
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



12 

Concurrent Specification of Embedded 
Systems: An Insight into the Flexibility vs 

Correctness Trade-Off 

F. Herrera and I. Ugarte 
University of Cantabria 

Spain 

1. Introduction 

In 2002, (Kish, 2002) warned about the danger of the abrupt break in Moore’s law. 
Fortunately, nowadays integration capabilities are still growing and 20nm and 14nm 
technologies are envisaged, (Chiang, 2011). However, the frequency of integrated circuits 
cannot grow anymore. Therefore, in order to achieve a continuous improvement of 
performance, computer architectures are evolving towards the integration of more and more 
parallel computing resources. Examples of this include modern Graphical Processing Units 
(GPUs), such as the new CUDA architecture, named Fermi, which will use 512 cores, 
(Halfhill, 2012). Embedded system architectures show a similar trend with General Purpose 
Processors (GPPs), and some mobile phones already included between 2 and 8 RISC 
processors a few years ago, (Martin, 2006). Moreover, many embedded architectures are 
heterogeneous, and enclose different types of truly parallel computing resources such as 
(GPPs), Co-Processors, Digital Signal Processors, GPUs, custom-hardware accelerators, etc.  

The evolution of HW architectures is driving the change in the programming paradigm. 
Several languages, such as (OpenMP, 2008), and (MPI, 2009), are defining the de facto 
programming paradigm for multi-core platforms. Embedded MPSoC platforms, with a 
growing number of general purpose RISC processors, are necessitating the adoption of a 
task-level centric approach in order to enable applications which efficiently use the 
computational resources provided by the underlying hardware platform. 

Parallelism can be exploited at different levels of granularity. GPU-related languages enable 
the handling of a finer level of granularity, in order to exploit the inherent data parallelism 
of graphical applications. These languages also enable some explicit handling of the 
underlying architecture. MPSoC homogenous architectures require and enable a task-level 
approach, which provides a larger granularity in the handling of concurrency, and a higher 
level of abstraction to hide architectural details. A task-level approach enables the 
acceleration problem to be seen as a partition of functionality into tasks or high-level 
processes. A standard language which enables a task-level specification of concurrent 
functionality, and its communication and synchronization is convenient. In this scenario, 
SystemC (IEEE, 2005) standard has become the most widespread language for the 
specification of embedded systems. The main reason is that SystemC extends C/C++ with a 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

252 

set of features for a rich, standard modelling of concurrency, time, data types and modular 
hierarchical.  

Summing up, concurrency is becoming a must in embedded system specification as it has 
become necessary for exploiting the underlying concurrency of MPSoC platforms. However, 
it brings a higher degree of complexity which introduces new challenges in embedded 
system specification, (Lee, 2006). In this chapter, the challenges and solutions for producing 
concurrent and correct specifications through simulation-based verification techniques are 
reviewed, and an alternative based on correct-by-construction specification methodologies 
is introduced. The chapter mainly addresses abstract concurrent specifications formed by 
asynchronous processes (formally speaking, untimed models of computation, MoCs, 
(Jansch, 2004).  This type of modelling is required for speeding up the simulation of complex 
systems in new design activities, such as Design Space Exploration (DSE). This chapter does 
not assume a single definition of “correct” specification. For instance, functional 
determinism can be required or not, depending on the application and on the intention of 
the specification. However, to check whether such a property is fulfilled for every case 
requires the provision of the means for considering the different execution paths enabled by 
the control statements of an initially sequential algorithm, and, moreover, for considering 
the additional paths raised by a concurrent partition of such an algorithm. 

The chapter will review different approaches and techniques for ensuring the correctness of 
concurrent specifications, to finally establish the trade-off between the flexibility in the 
usage of a specification language and the correctness of the coded specification. The rest of 
the chapter is structured as follows. Section 2 introduces an apparently simple specification 
problem in order to show how a rich specification language such as SystemC enables many 
different correct solutions, but also similar incorrect ones. Then, section 3 explores the 
possibilities and limitations of checking a SystemC specification through the application of 
simulation-based verification techniques. Finally, section 4 introduces an alternative, based 
on methodologies for correct-by-construction specifications and/or specification for 
verification. Section 5 gives conclusions about the trade-off between specification flexibility 
and verification cost and feasibility. 

2. A “simple” specification problem 

Some users may identify the knowledge of a specification language with the specification 
methodology itself. These users will take for granted that knowing the syntax, semantics 
and grammatical rules of the language is enough to build a “correct”, or suitable, 
specification for a given design flow. Later on, in section 3, the benefits of this will be 
discussed. For now, let’s see how a specification problem can be tackled in different ways. 

A rich language provides great flexibility to tackle a similar specification problem in 
different ways, which in many cases is seen as a benefit by designers. In this sense, a simple 
experiment enabled the authors to deduce that this richness is actually employed when 
different users tackle the same specification problem. Let’s assume we want to build a 
specification able to solve the functionality sketched in Fig.1. 

This functionality is summarized by the following equations: 

 y= fY(a,b)= f12 ( f11(a), f21(b) ) (1) 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

253 

 z= fZ(a,b)= f22 (f11(a), f21(b)) (2) 

 

Fig. 1. Specification Intent. 

In principle, the specification problem posed in Fig.1 is sufficiently general and simple to 
enable reasoning about it. The simple set of instances of fij functionalities, given by equation 
(3) will be used later on for facilitating the explanation of examples. However, the same 
reasoning and conclusions can be extrapolated to heavier and more complex functionalities. 

 f11 (x)=  x+1  f21 (x)=  x+2 (3) 

f12(x1, x2)=  x1+ x2     f22(x1, x2) = (x1=25,713)?  2x1-x2+5 :  x2- x1 

Initially, this is a straightforward specification problem which can be solved with a 
sequential specification, e.g., written in C/C++. The only condition to be fulfilled is to obey 
the dependency graph among fij functionalities shown on the right hand side of Fig.1. Thus, 
for instance, if the program executes the sequence {f11, f21, f12, f22}, it will be considered a 
correct model, and the model will produce its corresponding output as expected. For 
example, for (a,b)=(1,2), an output (y,z) = (6,2), where f11(1)=2, f21(2)=4, f12=2+4=6 and f22=4-
2=2 (since x1=2≠25,713). Here, a user will already find some flexibility, once the order of fij 
executions can be permuted without impact on the intended functionality. Things start to 
get more complex when concurrency enters the stage. Once a pair of functionalities fij and 
fmn can run concurrently no assumption about their execution order can be made. Assuming 
an atomic execution (non-preemptive) of fij functions, the basic principle for getting a 
solution fulfilling the specification intent of Fig. 1 is to guarantee the fulfilment of the 
following conditions: 

 T (f12) > T ( f11 ) (4) 

 T (f12) > T ( f21 ) (5) 

 T (f22) > T ( f21 ) (6) 

 T (f22) > T ( f11 ) (7) 

Where T(fij) stands for the time tag associated with the computation of functionality fij. 
Equations (4-7) are conditions which define a partial order (PO) in the execution of fij 
functionalities. It is a partial order because it defines an execution order relationship only for 
a subset of the whole set of pairs of fij functionalities. In other words, there are pairs of 
functionalities, fij and fmn, with i≠m ˇ j≠n, which do not have any order relationship. This no 
order relationship is denoted fij >< fmn. Some specification methodologies, such as HetSC, 
help the designer capture untimed specifications, which implicitly capture a PO. Untimed 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

254 

specifications reflect conditions only in terms of execution order, without assuming specific 
physical time conditions, thus they are the most abstract ones in terms of time handling. The 
PO is sufficient for ensuring the same specific global system functionality, while it reflects 
the available flexibility for further design steps. Indeed, no-order relationships spot 
functionalities which can be run in natural parallelism (that is, they are functionalities which 
do not require pipelining for running in actual parallelism) or which can be freely 
scheduled.  

SystemC has a discrete event (DE) semantics, which means that the time tag is twofold, that 

is, T=(t, ). Any computation or event happens in a specific delta cycle (i). Additionally, 
each delta has an associated physical time stamp (ti), in such a way that a set of consecutive 
deltas can share the same time stamp (this way, instantaneous reactions can be modelled as 
reactions in terms of delta advance, but no physical time advance). Complementarily, it is 
possible that two consecutive delta cycles present a jump in physical time ranging from the 
minimum to the maximum physical time which can be represented. 

Since SystemC provides different types of processes, communication and synchronization 
mechanisms for ensuring the PO expressed by equations (4-7), it is easy to imagine that 
there are different ways to solve the specification intent in Fig.1 as a SystemC concurrent 
specification, even if only untimed specifications are considered.  In order to check how 
such a specification would be solved by users knowing SystemC, but without knowledge of 
particular specification methodologies or experience in specification, six master students 
were asked to provide a concurrent solution. No conditions on the use of SystemC were set. 

Five students managed to provide a correct solution. By “correct” solution it is understood 
that for any value of ‘a’ and ‘b’, and for any valid execution (that is, fulfilling SystemC 
execution semantics) the output results were the expected ones, that is y=fY(a,b) and 
z=fZ(a,b). In other words, we were looking for solutions with functional determinism, 
(Jantsch, 2004). A first interesting observation was that, from the five correct solutions, four 
different solutions were provided. These solutions were considered different in terms of the 
concurrency structure (number of processes used, which functionality is associated to each 
process), communication and synchronization structure (how many channels, events and 
shared variables are used, and how they are used for process communication), and the order 
of computation, communication and synchronization within a process. 

Fig. 2, 3 and 4 sketch some possible solutions where functionality is divided into 2 or 4 
processes. These solutions are based on the most primitive synchronization facilities 
provided by SystemC (‘wait’ statements and SystemC events), using shared variables for 
data transfer among functionalities. Therefore, the solutions in Fig. 2, 3 and 4 reflect only a 
subset of the many coding possibilities. For instance, SystemC provides additional 
specification facilities, e.g. standard channels, which can be used for providing alternative 
solutions.  

Fig.2, Fig.3a and Fig.3b show two-process-based solutions. In Fig. 2, the two processes P1 
and P2 execute fi1 functionalities before issuing a wait(d) statement, with d of ‘sc_time’ type 
and where ‘d’ can be either a single delta cycle delay (d=SC_ZERO_TIME) or a timed delay 

(s>SC_ZERO_TIME), that is, an advance of one or more deltas () with an associated 
physical time advance (t). Notice that this actually means two different solutions in SystemC, 

under the SystemC semantics. In the former case, f11 and f21 are executed in 0,  

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

255 

 
 

 

Fig. 2. Solution based on two processes and on wait statements. 

while f21 and f22 are executed in 1, without t advance, while in the latter case, f21 and f22 are 
executed in a T with a different t coordinate. Anyhow, in both cases the same untimed and 
abstract semantics is fulfilled, in the sense that both fulfil the same PO, that is, equations (4-
7) are fulfilled. Notice that there are more solutions derived from the sketch in Fig. 2. For 
instance, several ‘wait(d)’ statements can be used on each side.  

 

Fig. 3. Solutions based on two processes and on SystemC events. 

Fig.3a and Fig.3b show two solutions based on SystemC events. In the Fig.3a solution, both 

processes compute f11 and f21 in 0 and schedule a notification to a SystemC event which will 
resume the other process in the next delta. Then, both processes get blocked. The crossed 
notification sketch ensures the fulfilment of equations (5) and (7). Equations (4) and (6) are 
fulfilled since f11 and f12 are sequentially executed within the same process (P1), and 
similarly, f21 and f22 are sequentially executed by process P2. Notice that several variants 
based on the Fig.3a sketch can be coded without impact on the fulfilment of equations (4-7). 
For instance, it is possible to use notifications after a given amount of delta cycles, or after 
physical time and still fulfil (4-7). It is also possible to swap the execution of f11 and e2 
notification, and/or to swap the execution of f11 and e1 notification. 

f11 f21 

f12 f22 

wait(d) wait(d) 

y 

z 

a 

b 

P1 P2 

a’ b’

P1

P2

f11 f21 

f12 

wait(e1) 

e2.notify 

e1 e2 

wait(e2)

e1.notify

P2 

a) 

b’a’

f22 

P1 

f11 f21 

f12 

wait(e1)

e2.notify 

e1 e2 

wait(e2) 

e1.notify 

P2 

b) 

b’a’

f22 

P1 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

256 

Fig.3b represents another variant of the Fig.3a solution where one of the processes 
(specifically P1 in Fig.3b) makes the notification after the wait statement. It adds an order 
condition, described by the equation T(f22) > T( f12), and which obliges the execution to 
require one delta cycle more (f22 will be executed in a delta cycle after f12). Anyhow, this 
additional constraint on the execution order still preserves the partial order described by 
equations (4-7) and guarantees the functional determinism of the specification represented 
by Fig. 3b.  

 

Fig. 4. Solution based on four finite and non-blocking processes. 

Finally, Fig.4 shows a solution with a higher degree of concurrency, since it is based on four 
finite non-blocking processes. In this solution, each process computes fij functionality 
without blocking. P3 and P4 processes compute f12 and f22 respectively only after two events, 
e1 and e2, have been notified. These events denote that the inputs for f12 and for f22 
functionalities, a’= f11(a) and b‘=f21(b), are ready. In general, P3 and P4 have to handle a local 
status variable (not-represented in Fig.4) for registering the arrival of each event since e1 and 
e2 notifications could arrive in different deltas. Such handling is an additional functionality 
wrapping the original fi2 functionality, which results in a functionality fi2‘, as shown in Fig.4. 

The sketch in Fig. 4 enables several equivalent codes based on the fact that processes P3 and 
P4 can be written either as SC_METHOD processes with a static sensitivity list, or as 
SC_THREAD processes with an initial and unique wait statement (coded as a SystemC 
dynamic sensitivity list, but used as a static one), before the function computation. 
Moreover, as with the Fig. 3 cases, both in P1 and in P2, the execution of fi1 functionalities 
and event notifications can be swapped without repercussion on the fulfilment of equations 
(4-7). 

Summarizing, the solutions shown are samples of the wide range of coding solutions for a 
simple specification problem. The richness of specification facilities and flexibility of 
SystemC enable each student to find at least one solution, and furthermore, to provide some 
different alternatives. However, such an open use of the language also leads to a variety of 
possible incorrect solutions. Fig. 5 illustrates only two of them. 

e1 

P1 P2 

P3 P4 

e2 
e2.notify e1.notify 

f11 f21 

f12‘ f22‘ 

wait(e1|e2) wait(e1|e2) 

P1 P2 

y 

z 

a 

b 

P3 P4 

b’a’

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

257 

 

Fig. 5. Solution based on four finite and non-blocking processes. 

In the Fig.5a example, the order condition (7) might be broken, and thus the specification 
intent in Fig.5a is not fulfilled. Under SystemC execution semantics, f22 may happen either 
before or after f11. The former case can happen if P2 starts its execution first. SystemC is non-
pre-emptive, thus f22 will execute immediately after f21, and thus before the start of P1, 
which violates condition (7). Moreover, the example in Fig. 5a does not provide functional 
determinism because condition (7) might be fulfilled or not, which means that output z can 
present different output values for the same inputs. Therefore, it is not possible to make a 
deterministic prediction of what output z will be for the same set of inputs, since sometimes 
it can be z=f22(a,f21(b)), while others it can be z=f22(f11(a),f21(b)).  In many specification 
contexts functional determinism is required or at least desirable. 

The Fig. 5b example shows another typical issue related to concurrency: deadlock. In Fig. 5b, 
a SystemC execution will always reach a point where both processes P1 and P2 get blocked 
forever, since the condition for them to reach the resumption can never be fulfilled. This is 
due to a circular dependency between their unblocking conditions. After reaching the wait 
statement, unblocking P1 requires a notification on event e1. This notification will never 
come since P2 is in turn waiting for a notification on event e2. 

Even for the small parallel specification used in our experiment, al least one student was not 
able to find a correct solution. However, even for experienced designers it is not easy to 
validate and deal with concurrent specifications just by inspecting the code, relying and 
reasoning based on the execution semantics, even if they are supported by a graphical 
representation of the concurrency, synchronization and communication structure. Relatively 
small concurrent examples can present many alternatives for analysis. Things get worse 
with complex examples, where the user might need to compose blocks whose code is not 
known or even visible. Moreover, even simple concurrent codes, can present subtle bug 
conditions, which are hard to detect, but risky and likely to happen in the final 
implementation. 

For example, let’s consider a new solution of the ‘simple’ specification example based on the 
Fig.3a structure. It was already explained that this structure works well when considering 
either delta notification or timed notification. A user could be tempted to use immediate 

f11 f21 

f12 f22 

wait(d) 

P1 P2 

a’ b’

f11 f21 

f12 

wait(e1)

e2.notify 

e1 

e2 

P2 

b’a’

f22 

P1 

a) b) 

wait(e2) 

e1.notify 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

258 

notification for speeding up the simulation with the Fig.3a structure. However, this 
specification would be non-deterministic. In effect, at the beginning of the simulation, both 
P1 and P2 are ready to execute in the first delta cycle. SystemC simulation semantics do not 
state which process should start in a valid simulation. If P1 starts, it will mean that the e2 
immediate notification will get lost. This is because SystemC does not register immediate 
notification and requires the process receiving it (in this case P2) to be waiting for it already. 
Thus, there will be a partial deadlock in the specification. P2 will get blocked in the 
‘wait(e2)’ statement forever and the output of P2 will be the null sequence z={}, while 
y={f21(f11(a),f21(b))}. Assuming the functions of equations (3), for (a,b)=({1},{2}), (y,z) = ({6},{}). 
Symmetrically, if P2 starts the execution first, then P1 will get blocked forever at its wait 
statement, and the output will be y={}, z={f22(f11(a),f21(b))}. Assuming the functions of 
equations (3), for (a,b)=({1},{2}), (y,z) = ({},{2}). Thus, in this case, no outputs correspond to 
the initial intention. There is functional non-determinism, and partial deadlock. 

It is not recommended here that some properties should always be present (e.g., not every 
application requires functional determinism). Nor is the prohibition of some mechanisms   
for concurrent specification recommended. For instance, immediate notification was 
introduced in SystemC for SW modelling and can speed up simulation. Indeed, the Fig.3a 
example can deterministically use immediate notification with some modifications in the 
code for explicit registering of immediate events. However, such modification shows that 
the solution was not as straightforward as designers could initially think. Therefore, the 
definition of when and how to use such a construct  is convenient in order to save wastage 
of time in debugging, or what it would be worse, a late detection of unexpected results. 

Actually, what it is being stated is that concurrent specification becomes far from 

straightforward when the user wants to ensure that the specification avoids the plethora of 

issues which may easily appear in concurrent specifications (non-determinism, deadlock, 

starvation, etc), especially when the number of processes and their interrelations grow. 

Therefore, a first challenge which needs to be tackled is to provide methods or tools to 

detect that a specification can present any of the aforementioned issues. The following 

sections will introduce this problem in the context of SystemC simulation. The difficulty in 

being exhaustive with simulation-based techniques will be shown. Then the possibility to 

rely on correct by construction specification approaches will be discussed. 

In order to simplify the discussion, the following sections will focus on functional 

determinism. In general, other issues, e.g. deadlock, are orthogonal to functional 

determinism. For instance, the Fig. 5b case presents deadlock while still being deterministic 

(whatever the input, each output is always the same, a null sequence). However, non-

determinism is usually a source of other problems, since it usually leads to unexpected 

process states, for which the code was not prepared to avoid deadlock or other problems. 

Fig. 4a example with immediate notification was an example of this.  

3. Simulation-based verification for flexible coding 

Simulation-based verification requires the development of a verification environment. Fig. 6 
represents a conventional SystemC verification environment. It includes a test bench, that is, 
a SystemC model of the actual environment where the system will be encrusted. The test 
bench is connected and compiled together with the SystemC description of the system as a 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

259 

single executable specification. When the OSCI SystemC library is used, the simulation 
kernel is also included in the executable specification. In order to simulate the model, the 
executable specification is launched. Then, the test bench provides the input stimuli to the 
system model, which produces the corresponding outputs. Those outputs are in turn 
collected and validated by the test bench. 

 

Fig. 6. Simulation-based verification environment with low coverage. 

The Fig. 6 framework has a significant problem.  A single execution of the executable 
specification provides very low verification coverage. This is due to two main factors: 

 The test bench only reflects a subset of the whole set of possible inputs which can be fed 
by the actual environment (Input Set). 

 Concurrency implies that, for each fixed input (triangle in Fig. 6), there are in general 
more than one feasible execution order or scheduling, thus potentially, more than one 
feasible output. However, a single simulation shows only one scheduling. 

The first point will be addressed in section 3.1. The following sections will focus on dealing 
with how to tackle verification when concurrency appears in the specification. 

3.1 Stimuli generation 

Assuming a fully sequential system specification, the first problem consists in finding a 
sufficient number of stimuli for a ‘satisfactory’ verification of the specification code. 
Satisfactory can mean 100% or a sufficiently high percentage of a specific coverage metric.  

Therefore, an important question is which coverage metrics to use. A typical coverage 

metric is branch coverage, but there are more code coverage metrics, such as lines, blocks, 

branches, expressions, paths, and boundary-path. Other techniques (Fallah, 1998); (Gupta, 

2002); (Ugarte, 2011) are based on functional coverage metrics. Functional coverage metrics 

are defined by the engineer, and thus rely on engineer experience. They can provide better 

performance in bug detection than code coverage metrics. However, code coverage metrics 

Test Bench 
Test Bench 

System 

OSCI  
Simulation 

Kernel 

Stimuli 

Input

 Set 
Output 

Set 

Output

SystemC 
executable 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

260 

do not depend on the engineer, thus they can be more easily automated. They are also 

simpler, and provide a first quality metric of the input set. 

In complex cases, an exhaustive generation of input vectors is not feasible. Then, the 
question is which vectors to generate and how to generate them. A basic solution is random 
generation of input vectors, (Kuo, 2007). The advantages are simplicity, fast execution speed 
and many uncovered bugs with the first stimulus. However, the main disadvantages are 
twofold: first, many sets of input values might lead to the same observable behaviour and 
are thus redundant, and second, the probability of selecting particular inputs corresponding 
to corner cases causing buggy behaviour may be very small. 

An alternative to random generation is, constrained random vector generation, (Yuan, 2004). 

Environments enabling constrained random generation enable a random, but controlled 

generation of input vectors by imposing some bounds (constraints) on the input data. This 

enables a generation of input vectors that are more representative of the expected 

environment. For instance, one can generate values for an address bus in a certain range of 

the memory map. Constrained randomization also enables a more efficient generation of 

input vectors, once they can be better directed to reach parts of code that a simple random 

generation will either be unlikely to reach  or will reach at the cost of a huge number of 

input stimuli.  In the SystemC context, the SystemC Verification library (SCV) (OSCI, 2003), 

is an open source freely available library which provides facilities for constrained 

randomization of input vectors. Moreover, the SCV library provides facilities for controlling 

the statistical profile in the vector generation. That is, the user can apply typical distribution 

functions, and even define customized distribution functions, for the stimuli generated. 

There are also commercial versions such as Incisive Specman Cadence (Kuhn, 2001), VCS of 

Synopsys, and Questa Advanced Simulator of Mentor Graphics. The inconvenience of 

constrained random generation of input vectors is the effort required to generate the 

constraints. It already requires extracting information from the specification, and relies on 

the experience of the engineer. Moreover, there is a significant increase in the computational 

effort required for the generation of vectors, which needs solvers. 

More recently, techniques for automatic generation of input vectors have been proposed 

(Godefroid, 2005); (Sen, 2005); (Cadar, 2008).  These techniques use a coverage metric to 

guide (or direct) the generation of vectors, and bound the amount of vectors generated as a 

function of a certain target coverage. However, these techniques for automatic vector 

generation require constrained usage of the specification language, which limits the 

complexity of the description that they can handle. 

In order to explain these strategies, we will use an example consisting in a sequential 
specification which executes the fij functionalities in Fig. 1 in the following order {f11, f21, f12, 
f22}. Therefore, this is an execution sequence fulfilling the specification intent, provided the 
dependency graph in Fig. 1b. Let’s assume that the specific functions of this sequential 
system are given by equations (3), and that the metric to guide the vector generation is 
branch coverage. It will also be assumed that the inputs (‘a’ and ‘b’) are of integer type with 
range [-2,147,483,648 to 2,147,483,647]. A first observation to make is that our example will 
have two execution paths, defined by the control statements, specifically, the conditional 
function f22. Entering one or another path depends on the value of the ‘x1’ input of f22, which 
in turn depends on the input to f11, that is, on the input ‘a’. 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

261 

By following the first strategy, namely, running the executable specification with random 
vectors of ‘a’ and ‘b’, it will be unlikely to reach the true branch of the control sentence 
within f22, since the probability of reaching it is less than 2.5E-10 for each input vector. Even 
if we provide means to avoid repeating an input vector, we could need 2.5E10 simulations 
to reach the true path. 

Under the second strategy, the verification engineer has to define a constraint to increase the 
probability of reaching the true branch. In this simple example, the constraint could be the 
creation of a weighted distribution for the x input, so that some values are chosen more 
often than others. For instance, the following sentence:  dist {[min_value:25713]:= 33, 25714:= 
34, [25715:max_value]:=33}, states that the value that reaches the true branch of f22, that is, 
25,714, has a 33.3% probability to be produced by the random generator. The likelihood of 
generation of values below 25.714 would be 33.3%, and similarly 33.3% for values over 
25,714.  Thus, the average number of vectors required for covering the two paths would be 
3. Then, the user could prepare the environment for producing three input vectors (or a 
slightly bigger number of them for safety). One possible vector set generated could be: (a,b) 
= {(12390, -2344), (-3949, 1234), (25714, -34959)}. The efficiency of this method relies on the 
user experience. Specifically, the user has to know or guess which values can lead to 
different execution paths, and thus which groups of input values will likely involve 
different behaviours. 

The latter strategy would be directed vector generation. This strategy analyses the code in 

order to generate the minimum set of vectors for covering all branches. Directing the 

generation in order to cover all execution paths would be the ideal goal. However, this 

makes the problem explode. In the simple case in Fig. 1, branch and path coverage is the 

same since there is only one control statement. In this case, only one vector is required per 

branch. For example, the first value generated could be random, e.g., (a = 39349, b= -1024). 

As a result, the system executes the false path of the control statement. The constraint of the 

executed path is detected and the constraint of the other branch generated. In this case, the 

constraint is a=25714. The generator solves the constraint and produces the next vector (a, b) 

= (25714, 203405). With this vector, the branch coverage reaches 100% of coverage and vector 

generation finishes. Therefore, the stimulus set is (a,b) = { (39349, 1024), (25714, 203405)}. 

3.2 Introducing concurrency: scheduling coverage 

In the previous section, the generation of input vectors for reaching certain coverage 
(usually of branches or of execution paths) has been discussed. For this, we assumed a 
sequential specification, which means that for a fixed input vector, a fixed output vector is 
expected.  Thus, the work focuses on finding vectors for exercising the different paths which 
can be executed by the real code, since these paths reflect the different behaviours that the 
code can exhibit for each input. Each type of behaviour is a relationship between the input 
and the output. Functional behaviour will imply a single output for given input.  

As was mentioned at the beginning of section 3, the injection of concurrency in the 
specification raises a second issue. Concurrency makes it necessary to consider the 
possibility of several schedulings for the execution of the system functionality for a fixed 
input vector. This can potentially lead to different behaviours for the same input. At 
specification level, there are no design decisions imposing timing and thus no strict ordering  

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

262 

 

Fig. 7. Higher coverage by checking several inputs and several schedulings per input. 

to the computation of the concurrent functionality, thus all feasible order must be taken into 
account. The only exception is the timing of the environment, which can be neglected for 
generality. In other words, inputs can be considered as arriving in any order. 

In order to tackle this issue, Fig. 7 shows the verification environment based on multiple 
simulations proposed by (Herrera, 2006). Using multiple simulations, that is, multiple 
executions (ME) in a SystemC-based framework, enables the possibility of feeding different 
input combinations. SystemC LRM comprises the possibility of launching several 
simulations from the same executable specification through several calls to the 
sc_elab_and_sim function. (Herrera, 2006), and (Herrera, 2009), explain how this could be 
done in SystemC.  However, SystemC LRM also states that such support depends on the 
implementation of the SystemC simulator. Currently, the OSCI simulator does not support 
this feature. Thus, it can be assumed that running NE simulations currently means running 
the SystemC executable specification NE times. In (Herrera, 2006), and (Herrera, 2009), the 
launch of several simulations is automated through an independent launcher application.  

The problem is how to simulate different scheduling, and thus potentially different 

behaviour, for each single input. Initially, one can try to perform several simulations for a 

fixed input test bench (one triangle in the Fig. 7 schema,). However, by using the OSCI 

SystemC simulator, and most of the available SystemC simulators, only one scheduling is 

simulated. In order to demonstrate the problem, we define a scheduling as a sequence of 

segments (sij). A scheduling reflects a possible execution order of segments under SystemC 

semantics. A segment is a piece of code executed without any pre-emption between calls to 

the SystemC scheduler, which can then make a scheduling decision (SDi). A segment is 

usually delimited by blocking statements. A scheduling can be characterized by a specific 

sequence of scheduling decisions. In turn, the set of feasible schedulings of a specification 

can be represented in a compact way through a scheduling decision tree (SDT). For instance, 

Fig. 8 shows the SDT of the Fig. 2 (and Fig. 3) specification. This SDT shows that there are 4 

possible schedulings (Si in Fig. 8). Each segment is represented as a line ended with a black  

Test Bench 
Test Bench 

System 

Extended 
Simulation 

Kernel 

Stimuli 

SCV 

Input

 Set 
Output 

Set 

Output

SystemC 
executable 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

263 

 

Fig. 8. Scheduling Decision Tree for the examples in Fig. 2 and Fig. 3. 

dot. Moreover, in the Fig. 8 example, each sij segment corresponds to a fij functionality, 

computed in this execution segment. Each dot in Fig. 8 reflects a call to the SystemC 

scheduler. Therefore, each simulation of the Fig. 2, and Fig. 3 examples, either with delta or 

timed notification, always involves 4 calls to the SystemC scheduler after simulation starts. 

However, only two of them require an actual selection among two or more processes ready 

to execute, that is, a scheduling decision (SDi). As was mentioned, multiple executions of the 

executable simulation compiled against the existing simulators would exhibit only a single 

scheduling, for instance S0 in the Fig. 8 example. Therefore, the remaining schedulings, S1, S2 

and S3 would never be checked, no matter how many times the simulation is launched. 

As was explained in section 2, the Fig. 2 and Fig. 3 examples fulfil the partial order defined 

by equations (4-7), so the unchecked schedulings will produce the same result. This is easy 

to deduce by considering that each segment corresponds to a fij functionality of the example. 

 

Fig. 9. Scheduling Decision Tree for the Fig.2 and Fig. 3 examples. 

However, let’s consider the Scheduling Decision Tree (SDT) in the Fig. 5a example, shown in 

Fig. 9. The lack of a wait statement between f21 and f22 in P2 in the Fig. 5a example implies 

that P2 executes all its functionality (f21 and f22) in a single segment (s21). Notice that a 

segment can comprise different functionalities, or, as in this case, one functionality as a 

S0=  {s11, s21, s12, s22} = {f11, f21, f12, f22} 

S0  {SD0, SD1} = {0, 0} 

S1= {s21, s11, s12, s22} = {f21, f11, f12, f22} 

S2= {s21, s11, s22, s12} = {f11, f21, f22, f12} 

S3= {s21, s11, s22, s12} = {f21, f11, f22, f12} 

S3  {SD0, SD1} = {1, 1}

s11 

s21 

0 1 

SD0

s21 

s11 

s12 

S0=  {s11, s21, s12} = {f11, f21 ◦ f22, f12} 

S0  {SD0} = {0} 

S1= {s21, s11, s12} = { f21 ◦ f22 , f11, f12} 

S1  {SD0} = {1} 

s11 

s21 

s21 

s11 

s12 

s22 

s22 

s12 

0 1 

SD0 SD1 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

264 

result of composition of f21 and f22 (denoted f21 ◦ f22). Therefore, for the Fig. 5a example, the 

SystemC kernel executes three segments, instead of four as in the case of Fig. 4 example. 

Notice also that several scheduler calls can appear within the boundaries of a delta cycle. 

The SDT of the Fig. 5 example has only a single scheduling decision. Therefore, two 
schedulings are feasible, denoted S0 and S1. However, only one of them, S0, fulfils the partial 
order defined by equations (4-7). As was mentioned, the OSCI simulator will execute only 
one, either S0 or S1, even if we run the simulation several times. This is due to practical 
reasons, since OSCI and other SystemC simulators implement a fast and straightforward 
scheduling based on a first-in first-out (FIFO) policy. If we are lucky, S1 will be executed, 
and we will establish that there is a bug in our concurrent specification. However, if we are 
not lucky, and S0 is always executed, then the bug will never be apparent. Thus, we can get 
the false impression of facing a deterministic concurrent specification. 

Therefore, a simulation-based environment requires some capability for observing the 
different schedulings, ideally 100% coverage of schedulings, which are feasible for a fixed 
input. Current OSCI implementation of the SystemC simulation kernel fulfils the SystemC 
semantics and enables fast scheduling decisions. However, it produces a deterministic 
sequence of scheduling decisions, which is not changed from simulation to simulation for a 
fixed input. This has leveraged several techniques for enabling an improvement of the 
scheduling coverage.  Before introducing them, a set of metrics for comparing different 
techniques for improving scheduling coverage of simulation-based verification techniques, 
proposed in (Herrera, 2006), will be introduced. They can be used for a more formal 
comparison of the techniques discussed here. These metrics are dependent on each input 
vector, calculated by means of any of the techniques explained in section 3.1. 

Let’s denote the whole set of schedulings S, where S = {S0, S1, …, Ssize(s)}, and size(S) is the 
total number of feasible schedulings for a fixed input. Then, the Scheduling Coverage, CS, is 
the number of checked schedulings with regard to the total number of possible schedulings. 

 
 
S

S

N
C

size S
  (8) 

The Multiple Execution Efficiency ME  is the actual number of (non-repeated) schedulings 

NS covered after NE simulations (executions in SystemC).  

 
1

1
S S

ME
E S R E

N N

N N N R
   

 
 (9) 

NR stands for the amount of repeated schedulings, which are not useful. As can be seen, 

ME can be expressed in terms of RS. RS is a factor which accounts for the number of 

repeated schedulings out of the total number of simulations NE. 

The total number of simulations to be performed to reach a specific scheduling coverage, 
NT(CS) can be expressed as a function of the desired coverage, the number of possible 
schedulings, and the multiple execution efficiency. 

 ( )
( ) S

T S
ME

C size S
N C




  (10) 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

265 

Finally, the Time Cost for achieving a coverage CS is approximated by the following 
equation: 

 
  ( )

E
ME

C TE size TE
T t




   (11) 

Where t  is the average simulation time of each scheduling. It is actually a rough 

approximation, since each scheduling can derive in shorter or longer schedulings. It also 
depends on the actual scheduling technique. However, equations (8-11) will be sufficiently 
useful for comparing the techniques introduced in the following sections, and the yield of 
conventional SystemC simulators, including the OSCI SystemC library in the simulation-
based verification environments shown in Fig. 7. Conventional SystemC simulators provide 

a very limited scheduling coverage, 
 

1
SC

size S
 , since NS=1.  Moreover, the scheduling 

coverage is fixed and cannot grow with further simulations. Since size(S) exponentially 
grows when adding tasks and synchronization mechanisms, the scheduling coverage 
quickly becomes low even with small examples. For instance, in (Herrera, 2006), a simple 
extension of the Fig. 2 example to three processes, each of three segments, leads to 
size(S)=216, thus CS=0.46%. 

3.2.1 Random and pseudo-random scheduling 

The user of an OSCI simulator can try a trick to check different schedulings in a SystemC 
specification. It consists in changing the order of declaration of SystemC processes in the 
module constructor. Thus, the result of the first dispatching of the OSCI simulator at the 
beginning of the simulation can be changed. However, this trick gives no control over 
further scheduling decisions. Moreover, checking a different scheduling requires the 
modification of the specification code.  

A simple alternative for getting multiple executions to exhibit different schedulings is 
changing the simulation kernel to enable a random selection among the processes ready to 

execute in each scheduling decision. Random scheduling enables 
 

1
1SC

size S
  , and a 

monotonic growth of Cs with the number of simulations NE. The dispatching is still fast, 
since it only requires the random generation of an index suitable for the number of 
processes ready to execute in each scheduling decision. The implementation can range from 
more complex ones guaranteeing the equal likelihood in the selection of each process in the 
ready-to-execute list, to simpler ones, such as the one proposed in (Herrera, 2006), which is 
faster and has low impact in the equal likelihood of the selection. 

There are still better alternatives to pure random scheduling. In (Herrera, 2006), 
pseudorandom (PR) scheduling is proposed. Pseudorandom scheduling consists in enabling 
a pseudo-random, but deterministic, sequence of scheduling decisions from an initial seed. 
This provides the advantage of making each scheduling reproducible in a further execution.  
This reproducibility is important since it enables to debug the system with the scheduling 
which showed an issue (unexpected result, deadlock, etc) as many times as desired. Without 
this reproducibility, the simulation-based verification framework would be able to detect 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

266 

there is an issue, but would not be practically applicable for debugging it. Therefore, 

Pseudorandom scheduling presents the same coverage, 
 

1
1SC

size S
   , and monotonic 

growth as CS with the number of simulations of pure random scheduling. A freely available 
extension of the OSCI kernel, which implements and makes available Pseudorandom 
scheduling (for SC_THREAD processes) is provided in (UCSCKext, 2011). 

Pseudorandom scheduling still presents issues. One issue is that, despite the monotonic 
growth of CS with NE, this growth is approximately logarithmic, due to the probability of 
finding a new scheduling with the number of simulations performed. Each new scheduling 
found reduces the number of new schedulings to be found, and Pseudorandom schedulings 
have no mechanisms to direct the search of new schedulings. Thus, in pseudorandom 

scheduling, 1ME  in general, and it quickly tends to 0 when NE grows. Another issue is 

that it does not provide specification-independent criteria to know when a specific CS or a 
size(S) has been reached. CS or size(S) can be guessed for some concurrency structures. 

3.2.2 Exhaustive scheduling 

In (Herrera, 2009), a technique for directing scheduling decisions for an efficient and 
exhaustive coverage of schedulings, called DEC scheduling, was proposed. The basic idea, 
was to direct scheduling decisions in such a way that the sequence of simulations perform a 
depth-first search (DFS) of the SDT. For an efficient implementation, (Herrera, 2009), 
proposes to use a scheduling decision register (SDR), which stores the sequence of decisions 
taken in the last simulation. 

For instance, for the Fig. 8 SDT, corresponding to examples in Fig.2 and 3, the first 
simulation will produce the S0 scheduling.  This means that the SDR will be SDR0={0,0}, 
matching the FIFO scheduling semantics of conventional SystemC simulators, where the 
first process in the ready-to-execute queue is always selected. Then, a second simulation 
under the DEC scheduling, will use the SDR to reproduce the scheduling sequence until the 
penultimate decision (also included). Then, the last decision is changed. Remember that a 
scheduling decision SDi is taken whenever a selection among at least two ready-to-execute 
processes is required. Since in the previous simulation the last scheduling decision was to 
select the 0-th process (denoted in the example as SD1=0), in the current simulation the next 
process available in the ready-to-execute queue is selected (that is, SD1=1). Therefore, the 
second execution in the example simulates the next scheduling of the SDT, S1={0,1}. 

In a general case, the change in the selection of the last decision can mean an extension of 
the SDT (which means that the simulation must go on, and so go deeper into the SDT). 
Another possibility is what happens in the example shown, where the branch at the current 
depth level has been fully explored and a back trace is required. In our example, the third 
simulation will go back to SD0 decision and will look for a different scheduling decision 
(SD0=1). What will occur in this case is that the simulation can go on and new scheduling 
decisions, will be required, thus requiring the extension of the SDR again, and thus leading 
to the S2={1,0} scheduling. Following the same reasoning, it is straightforward to deduce 
that the next simulation will produce the scheduling S3={1,0}. 

Therefore, the main advantage of DEC scheduling with regard to PR scheduling is that 

1ME  . That is, each new simulation guarantees the exploration of a new scheduling. This 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

267 

provides a more efficient search since the scheduling coverage grows linearly with the 
number of simulations. That is, for DEC scheduling: 

 
   

1
1E

S

N
C

size S size S
    (12) 

Another advantage of DEC scheduling is that it provides criteria for finishing the 

exploration of schedulings which does not require an analysis of the specification. It is 

possible thanks to the ordered exploration of the SDT, (Herrera, 2009). The condition for 

finishing the exploration is fulfilled once a simulation (indeed the NE=size(S)-th simulation) 

has selected the last available process for each scheduling decision of the SDR, and no SDT 

extension (that is, no further events and longer simulation) is required. In the example in 

Fig. 8, this corresponds to the scheduling S3={1,1}. When this condition is fulfilled, 100% 

scheduling coverage (CS) has been reached. Notice that, in order to check the fulfilment of 

the condition, no estimation of size(S) is necessary, thus no analysis of the concurrency and 

synchronization structure of the specification is required. In the case that size(S) can be 

calculated, e.g. because the concurrency and synchronization structure of the specification is 

regular or sufficiently simple, then CS, can be calculated through equation (12). For instance, 

in the Fig. 8 example size(S)=4, then, applying equation (8), CS=0.25NS. 

The main limitation of DEC scheduling is that size(S) has an exponentially growth for a 

linear growth of concurrency. Thus, although 1ME   is fulfilled, the specification will 

exhibit a state explosion problem. The state explosion problem is exemplified in (Godefroid, 

1995), which shows how a simple philosopher’s example can pass from 10 states to almost 

106 states when the number of philosophers grows from two up to twelve. Another related 

downside is that a long SDR has to be stored in hard disk, thus the reproduction of 

scheduling decisions will include the time penalties for accessing the file system. This means 

a growth of t  in equation (11) for the calculation of the simulation-based verification time, 

which has to be taken into account when comparing DEC scheduling with Pseudo-random 

or pure random techniques, where scheduling decisions are lighter. 

3.3 Partial Order Reduction techniques 

A set of simulation-based techniques, based on Partial Order Reduction (POR) has been 

proposed for tackling the state explosion problem. POR is a partition-based testing 

technique, based on the execution of a single representative scheduling for each class of 

equivalent schedulings. This reduces the number of schedulings to be explored, from 

size(S) feasible schedulings, to M, with M<size(S). M is the number of sets of non-

equivalent scheduling classes, each one enclosing a set of equivalent schedulings. The 

equivalence is understood in functional terms. That is, the simulation of two schedulings 

of an equivalent scheduling class will lead to the same state, and therefore to the same 

effect on the system behaviour. When applying POR techniques, the objective is not to 

achieve CS=100%, but CM=100%, where CM stands for the coverage of representative (non-

equivalent) schedulings. Expressed in other terms, a single simulation serves to check on 

average a set of L  equivalent simulations. Thus POR techniques enable a scheduling 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

268 

coverage of 
 

EN L

size S


 and efficiencies greater than 1, that is, 1S

ME
E

N

N
   . Obviously, the 

efficiency in the exploration of non-equivalent schedulings will always remain below or 

equal to 1. 

In order to deduce which schedulings are equivalent, POR methods require the extraction 
and analysis of information from the specification, in order to study when the possible 
interactions and dependencies between processes may lead or not to functionally equivalent 
paths. For instance, the detection of shared variables, and the analysis of write-after-write, 
read-after-write, and write-after-read situations in them, enable the extraction of non-
equivalent paths which can lead to race conditions. Similarly, event synchronization has to 
be analyzed (notification after wait, wait after notification, etc) since non-persistence of 
events can lead to misses and to unexpected deadlock situations, non-determinism or other 
undesirable effects. (Helmstetter, 2006) and (Helmstetter, 2007) propose dynamic POR 
(DPOR) of SystemC models, by adapting dynamic POR techniques initially developed for 
software (Flanagan, 2005). Dynamic POR selects the paths to be checked during the 
simulation, in each scheduling decision, performing the analysis among ready-to-execute 
processes. Later works, such as the ‘Satya’ framework (Kundu, 2008), have proposed the 
combination of static POR techniques with dynamic POR techniques. The basic idea is that 
the runtime overhead is reduced by computing the dependency information statically; to 
later use it during runtime. 

As an example, let’s consider the first scheduling decision (SD0) in the SDT in Fig. 8 for any 
of the specifications represented by Fig. 2 and 3. Depending on SD0, the scheduling executed 
can start either by {s11, s21, …} or by {s21, s11, …}, each one representing two different classes 
of schedulings, {S0, S1} and {S2, S3} respectively. A POR analysis focused on the impact on 
functionality, will establish that those scheduling classes actually account for the following 
two possible starting sequences in functional terms, either {f11, f21, …} or {f21, f11, …}. A POR 
technique will establish that f11 and f21 have impact on some intermediate and shared 
variables, ‘a’ and ‘b’, which reflect the state of the concurrent system and which imply 
dependencies between P1 and P2, thus requiring a specific analysis. Specifically, the POR 
technique will establish that those two possible initializations of the schedulings lead to the 

same state (in the next delta, 1), described by a’=f11(a) and b’=f11(b). In other words, since 
there are no dependencies, any starting sequence leads to the same intermediate state, and 
schedulings starting with SD0=0, that is, starting by {s11, s21, …}, and schedulings starting 
with SD0=1, that is, starting by {s21, s11, …} will be equivalent if they keep the same sequence 
of decisions in the rest of the sequence of scheduling decisions (SD0). Therefore only one of 
the alternatives in SD0 has to be explored.  This idea can be iteratively applied generally 
leading to a drastic reduction in the number of paths which have to be explored, thus 
fulfilling M<<size(s). Such a drastic reduction can be observed in our simple example if we 
continue with it. Let’s take, for instance, SD0=0 in the example, and let’s continue the 
application of a dynamic POR. At this stage, in the worst case, we will need to execute S0 
and S1, thus M=2 simulations for a complete coverage of functional equivalent schedulings. 

Furthermore, DPOR is again applied for the second delta, 1. Considering y and z as state 
variables directly forwarded to the outputs, there is no read after write, write after read or 
write after write dependency among them. Therefore, it can be concluded that the decision 

on SD1 will be irrelevant in reaching the same (y, z) state after the 1 delta. Therefore, M=1, 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

269 

and 4ME  in this case, since any of the four schedulings exposed by a single simulation 

will be representative of a single class of schedulings, equivalent in functional terms. 

The method described in (Helmstetter, 2006) is complete, but not minimal, since it is feasible 
to think about specifications where M non-equivalent schedulings lead to different states, 
but where those different states are not translated into different outputs. This means that M 
would still admit a further reduction. This reduction would require an additional analysis of 
the actual relationship between state variables and the outputs. As an example, let’s 
consider that in our examples in Fig. 2, z was not considered as a system output, but as 
informative or debugging data, resulting from post-processing, through f22, an internal state 
variable), and that the only output is y. Thus, it would demonstrate the irrelevance of the 

SD1 scheduling decision, which would save the last DPOR analysis in 1.  

The approach of (Helmstetter, 2006) is also fork-based. Whenever a scheduling decision 

finds non-equivalent or potentially non-equivalent paths, the simulation is spawned in 

order to enable a concurrent check. Thus, several non-equivalent groups of schedulings can 

be explored by launching a single simulation. This makes ME even bigger, and 

1ME SN   , up to the point where a single simulation could cover all the scheduling 

classes. However, this optimization should be carefully considered. In order to give an 

actual speed up to the verification, it is necessary that the simulation engine can take 

advantage of a multi-core host machine. In (Helmstetter, 2006), the first advances for a 

parallel SystemC simulator are given. If the simulation is sequential, then a fork-based 

approach can easily be counter-productive in terms of time cost even if SystemC simulators 

with actual parallel simulation capabilities are available.  

In general, the main limitation of POR-based approaches is their need for extracting 
information from the specification. The limitations of the front-end tools used for extracting 
the information used for static dependency analysis, and the need to make the analysis 
feasible limit the supported input code. Specifically, the approach of (Helmstetter, 2006) is 
restricted to the SystemC subset admitted by the open-source and freely available Pinapa 
front-end (Moy, 2005). Satya is based in the commercial EDG C++ front-end, which provides 
wider support than Pinapa. However, it still presents limitations for supporting features 
such as dynamic casting and process creation. The work of (Sen, 2008) claims its 
independency from any external parser, while being able to detect potential errors in an 
observed execution, even if the error does not take place in the actual simulation. However, 
its goal is temporal assertion-based verification, rather than improving test coverage. 

3.4 Merging scheduling techniques 

In (Herrera, 09), the local application and cooperation of different scheduling techniques 
(PR, DEC and POR) is proposed. Two types of localities are distinguished: 

 Spatial Locality: in order to improve scheduling coverage for a specific group of 
processes of the system specification. 

 Temporal Locality: in order to improve scheduling coverage in a specific interval of the 
simulation time. 

For instance, in some parts of the specification where SystemC is used in a flexible manner, 
e.g., a high-level concurrent model of an intellectual property (IP) block, DEC scheduling 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

270 

could be applied. Then POR could be applied to other parts, e.g., an in-house TLM platform, 
where the IP block is connected, and whose code can be bound to the specification rules 
stated by the POR technique. Table 1 summarizes the main characteristics of the different 
scheduling techniques reviewed. 

 

Scheduling 
Technique 

CS ME Reproducibility

Linear 
growth 
of Cs 
with NE 

Specification 
Independent 
Detection of CS=1 

Specification 
Analysis Required 

FIFO 
(OSCI 
simulator)  

1

size S
 

1

EN
 yes no no no 

Random  
1

size S


1

1

EN


1  

no no no no 

Pseudo 
Random 

 
1

size S


1

1

EN


1  

yes no no no 

DEC  
EN

size S
 1 yes yes yes no 

POR  
EN L

size S


 1  

L  
yes yes yes yes 

Table 1. Comparison of scheduling techniques for simulation-based verification. 

4. Methodologies for early correct specification 

As shown in the previous sections, the success of a simulation-based verification 
methodology greatly depends on the ability to explore the effects of all the feasible 
execution alternatives, or at least, the “equivalent ones”. The problem is already challenging 
for sequential specifications, especially for control-oriented algorithms, and becomes 
practically intractable when concurrency appears in the specification, since the number of 
execution paths grows exponentially. 

As has been shown, a way to tackle the explosion problem, for finding both a more reduced 

and efficient set of input vector generation, and an efficient set of schedulings, is the usage 

of information from the specification. Automated test generation techniques direct vector 

generation by detecting control statements and looking for vectors which exercise their 

different branches. Similarly, partial order reduction techniques need to analyze, either 

statically or dynamically, which variables or events produce dependencies among processes 

in order to extract the representative schedulings which need to be simulated. 

This means that some conditions for making the specification wrong and hard to verify are 
already known. Thus, a different perspective is possible. Why not build specification 
methodologies which oblige, or at least help, the user to avoid such source problems, 
instead of letting them appear in the specification, with the consequential requirement of a 
costly verification. 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

271 

An alternative consists in building specification methodologies which selectively adopt 
certain specification rules. Such rules will enable enough expressivity to solve the 
specification problem, but at the same time they rely on formal conditions for building 
correct specifications. By assuming the fulfilment of such specification rules, the formal 
support ensures the fulfilment of the properties pursued, or at least enables the application 
of analysis techniques for assessing such fulfilment. This idea is generally applicable. For 
instance, a methodology could forbid the usage of control statements. Then the specification 
would have just one data path, and the generation of test input vectors would be drastically 
simplified. However, this type of coding constraint would be very restrictive in many 
application domains, where user needs control sentences. Each specification methodology 
has its expressivity requirements, which puts bounds on the specification rules. 

Embedded system specification requires expressing concurrency and abstraction. It might 
easily lead to the SystemC user to run into the plethora of issues associated to concurrency 
(non-determinism, deadlock, starvation, etc), as was illustrated in section 3. However, if 
certain smart rules are imposed on how concurrency is expressed in SystemC, it can highly 
facilitate to build early correct concurrent specifications.  This principle has inspired several 
works, such as SystemC-H (Patel, 2004), SysteMoC (Haubelt, 2007), HetSC (Herrera, 2007), 
and HetMoC (Zhu, 2010), which have proposed SystemC specification methodologies to 
ensure, or facilitate the verification, of certain properties. These methodologies state a set of 
SystemC facilities (and provide additional ones when they are not provided by the standard 
core of SystemC) and state a set of specification rules. Methodologies such as HetSC, 
SystemC-H and SysteMoC rely on well-known formalisms, related to specific Models of 
Computation (MoC), such as Khan Process Networks (KPN) (Kahn, 1974), Synchronous 
Data Flows (SDF) (Lee, 1987), Concurrent Sequential Processes (CSP), Synchronous Reactive 
(SR) systems, and Dynamic Data Flows (DDF). HetMoC, relies on the ForSyDe formalism 
(Jantsch, 2004), which targets the unification of several MoCs. Finally, a standard extension 
of the SystemC language, such as SystemC-AMS, adopts a variation of the SDF MoC, called 
T-SDF, which annotates a time advance after each cluster execution. 

Two important factors which characterize these types of specification methodologies are the 

properties targeted and the way these are achieved, that is, which specification facilities, 

specification rules, and assumptions configure the methodology. Two typical properties 

pursued are functional determinism and deadlock protection. A relatively flexible way to 

ensure functional determinisms is to build the specification methodology according to the 

KPN formalism. The adoption of a more constrained specification style, through a 

specification methodology which fulfils the SDF formalism, enables the application of an 

analysis for ensuring deadlock protection, as well as functional determinism. This is 

illustrated through the Fig. 10 example. 

Fig. 10a shows the structure of a HetSC specification for solving the Fig.1 specification 
problem. HetSC states the rules to be followed in the SystemC coding for building the 
concurrent solution as a Khan Process Network. There are rules regarding the facilities to 
use (SC_THREADS for P1 and P2, and blocking fifo channels with infinite buffering 
capability, that is, channels of uc_inf_fifo type, provided by the HetSC library). There are 
rules regarding how to write the processes, e.g., only one channel instance can be accessed 
(either for reading or for writing) at a time. Finally, there are rules regarding communication 
and computation, e.g., no more than one process can access a channel instance either as a 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

272 

reader or as a writer. More details on the rules can be found at the (HetSC website, 2012). All 
these SystemC coding rules are designed to fulfil the rules and assumptions stated in Kahn, 
1974. Provided they are fulfilled, as happens in the Fig. 10a case, it can be said that the 
Fig.10a specification is functionally deterministic. Notice that read accesses to the uc_inf_fifo 
instances are blocking, thus they ensure the partial order stated by equations (4-7). 

 

Fig. 10. Specification of Fig.1 solved as a) a Kahn process network and b) as a static dataflow. 

Fig.10b shows a second possibility, where the specification is built fulfilling the SDF MoC 

rules, by using the HetSC methodology and facilities. To fulfil the SDF MoC, the 

specification style has to be more restrictive than in KPN in several ways. First of all, the 

KPN specification rules as in the Fig. 10a case, still apply. For instance, only one reader and 

one writer process can access each channel instance. Furthermore, there are additional rules. 

For example, each of the specification processes has to be coded without any blocking 

statement in the middle. Due to this, a single process has been used for each fij function, 

enabling a correspondence between a process firing and the execution of function fij. 

Moreover, the specific amount of data consumed and produced for each fij firing has to be 

known in advance. In HetSC, that information is associated to uc_arc channel instances. The 

advantage provided by the Fig. 10b solution is that not only does it ensure functional 

determinism by construction, but it also enables a static analysis based on the extraction of 

the SDF graph. The Fig. 10b direct SDFG easily leads to the conclusion that the specification 

is protected against deadlock, and moreover, that a static scheduling is also possible. 

5. Conclusions 

There is a trade off (shown in qualitative terms in Fig. 11) between the flexibility in the 

usage of a language and the verification cost for ensuring certain degree of correctness in a 

specification. In practice, simulation-based methodologies are in the best position for the 

verification of complex specifications, since formal and semiformal verification techniques 

easily explode. However, concurrency has become a necessary feature in specification 

methodologies. Therefore, the capability of simulation based techniques for verification of 

f11 f21 

f12 

b_ch. 
read() 

a_ch. 
read()

b_ch. 
write(b)

P2 

a) 

f22 

P1 

 a_ch

 b_ch

a_ch. 
write(b) 

uc_inf_fifo 

uc_inf_fifo 

 a_ch

 b_ch

f12 

P4 P3 

uc_arc (1,1) 

uc_arc (1,1) 

P1 P2 

f11 f21 

f22 

b) 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

273 

complex embedded systems has to be reconsidered. A reasonable alternative seems to be the 

development of cooperative techniques which combine simulation-based methods and 

specification methodologies which constrain the usage of the language under some formal 

rules, oriented to fulfilling the desired properties. Specifically, while SystemC is a language 

with a rich expressivity, it is still necessary to build abstract specification methodologies 

using SystemC as host language, by constraining the specification facilities and the way they 

can be used. This way, certain key properties can be guaranteed by construction, and the 

fulfilment of others can be analyzed. The set of properties to be guaranteed depend on the 

application domain. Moreover, a formally supported specification methodology can help to 

validate additional properties through simulation-based verification techniques with a 

drastic improvement in the detection capabilities and time spent on simulation. 

 
 
 

 
 
 

Fig. 11. Trade off between flexibility and verification time after considering concurrency. 

6. Acknowledgement 

This work has been partially funded by the EU FP7-247999 COMPLEX project and by the 
Spanish government through the MICINN TEC2008-04107 project. 

7. References  

Burton, M. et al. (2007). ESL Design and Verification, Morgan Kaufman, ISBN 0-12-373551-3 

Bergeron, J. (2003) Writing Testbenches. Functional Verification of HDL Models. Springer, ISBN 

1-40-207401-8. 

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., & Engler, D.R., (2008). EXE: 

Automatically Generating Inputs of Death. ACM Transactions on Information and 

System Security (TISSEC).  V12, Issue 2, Article 10. December, 2008.  

Chiang, S. Y. (2011). Keynote Speech. Proceedings of ARM Techcom Conference. October, 25th, 

2011. Santa Clara, USA. 

EDG website, (2012). EDG Website. http://www.edg.com/. Checked in November,  

2011. 

Specification 
 Methodology 

Very Constrained Very Flexible 

Verification  
cost 

Correct-by-
Construction 

Static 
Analysis 

POR 
Techniques 

White 
Box 

Black 
Box 

Cooperative 
Techniques 

DEC 
Scheduling 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

274 

Fallah, F.,  Devadas, S. & Keutzer, K. (1998) Functional vector generation for HDL models 

using linear programming and 3-satisfiability. Proceedings of the 35th annual Design 

Automation Conference (DAC '98). ACM, New York, NY, USA, pp. 528-533. 

Flanagan, C. & Godefroid, P. (2005) Dynamic Partial Order Reduction for Model Checking 

Software. Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of 

Programming Languages. 2005. 

Godefroid, P. (1995) Partial-Order Methods for the Verification of Concurrent Systems; An 

approach to the State-Explosion Problem. PhD thesis. University of Liege. 1995. 

Godefroid, P., Klarlund, N. & Sen, K. (2005) DART: Directed Automated Random Testing. 

Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and 

implementation (PLDI '05). ACM, New York, NY, USA, pp. 213-223.  

Grant, M. (2006). Overview of the MPSoC Design Challenge. Proceedings of Design 

Automation Conference 2006, DAC’06. , ISBN 1-59593-381-6 San Francisco, USA. 

Gupta, A., Casavant, A.E., Ashar, P., Mukaiyama, A., Wakabayashi, K. & Liu, X. G. (2002). 

Property-Specific Testbench Generation for Guided Simulation. Proceedings of the 

2002 Asia and South Pacific Design Automation Conference (ASP-DAC '02). IEEE 

Computer Society, Washington, DC, USA. 2002. 

Halfhill, T. (2012). Looking beyond Graphics. 2012. Whipe paper, Available in 

http://www.nvidia.com/object/fermi_architecture.html. 

Haubelt, C.,  Falk , J.,  Keinert, J. , Schlichter, T., Streubühr, M. , Deyhle, A. , Hadert, A., 

Teich, J. (2007). A SystemC-Based Design Methodology for Digital Signal 

Processing Systems. EURASIP Journal on Embedded Systems. V. 2007, Article ID 

47580, 22 pages. January, 2007. 

Helmstetter, C. & Maraninchi, F., Maillet-Contoz & Moy, M. (2006) Automatic Generation of 

Schedulings for Improving the Test Coverage of Systems-on-a-Chip. Proceedings of 

Formal Methods in Computer Aided Design, FMCAD‘06. November, 2006. 

Helmstetter, C. (2007). Validation de Modèles de Systèmes sur Puce en présence 

d’ordonnancements Indétermnistes et de Temps Imprecis. PhD thesis. March. 

2007. 

Herrera, F., & Villar, E. (2006). Extension of the SystemC kernel for Simulation 

Coverage Improvement of System-Level Concurrent Specifications. Proceedings 

of the Forum on Specification and Design Languages, FDL’06. Darmstad. Germany. 

Sept.,  2006. 

Herrera, F. & Villar, E. (2007). A Framework for Heterogeneous Specification and Design of 

Electronic Embedded Systems in SystemC. ACM Transactions on Design 

Automation of Electronic Systems, Special Issue on Demonstrable Software 

Systems and Hardware Platforms, V.12, Issue 3, N.22. August, 2007. 

Herrera, F., & Villar, E. (2009). Local Application of Simulation Directed for Exhaustive 

Coverage of Schedulings of SystemC Specifications. Proc. of the Forum on 

Specification and Design Languages, FDL‘09. Sophia Antipolis. France. September,  

2009. ISBN 1636-9874. 

HetSC website, (2012).  HetSC website. www.teisa.unican.es/HetSC. 2012. 

IEEE, (2005). SystemC Language Reference Manual. Available in  

http://standards.ieee.org/getieee/1666/download/1666-2005.pdf. 

www.intechopen.com



Concurrent Specification of Embedded Systems:  
An Insight into the Flexibility vs Correctness Trade-Off 

 

275 

Incisive, (2009). Incisive Enterprise Simulator Datasheet. Available in   

 http://www.cadence.com/rl/Resources/datasheets/incisive_enterprise_specman.

pdf. March, 2009 

Jantsch, A. (2004). Modelling Embedded Systems and SoCs. Concurrency and Time in Models of 

Computation. Elsevier Science (USA), 2004. ISBN 1-55860-925-3. 

Kahn, G. 1974. The Semantics of a simple Language for Parallel Programming. Proceedings of 

the IFIP Conference 1974, North-Holland, 1974. 

Kish, L. B. (2002). End of Moore’s Law: thermal (noise) death of integration in micro and 

nano electronics. Physics Letters A 305. pp. 144-149. Elselvier. 

Kuhn,T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, M. and Kashai, Y. (2001). A 

Framework for Object Oriented Hardware Specification Verification, and Synthesis.  

Proceedings of the Design Automation Conference, 2001.DAC’01. 2001. 

Kundu, S., Ganai, M., Gupta, R. (2008) Partial Order Reduction for Scalable Testing of 

SystemC TLM Designs. Proceedings of the Design Automation Conference, 

DAC’08. Anaheim, CA, USA. June, 2008. 

Kuo,Y.M., Lin, C.H., Wang, C.Y.,  Chang, S.H. & Ho, P.H. (2007). Intelligent Random Vector 

Generator Based on Probability Analysis of Circuit Structure. Proceedings of the 8th 

International Symposium on Quality Electronic Design (ISQED '07). IEEE Computer 

Society, Washington, DC, USA, pp. 344-349. 

Lee, E. A. & Messerschmitt, D.G. (1987). Static Scheduling of Synchronous Data Flow 

Programs for Digital Signal Processing. IEEE Transactions on Computers. V. C-36. 

N.1. pp. 24-35, January, 1987. 

Lee, E.A. (2006). What’s the Problem with Threads. IEEE Computer, Vol. 36, No. 5, pp. 33-42, 

May, 2006. 

Moy, M., Maraninchi, F., Maillet-Contoz, L. (2005) PINAPA: An Extraction Tool for SystemC 

Descriptions of Systems on a Chip. Proceedings of  EMSOFT, September, 2005. 

MPI: A Message-Passing Interface Standard. Version 2.2. September, 2009. Available from 

http://www.mcs.anl.gov/research/projects/mpi/  

OSCI Verification WG (2003). SystemC Verification Standard. Version 1.0e. May 16, 2003. 

Available at www.systemc.org. 

OpenMP. (2008). Application Program Interface. 4 Version 3.0 May 2008. Available from 

http://openmp.org/wp/. 

Patel, H.D. & Shukla, S.K. (2004). SystemC kernel extensions for Heterogeneous System 

Modelling: A Framework for Multi-MoC Modelling and Simulation. Kluwer. 2004. 

Sen, K., Marinov, D. & Agha, G.. (2005). CUTE: a Concolic Unit Testing Engine for C. 

Proceedings of the 10th European Software Engineering Conference (ESEC/FSE-13). 

ACM, New York, NY, USA, 263-272. 

Sen, A., Ogale, V., Abadir, M. S. (2008). Predictive Runtime Verification of multi-processor 

SoCs in SystemC. Proceedings of Design Automation Conference, DAC’08. 

Anaheim, CA, USA June, 2008. 

UCSCKext, (2011). Website for SystemC kernel extensions provided by University of 

Cantabria.  http://www.teisa.unican.es/HetSC/kernel_ext.html. November, 2011. 

Ugarte, I. & Sanchez, P. (2011) Automatic vector generation guided by a functional metric. 

Proceedings of  SPIE. 8067, 80670U (2011) 

www.intechopen.com



 
Embedded Systems – Theory and Design Methodology 

 

276 

Yuan, J., Aziz, A., Pixley, C., Albin, K. (2004). Simplifying Boolean constraint solving for 

random simulation-vector generation. IEEE Transactions on Computer-Aided Design 

of Integrated Circuits and Systems. V. 23, N. 3, pp. 412-20, March, 2004. 

Zhu, J., Sander, I., & Jantsch, A. (2010). HetMoC: heterogeneous modelling in SystemC.  

Proceedings of Forum for Design Languages (FDL '10).  Southampton, UK, 2010. 

www.intechopen.com



Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

F. Herrera and I. Ugarte (2012). Concurrent Specification of Embedded Systems: An Insight into the Flexibility

vs Correctness Trade-Off, Embedded Systems - Theory and Design Methodology, Dr. Kiyofumi Tanaka (Ed.),

ISBN: 978-953-51-0167-3, InTech, Available from: http://www.intechopen.com/books/embedded-systems-

theory-and-design-methodology/concurrent-specification-of-embedded-systems-an-insight-into-the-flexibility-

vs-correctness-trade-of



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


