influenced by the assumption that antibodies cannot reach 
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the bacilli which shelter within the phagosomes of infected macrophages. However, a 
review of the early literature on passive ‘serum therapy’ indicates both positive and 
negative results[15], with the one consistent theme being that such treatments appeared 
more effective in patients with early and localised TB rather than long-standing, chronic 
cases. With the development of modern approaches and tools, most notably the monoclonal 
antibody technology, it became possible to address the role of antibodies in intracellular 
infections in a far more controlled, reproducible fashion. Thus, significant new evidence 
emerged that antibodies can play a role in suppressing intracellular infections, including 
those caused by Cryptococcus neoformans [16], Listeria monocytgenes [17] and Erlichia  chaffensis 
[18]. This led to a reappraisal of the role of antibodies in TB, which  has recently been 
reviewed by us [19] and others [15, 20]. However, this approach still remains contentious, 
and further work is clearly needed to address the role of antibodies and their potential 
therapeutic application in TB and other intracellular infections. 

3. Evidence for a therapeutic potential of antibodies in TB 

The possible protective role of antibodies in M. tuberculosis infection has been indicated by 

clinical studies, showing that antibody titres to LAM [21] or Ag85 antigens [22] were higher 

in patients with milder forms of active TB.  Support for a protective role comes also from 

animal experiments showing higher level of infection in mice genetically depleted of B cells 

(-chain knock-out)[23] or defective for IgA production [24].   

Recently, a significant 100-fold reduction of the postchemotherapy relapse of pulmonary 

infection in SCID mice was reported following intraperitoneal inoculation of mouse 

antisera containing predominantly IgG antibodies [25]. These antibodies were stimulated 

by M. tuberculosis infection, chemotherapy and immunization of DBA/2 mice with a 

detoxified M. tuberculosis extract. In addition, intraperitoneal administration of a standard 

preparation of human gamma globulin from normal donors, reduced bacterial loads in 

the spleen and lungs of intravenously infected mice [26]. Antibodies could have played a 

role, since normal human sera contain high antibody titres for LAM and mycobacterial 

heat shock proteins [27]. 

Passive inoculation of mouse monoclonal antibodies (mAb) against a number of antigens 

was reported to be protective in mouse models of TB infection, but the mechanisms 

involved differed. Thus, pre-opsonization of intratracheally administered tubercle bacilli 

with IgG3 against LAM antigen [28] enhanced the granulomatous infiltration and prolonged 

the survival of mice, without affecting the bacterial load in the lungs, while an intravenously 

administered IgG1 against the same antigen decreased the bacterial load, and also 

prolonged survival [29]. The authors of both these studies suggested that antibody action 

involved blocking of the LAM-mediated uptake of bacilli by macrophages.  

Another study, utilising an antibody against heparin-binding hemagglutinin (HBHA) 

glycoprotein, showed impaired bacterial dissemination from the lungs, due to the antibody 

inhibiting HBHA interaction with epithelial cells [30]. In addition to the above quoted 

passive protection studies, in vitro coating of M. tuberculosis bacilli with monoclonal anti-

lipomannan IgG3 [28] or anti-MPB83 surface glycoprotein IgG1 [31] prolonged the survival 

(but not the infection of lungs) of infected mice. 
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Taken together, these studies have clearly demonstrated that antibodies can influence M. 
tuberculosis infection, despite the intracellular location, by probably interacting with the 
bacilli during the extracellular phase following the initial inhalation, or the release from 
apoptotic macrophages.  No clinical trials have been conducted as yet, but they seem 
justified, subject to development and evaluation of ‘humanised’ mAbs.  

4. Immunotherapy of TB with mouse IgA mAb TBA61  

IgA is the most abundant antibody class in mucosal fluids, where it plays important anti-
microbial roles involving several different mechanisms of action. The majority of the IgA 
found in mucosal fluids is secretory IgA (sIgA), which is formed when polymeric IgA binds 
to the poly-immunoglobulin receptor (PIGR), expressed on the basolateral side of epithelial 
membranes. While retaining a portion of PIGR, the antibody is then translocated into the 
mucosal lumen, where it can bind to invading pathogens, leading to their neutralisation or 
‘exclusion’ of infection. sIgA can also intercept viruses infecting epithelial cells, during the 
process of antibody transcytosis [32]. These important functions of sIgA, coupled with its 
increased stability in harsh mucosal environment, make this form of IgA antibody 
particularly suitable for therapeutic purposes. Unfortunately, sIgA is difficult to make in 
recombinant form, though advances in expression technology have been made [33]. 
Therefore, most of the passive protection studies have been conducted with the serum forms 
of monomeric IgA. 

IgA can bind to a number of different cellular receptors. In addition to the already 
mentioned PIGR on epithelial cells, the main Fc receptor of mononuclear cells for human 
IgA is CD89, though its mouse equivalent has not been identified. Other known IgA 
receptors include the asialoglycoprotein receptor, which plays a role in IgA catabolism by 
hepatocytes [34], the transferrin receptor, which binds IgA1 but not IgA2 [35] and the 

IgA/IgM receptor (Fc/R), which is expressed on B cells and monocytes [36].  

IgA was reported to be protective against pathogenic bacteria in a number of studies, 

although the mechanisms of action appear different. For example, immune exclusion was 

reported as the key protective mechanism against Salmonella typhimurium [37] and Vibrio 

cholera [38], while agglutination was shown to play a role in inhibition of Chlamydia 

trachomatis genital infection [39]. In addition, binding to a defined virulence factor and 

neutralisation, were the mechanisms of inhibition of Helicobacter felis gastric infection [40], 

while multiple mechanisms were suggested for IgA-mediated inhibition of Shigella flexneri 

infection [41]. 

Transmission of mAbs against mycobacterial antigens into the lungs following intranasal 
(i.n.) or parenteral administration [42] was more efficient for IgA, than for IgG mAbs. When 
comparing these mAbs for their protective capacity in BALB/c mouse model of M. 
tuberculosis infection, the IgA mAb TBA61, which is specific for the α-crystallin (Acr, 16 kDa) 
antigen, was superior to both an IgG1 of the same antigen and epitope specificity, and also 
to another IgA mAb, specific for the PstS1 (38 kDa) antigen [43]. Both monomeric and 
polymeric form of IgA were found to be protective, inducing an approximately 10-fold 
reduction of the bacterial load in infected animals. Interestingly, both pre- and post-
challenge mAb inoculations were required for optimal protection and the Acr antigen 
specificity and IgA isotype were both important for the observed inhibitory effect [43]. 
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Acr is a small heat shock protein of M. tuberculosis which is expressed at particularly high 
levels during conditions of anoxia and stress during growth in macrophages [44, 45]. 
Although the protein is largely expressed in the cytosol, an increased association with the 
bacterial cell wall is observed under the conditions of stress and low oxygen concentration 
[46]. These conditions are present during the stationary phase of growth in vitro and also 
during the intracellular phase of infection. The recent evidence suggests that M. tuberculosis 
clinical strains recovered from the sputum of TB patients have a changed phenotype 
consistent with stationary, rather than actively dividing organisms [47], lending further 
support to the importance of the Acr antigens as the antibody target. Evidence from the 
guinea pig model of M. tuberculosis infection indicates that the majority of residual 
‘persister’ bacilli following short-term drug treatment are extracellular [48]. Most likely, 
such non-dividing organisms would express high levels of cell wall associated Acr, making 
them a suitable target for anti-Acr IgA mAbs. 

The IgA-mediated inhibition of the early M. tuberculosis infection in mice was transient, and 
therefore we explored the possibilities for extending and further enhancing the observed 
therapeutic effect. Cytokines play crucial roles in modulating immune responses to 
infection, and therefore, could be harnessed to aid therapeutic treatments. We considered 

the immune-stimulating cytokine IFN-, and the suppression/removal of Th2 cytokine IL-4, 

that can undermine protective immunity in TB. The rationale for inclusion of IFN- and also 
the neutralising anti-IL-4 antibodies, as well as the effect of combined immunotherapy is 
described in the following section. 

5. Combined immunotherapy for TB with IgA, IFN-and anti-IL-4 

5.1 Rationale for IFN- 

IFN- has many important activities, such as activation of phagocytes, stimulation of antigen 
presentation, induction of cell proliferation and cell adhesion, and regulation of apoptosis. 

These important roles of IFN- for the immune responses to pathogens are best described in 
the context of the so-called Th1/Th2 paradigm. IL-12, another important cytokine, directly 

induces IFN- gene transcription and secretion in antigen-stimulated naive CD4+ cells [49], 

while in turn, IFN- induces IL-12 expression in macrophages and monocytes [50], thus 
creating a positive feedback loop. This leads against a Th1 type immune response to an 
intracellular infection. In contrast, Th2 cytokines IL-4, IL-13 and IL-10 suppress production of 

IL-12 by monocytes, and consequently also inhibit effector functions of IFN-, notably, the 
expression of inducible nitric oxide synthase [51, 52] and the respiratory burst [53].  

The critical role of IFN- in the immunity to mycobacterial infections was confirmed in IFN- 
deficient mice, when two groups showed independently [54, 55] that mice with a disrupted 

IFN- gene were unable to control M. tuberculosis infection. The lack of protective immunity 

in IFN- deficient mice could be attributed exclusively to their inability to activate 
macrophages, since these mice otherwise developed antigen specific T  cell responses, albeit 
more rapidly than the control mice [56]. Humans with a mutation in the IFN-γ receptor 
show enhanced susceptibility to TB [57] and the results of a first small scale clinical trial for 

treatment of MDR-TB with aerosolised IFN- [58] indicated a short-term treatment benefit. 

Therefore, IFN- may have a therapeutic potential for treatment of TB, although additional 
components may be required to achieve a more robust therapeutic effect [59]. 
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5.2 Rationale for Th2-suppressing agents 

The regulatory and potentially detrimental role of Th2 cytokines in TB has recently attracted 
considerable research interest, in relation to studies of both immunopathogenesis of TB and 
vaccine development. TB develops only in a small proportion (5-10%) of the exposed 
immunocompetent individuals. It is tempting to speculate that these individuals could have 
the normally protective innate and acquired immunity ‘dis-regulated’ by Th2 cell mediated 
inhibitory immune mechanisms. It has been proposed that IL-4 in particular, could downregulate 

the protective Th1 cytokine IFN- and lead to  mediated toxicity and fibrosis [60]. 

However, the exact mechanism of the negative IL-4 effect on the course of mycobacterial 
infection is not fully understood. One possibility is that IL-4 inhibits the expression of nitric 
oxide synthase [61, 62] and since nitric oxide is a mandatory mediator of macrophage 
activation mediated killing of tubercle bacilli, its decreased levels could delay the clearance 
of mycobacterial infection [52].   

Additional circumstantial evidence from experimental studies also points to a possible 

negative role of IL-4 in TB. Thus, -glucan mediated inhibition of TGF-, resulted in 

upregulated expression of IFN- and IL-2 and downregulated production of IL-4, leading to 
a significant reduction in bacterial counts in the absence of chemotherapy [63]. This was 
unfortunately associated with an increased risk of inflammation in the lungs, which 
required anti-inflammatory treatment for optimal anti-tuberculous effect.  

Similarly, immunisation of M. tuberculosis infected mice with heat-killed M. vaccae resulted 
in decrease of bacterial burden in the lungs, which was correlated by decrease in IL-4 
expression [64]. Two other immunotherapeutic vaccines have been proposed (though not 
tested in clinical trials), both interfering with Th2 cytokine expression levels.  A DNA 
vaccine incorporating mycobacterial heat shock protein 65 (HSP65) was shown to be 
protective in mice [6] and the protection was clearly correlated with down-regulation of IL-4 
production. More recently, a fragmented and detoxified M. tuberculosis based vaccine 
termed RUTI, was shown to be protective when given to chemotherapy-treated mice [9], 
and this effect was at least in part mediated by suppression of Th2 cytokine activity. 
Therefore, therapeutic approaches targeting Th2 cytokines could potentially be utilised for 
adjunctive treatment of TB. 

6. Development and testing of CIT 

IgA-mediated protection against early M. tuberculosis in mice could be further extended by 

co-inoculation with IFN-γ [65, 66]. IFN-γ was inoculated to mice i.n., 3 days before aerosol 

M. tuberculosis challenge, and then again together with IgA mAb, on the day of the infection 

and 2 days later. Co-administration of IgA and IFN-synergistically prolonged and 

enhanced the CFU-inhibitory effect of IgA alone and also reduced lung pathology [65].  

IL-4 depleted or genetically deficient IL-4-/- mice are more resistant to M. tuberculosis 
infection; this could be reversed by reconstitution of mice with recombinant IL-4 [67, 68]. 

Combined treatment of mice with a neutralizing anti-IL-4 antibody, anti--crystallin IgA 

mAb and IFN- reduced lung infection with M. tuberculosis profoundly more than 
individual treatment regimens. Most importantly, however, this combined triple treatment 

with anti-IL-4 mAb, IgA and IFN-, prevented post-chemotherapy relapse of the infection in 
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three different strains of mice [69], suggesting that CIT has the therapeutic potential for 
adjunctive application with  standard TB treatment. 

Multiple mechanisms are likely to be involved in protection against M. tuberculosis conferred 
by CIT. Some of them may operate on a cellular level (for example, stimulation of 

phagocytosis by IgA and IFN-), while others may involve more complex interactions 
within the immune system, resulting in modulation of the early response to M. tuberculosis 
infection. A schematic representation of some of the potential mechanisms of CIT action is 
depicted in Fig.1. 

 

Fig. 1. Proposed mechanisms of action of combined immunotherapy (CIT) in M. tuberculosis 
infected hosts. Antibody could target extracellular bacteria and following their phagocytosis 

via IgA-receptor (indicated is human FcR, though the mouse equivalent is not known), the 

bacilli are destroyed in phagolysosome. IFN- activates non-infected 
monocytes/macrophages, thus enhancing their bactericidal activity towards incipient 
infection. IL-4 could induce alternative activation of macrophages that does not lead to 
killing of intracellular organisms; in addition, it could also negatively modulate the early 
immune response to M. tuberculosis, by undermining the Th1 type response. Other, 
unknown mechanisms might also be involved, possibly including cytotoxicity of 
lymphocytes and granuloma formation. 

7. Translational studies with human IgA 

In order to further develop the combined TB immunotherapy for potential application in 

humans, a human IgA antibody specific for Acr antigen has been generated. As mentioned 
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earlier, the human and mouse IgA systems differ significantly, both in terms of IgA 

structure and also the availability of IgA Fc receptors. Thus, IgA exists in two forms in 

humans, IgA1 and IgA2, while the mouse IgA exists in a single form, corresponding to IgA1. 

The most significant difference, however, is that there is a well characterised IgA-Fc receptor 

on human myeloid cells, CD89, which is responsible for much of the IgA-mediated anti-

microbial activity [70-72], while an equivalent receptor in mice has not be identified. 

Therefore, it is an important consideration that therapeutic recombinant IgA antibodies 

should bind efficiently not only to the target antigen, but also to CD89 on 

monocytes/macrophages, the target cell population for immunotherapy. 

A single chain Fv fragment (scFv) specific for Acr was generated using a human phage 

library and then expressed in CHO cells as a human IgA1 molecule with ‘grafted’ scFv 

epitope binding site [73]. The expressed 170 kDa recombinant IgA was purified by affinity 

chromatography and found to be glycosylated, with both N- and O-linked sugars present. 

The purified human antibody, termed 2E9IgA1, bound to both Acr (7.0 x 10-8 ) and CD89 

(2.9 x 10-6), with both the affinity constants being well within the range for antibody-antigen 

and antibody-receptor type interactions, respectively.  

The effect of 2E9IgA1 on M. tuberculosis infection was tested in mice transgenic for the 

human IgA receptor. Antibody was administered at the time of infection and again, at 

either 1 or 21 day after infection. Separate groups of mice were inoculated with IFN- or 

with both IFN-and IgA. The bacterial load in the lungs and spleen, as well as the 

immunopathology of the lungs were analysed four weeks later. Both 2E9IgA1 and IFN- 

caused partial reduction in bacterial load, but the greatest therapeutic effect was observed 

when the two were co-administered together, with the difference between treated and 

untreated animals being statistically highly significant [73]. Early and late treatment 

applications following challenge of mice with M. tuberculosis produced a similar 

therapeutic effect. Importantly though, the treatment had no significant effect on the 

infection in non-transgenic littermate controls, suggesting a mandatory role for CD89 in 

the observed reduction of infection. In agreement with decreased bacterial load in the 

lungs, the treated animals showed also reduced granulomatous infiltration of their 

lungs. 

Studies on whole human blood cultures infected with M. tuberculosis showed that 2E9IgA1 

reduced the infection at least in some donors. This effect required a relatively high 

concentration of the antibody (100 g/ml) and the inhibition was apparent only when the 

ratio of bacteria:cell was 10 or less [73]. Interestingly, IFN- did not enhance the bactericidal 

effect of 2E9IgA in whole blood cultures although it did do so in purified human monocytes 

infected with M. tuberculosis. The outcome of the in vitro studies is generally consistent with 

the finding using mouse IgA, that the therapeutic effect in vivo was greater than the 

inhibition of infection in vitro, hence suggesting the involvement of complex in vivo 

mechanisms of antibody action. 

These studies showed that the therapeutic potentials of 2E9IgA1 human mAb for 

tuberculosis deserve further evaluation in the form of CIT for treatment. The history of the 

past advances using IgA based CIT are summarised in Table 1. 
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Year Stage of development  Reference 

2000 TBA61 anti-Acr mAb generated and shown to be superior to 
IgG for transmission to lungs  

[42] 

2004 TBA61 IgA induced a 10-fold inhibition of early M. 
tuberculosis infection in BALB/c mice; however, inhibition 
was transient 

[43] 

2006 Co-administration of IgA and IFN- extended the duration 
of inhibition compared to IgA alone 

[65] 

2007 Addition of anti-IL-4 antibody profoundly enhanced the 

therapeutic effect of IgA and IFN- 

[67] 

2009 CIT (IgA, IFN- and anti-IL4) reduced significantly 
postchemotherapy relapse of M. tuberculosis infection in 
mice 

[69] 

2011 Human 2E9IgA1 anti-Acr mAb generated and shown to be 

protective, when co-administered with IFN-, in human IgA-
receptor transgenic mice 

[73] 

Future 
research 

Testing of 2E9IgA1-based CIT in non-human primates and 
subsequently, phase I human clinical trials 

- 

Table 1. Key stages of development of CIT based on IgA, IFN- and anti-IL-4  

8. Targets for future research, development and clinical evaluation 

There is scope for future research on the following different aspects of the combined 
immunotherapy:  

1. Mechanisms of IgA action. We proposed previously that binding of mouse IgA to the 

intracellular lectin galectin 3 [74], which accumulates in phagosomes [75], could 

‘unblock’ the M. tuberculosis induced inhibition of phagosome maturation [19]. In 

principle, galectin 3 could act as a mediator of the intracellular actions of IgA, 

considering that it has structural homology with TRIM21, which mediates the virus 

neutralizing activity of IgG antibodies [76]. 

2. Studies in CD89 transgenic mice. There is a need to demonstrate: i) if there is synergy 

between the actions of the 2E9IgA human antibody and anti-IL-4 antibodies or IL-4 

antagonists; ii) if 2E9IgA based CIT can reduce the relapse of infection following short-

term chemotherapy to an extent, which had been reported for the mouse TBA61-based 

CIT; iii) if CIT can reduce the MDR-TB infection. 

3. Development of 2E9IgA production. It is necessary to modify the plastic adherent CHO-K1 
transfectant cell line into a suspension growing variant [77], in order to increase the 
yield of IgA production. This is a prerequisite for producing the GMP-grade antibody 
in quantities required for evaluation in clinical trials. 

4. Evaluation of 2E9IgA based CIT in non-human monkey models of TB. Macaques are 
eminently suitable, since they express the IgA/CD89 receptor [78] that can bind human 
IgA [79]. A suitable technique for aerosol delivery of IgA would need to be developed 

www.intechopen.com



 
Understanding Tuberculosis – Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity 

 

466 

using the approaches for the inhaled therapy with various agents [80]. Demonstrating 
protection against aerosol M. tuberculosis infection and pathology in the macaque model 
of infection would justify further evaluation in human clinical trials.  

5. Evaluation in HIV-positive, low CD4+cell patients. They develop active TB at a high rate 
and need an alternative to the current combined chemotherapy for HIV and TB [81], 
because it associates with drug-drug interactions and toxicity. 

6. Evaluation in patients with drug-susceptible TB, as an adjunct to chemotherapy. The potential 
benefit to the widest range of patients would be to shorten the duration of treatment. 
This would in turn lead to higher completion rates, reduced risk of relapse and MDR-
TB. The rationale of this approach has recently been strengthened by the finding, that 
chemotherapy generated ‘persister’ bacilli are extracellular [48]; this makes them a 
suitable target for IgA-based CIT. 

7. Evaluation in MDR-TB and XDR-TB patients. Existing difficulties in developing effective 
new drugs justify evaluation of CIT as a possible alternative approach. 
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