
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

13

SW Annotation Techniques and RTOS
Modelling for Native Simulation of

Heterogeneous Embedded Systems

Héctor Posadas, Álvaro Díaz and Eugenio Villar
Microelectronics Engineering Group of the University of Cantabria

Spain

1. Introduction

The growing complexity of electronic systems has resulted in the development of large
multiprocessor architectures. Many advanced consumer products such as mobile phones,
PDAs and media players are based on System on Chip (SoC) solutions. These solutions
consist of a highly integrated chip and associated software. SoCs combine hardware IP cores
(function specific cores and accelerators) with one or several programmable computing
cores (CPUs, DSPs, ASIPs). On top of those HW resources large functionalities are
supported.

These functionalities can present different characteristics that result in non homogeneous
solutions. For example, different infrastructure to support both hard and soft real time
application can be needed.. Additionally, large designs rely on SW reuse and thus on legacy
codes developed for different platforms and operating systems. As a consequence, design
flows require managing not only large functionalities but also heterogeneous architectures,
with different computing cores and different operating systems.

The increasing complexity, heterogeneity and flexibility of the SoCs result in large design
efforts, especially for multi-processor SoCs (MpSoC). The high interaction among all the SoC
components results in large number of cross-effects to be considered during the
development process. Additionally, the huge number of design possibilities of complex
SoCs makes very difficult to find optimal solutions. As a consequence, most design
decisions can no longer depend only on designers’ experience. New solutions for early
modeling and evaluating all the possible system configurations are required. These
solutions require very high simulation speeds, in order to allow analyzing the different
configurations in acceptable amounts of time. Nevertheless, sufficient accuracy must be
ensured, which requires considering the performance and interactions of all the design
components (e.g. processors, busses, memories, peripherals, etc.).

Static solutions have been proposed to estimate the performance of electronic designs.
However, these solutions usually result too pessimistically and are difficult to scale to very
complex designs. Instead, performance of complex designs can be more easily evaluated
with simulation based approaches. Thus, virtual platforms have been proposed as one of the
main ways to solve one of the resulting biggest challenges in these electronic designs:

www.intechopen.com

Embedded Systems – Theory and Design Methodology

278

perform software development and system performance optimization before the hardware
board is available. As a result, engineers can start developing and testing the software from
the beginning of the design process, at the same time they obtain system performance
estimations of the resulting designs.

However, with the increase of system complexity, traditional virtual platform solutions
require extremely large times to model these multiprocessor systems and evaluate the
results. To overcome this limitation, new tools capable of modeling such complex systems in
more efficient ways are required. First, it is required to reduce simulation times. Second, it is
required to have tools capable of modeling and evaluating initial, partial designs with a low
effort. For example, it is not acceptable to require complete operating system ports to
initially evaluate different platform possibilities. Only when the platform is decided OS
ports must be done, due to the large design effort required.

Virtual platform technologies based on simulations at different abstraction levels have been
proposed, providing different tradeoffs between accuracy and speed. As early evaluation of
complex designs requires very high simulation speeds, only the use of faster simulation
techniques can be considered. Among them, simulations based on instruction set simulators
(ISSs) and binary translation are the most important ones. However, none of them really
provides the required trade-off for early evaluation.

ISSs are usually very accurate but too slow to execute the thousands of simulations required
to evaluate complete SoC design spaces. ISS-based simulations usually can take hours,
which means that the execution of thousand of simulation can require years, something not
acceptable in any design process.

Simulations based on binary translation are commonly faster than ISSs. However, these
solutions are more oriented to functional execution than to performance estimation. Effects
as cache modeling are usually not considered when applying binary translation.
Furthermore, this simulations also result too slow to explore large design spaces.

Additionally, in both cases, the simulation requires a completely developed SW and HW
platform. Completely operational peripheral models, operating systems, libraries, compilers
and device drivers are needed to enable system modeling. However, all these elements are
usually not available early in the design process. Then, these simulation techniques are not
only too slow but also difficult to perform. The dependence on such kind of platforms also
results in low flexibility. Evaluating different allocations in heterogeneous platforms,
different kind of processors and different operating systems is limited by the refining effort
required to simulate all the options. Similarly, the evaluation of the effect of reusing legacy
code in those infrastructures is not an easy task. As a consequence, faster and more flexible
simulation techniques, capable of modeling the effect of all the components that impact on
system performance, are required for initial system development and performance
evaluation.

The solution described in this chapter is to increase the abstraction level, moving the SW
simulation and evaluation from binary-based virtual platforms to native-based
infrastructures. Using cross-compiled codes to simulate a platform in a host computer
requires compulsory using some kind of processor models and a developed target SW
platform. Thus, the simulation overhead provided by the processor model, and the
development effort to develop the SW platform are items that cannot be avoided. On the

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

279

contrary, simulations based on native or host-compiled executions avoid requiring a
functional processor model, since no binary interpretation is done. Furthermore, a complete
SW platform is not required, since the native SW platform can be partially used.

Nevertheless, in order to accurately modeling the system behavior and its performance
modelling, a set of additional elements have been included in the native simulation
infrastructures. Capabilities for modeling the delay of the SW execution in the target
processor, the operation of the different level of caches, the target operating system and the
other components in the HW platform, have been added. In the literature, some partial
solutions have been proposed to support some of the elements of this list. However, some
other features have not been solved in previous approaches, such as the support of different
operating systems. Additionally as most of the proposed works are partial proofs of
concept, there is a lack of complete integrated solutions.

The modeling of the application SW and its execution time in the target platform is a key
element in native simulation, since it is the part of the infrastructure with more impact both
in the simulation speed and in the modelling accuracy. Thus, in order to enable the
designers to adjust the speed/accuracy ratio according to their needs, different solutions for
SW annotation are presented and analyzed in the chapter. All solutions enable very easily
exploring the effect of using different processors in the system. Only a generic compiler for
the target processor is used. No specific OS ports, linker scripts or libraries are required.

With respect to the operating system, a basic OS modeling infrastructure has been
developed, providing the user the possibility of simulating code based on Linux (POSIX),
uC/os-II and Windows. The model has been developed starting from an OS modelling
infrastructure providing a POSIX API. This infrastructure has been extended to support at
the same time the other two APIs. This is an important step ahead to the state of the art,
since very few proposed infrastructures support real operating systems, and to the best of
our knowledge none of them considers these different APIs.

The resulting virtual platforms are about two-three times slower that functional execution
when caches are not considered, and about one order of magnitude slower when using
cache models. Processor modeling accuracy in terms of execution times is lower than 5% of
error and the number of cache misses has an error of about 10%.

2. Related work

The modelling and performance evaluation of common MpSoC systems focuses in the
modelling of the SW components. Since most of the functionality is located in SW this part is
the one requiring more simulation times. Additionally the evaluation accuracy of the SW is
also critical in the entire infrastructure accuracy. SW components are usually simulated and
evaluated using two different approaches: approaches based on the execution of cross-
compiled binary code and solutions based on native simulation.

Simulations based on cross-compiled binary code are based on the execution of code
compiled for a target different from the host computer. As a consequence, it is required to
use an additional tool capable or reading and executing the code. Furthermore, this tool is in
charge of obtaining performance estimations. To do so, the tool requires information about
the cycles and other effects each instruction of the target machine will have in the system.
Three different types of cross-compiled binary code can be performed depending on the

www.intechopen.com

Embedded Systems – Theory and Design Methodology

280

type of this tool: simulations with processor models, compiled simulation and binary
translation.

Instruction set simulators (ISSs) are commonly used as processor models capable of
executing the cross-compiled code. These simulators can model the processor internals in
detail (pipeline, register banks, etc.). As a consequence, they achieve very accurate results.
However, the resulting simulation speed is very slow. This kind of simulators has been the
most commonly used in industrial environments. CoWare Processor Designer (Cowar),
CoMET de VaST Systems Technology (CoMET), Synopsys Virtual Platforms (Synopsys),
MPARM (Benini et al, 2003) provide examples of these tools. However, due to the slow
simulation speeds obtained with those tools, new faster simulation techniques are obtaining
increasing interest.

Compiled simulation improves the performance of the ISSs while maintaining a very high
accuracy. This solution relies on the possibility of moving part of the computational cost of
the model from the simulation to the compilation time. Some of the operations of the
processor model are performed during the compilation. For example, decoding stage of the
pipeline can be performed in compilation time. Then, depending on the result of this stage,
the simulation compiler selects the native operations required to simulate the application
(Nohl et al, 2002). Compiled simulations based on architectural description languages have
been developed in different projects, such as Sim-nML (Hartoog et al, 1997), ISDL (XSSIM)
(Hadjiyiannis et al, 1997) y MIMOLA (Leupers et al, 2099). However, the resulting
simulation is still slow and complex and difficult to port.

The third approach is to simulate the cross-compiled code using binary translation (Gligor et
al, 2009). In this technique assembler instructions of the target processor are dynamically
translated into native assembler instructions. Then, it is not necessary to have a virtual
model describing the processor internals. As a result, the SW code is simulated much faster
than in the two previous techniques. However, as there is no model of the processor, it is a
bit more difficult to obtain accurate performance estimations, especially for specific elements
as caches. Some examples of binary translation simulators are IBM PowerVM (PowerVM),
QEMU (Qemu) or UQBT (UQBT).

Although these techniques result in quite fast simulators, the need of modelling very
complex system early in the design process requires searching for much faster solution. For
example, the exploration of wide design spaces can require thousands of simulations, so
simulation speed have to be as close to functional execution speed as possible. The previous
simulation techniques require a completely developed SW and HW platform, which are
usually not available early in the design process. Then, these simulation techniques are not
only too slow but also difficult to perform. Additionally, the simulation of heterogeneous
platforms, with different kind of processors and different operating systems is limited by
the refining effort required to evaluate all the options.

In order to overcome all these limitations, native simulation techniques have been proposed
(Gerslauer et al, 2010).

2.1 Native simulation

In native simulation, the SW code is directly executed in the host computer. Thus, it is not
required any kind of interpreter. As a consequence, very high simulation speeds can be

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

281

achieved. However, in order to model not only the functionality but also the performance
expected in the target platform additional information has to be added to the original code.

Furthermore, a model of the SW platform is also required. If the target operating system API
is different than the native one, an API model is required to enable the execution of the SW
code. A scheduler only controlling the tasks of the system model, not the entire host
computer processes, specific time controller, or different drivers and peripheral
communications are elements the SW infrastructure must provide.

Several solutions have been proposed for both issues in the last years.

2.2 SW performance estimation

Native simulation (Hwang et al, 2008; Schnerr et al, 2008; Bouchima et al, 2009) obtains
target performance information from an analysis of the source code of the application SW to
be executed. The common technique used to perform native simulations is to divide the
code in fragments, estimate the time for each one of the fragments before the compilation
process and annotate this information in the code. Usually basic blocks are used as code
fragments because the entire block is always completely executed in the same way. Thus,
basic blocks can be annotated as a single unit without introducing estimation errors. Such
annotated code is then compiled and executed in the host computer, together with an
infrastructure capable of capturing the timing estimations generated, and applying the
corresponding delays to the simulation. As a consequence a timed model of the SW is
obtained; a model which is ready to interact with other timed SW and HW components, to
model the entire system.

Several techniques have been proposed to obtain the time information for each code
fragment. These techniques can be divided in three main groups: pure source code
estimations, estimations of intermediate code and cross-compiled code analysis.

Performance estimations based on source code analysis consider directly the C/C++
instructions of the basic block. They associate a number of cycles per instruction to each C
operator. Using these values the total number of cycles required to execute each block is
estimated. The associated time per instruction is obtained depending on the compiler and
the target platform. Using simple mathematical operations, the number of cycles required to
execute large sections of code is obtained (Brandolese et al, 2001; Posadas et al, 2004).
Compared with the other two solution types described below, this solution is the most
platform-independent one. No operational SW infrastructure for the target platform is
required: no compiler, no operating system or libraries, etc. However, the other two
solutions are more accurate, especially because no compiler optimizations can be considered
in this one.

Estimations obtained from analysis of the intermediate code enable considering compiler
optimizations, at least the optimizations that do not depend on the target instruction set.
The basic idea is to identify the instructions of the basic blocks of the source code in the
intermediate code. Analyzing the blocks in the intermediate code it is possible to obtain
more accurate information than that obtained with the source level analysis. The main
benefit obtained from using intermediate code is that the task of extracting the relationships
among the basic blocks of the source code and the intermediate code is much simpler than
with final cross-compiled code (Kempf et al, 2006; Hwang et al, 2008; Bouchima et al, 2009).

www.intechopen.com

Embedded Systems – Theory and Design Methodology

282

However, this technique presents several limitations. First, not all compiler optimizations
can be analyzed. Second, the intermediate code is completely dependent on the compiler, so
the portability of the solutions is limited. To solve those limitations, a few proposals for
analyzing the cross-compiled binary code have been also presented.

Estimations based on binary code are based in the relationships between the basic blocks of
the source code and the cross-compiled code (Schnerr et al, 2008). Since the code analyzed is
the real binary that is executed in the target platform, no estimation errors are added for
wrong consideration of the compiler effects. The problem with these estimations is how to
associate the basic blocks of the source code to the binary code (Castillo et al, 2010).
Compiler optimizations can provoke important changes in the code structure. As a
consequence, techniques capable of making correct associations in a portable way are
required.

Moreover, different efforts for modelling the effect of the processor caches in the SW
execution have been proposed. In (Schnerr et al, 2008) a first dynamic solution for
instruction cache modelling has been proposed. Another interesting proposal was presented
in (Castillo et al, 2010). Additionally, also solutions for data cache modelling have been
proposed (Gerslauer et al, 2010; Posadas et al, 2011).

This chapter proposes some solutions for making the basic block estimations, providing
different ratios between speed and accuracy, always maintaining complete portability for its
application to different platforms. Cache solutions provided in (Castillo et al, 2010) and
(Posadas et al, 2011) have been applied to optimize the final accuracy and speed.

2.3 Operating system modeling

The second element required to perform a correct native simulation is the modeling of the
SW platform. That is, it is required to model the operating system (Zabel et al, 2009; Becker
et al, 2010). Concurrency support, scheduling, management of priorities and policies and
services for communication and synchronization are critical issues in SW execution. Several
solutions have been proposed to simulate SW codes on specific OSs. Some operating system
providers include OS simulators in their SW development kits (ENEA; AXLOG). These
simulators enable the development and verification of SW functionality without requiring
the HW platform. However, these simulators only model the processor execution, without
considering other elements of the final system. This limitation has two different drawbacks.
First the simulators are not adequate for evaluating the system performance. Additionally,
the simulation of the SW with application-specific HW components is not possible. As a
result they are not adequate for its integration in co-design flows.

In order to obtain optimal HW/SW co-simulation environments with good relations
between accuracy and speed for the early stages of the design process, it is necessary to
develop models of RTOS based on high-level modeling languages. Several models based on
SpecC (Tomiyama et al, 2001; Gerstlauer et al, 2003) and SystemC (Hassan et al, 2005; He et
al, 2005; Schirner et al, 2007) have been proposed. However, most of these solutions have
limited functionality and proprietary interfaces, which greatly complicate the modeling of
real application SW codes (Gerstlauer et al, 2003; He et al, 2005; Yoo et al, 2002). Most of
these models are limited to providing scheduling capabilities. Later a few models of specific

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

283

operating systems have been proposed (Honda et al, 2004; Hassan et al, 2005). However,
these RTOS models were very light and with reduced functionality.

Given the need of providing more complete models for simulating MPSoC operating
systems, the infrastructure presented in this chapter starts from a very complete operating
system model based on the POSIX interface and the implementation of the Linux operating
system (Posadas et al, 2006). This chapter proposes an extension of this work to support
different operating Systems. The models of the common operating systems uC/OS and
Windows APIs are provided. As a result, the increasing complexity and heterogeneity of the
MpSoCs can be managed in a flexible way.

3. Previous technology

As stated above, one of the main elements in a system modelling environment based in
native simulation is the operating system model. It is in charge of controlling the execution
of the different tasks, providing services to the application SW and controlling the
interconnection of the SW and the HW. For that purpose, a model based on the POSIX API
is used. The model uses the facilities for thread control of the high-level language SystemC
to implement a complete OS model (Figure 1). Threads, mutexes, semaphores, message
queues, signals, timers, policies, priorities, I/O and other common POSIX services are
provided by the model. This work has been presented in (Posadas et al, 2006).

Fig. 1. Structure of the previous simulation infrastructure.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

284

Special interest in the operating system model has the modeling of separated memory
spaces in the simulation. As SystemC is a single host process, the integration of SW
components containing functions or global variables with the same names in a single
executable, or the execution of multiples copies of components that use global variables
result in name collisions. To solve that, an approach based on the use of protected dynamic
variables has been developed (Posadas et al, 2010).

However, the OS model is not only in charge of managing the application SW tasks. The
interconnection between the native SW execution and the HW platform model is also
performed by this component. For that goal, the model provides functions for handling
interrupts and including device drivers following the Linux kernel 2.6 interfaces.

Additionally, a solution capable of detecting and redirecting accesses to the peripherals
directly through the memory map addresses has been implemented. Most embedded
systems access the peripherals by accessing their registers directly through pointers.
However, in a native simulation, pointer accesses do not interact with the target HW
platform model, but with the host peripherals. In fact, accesses to peripherals result in
segmentation faults, since the user code has no permission to perform this kind of accesses.
To solve that, these accesses are automatically detected and redirected using memory
mappings (“mmap()”), interruption handlers, and code injection, in order to work properly
(Posadas et al, 2009).

Furthermore, a TCP/IP stack has been integrated in the model. For that purpose, the open-
source, stand-alone lwIP stack has been used. The stack has been adapted for its integration
into the proposed environment both for connecting different nodes in the simulation
through network models, and for connecting the simulation with the IP stack of the host
computer, in order to communicate the simulation with other applications.

As a consequence, the infrastructure has demonstrated to be powerful enough to support
the development of complete virtual platform models. However, improvements in the API
support and performance modelling of the application SW are required. This work proposes
solutions to improve them.

4. Virtual platform based on native simulation: goals and benefits

The goal of the native infrastructure is to provide a tool capable of assisting the designer
during the initial design steps. More specifically, the infrastructure has been developed to
provide the following services to the designers:

 Simulate the initial system models to check the complete functionality, before the
platform is available, including timing effects.

 Provide performance estimations of the system models to evaluate the design decisions
taken.

 Provide an infrastructure to start the refinement of the HW and SW components and
their interconnections from the initial functional specification

 Work as a simulation tool integrated in design space exploration flows together with
other tools required in the process

The first goal is to provide the designer with information about the system performance in
terms of execution time and power consumption to make possible the verification of the

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

285

fulfilment of the design constraints. This verification can be performed in two ways. First,
the infrastructure reports metrics of the whole system performance at the end of the
simulation, in order to enable the verification of global constraints. This solution allows
“black box” analysis, where designers can execute several system simulations running
different use cases, to easily verify the correct operation in all the working environments
expected for the system.

A second option enabled by the infrastructure is to perform the verification of the system
functionality and the checking of internal constraints. These internal constraints must be
inserted in the application code using assertions. For that purpose, the use of the standard
POSIX function “assert” is highly recommended. The infrastructure offers to the designer
functions that provide punctual information about execution time and power consumption
during simulation. Using that functions, internal assertions can check the accomplishment of
parameters as delays, latencies, throughputs, etc.

A second goal of the infrastructure is to provide useful information to guide the designers
during the development process. The co-design process of any system starts by making
decisions about system architecture, HW/SW partitioning and resource allocation. To take
the optimal decisions the infrastructure provides a fast solution to easily evaluate the
performance of the different solutions considered by the designer. Task execution times,
CPU utilization, cache miss rates, traffic in the communication channel, and power
consumption in some HW components are some of the metrics the designer can obtain to
analyze the effects of the different decisions in the system.

Another goal of the infrastructure is to provide the designers with a virtual platform where
the development of all the components of the system can start very early in the design
process. In traditional development flows, some components, such as SW components,
cannot start their development process until a prototype of the target platform is built.
However, it increases the overall design time since HW and SW components cannot be
developed in parallel.

To reduce the design time, it is provided a solution for HW/SW modeling where the design
of the SW components can be started. To enable that, the infrastructure provides a fast
simulation of the SW components considering the effects of the operating system, the
execution time of the SW in the target platform and enabling the interaction of the SW with
a complete HW platform model. Even, the use of interruptions and drivers can be modelled
in the simulation. The execution of the SW is then transformed in a timed simulation, where
the use of services such as alarms, timeouts or timers can be explored in order to ensure
certain real-time characteristics in the system.

Furthermore, the simulation of the SW using a native execution improves the debugging
possibilities. Designers can directly use the debuggers of the host system, which has a
double advantage: first, it is not necessary to learn how to use new debugging tools; second,
the correct operation of the debuggers are completely guaranteed, and does not depend on
possible errors in the porting of the tool-set to the target platform. Additionally, designers
can easily access to all the internal values of both the SW and HW components, since all are
modelled using a C++ simulation.

In order to achieve all these goals, the infrastructure implements a modeling infrastructure
capable of supporting complete native co-simulation. The infrastructure provides novel

www.intechopen.com

Embedded Systems – Theory and Design Methodology

286

solutions to enable automatic annotation of the application SW, a complete RTOS model,
models of most common HW platform components and an infrastructure for native
execution of the SW and its interconnection with the HW platform. Additionally, it is
possible to describe configurable systems obtaining system metrics.

5. SW estimation and modeling

As a stated before, SW modeling solutions have become one of the most important areas of
native simulation technology. The fastest possible execution of the system functionality is
the direct compilation and execution of the code in the host computer. Thus, the goal is to
provide a modeling solution capable of evaluating system performance, but maintaining a
similar execution speed, as long as possible. Specially, the modeling solution has to
overcome the three main limitations of functional execution with a minimum simulation
overhead. First, functional executions do not consider any timing effect resulting of
executing the code in the target platform. As a consequence, no performance information
and no constraint checkings are available. Second, these executions cannot interact with the
functionality implemented as HW components in the target platform. Thus, the simulation
of the entire system functionality and the verification of the HW/SW integration are not
possible. Finally, there is a problem when trying to execute a SW code developed for other
OS APIs different from the native API.

To solve the first limitation, the solution proposed is to automatically modify the application
SW in order to model performance effects. These performance effects include the execution
of the code in the target processor core and the operation of the processor caches. The
general solution applied for that modeling is based on estimating the effects during SW
execution and apply them to the simulation, just before the points where the SW tasks start
communications with the rest of the system, usually system calls. Four main solutions have
been explored for obtaining the estimations: modified host times, the use of operator
overloading and static annotation of basic-blocks at source and binary level. As a
consequence, designers can modify the simulation speed and accuracy according to their
needs on each moment.

The general annotation infrastructure enables using any of the estimation techniques with a
virtual platform. Even, they can be combined in the same simulation. It depends on the
method selected how to apply the estimated times for each SW component to increase the
simulation time. The basic idea is to apply the estimated times when a system call is
performed. This is caused because system calls are the points where communications and
synchronizations are executed, that is, when SW tasks interacts with the rest of the system.

5.1 SW estimation based on modified host times

The first technique implemented is based on the use of the execution times of the host
computer. As the time required for a processor to execute a code depends on the size of the
functionality, there is a relationship between the time a SW execution takes in the host
computer and in the target platform. Thus the idea is to run the simulation on the native PC
getting the time required to execute each code segment. The estimated time costs of the
components in the target platform are estimated by multiplying the time required to execute

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

287

in the host computer by an adjustment factor. This factor is based on the characteristics of
the native PC and the target platform.

Unlike the other techniques presented below, this solution does not require the generation
of annotated SW code. The original code is executed as it is, without additional sentences.
Estimation and time modeling is done automatically when the system calls of the OS model
are executed. The execution time of each segment is obtained by calling the function
"clock_gettime ()" of the native operating system (Figure 2). To minimize the error produced
by the other PC tasks, the simulation must be launched with the highest possible priority.

Application

SW code

SystemC

Task

SW

Task

SW

Task

SW

Simulation

OS model
clock_gettime(time);

..

wait(time-init_time);

Fig. 2. Modeled by native time setting.

This solution has the advantage of being very fast, because no annotations increasing the
execution time are needed. Nevertheless, a number of disadvantages hinder their use in
most cases. First, we must be able to ensure that the simulation times obtained are really due
to the execution of system code, and no caused by other parasite processes that were
running on the computer. Second, the solution is not able to model cache behaviour
adequately. Moreover, as only the execution time information can be obtained from the
simulation, the transformations applied to obtain times of the target platform are reduced to
a linear transformation. However, there is no guarantee that the cost of the native PC and
the platform fits a linear relationship. On the contrary, the existence of different hardware
structures, such as different caches, memory architectures or mathematical co-processors
can produce significant errors in the estimation.

Summarizing, this solution is recommended only for very large simulations or codes where
the accuracy obtained in performance estimations is not critical. Additionally, it is a good
solution to estimate time of SW components that cannot be annotated. For example, some
libraries are provided only in binary format. Thus, annotations are not possible since source
code is not present. As a result, this solution is the only applicable of the four proposed.

5.2 SW estimation based on operator overloading

The estimation technique using operator overloading calculates the cost of SW as it
progresses. Each operation executed must be accompanied by a consideration of the time
cost it requires in the target platform. The temporal estimation of an entire SW code segment
is obtained accumulating the times required to perform all the operations of a segment. This
solution will avoid costly algorithms and static calculations, avoiding getting oversized

www.intechopen.com

Embedded Systems – Theory and Design Methodology

288

times, as in the case of techniques for estimating worst case (WCET), or the consideration of
false paths. That way, the estimated time depends on exactly the code that is executed.

The solution relies on the capability of C++ to automatically overload the operators of the
user-defined classes. Using that ability, the real functional code can be extended with
performance information without requiring any code modification. New C++ classes
(generic_int, generic_char, generic_float, …) have been developed to replace the basic C data
types (int, char, float, …) . These classes replicate the behavior of the basic data type
operators, but adding to all the operator functions the expected cost of the operator in the
target platform, in terms of binary instructions, cycles and power consumption. The
replacement of the basic data types by the new classes is done by the compiler by including
an additional header with macros of the type:

“#define int generic_int”

A similar solution is applied to consider the cost of the control statements.

To apply that technique, a table with the cost of all the operators and control statements in
the target platform must be provided by the user.

The operating mechanism of this estimation technique can be seen in Figure 3. First, the
original code is modified by replacing the original data types of the SW by new classes
overloaded. This is done automatically using compiler preprocessor C. The new classes are
provided by the simulation infrastructure. There is a class for each basic data type, which
stores the value of the data type and the cost of each operation for this operator. The
resulting code is executed using the overloaded operators.

Annotated

SW code

Annotation

Overloaded Classes

SW

Task

SW

Task

SW

Task

Simulation

Application

SW code

GCC

Preprocessor Compiler

SystemC

OS model

int operador + (a,b){

 time+= t_add;

 return a + b;

}

void sem_open(){

 wait(time);

 os_sem_open();

}
Overloaded

Classes
Fig. 3. Temporal model with operator overloading.

The original application code is compiled without any prior analysis or modification.
Therefore, the operator overloading modeling technique is completely dynamic. All
operations performed in the code are monitored by the annotation technique. This implies
that the technique has enormous potential as a technique for code analysis. Studies on the
number of operations, or monitoring data types of variables can be easily performed
minimally modifying the overloading of operators.

This solution has demonstrated to be easy to implement, and very flexible to support
additional evaluations, since all the information is managed dynamically, including the data
values. Nevertheless, this solution has several limitations if the solely objective of the
simulation is the estimation of execution times. Compiler optimizations are not accurately
considered. Only, a mean optimization factor can be applied. Furthermore, the use of

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

289

operator overloading for all the data types implies a certain overhead, which slows down
the simulation speed.

5.3 Annotation from source-code analysis

To obtain simulations with really low overhead, it is needed to move analysis effort from
simulation to compilation time. Solutions based on static annotation divides the
performance modeling in two steps. First, the source code is statically analyzed, obtaining
performance information for each basic block of the source code. After that, this information
is annotated in the code, and the cost of each basic block executed is accumulated during the
simulation and applied at system calls.

As in the technique of operator overloading, this estimation technique is based on assigning
a time cost to each C operator. The total cost of each segment of SW code is estimated by
adding the time of the operators executed in the segment. The cost of each operator is
calculated in the same manner as shown in the previous technique. As a consequence, the
effects of compiler optimizations are difficult to estimate from the analysis of source code.
For this reason, an adjustment factor can be provided to the simulation to consider
improvements introduced by compiler optimizations. This factor is obtained comparing the
sizes of SW code segments both optimized and not optimized.

For the static analysis, a parser based on an open-source C++ grammar has been
implemented. The parser analyzes the source code, obtaining the number and type of
operators used on each basic block, as long as the control statements at the beginning of
each block. Using that information and the table with the cost of each operator used for the
previous technique it is possible to obtain the cost for the entire basic block. Then, this cost is
applied in the source code in the following way:

“segment_cycles += 120; segment_instructions += 20;”

As a result, the variables segment_cycles and segment_instructions accumulate the total
cycles and instructions required to execute the entire code in the target platform. The
complete sequence of tasks necessary to perform the estimation based on source code
analysis is shown in the next figure.

Annotated

SW code

Platform

information

SW

Task

SW

Task

SW

Task

Simulation

Application

SW code
Preprocessor

SystemC

OS model

… // Code

if(flag){

 time+=t_block;

 … // Code

void sem_open(){

 wait(time);

 os_sem_open();

}

Annotation

Fig. 4. temporal modeling with source-code analysis.

This solution requires more development effort than the operator overloading technique,
especially for the implementation of the parser using the yacc/lex grammar. However, the
simulation speed is really improved, achieving simulation times very close to the functional
execution times (only two or three times slower). The main limitation of the technique is,

www.intechopen.com

Embedded Systems – Theory and Design Methodology

290

again, the impossibility of accurately considering the compiler optimizations, since no
analysis of the compiler output is performed.

5.4 Source annotations based on binary analysis

The last solution proposed is capable of maintaining the qualities of the previous annotation
technique, but providing more accurate results, including compiler optimizations. In this
solution, the analysis of the source code is replaced by an analysis of the cross-compiled
binary code. The use of compiled code instead of source code enables accurately considering
all the effects of cross compiler optimizations. Once identified the assembler instructions
corresponding to each basic block of the SW code, the number of instructions of the blocks
and the cycles required to execute them are annotated in the source code.

Pre-

processed

code

Gramatical

analysis

Basic block

identification

Rebuilding and

annotation

Annotated

code

Marked

code

Cross-

compiler

Binary

code

Readelf

--symbols

Fig. 5. Estimations with analysis of binary code.

However, estimations based on binary code usually present two limitations: first, it is
difficult to identify the basic blocks of the source code in the binary code, and second, these
solutions are usually very dependent on the processor. In order to build a simulation
infrastructure fast and capable of modelling complex heterogeneous embedded systems,
both issues have to be solved.

The correlation between source code and compiled code is sometimes very complex
(Cifuentes) This is mainly due to results of the compiler optimizations as the reordering of
instructions and dead code elimination. Furthermore, the technique should be easily
portable to allow evaluation of different processors with minimal effort. To easily extract the
correlation between source code and binary code, the proposed solution is to mark the code
using labels. Both the annotation and identification of the positions of the labels can be done
in a manner completely independent of the instruction set of the target processor. The
annotation of labels in the code is a standard C feature, so it is extremely portable.
Additionally, there are several standard ways to know the address of the labels in the target
code, such as using the bin-utils or reading the resulting assembler code. Thus, the
technique is extremely portable, and well suited to handle heterogeneous systems.

However, including compiler optimizations implies another problem. Compilation without
optimizations enables easily identifying points in the binary code by inserting labels in the
source code. However, the optimizations have the ability to move or even remove those
labels. For example, if we insert a label in a loop, and apply an optimization of loop
unrolling, the label loses its meaning. In order to avoid the compiler to eliminate the labels,
they are added to the code of the form:

asm volatile(“etiqueta_xx:”);

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

291

The use of volatile labels forces the compiler to keep the labels in the right place. Thus,
inserting labels at the beginning and end of each basic block we can easily obtain the
number of assembly instructions of each basic block. The identification of basic blocks in the
source code is made by a grammatical analysis. This grammatical analysis is done by a pre-
compiler developed using “lex” and “yacc” tools, as in the estimation technique of source
code analysis. This will locate the positions where the labels first and add annotations later.

Getting the value of the labels can easily be done using the command:

readelf –s binary_code.o | grep label_

The estimated time required to execute each basic block in the target platform is obtained by
multiplying the number of instructions by the number of cycles per instruction (CPI)
provided by the manufacturer. Although this solution carries a small error, such as not
considering stops by data dependencies, it has the advantage of being fast and generic. To
evaluate the behavior of a program on one processor, only a cross compiler for that
processor is need. Libraries, operating systems or simulators as ISSs adapted specifically for
the target platform are not required, resulting in a very portable and flexible approach.

However, with the introduction of volatile labels the compiler behaviour is still partially
changed. Most of the optimizations, such as the elimination of memory accesses by reusing
registers are correctly applied. But a few optimizations, with minor effects cannot be
performed. Loop unrolling is not possible, although its use for processors with cache is
unusual because it increases cache misses. The reordering of instructions to avoid data
dependencies is also altered, but since the processor's internal effects are not modeled, this
optimization has small effect on the estimation technique.

5.5 Cache modelling and pre-emption modeling

Nevertheless, the performance of the SW in the target platform does not only depend on the
binary instructions executed. Processor caches also have an important impact on it.
Common cache models are based on memory access traces. However, in native co-
simulation no traces about the accesses in the target platform are obtained. As a
consequence, new solutions for modeling both instruction and data caches have been
explored and included in the infrastructure.

The modeling of instruction caches is based on the fact that instructions are placed
sequentially in memory, in a place known at compilation time. Knowing the amount of
assembler instruction for each basic block it is possible to obtain a relative address for the
instructions with respect to the beginning of the “text” section of the “elf” file. This
information is used as variables’ address to access the cache model, instead of the real access
trace. Additionally, the use of static structs has been applied in order to speed-up the
simulation speed, achieving a similar error and overhead for instruction cache modeling
than for the static time annotation (Castillo et al, 2010).

For data caches, the solution proposed uses corrected host addresses for each data variable
used in the code. Additionally, global arrays handling information about the status of all the
possible memory cache lines are used to improve the simulation speed maintaining the
balance of the two previous techniques. The technique is described more in detail in
(Posadas et al, 2011).

www.intechopen.com

Embedded Systems – Theory and Design Methodology

292

A final issue related to modeling the performance of the application SW is how to consider
pre-emption. With the proposed modeling solutions, the segments of code between function
calls are executed in “0” time, and after that, the time estimated for the segment is applied
using “wait” statements. As a consequence, pre-emption events are always received in the
“wait” statements. Thus, the segment has been completely executed before the information
about the pre-emption arrives. As a consequence, the task execution order and the values of
global variables can be wrong. In order to solve these problems, several solutions have been
proposed in "Real-time Operating System modeling in SystemC for HW/SW co-simulation"
(Posadas et al, 2005). The final solution applied is to use interruptible “wait” statements.
This approach solves the problems in the task execution order. Additionally, it is considered
that possible modifications in the values of global variables are not a simulation error but an
effect of the indeterminism resulting of using unprotected global variables. In other words,
it is not really an error but only a possible solution.

6. Operating system modeling

6.1 Support of multiple APIs

On of the main advantages of the underlying infrastructure selected to create the virtual
platform infrastructure is the use of a real API. Since an implementation of a complete
POSIX infrastructure is provided, most of the platforms based on Linux-like operating
systems or other operating systems providing this API can be modelled. Then the
infrastructure is able to support real software for a certain amount of platforms. However,
other operating systems are used in embedded systems. As a really useful infrastructure has
the goal of providing wide support in order to decide at the beginning of the design process
the most adequate platforms for an application, support of other operating systems is
recommended. Thus, in this work the extension of the infrastructure in that way has been
evaluated. To do so, two different operating systems of wide use in embedded systems have
been considered: a simple operating system and a complex one. As simple OS, uC/os-II has
been selected. As complex OS, the integration of a win32 API has been performed.

6.1.1 Support of uC/os-II

μC/OS-II is a portable, small operating system developed by the Micrium company to be
integrated in small devices. It is configurable and scalable, requiring footprints between 5
Kbytes to 24 Kbytes. This operating system provides a preemptive, real-time deterministic
multitasking kernel for microprocessors, microcontrollers and DSPs. As a real-time kernel,
the execution time for most services provided by μC/OS-II is both constant and
deterministic; execution times do not depend on the number of tasks running in the
application.

In order to easily implement the μC/OS-II API support the adopted approach has been to
generate a layer on top of the existing POSIX API. Then, the implementation of the services
only requires in most of the cases to adapt the interface of the μC/OS-II API to call a similar
function in the POSIX infrastructure. Following that way, a list of 81 functions of the
μC/OS-II API has been implemented. The following services have been implemented:

 Functions for OS management, such as starting the kernel, controlling the scheduler, or
managing interrupts.

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

293

 Functions for task management, such as starting, stopping and resuming a task or
modifying the priority

 Services for task synchronization: mutexes, semaphores and event flag groups.
 Services for task communication: message queues and mailboxes
 Memory management
 Time management and timers

As the POSIX infrastructure is quite complete, the task of generating this layer has resulted
relatively easy. This demonstrates the validity of the infrastructure proposed to support
other small operating systems.

6.1.2 Support of Win32

Although in the embedded system market Microsoft does not have the dominant position
than in the PC (Laptop, Desktop and Server) market, the company through their Windows
CE and Windows Mobile, now Windows Phone, holds an important market share which
can even increase in the near future once Windows CE is offered under ‘shared source’
license and after the Nokia-Microsoft partnership. Thus, solutions to support of win32 API
in a virtual platform modeling infrastructure results of great interest.

The proposed approach is to integrate virtualization of Win32 on the POSIX API of the
performance analysis framework. As it is shown below, the overload of this approach is
small. The virtualization framework is provided by the open-source code WINE. WINE is a
free software application that aims to allow Unix-like computer operating systems to
execute programs written for Microsoft Windows. WINE implements a Windows
Application Programming Interface (Win32 API) library, acting as a bridge between the
Windows application and Linux.

One of the reasons to use WINE is that, in accordance with the “Wine Developer's Guide”,
its architecture and kernel are based on the architecture and kernel of Windows NT, so that
its behavior will be the same as most of the Windows operating systems, particularly those
mostly used in embedded applications like Windows CE and Windows Phone.

Figure 6 shows in grey color the Windows NT architecture allowing the execution of Win32
application by the NT kernel. The white part of the Figure 6 represents the modules added
for the construction of the Wine architecture.

Using the complete WINE architecture, the complete Windows NT architecture of Dynamic
Link Libraries (DLL) is encapsulated by the WINE server and the WINE executable. The
WINE executable virtualizes the underlying Unix kernel. For that purpose, additional DLLs
and Unix-shared libraries are used.

The “WINE Server” acts as a Windows kernel emulator, executing the Win32 calls for thread
creation, synchronization and destruction. It provides Inter-Process Communication (IPC).
When a thread needs to synchronize or communicate with any other thread or process, is
the Wine Server the handler of these actions making as an intermediary. The Wine server
itself is a single and separated Unix process and does not have its own threading. Instead, it
alerts whenever anything happens, such as a client having send a command, or a wait
condition having been satisfied.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

294

WIN32 Application

Windows DLL Windows DLL

GDI32 DLL USER32 DLL

Kernel32 Application

NTDLL

Subsystem

POSIX

OS/2

WINE Executable (WINE thread)

WINE specific DLLs & UNIX shared libraries

WINE

Server

(NT-like

kernel)

UNIX kernel

Fig. 6. Windows NT architecture + WINE Architecture.

The architecture of the integration of WINE on top of the POSIX model is shown in Figure 7.
The most significant change from the WINE architecture of Figure 6 is the substitution of the
POSIX subsystem, responsible for implementing the POSIX API functionality. In this way,
the Win32 application is executed and its performance estimated by the native simulation
infrastructure after the Win32 to POSIX translation.

WIN32 Application

Windows DLL

Plug-in Kernel32

Plug-in

 translation

Plug-in POSIX

Native simulation

Infrastructure

WINE

Server

(NT-like

kernel)

Kernel32

DLL

NTDLL

WINE

Executable

DLL & shared

libraries

Linux Kernel

W
IN

E
 n

ativ
e

D
L

L
s

Fig. 7. Architecture of the WINE/native integration.

The WINE use is justified for the integration of WIN32 API in the native simulation
framework. WINE allows us to abstract from the redeployment of Win32 functions for the
execution in a POSIX system. Ideally, through this we can handle Win32's functions
automatically by adding to our architecture the necessary libraries (DLLs).

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

295

However, when a simulation is being run, the user code can carry out calls to the API
WIN32 functions. However, depending on which functions are being called, they are treated
in two different ways. On the one hand, we have all those functions that are completely
managed by WINE and that just need to be taken into account by native co-simulation in
order to estimate the system performance in terms of execution times, bus loads and power
consumption. On the other hand, there are other functions that are internally managed by
the abstract POSIX native simulation kernel under the supervision of the WINE functions as
they directly affect its kernel. The plug-in translation is responsible for these functions of
thread creation, synchronization and destruction. When an API Win32 function is called, the
plug-in analyzes and manages the handlers that have been generated by WINE. By default,
the native WINE function is run, but in case the handle makes reference to a thread or object
based on the synchronization of threads, it runs the translation to an equivalent POSIX
function. In this way, the execution of these objects is completely transparent to the user.

As we said, part of the plug-in translation code is aimed at the internal management of the
object's handles that are created and destructed in Wine as the user code requires. In the
process of creating threads and synchronization objects, the code stores the resulting handle
and the information that may be necessary for that regard. Thus, when any operation is
performed on such handle, the plug-in can analyze and perform the necessary steps to carry
out such operation.

The kind of services affected by such analysis are:

 Concurrency services (e.g. threads)
 Synchronization services (as semaphores, mutexes, events)
 Timing services (e.g. waitable timers)

In case that the handle belongs to any of the previous objects, it would be necessary to run
the translation into an equivalent POSIX of the operation to be performed on this object so
that it be performed by SCoPE correctly. Nonetheless, there are also other objects that are
directly managed by the plug-in translation and do not require a previous analysis like
Critical sections or Asynchronous Procedure Calls.

As shown in Figure 7, it is the “WINE Server” which acts as Windows kernel emulation, so
that the thread creation, synchronization and destruction are performed through calls to this
kernel. That is the reason why there is no literal translation for the behavior of these
functions from the Win32 standard into the POSIX standard. An important contribution to
this work and, therefore, an innovative solution to this problem, is the creation of a new
code that is in charge of performing this task, maintaining the semantic and syntactic
behavior of the functions of the affected Win32 standard. This is important in order to
perform a translation by using only the calls to the POSIX standard functions, so that
through the supervision of “WINE Server” our application is able to run those functions by
respecting the Win32 standard at all times.

Finally, Graphics (GDI32) and User (USER32) libraries have been removed because they are
not necessary in the functions currently implemented. As commented above, graphic
interfaces are not supported yet as their modeling requires additional effort that is out of the
scope of the current chapter. The user interface is not necessary when modeling usual
embedded applications. Nevertheless, the proposed methodology for abstract modeling of
complex OSs opens the way to solve this particular problem.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

296

All the collection of functions of the API Win32 has been faithfully respected in accordance
with the on-line standard of MSDN. To check it, a battery of simple tests has been developed
to verify the correctness of some critical functions closely related with the integration of
WINE with the simulation infrastructure. The tests generated include management of
threads, synchronization means, file system functions and timers. The results have been
compared with the same tests compiled and executed on a Windows platform (XP SP2
winver 0x0502) and in an embedded Windows CE platform, obtaining the same results in all
the cases.

In the compilation process of a Win32 application in WINE, this one generated the scripts
that are necessary to create a dynamic library from the application's source code, which is
later loaded and run after the initialization process of WINE.

 a) b)

Fig. 8. WINE integration in the native simulation.

The process to generate a POSIX WINE executable from a Win32 application is shown in
Figure 8-a. After WINE initialization, the scripts that are necessary to create a dynamic
library from the application's source code are generated. Then, using these scripts, the
application is loaded and executed. This application initialization and loading process is not
compatible with the native co-simulation methodology.

The alternative process implemented is shown in Figure 8-b. The default initialization
process of WINE is performed after the native co-simulation initialization process. The
application is instrumented and loaded into the native simulation environment in this step.
In order to support the parsing and back-annotation required by native co-simulation, it is
necessary to integrate in the native co-simulation compiler the options required by WINE in
order to recognize the application.

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

297

7. Results

Several experiments have been set-up in order to assess the proposed methodology. Firstly,
simulation performance has been measured and compared with different execution
environments of Win32 applications through small examples. Furthermore, a complete co-
simulation case study has been developed showing the full potential of the proposed
technology on a realistic embedded system design. After that some experiments have been
performed to check the accuracy of the performance estimations.

7.1 Win32 simulation

In order to measure the simulation overhead of the proposed infrastructure, several tests
focused on the use of OS services have been developed and instrumented. The tests have
been carried out in four different scenarios, all on the same host computer:

 Proposed Win32 native simulation running on a native Linux platform (Fedora 11).
 WINE running on the same Linux platform.
 Windows XP SP2 running in a virtual machine (VirtualMachine 2.2.4) on the same

Linux platform.
 Windows XP SP2 installed directly in the host.

The resulting execution times of the tests on the different scenarios are shown in Figure 9.
As expected, the execution of Windows on a virtual machine is always slower than the OS
directly installed in the host. Nevertheless, this is not the case when virtualising Windows
with WINE. Results show that WINE can be faster than XP installed directly on the same
host. This is not a surprising result and it has been already reported.

m
th

re
a
d
_
0
1
_
g
en

m
th

re
a
d
_
0
2
_
s
en

m
th

re
a
d
_
0
3_

m
u
x

m
th

re
a
d
_
0
4
_
c
s

m
th

re
ad

_
0
5
_
e
v
e
n
t

m
th

re
a
d
_
06

_
u
s
er

a
p
c

m
th

re
a
d
_
0
7_

w
t

0

100

200

300

400

500

600

Wine Simulation

Native Windows Virtual Machine

Fig. 9. Execution times.

As shown in Figure 9, native simulation is only 46% slower in average than WINE although
the simulation is modeling execution times, data and instructions cache, memory and
peripheral accesses, power consumption, etc. This result is coherent with the comparison
figures between native simulation including performance estimations and functional
execution. This explains why native simulation can be faster in some cases than functional
execution on a Windows platform. This result shows the advantage of using WINE; we can

www.intechopen.com

Embedded Systems – Theory and Design Methodology

298

integrate native simulation on a virtualization of Windows, implementing most of its
functionality and taking advantage of its fast implementation.

In order to assess the Win32 simulation technology in its final application of performance
analysis of complex embedded systems including processing nodes using Windows, a
heterogeneous system has been modeled, simulated and the performance figures obtained.
The system is a low cost surveillance system taking low quality images from a camera at low
speed (1 image per second) and coding and sending them through a serial link.

Apart from those simple examples, a complex example, a H.264 coder has been used for
global correctness. This example makes an exhaustive use of calls to memory dynamic
management functions, and there is also a writing of all the logs resulting from the
codification when running. This part of the reference model has been modified so that the
calls to the equivalent functions of the API Win32 are carried out in order to verify the
correct operation of the plug-in this sort of operations. Dynamic memory management has
been carried out through calls to the Global, Local and Heap memory management
functions, and the file management through calls to the respective data input and output
functions (e.g. CreateFile and WriteFile).

The system architecture is shown in Figure 10. It is composed of a Windows ARM node
executing the H.264 coder, the camera taking the images, a memory where the input data are
stored and the serial link taking the images and sending them out. The architectural exploration
affects the selection of the most appropriate voltage-frequency and data and instruction cache
sizes ensuring a CPU usage lower than 90% and a power consumption less than 1W.

Fig. 10. Case study architecture.

Results of CPU usage and power consumption are shown in Figure 11. As can be seen, in
this example, the size of the data and instruction caches do not affect too much the power
consumption but the CPU usage.

Fig. 11. CPU usage and Power consumption.

166MHz/1.8V 233MHz/2.4V 333MHz/3.6V

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

Processor Frecuency/Voltage

P
o

w
e
r

(W
)

166MHz/1.8V 233MHz/2.4V 333MHz/3.6V

80

82

84

86

88

90

92

94

96

98

100
32K Data cache 16K Data cache 8K Data cache

Processor Frecuency/Voltage

%
 U

s
e
 C

P
U

AMBA Bus

ARM9

Windows

CE

H.264
coder

Memor

y

Serial

I/O

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

299

7.2 Win32 simulation performance

The proposed approach has been also applied to an ARM9 platform, in order to evaluate the
accuracy of each on the techniques presented above. The ARM9 platform has been used to
compare the estimation results of the different modeling solutions, in order to obtain the
error when applied to one of the most popular processors in the embedded world.

As a summary of the final results achieved, the following tables show the estimation
accuracy of the SW modelling, and the simulation times for a list of examples:

Modified Host

Time
Operator

Overloading
Source Code analysis Binary Code

analysis
 Error Time Error Time Error Time Error Time
Bubble 1000 24.4 0.012s 14.8 0.75s 14.5 0.032s 12.5 0.030s
Bubble 10000 13.5 1.281s 3.5 81.6s 3.2 3.501s 0.01 3.486s
Vocoder 54.2 0.003s 24.2 0.41s 26.4 0.015s 18.3 0.014s
Factorial 34.5 0.013s 4.5 0.85s 4.1 0.042s 0.01 0.043s
Hanoi 47.9 0.082s 17.9 0.82s 16.9 0.271s 14.9 0.262s

Table 1. Comparison of estimation error (%) and simulation time for an ARM9 platform

As can be seen, the most accurate annotation technique is the solution based on the analysis
of the binary cross-compiled code. After that, the technique based on source code analysis
and the operator overloading are similar, since both rely on the same information (cycles of
each C operator) and the same main source of error (optimizations). Finally, the modified
host time is the less accurate one.

However, the technique of modified host tome is about 3 times faster than the annotation
techniques based on code analysis, and more than 60 times than the operator overloading
solution.

Finally, the results for cache modelling are shown in the next tables:

Instruction Cache Misses
Without optimizations (-o0) With optimizations (-o2)

Skyeye Proposal Error (%) Skyeye Proposal Error (%)
Bubble 1000 15 16 6.66 6 5 16.67

Bubble 10000 25 27 8 7 7 0
Vocoder 8 7 12,5 5 4 20
Factorial 20 18 10 12 10 16.67

Hanoi 46074 46761 1.49 25842 28607 10.70

Table 2. Comparison of instruction cache misses ARM926t platform.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

300

Data Cache Misses
Without optimizations (-o0) With optimizations (-o2)

Skyeye Proposal Error (%) Skyeye Proposal Error (%)
Bubble 1000 126 127 0.80 126 126 0
Bubble 10000 5199772 5209087 0.18 5199310 5211595 0.24
Vocoder 375 500 33.33 375 500 33.33
Factorial 38 45 18.42 41 45 9.76
Hanoi 6018 5908 1.82 6026 5915 1.84

Table 3. Comparison of data cache misses ARM926t platform.

Summarizing, simulation speed-ups of two or more orders of magnitude can be achieved by
assuming an acceptable error, below 20%.

8. Conclusions

In this chapter, several solutions have been developed in order to cover all the features
required to create an infrastructure capable of obtaining sufficiently accurate performance
estimation with very fast simulation speeds. These solutions are based on the idea of native
co-simulation, which consists in the combination of native simulation of annotated SW
codes with time-approximate HW platform models. All these techniques have been
integrated in a simulation tool which can be used as an independent simulator or can be
used integrated in different design space exploration flows.

The modeling solutions can be divided in two main groups: solutions for modeling in the
native execution the operation of the application SW in the target platform, and a complete
operative system modelling infrastructure. These solutions have been implemented as
SystemC extensions, using the features of the language to provide multiple execution flows,
events and time management.

The modeling of the application SW considers the execution times and power consumption
of the code in the target platform, as long as the operation of the processor caches. Four
different solutions for modeling the processor performance have been explored in the
chapter (modified host times, operator overloading, annotation based on source code
analysis and annotation based on binary code analysis), in order to find an approach
capable of obtaining accurate solutions with minimal simulation overheads and as flexible
as possible, to minimize the effort required to evaluate different target processors and
platforms. As a result of the study, the annotation based on binary code analysis has
demonstrated to obtain the best results with minimal simulation overhead. Additionally, the
technique is very flexible, since only requires a cross-compiler for the target platform
capable of generating object files from the source code. No additional libraries, ported
operating systems, or linkage scripts are required. Additionally, it has been demonstrated
that cache analysis for both instruction and data caches can be performed obtaining accurate
results with adequate simulation times.

A POSIX-based operating system model has been also extended to support other APIs. Two
different operating system APIs of wide use in embedded systems have been considered: a
simple operating system and a complex one. Support for a simple OS, uC/os-II, has been
integrated. As complex OS, the integration of a win32 API has been performed.

www.intechopen.com

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

301

Summarizing, this chapter demonstrates that the SystemC language can be extended to
enable the early modeling and evaluation of electronic systems, and providing important
information to help the designers during the first steps of the design process. These
extensions allow using a SystemC-based infrastructure for functional simulation,
performance evaluation, constraint checking and HW/SW refinement.

9. Acknowledgments

This work has been supported by the FP7-ICT-2009- 4 (247999) Complex and Spanish
MICyT TEC2008-04107 projects.

10. References

AXLOG, http://www.axlog.fr.
M.Becker, T.Xie, W.Mueller, G. Di Guglielmo, G. Pravadelli and F.Fummi, “RTOS-Aware

Refinement for TLM2.0-Based HW/SW Designs”, in DATE, 2010.
Benini et al, “MPARM: Exploring the Multi-Processor SoC Design Space with SystemC”,

Journal of VLSI Signal Processing n 41, 2005.
A. Bouchima, P. Gerin & F. Pétrot: “Automatic Instrumentation of Embedded Software for

High-level HS/SW Co-simulation. ASP-DAC, 2009.
C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Source-level execution time

estimation of c programs,” CODES 2001.
J. Castillo, H. Posadas, E. Villar, M. Martínez, “Fast Instruction Cache Modeling for

Approximate Timed HW/SW Co-Simulation”, 20th Great Lakes Symposium on
VLSI (GLSVLSI'10), Providence, USA. 2010

C. Cifuentes. “Reverse Compilation Techniques”. PhD thesis, Queensland University of
Technilogy, 1994.

VaST Systems Technology. CoMET R.
 http://www.vastsystems.com/docs/CoMET_mar2007.pdf
CoWare Processor Designer, http://www.coware.com/products/processordesigner.php
ENEA: “OSE Soft Kernel Environment”, in http://www.ose.com/products.
Gerstlauer, A. Yu, H. & Gajski, D.D.: “RTOS Modeling for System Level Design”, Proc. of

DATE, IEEE, 2003.
A. Gerslauer, "Host-Compiled Simulation of Multi-Core Platforms", Rapid System

Prototyping, 2010
M. Gligor, N. Fournel, and F. Petrot, “Using binary translation in event driven simulation

for fast and flexible MPSoC simulation”, in CODES+ISSS, France, Oct. 2009.
G. Hadjiyiannis, S. Hanono & S. Devadas. ISDL: An Instruction Set Description Language

for Retargetability. Design Automation Conference, 1997.
M. Hartoog J.A. Rowson, P.D. Reddy, S. Desai, D.D. Dunlop, E.A. Harcourt & N. Khullar.

“Generation of Software Tools from Processor Descriptions for
Hardware/Software Codesign”. Design Automation Conference, 1997.

M.A. Hassan, K. Sakanushi, Y. Takeuchi and M. Imai: “RTK-Spec TRON: A simulation
model of an ITRON based RTOS kernel in SystemC”, Proceedings of the Design,
Automation and Test Conference, IEEE, 2005.

Z. He, A. Mok and C. Peng: “Timed RTOS modeling for embedded System Design”,
Proceedings of the Real Time and Embedded Technology and Applications
Symposium, IEEE, 2005.

www.intechopen.com

Embedded Systems – Theory and Design Methodology

302

S. Honda, T. Wakabayashi, H. Tomiyama and H. Takada: “RTOS-centric HW/SW co-
simulator for embedded system design”, Proceedings of CoDes-ISSS’04, ACM,
2004.

Y. Hwang, S. Abdi, D. Gajski. Cycle-approximate Retargetable Performance Estimation at
the Transaction Level. DATE, 2008

T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, H. Meyr. “A SW Performance
Estimation Framework for Early System-Level-Design Using Fine-Grained
Instrumentation”. DATE, 2006

R. Leupers, J. Elste, and B. Landwehr. “Generation of interpretive and compiled instruction
set simulators”. Asia and South Pacific Design Automation Conference, 1999.

A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr & Andreas Hoffmann, “A
Universal Technique for Fast and Flexible Instruction-Set Architecture Simulation”,
DAC, 2002

H. Posadas, F. Herrera, P. Sánchez, E. Villar, F. Blasco: "System-Level Performance Analysis
in SystemC", Proc. of DATE, IEEE CS Press. 2004

H. Posadas, E. Villar, F. Blasco: "Real-time Operating System modeling in SystemC for
HW/SW co-simulation", XX Conference on Design of Circuits and Integrated
Systems, DCIS. 2005

H. Posadas, J. Adámez, P. Sánchez, E. Villar, F. Blasco: "POSIX modeling in SystemC", 11th
Asia and South Pacific Design Automation Conference, ASP-DAC, 2006

H. Posadas, E. Villar: "Automatic HW/SW interface modeling for scratch-pad & memory
mapped HW components in native source-code co-simulation", A. Rettberg, M.
Zanella, M. Amann, M. Keckeiser & F. Rammig (Eds.): "Analysis, Architectures and
Modelling of Embedded Systems", Springer, 2009

H. Posadas, E. Villar, Dominique Ragot, M. Martínez: "Early Modeling of Linux-based RTOS
Platforms in a SystemC Time-Approximate Co-Simulation Environment", IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2010

H. Posadas, L. Diaz, E. Villar: "Fast Data-Cache Modeling for Native Co-Simulation", Asia
and South-Pacific Design Automation Conference, ASP-DAC, 2011

IBM PowerVM, http://www-03.ibm.com/systems/power/software/virtualization/
Qemu, http://www.qemu.org/
G. Schirner, A. Gerstlauer, and R. Dömer. “Abstract, Multifaceted Modeling of Embedded

Processors for System Level Design”. Asia and South Pacific Design Automation
Conference (ASP-DAC), 2007.

J. Schnerr, O. Bringmann, A. Viehl, W. Rosenstiel. High-Performance Timing Simulation of
Embedded Software. DAC, 2008

SkyEye web page, http://www.skyeye.org/index.shtml
Synopsys, Platform Architect tool, http://www.synopsys.com/Systems/

ArchitectureDesign/pages/PlatformArchitect.aspx
H. Tomiyama, Y. Cao and K. Murakami: “Modeling fixed-priority preemptive multi-task

systems in SpecC”, Proceedings of the 10th Workshop on System And System
Integration of Mixed Technologies (SASIMI’01), IEEE, 2001.

UQBT, http://www.itee.uq.edu.au/~cristina/uqbt.html
S. Yoo, G. Nicolescu, L. Gauthier, A. Jerraya, “Automatic generation of fast timed simulation

models for operating systems in SoC design”, Proc. of DATE, IEEE, 2002.
H. Zabel, W. Müller, and A. Gerstlauer, “Accurate RTOS modeling and analysis with

SystemC”, in “Hardware-dependent Software: Principles and Practice”, W. Ecker,
W. Mü ller, and R. Dömer, Eds. Springer, 2009.

www.intechopen.com

Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Héctor Posadas, Álvaro Díaz and Eugenio Villar (2012). SW Annotation Techniques and RTOS Modelling for

Native Simulation of Heterogeneous Embedded Systems, Embedded Systems - Theory and Design

Methodology, Dr. Kiyofumi Tanaka (Ed.), ISBN: 978-953-51-0167-3, InTech, Available from:

http://www.intechopen.com/books/embedded-systems-theory-and-design-methodology/sw-annotation-

techniques-and-rtos-modelling-for-native-simulation-of-heterogeneous-embedded-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

