
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Safely Embedded Software for State Machines in
Automotive Applications

Juergen Mottok1, Frank Schiller2 and Thomas Zeitler3

1Regensburg University of Applied Sciences
2Beckhoff Automation GmbH

3Continental Automotive GmbH
Germany

1. Introduction

Currently, both fail safe and fail operational architectures are based on hardware redundancy
in automotive embedded systems. In contrast to this approach, safety is either a result
of diverse software channels or of one channel of specifically coded software within the
framework of Safely Embedded Software. Product costs are reduced and flexibility is
increased. The overall concept is inspired by the well-known Vital Coded Processor approach.
There the transformation of variables constitutes an (AN+B)-code with prime factor A and
offset B, where B contains a static signature for each variable and a dynamic signature for
each program cycle. Operations are transformed accordingly.

Mealy state machines are frequently used in embedded automotive systems. The given Safely
Embedded Software approach generates the safety of the overall system in the level of the
application software, is realized in the high level programming language C, and is evaluated
for Mealy state machines with acceptable overhead. An outline of the comprehensive safety
architecture is given.

The importance of the non-functional requirement safety is more and more recognized in the
automotive industry and therewith in the automotive embedded systems area. There are two
safety categories to be distinguished in automotive systems:

• The goal of active safety is to prevent accidents. Typical examples are Electronic Stability
Control (ESC), Lane Departure Warning System (LDWS), Adaptive Cruise Control (ACC),
and Anti-lock Braking System (ABS).

• If an accident cannot be prevented, measures of passive safety will react. They act jointly in
order to minimize human damage. For instance, the collaboration of safety means such as
front, side, curtain, and knee airbags reduce the risk tremendously.

Each safety system is usually controlled by the so called Electronic Control Unit (ECU). In
contrast to functions without a relation to safety, the execution of safety-related functions on
an ECU-like device necessitates additional considerations and efforts.

The normative regulations of the generic industrial safety standard IEC 61508 (IEC61508, 1998)
can be applied to automotive safety functions as well. Independently of its official present and
future status in automotive industry, it provides helpful advice for design and development.

2

www.intechopen.com

2 Will-be-set-by-IN-TECH

In the future, the automotive safety standard ISO/WD 26262 will be available. In general,
based on the safety standards, a hazard and risk graph analysis (cf. e. g. (Braband, 2005)) of
a given system determines the safety integrity level of the considered system functions. The
detailed safety analysis is supported by tools and graphical representations as in the domain
of Fault Tree Analysis (FTA) (Meyna, 2003) and Failure Modes, Effects, and Diagnosis Analysis
(FMEDA) (Boersoek, 2007; Meyna, 2003).

The required hardware and software architectures depend on the required safety integrity
level. At present, safety systems are mainly realized by means of hardware redundant
elements in automotive embedded systems (Schaueffele, 2004).

In this chapter, the concept of Safely Embedded Software (SES) is proposed. This concept is
capable to reduce redundancy in hardware by adding diverse redundancy in software, i.e. by
specific coding of data and instructions. Safely Embedded Software enables the proof of safety
properties and fulfills the condition of single fault detection (Douglass, 2011; Ehrenberger,
2002). The specific coding avoids non-detectable common-cause failures in the software
components. Safely Embedded Software does not restrict capabilities but can supplement
multi-version software fault tolerance techniques (Torres-Pomales, 2000) like N version
programming, consensus recovery block techniques, or N self-checking programming. The
new contribution of the Safely Embedded Software approaches the constitution of safety in
the layer of application software, that it is realized in the high level programming language C
and that it is evaluated for Mealy state machines with acceptable overhead.

In a recently published generic safety architecture approach for automotive embedded
systems (Mottok, 2006), safety-critical and safety-related software components are
encapsulated in the application software layer. There the overall open system architecture
consists of an application software, a middleware referred to as Runtime-Environment, a basic
software, and an operating system according to e. g. AUTOSAR (AUTOSAR, 2011; Tarabbia,
2005). A safety certification of the safety-critical and the safety-related components based on
the Safely Embedded Software approach is possible independently of the type of underlying
layers. Therefore, a sufficiently safe fault detection for data and operations is necessary in
this layer. It is efficiently realized by means of Safely Embedded Software, developed by the
authors.

The chapter is organized as follows: An overview of related work is described in Section 2. In
Section 3, the Safely Embedded Software Approach is explained. Coding of data, arithmetic
operations and logical operations is derived and presented. Safety code weaving applies these
coding techniques in the high level programming language C as described in Section 4. A case
study with a Simplified Sensor Actuator State Machine is discussed in Section 5. Conclusions and
statements about necessary future work are given in Section 6.

2. Related work

In 1989, the Vital Coded Processor (Forin, 1989) was published as an approach to design
typically used operators and to process and compute vital data with non-redundant hardware
and software. One of the first realizations of this technique has been applied to trains for
the metro A line in Paris. The Vital technique proposes a data mapping transformation also
referred to in this chapter. The Vital transformation for generating diverse coded data xc can
be roughly described by multiplication of a date x f with a prime factor A such that xc = A ∗ x f
holds. The prime A determines the error detection probability, or residual error probability,
respectively, of the system. Furthermore, an additive modification by a static signature for

32 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 3

each variable Bx and a dynamic signature for each program cycle D lead finally to the code of
the type xc = A ∗ x f + Bx + D. The hardware consists of a single microprocessor, the so called
Coded Monoprocessor, an additional dynamic controller, and a logical input/output interface.
The dynamic controller includes a clock generator and a comparator function. Further on, a
logical output interface is connected to the microprocessor and the dynamic controller. In
particular, the Vital Coded Processor approach cannot be handled as standard embedded
hardware and the comparator function is separated from the microprocessor in the dynamic
controller.

The ED4I approach (Oh, 2002) applies a commercial off-the-shelf processor. Error detection by
means of diverse data and duplicated instructions is based on the SIHFT technique that detects
both temporary and permanent faults by executing two programs with the same functionality
but different data sets and comparing their outputs. An original program is transformed into
a new program. The transformation consists of a multiplication of all variables and constants
by a diversity factor k. The two programs use different parts of the underlying hardware
and propagate faults in different ways. The fault detection probability was examined to
determine an adequate multiplier value k. A technique for adding commands to check the
correct execution of the logical program flow has been published in (Rebaudengo, 2003).
These treated program flow faults occur when a processor fetches and executes an incorrect
instruction during the program execution. The effectiveness of the proposed approach is
assessed by several fault injection sessions for different example algorithms.

Different classical software fail safe techniques in automotive applications are, amongst
others, program flow monitoring methods that are discussed in a survey paper (Leaphart,
2005).

A demonstration of a fail safe electronic accelerator safety concept of electronic control units
for automotive engine control can be found in (Schaueffele, 2004). The electronic accelerator
concept is a three-level safety architecture with classical fail safe techniques and asymmetric
hardware redundancy.

Currently, research is done on the Safely Embedded Software approach. Further results were
published in (Mottok, 2007; Steindl, 2009;?; Mottok, 2009; Steindl, 2010; Raab, 2011; Laumer,
2011). Contemporaneous Software Encoded Processing was published (Wappler, 2007). This
approach is based on the Vital transformation. In contrast to the Safely Embedded Software
approach it provides the execution of arbitrary programs given as binaries on commodity
hardware.

3. The safely embedded software approach

3.1 Overview

Safely Embedded Software (SES) can establish safety independently of a specific processing
unit or memory. It is possible to detect permanent errors, e. g. errors in the Arithmetic Logical
Unit (ALU) as well as temporary errors, e. g. bit-flips and their impact on data and control
flow. SES runs on the application software layer as depicted in Fig. 1. Several application
tasks have to be safeguarded like e. g. the evaluation of diagnosis data and the check of the
data from the sensors. Because of the underlying principles, SES is independent not only of
the hardware but also of the operating system.

Fig. 2 shows the method of Safety Code Weaving as a basic principle of SES. Safety Code
Weaving is the procedure of adding a second software channel to an existing software channel.

33Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

4 Will-be-set-by-IN-TECH

Safely Embedded Software

 application

Sensors

other components,

e. g. microcontroller

Actuators

other components,

e. g. microcontroller

A / D D / A

buffer / cache / registers

memory (RAM, ROM, Flash, ...)

memory areas

mapped with I/O

consistency check

of data from sensors

Fig. 1. The Safely Embedded Software approach.

In this way, SES adds a second channel of the transformed domain to the software channel of
the original domain. In dedicated nodes of the control flow graph, comparator functionality is
added. Though, the second channel comprises diverse data, diverse instructions, comparator
and monitoring functionality. The comparator or voter, respectively, on the same ECU has to
be safeguarded with voter diversity (Ehrenberger, 2002) or other additional diverse checks.

It is not possible to detect errors of software specification, software design, and software
implementation by SES. Normally, this kind of errors has to be detected with software
quality assurance methods in the software development process. Alternatively, software fault
tolerance techniques (Torres-Pomales, 2000) like N version programming can be used with
SES to detect software design errors during system runtime.

As mentioned above, SES is also a programming language independent approach. Its
implementation is possible in assembler language as well as in an intermediate or a high
programming language like C. When using an intermediate or higher implementation
language, the compiler has to be used without code optimization. A code review has to assure,
that neither a compiler code optimization nor removal of diverse instructions happened.
Basically, the certification process is based on the assembler program or a similar machine
language.

Since programming language C is the de facto implementation language in automotive
industry, the C programming language is used in this study exclusively. C code quality can be

34 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 5

variables

constants

coded

variables

coded

constants

OP 1

1st software channel (original domain)memory

OP 2

OP n

OP 3

coded

OP 1

2nd software channel (transformed domain)

coded

OP 2

coded

OP n

coded

OP 3

comp.

unit 1

comp.

unit 2

comp.

unit 3

comp.

unit nc
o

m
p

a
ra

to
r

u
n

it
s

transform

(edit time)

transform (runtime)

memory

optional optional optional mandatory

Fig. 2. Safety Code Weaving.

assured by application of e. g. the MISRA-2 (MISRA, 2004). A safety argument for dedicated
deviation from MISRA-2 rules can be justified.

3.2 Detectable faults by means of safely embedded software

In this section, the kind of faults detectable by means of Safely Embedded Software is
discussed. For this reason, the instruction layer model of a generalized computer architecture
is presented in Fig. 3. Bit flips in different memory areas and in the central processing unit can
be identified.

Table 1 illustrates the Failure Modes, Effects, and Diagnosis Analysis (FMEDA). Different
faults are enumerated and the SES strategy for fault detection is related.

In Fig. 2 and in Table 1, the SES comparator function is introduced. There are two alternatives
for the location of the SES comparator. If a local comparator is used on the same ECU,
the comparator itself has also to be safeguarded. If an additional comparator on a remote
receiving ECU is applied, hardware redundancy is used implicitely, but the inter-ECU
communication has to be safeguarded by a safety protocol (Mottok, 2006). In a later system

35Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

6 Will-be-set-by-IN-TECH

central processing unit (CPU)

memory

control

unit

stack

heap

data segment

global data

code segment

MOV

ADD

...

A1, A2

A1, 5

program counter (PC)

stack pointer (SP)

general

purpose

registers

operand

register 1

operand

register 2

ALU

1

2 3

5

4

7

6

8

Fig. 3. Model of a generalized computer architecture (instruction layer). The potential
occurrence of faults are marked with a label.

FMEDA, the appropriate fault reaction has to be added, regarding that SES is working on the
application software layer.

The fault reaction on the application software layer depends on the functional and physical
constraints of the considered automotive system. There are various options to select a fault
reaction. For instance, fault recovery strategies, achieving degraded modes, shut off paths in
the case of fail-safe systems, or the activation of cold redundancy in the case of fail-operational
architectures are possible.

3.3 Coding of data

Safely Embedded Software is based on the (AN+B)-code of the Coded Monoprocessor (Forin,
1989) transformation of original integer data x f into diverse coded data xc. Coded data are
data fulfilling the following relation:

xc = A ∗ x f + Bx + D where xc, x f ∈ Z, A ∈ N
+, Bx, D ∈ N0,

and Bx + D < A. (1)

The duplication of original instructions and data is the simplest approach to achieve a
redundant channel. Obviously, common cause failures cannot be detected as they appear
in both channels. Data are used in the same way and identical erroneous results could be
produced. In this case, fault detection with a comparator is not sufficient.

36 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 7

label area of action fault error detection

1 stack, bitflip incorrect data SES comparator
global data incorrect address SES logical program flow monitoring
and heap

2 code segment bitflip incorrect operator SES comparator
(but right PC) SES logical program flow monitoring

3 program counter bitflip jump to incorrect SES logical program flow monitoring
instruction
in the code

4 stack pointer bitflip incorrect data SES comparator
incorrect address SES logical program flow monitoring

5 general bitflip incorrect data SES comparator
purpose incorrect address SES logical program flow monitoring
registers

6 operand register bitflip incorrect data SES comparator

7 ALU bitflip incorrect operator SES comparator

8 control unit incorrect data SES comparator
incorrect operator SES logical program flow monitoring

Table 1. Faults, errors, and their detection ordered by their area of action. (The labels
correspond with the numbers presented in Fig. 3.)

The prime number A (Forin, 1989; Ozello, 1992) determines important safety characteristics
like Hamming Distance and residual error probability P = 1/A of the code. Number A has
to be prime because in case of a sequence of i faulty operations with constant offset f , the
final offset will be i ∗ f . This offset is a multiple of a prime number A if and only if i or f is
divisible by A. If A is not a prime number then several factors of i and f may cause multiples
of A. The same holds for the multiplication of two faulty operands. Additionally, so called
deterministic criteria like the above mentioned Hamming distance and the arithmetic distance
verify the choice of a prime number.

Other functional characteristics like necessary bit field size etc. and the handling of overflow
are also caused by the value of A. The simple transformation xc = A ∗ x f is illustrated in
Fig. 4.

The static signature Bx ensures the correct memory addresses of variables by using the
memory address of the variable or any other variable specific number. The dynamic signature
D ensures that the variable is used in the correct task cycle. The determination of the dynamic
signature depends on the used scheduling scheme (see Fig. 6). It can be calculated by a
clocked counter or it is offered directly by the task scheduler.

The instructions are coded in that way that at the end of each cycle, i. e. before the output
starts, either a comparator verifies the diverse channel results zc = A ∗ z f + Bz + D?, or the

coded channel is checked directly by the verification condition (zc − Bz − D) mod A = 0? (cf.
Equation 1).

In general, there are two alternatives for the representation of original and coded data. The
first alternative is to use completely unconnected variables for original data and the coded
ones. The second alternative uses a connected but separable code as shown in Fig. 5. In the

37Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

8 Will-be-set-by-IN-TECH

2

3

4

5

2,C

3,C

4,C

5,C

Qtkikpcn"fqockp Vtcpuhqtogf"fqockp

Fig. 4. Simple coding xc = A ∗ x f from the original into the transformation domain.

separable code, the transformed value xc contains the original value x f . Obviously, x f can be
read out easily from xc.

The coding operation for separable code is introduced in (Forin, 1989):

Separable coded data are data fulfilling the following relation:

xc = 2k ∗ x f + (−2k ∗ x f)modulo A + Bx + D (2)

The factor 2k causes a dedicated k-times right shift in the n-bit field. Therefore, one variable
can be used for representing original data x f and coded data xc.

Without loss of generality, independent variables for original data x f and coded data xc are
used in this study.

In automotive embedded systems, a hybrid scheduling architecture is commonly used, where
interrupts, preemptive tasks, and cooperative tasks coexist, e. g. in engine control units on
base of the OSEK operating system. Jitters in the task cycle have to be expected. An inclusion
of the dynamic signature into the check will ensure that used data values are those of the
current task cycle.

Measures for logical program flow and temporal control flow are added into the SES
approach.

One goal is to avoid the relatively high probability that two instruction channels using
the original data x f and produce same output for the same hardware fault. When using
the transformation, the corresponding residual error probability is basically given by the

38 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 9

2

m"dkvu

3000m/3mm-3000000p/3

*p/m+"dkvu

zh

000

ze

ze ?"4m ,"zh -"*Î4m ,"zh +"oqf"C -"Dz -"F

eqpfkvkqpu<

4m @"*"C Î 3"+"-"Dz -"F."Dz -"F">"C

Fig. 5. Separable code and conditions for its application.

reciprocal of the prime multiplier, A−1. The value of A determines the safe failure fraction
(SFF) in this way and finally the safety integrity level of the overall safety-related system
(IEC61508, 1998).

3.4 Coding of operations

A complete set of arithmetic and logical operators in the transformed domain can be derived.
The transformation in Equation (1) is used. The coding of addition follows (Forin, 1989)
whereas the coding of the Greater or Equal Zero operator has been developed within the
Safely Embedded Software approach.

A coded operator OPc is an operator in the transformed domain that corresponds to an
operator OP in the original domain. Its application to uncoded values provides coded values
as results that are equal to those received by transforming the result from the original domain
after the application OP for the original values. The formalism is defined, such that the
following statement is correct for all x f , y f from the original domain and all xc, yc from the

transformed domain, where xc = σ(x f) and yc = σ(y f) is valid:

x f
❝ � xc

y f
❝ � yc

z f
❝ � zc

z f = x f OP y f
❝ � xc OPc yc = zc (3)

39Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

10 Will-be-set-by-IN-TECH

Accordingly, the unary operators are noted as:

z f = OP y f
❝ � OPc yc = zc (4)

In the following, the derivation steps for the addition operation and some logical operations
in the transformed domain are explained.

3.4.1 Coding of addition

The addition is the simplest operation of the four basic arithmetic operations. Defining a
coded operator (see Equation (3)), the coded operation ⊕ is formalized as follows:

z f = x f + y f ⇒ zc = xc ⊕ yc (5)

Starting with the addition in the original domain and applying the formula for the inverse
transformation, the following equation can be obtained for zc:

z f = x f + y f

zc − Bz − D

A
=

xc − Bx − D

A
+

yc − By − D

A

zc − Bz − D = xc − Bx − D + yc − By − D

zc = xc − Bx − D + yc − By + Bz

zc = xc + yc + (Bz − Bx − By)
︸ ︷︷ ︸

const.

−D (6)

The Equations (5) and (6) state two different representations of zc. A comparison leads
immediately to the definition of the coded addition ⊕:

zc = xc ⊕ yc = xc + yc + (Bz − Bx − By)− D (7)

3.4.2 Coding of comparison: Greater or equal zero

The coded (unary) operator geqzc (greater or equal zero) is applied to a coded value xc. geqzc

returns TRUEc, if the corresponding original value x f is greater than or equal to zero. It
returns FALSEc, if the corresponding original value x f is less than zero. (This corresponds to
the definition of a coded operator (see Definition 3) and the definition of the ≥ 0 operator of
the original domain.)

geqzc(xc) =

{

TRUEc, if x f ≥ 0,

FALSEc, if x f < 0.
(8)

Before deriving the transformation steps of the coded operator geqzc, the following theorem
has to be introduced and proved.

The original value x f is greater than or equal to zero, if and only if the coded value xc is greater
than or equal to zero.

x f ≥ 0 ⇔ xc ≥ 0 with x f ∈ Z and xc = σ(x f) = A ∗ x f + Bx + D

where A ∈ N
+, Bx, D ∈ N0, Bx + D < A (9)

40 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 11

Proof.

xc ≥0

⇔ A ∗ x f + Bx + D ≥0

⇔ A ∗ x f ≥− (Bx + D)

⇔ x f ≥−

<A
︷ ︸︸ ︷

Bx + D

A
︸ ︷︷ ︸

∈]-1, 0]

⇔ x f ≥0, since x f ∈ Z

The goal is to implement a function returning TRUEc, if and only if the coded value xc (and
thus x f) is greater or equal to zero. Correspondingly, the function has to return FALSEc, if and
only if xc is less than zero. As an extension to Definition 8, ERRORc should be returned in case
of a fault, e. g. if xc is not a valid code word.

By applying the ≥ operator according to Equation (9), it can be checked whether xc is negative
or non-negative, but it cannot be checked whether xc is a valid code word. Additionally, this
procedure is very similar to the procedure in the original domain. The use of the unsigned
modulo function umod is a possible solution to that problem. This function is applied to the
coded value xc. The idea of this approach is based on (Forin, 1989):

xc umod A = unsigned(xc) mod A = unsigned(A ∗ x f + Bx + D) mod A

In order to resolve the unsigned function, two different cases have to be distinguished:

case 1: x f ≥ 0

xc umod A =unsigned(A ∗ x f + Bx + D
︸ ︷︷ ︸

x f ≥0 ⇒ xc≥0 (cf. Eqn. (9))

) mod A

=((A ∗ x f) mod A
︸ ︷︷ ︸

=0

+ Bx + D
︸ ︷︷ ︸

<A

) mod A

=Bx + D

case 2: x f < 0

xc umod A =unsigned(A ∗ x f + Bx + D
︸ ︷︷ ︸

x f <0 ⇒ xc<0 (cf. Eqn. (9))

) mod A

=(A ∗ x f + Bx + D + 2n

︸ ︷︷ ︸

resolved unsigned function

) mod A

=((A ∗ x f) mod A
︸ ︷︷ ︸

=0

+Bx + D + 2n) mod A

=(Bx + D + 2n) mod A
=(Bx + D + (2n mod A)

︸ ︷︷ ︸

known constant

) mod A

41Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

12 Will-be-set-by-IN-TECH

Conclusion of these two cases:

Result of case 1:

x f ≥ 0 ⇒ xc umod A = Bx + D (10)

Result of case 2:

x f < 0 ⇒ xc umod A = (Bx + D + (2n mod A)) mod A (11)

Remark: The index n represents the minimum number of bits necessary for storing xc. If xc is
stored in an int32 variable, n is equal to 32.

It has to be checked, if in addition to the two implications (10) and (11) the following
implications

xc umod A = Bx + D ⇒ x f ≥ 0

xc umod A = (Bx + D + (2n mod A)) mod A ⇒ x f < 0

hold. These implications are only valid and applicable, if the two terms Bx + D and (Bx + D +
(2n mod A)) mod A are never equal. In the following, equality is assumed and conditions on
A are identified that have to hold for a disproof:

Bx + D = (Bx + D
︸ ︷︷ ︸

∈ [0, A-1]

+ (2n mod A)
︸ ︷︷ ︸

∈ [0, A-1]
︸ ︷︷ ︸

∈ [0, 2A-2]

) mod A

case 1: 0 ≤ (Bx + D + (2n mod A)) < A

Bx + D = (Bx + D + (2n mod A)
︸ ︷︷ ︸

∈ [0, A-1]

) mod A

⇔ Bx + D = Bx + D + (2n mod A)

⇔ 2n mod A = 0

⇔ 2n = k ∗ A ∀ k ∈ N
+

⇔ A =
2n

k

Since A ∈ N
+ and 2n is only divisible by powers of 2, k has to be a power of 2, and, therefore,

the same holds for A. That means, if A is not a number to the power of 2, inequality holds in
case 1.

case 2: A ≤ (Bx + D + (2n mod A)) ≤ 2A − 2

Bx + D = (Bx + D + (2n mod A)
︸ ︷︷ ︸

∈ [A, 2A-2]

) mod A

⇔ Bx + D = Bx + D + (2n mod A)− A

⇔ A = 2n mod A
︸ ︷︷ ︸

∈ [0, A-1]

42 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 13

This cannot hold since the result of the modulo-operation is always smaller than A.

The two implications (10) and (11) can be extended to equivalences, if A is chosen not as
a number to the power of 2. Thus for implementing the geqzc operator, the following
conclusions can be used:

1. IF xc umod A = Bx + D THEN x f ≥ 0.

2. ELSE IF xc umod A = (Bx + D + (2n mod A)) mod A THEN x f < 0.

3. ELSE xc is not a valid code word.

The geqzc operator is implemented based on this argumentation. Its application is presented
in Listing 2, whereas its uncoded form is presented in Listing 1.

4. Safety code weaving for C control structures

In the former sections, a subset of SES transformation was discussed. The complete set of
transformations for data, arithmetic operators, and Boolean operators are collected in a C
library. In the following, the principle procedure of safety code weaving is motivated for C
control structures. An example code is given in Listing 1 that will be safeguarded in a further
step.

Listing 1. Original version of the code. It will be safeguarded in further steps.

i n t af = 1 ;
i n t xf = 5 ;

i f (x f >= 0)
{

a f = 4 ;
}
else

{
a f = 9 ;

}

In general, there are a few preconditions for the original, non-coded, single channel C source
code: e. g. operations should be transformable and instructions with short expressions are
preferred in order to simplify the coding of operations.

Safety code weaving is realized in compliance with nine rules:

1. Diverse data. The declaration of coded variables and coded constants have to follow the
underlying code definition.

2. Diverse operations. Each original operation follows directly the transformed operation.

3. Update of dynamic signature. In each task cycle, the dynamic signature of each variable has
to be incremented.

4. Local (logical) program flow monitoring. The C control structures are safeguarded against
local program flow errors. The branch condition of the control structure is transformed
and checked inside the branch.

43Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

14 Will-be-set-by-IN-TECH

5. Global (logical) program flow monitoring. This technique includes a specific initial key value
and a key process within the program function to assure that the program function has
completed in the given parts and in the correct order (Leaphart, 2005). An alternative
operating system based approach is given in Raab (2011).

6. Temporal program flow monitoring. Dedicated checkpoints have to be added for monitoring
periodicity and deadlines. The specified execution time is safeguarded.

7. Comparator function. Comparator functions have to be added in the specified granularity
in the program flow for each task cycle. Either a comparator verifies the diverse channel
results zc = A ∗ z f + Bz + D?, or the coded channel is checked directly by checking the

condition (zc − Bz − D) mod A = 0?.

8. Safety protocol. Safety critical and safety related software modules (in the application
software layer) communicate intra or inter ECU via a safety protocol (Mottok, 2006).
Therefore a safety interface is added to the functional interface.

9. Safe communication with a safety supervisor. Fault status information is communicated to a
global safety supervisor. The safety supervisor can initiate the appropriate (global) fault
reaction (Mottok, 2006).

The example code of Listing 1 is transformed according to the rules 1, 2, 4, and 5 in
Listing 2. The C control structures while-Loop, do-while-Loop, for-Loop, if-statement, and
switch-statement are transformed in accordance with the complete set of rules. It can be
realized that the geqzc operator is frequently applied for safeguarding C control structures.

5. The case study: Simplified sensor actuator state machine

In the case study, a simplified sensor actuator state machine is used. The behavior of a sensor
actuator chain is managed by control techniques and Mealy state machines.

Acquisition and diagnosis of sensor signals are managed outside of the state machine in the
input management whereas the output management is responsible for control techniques
and for distributing the actuator signals. For both tasks, a specific basic software above
the application software is necessary for communication with D/A- or A/D-converters. As
discussed in Fig. 1, a diagnosis of D/A-converter is established, too.

The electronic accelerator concept (Schaueffele, 2004) is used as an example. Here diverse
sensor signals of the pedal are compared in the input management. The output management
provides diverse shut-off paths, e. g. power stages in the electronic subsystem.

Listing 2. Example code after applying the rule 1, 2, 4 and 5.

i n t af ; i n t ac ;
i n t xf ; i n t xc ;
i n t tmpf ; i n t tmpc ;

c f = 1 5 2 ; / * b e g i n b a s i c b l o c k 152 * /
af = 1 ; ac = 1*A + Ba + D; / / c o d e d 1
xf = 5 ; xc = 5*A + Bx + D; / / c o d e d 5
tmpf = (xf >= 0) ; tmpc = geqz_c (xc) ;

/ / g r e a t e r / e q u a l z e r o o p e r a t o r

i f (c f != 152) { ERROR } / * end b a s i c b l o c k 152 * /

44 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 15

i f (tmpf)
{

c f = 1 5 3 ; / * b e g i n b a s i c b l o c k 153 * /
i f (tmpc − TRUE_C) { ERROR }
af = 4 ; ac = 4*A + Ba + D; / / c o d e d 4
i f (c f != 153) { ERROR } / * end b a s i c b l o c k 153 * /

}
else

{
c f = 1 5 4 ; / * b e g i n b a s i c b l o c k 154 * /
i f (tmpc − FALSE_C) { ERROR }
af = 9 ; ac = 9*A + Ba + D; / / c o d e d 9
i f (c f != 154) { ERROR } / * end b a s i c b l o c k 154 * /

}

The input management processes the sensor values (s1 and s2 in Fig. 6), generates an event,
and saves them on a blackboard as a managed global variable. This is a widely used
implementation architecture for software in embedded systems for optimization performance,
memory consumption, and stack usage. A blackboard (Noble, 2001) is realized as a kind of
data pool. The state machine reads the current state and the event from the blackboard, if
necessary executes a transition and saves the next state and the action on the blackboard. If a
fault is detected, the blackboard is saved in a fault storage for diagnosis purposes.

Finally, the output management executes the action (actuator values a1, a2, a3, and a4 in
Fig. 6). This is repeated in each cycle of the task.

The Safety Supervisor supervises the correct work of the state machine in the application
software. Incorrect data or instruction faults are locally detected by the comparator function
inside the state machine implementation whereas the analysis of the fault pattern and the
initiation of a dedicated fault reaction are managed globally by a safety supervisor (Mottok,
2006). A similar approach with a software watchdog can be found in (Lauer, 2007).

The simplified state machine was implemented in the Safely Embedded Software approach.
The two classical implementation variants given by nested switch statement and table driven
design are implemented. The runtime and the file size of the state machine are measured and
compared with the non-coded original one for the nested switch statement design.

The measurements of runtime and file size for the original single channel implementation and
the transformed one contain a ground load corresponding to a simple task cycle infrastructure
of 10,000,000 cycles. Both the NEC Fx3 V850ES 32 bit microcontroller, and the Freescale S12X
16 bit microcontroller were used as references for the Safely Embedded Software approach.

5.1 NEC Fx3 V850ES microcontroller

The NEC Fx3 V850ES is a 32 bit microcontroller, being compared with the Freescale S12X
more powerful with respect to calculations. It runs with an 8 MHz quartz and internally
with 32 MHz per PLL. The metrics of the Simplified Sensor Actuator State Machine (nested
switch implemented) by using the embedded compiler for the NEC are shown in Table 2. The
compiler “Green Hills Software, MULTI v4.2.3C v800” and the linker “Green Hills Software,
MULTI v4.2.3A V800 SPR5843” were used.

45Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

16 Will-be-set-by-IN-TECH

St = State

Ev = Event

Ac = Action

 application state

fault storage and timestamp

Blackboard (Managed global variables)

State Machine

implemented with

nested switch or table driven

s1

s2

a1

a2

a3

a4

E
v

S
t,
 E

v

S
t,
 A

c

A
c

Sensors Actuators

I

N

P

U

T

M

A

N

A

G

E

M

E

N

T

O

U

T

P

U

T

M

A

N

A

G

E

M

E

N

T

Safety Supervisor

Task (Input)

Task (State Machine)

Task (Output)

Task (Safety Supervisor)

t

Task Cycle

D=i

Task Cycle

D=i+1

Scheduling Scheme

Task Cycle

D=i+2

Fig. 6. Simplified sensor actuator state machine and a scheduling schema covering tasks for
the input management, the state machine, the output management and the safety supervisor.
The task cycle is given by dynamic signature D, which can be realized by a clocked counter.

5.2 Freescale S12X microcontroller

The Freescale S12X is a 16 bit microcontroller and obviously a more efficient control unit
compared to the NEC Fx3 V850ES. It runs with an 8 MHz quartz and internally with 32 MHz
per PLL. The processor is exactly denominated as “PC9S12X DP512MFV”. The metrics of the
Simplified Sensor Actuator State Machine (nested switch implemented) by using the compiler
for the Freescale S12X are shown in Table 3. The compiler “Metrowerks 5.0.28.5073” and the
linker “Metrowerks SmartLinker 5.0.26.5051” were used.

46 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 17

minimal original trans- factor annotation
code code formed

code

CS
(init)

2 48 184 3.96 init code, run once

CS
(cycle)

2 256 2,402 9.45 state machine, run cyclic

CS
(lib)

0 0 252 - 8 functions for the transformed
domain used: add_c, div_c, geqz_c,
lz_c, ov2cv, sub_c, umod, updD

DS 0 40 84 2.10 global variables

SUM
(CS, DS)

4 344 2,922 8.58 sum of CS(init), CS(cycle), CS(lib)
and DS

RUN-
TIME

0.20 4.80 28.80 6.22 average runtime of the cyclic function
in µs

FILE-
SIZE

4,264,
264

4,267,
288

4,284,
592

6.72 size (in bytes) of the binary,
executable file

Table 2. Metrics of the Simplified Sensor Actuator State Machine (nested switch
implemented) using the NEC Fx3 V850ES compiler.

minimal original trans- factor annotation
code code formed

code

CS
(init)

1 41 203 5.05 init code, run once

CS
(cycle)

1 212 1,758 8.33 state machine, run cyclic

CS
(lib)

0 0 234 - 8 functions for the transformed
domain used: add_c, div_c, geqz_c,
lz_c, ov2cv, sub_c, umod, updD

DS 0 20 42 2.10 global variables

SUM
(CS, DS)

2 273 2,237 8.25 sum of CS(init), CS(cycle), CS(lib)
and DS

RUN-
TIME

0.85 6.80 63.30 10.50 average runtime of the cyclic function
in µs

FILE-
SIZE

2,079,
061

2,080,
225

2,088,
557

8.16 size (in bytes) of the binary,
executable file

Table 3. Metrics of the Simplified Sensor Actuator State Machine (nested switch
implemented) using the Freescale S12X compiler.

5.3 Results

The results in this section are based on the nested switch implemented variant of the
Simplified Sensor Actuator State Machine of Section 5. The two microcontrollers NEC Fx3
V850ES and Freescale S12X need roundabout nine times memory for the transformed code
and data as it is necessary for the original code and data. As expected, there is a duplication
of data segement size for both investigated controllers because of the coded data.

47Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

18 Will-be-set-by-IN-TECH

There is a clear difference with respect to the raise of runtime compared to the need of
memory. The results show that the NEC handles the higher computational efforts as a result
of additional transformed code much better than the Freescale does. The runtime of the NEC
only increases by factor 6 whereas the runtime of the Freescale increases by factor 10.

5.4 Optimization strategies

There is still a potential for optimizing memory consumption and performance in the SES
approach:

• Run time reduction can be achieved by using only the transformed channel.

• Reduction of memory consumption is possible by packed bit fields, but more effort with
bit shift operations and masking techniques.

• Using of macros like inline functions.

• Using initializations at compile time.

• Caching of frequently used values.

• Using efficient assembler code for the coded operations from the first beginning.

• First ordering frequently used cases in nested switch(Analogously: entries in the state
table).

• Coded constants without dynamic signature.

In the future, the table driven implementation variant will be verified for file size and runtime
with cross compilers for embedded platforms and performance measurements on embedded
systems.

6. Comprehensive safety architecture and outlook

Safely Embedded Software gives a guideline to diversify application software. A significant
but acceptable increase in runtime and code size was measured. The fault detection is realized
locally by SES, whereas the fault reaction is globally managed by a Safety Supervisor.

An overall safety architecture comprises diversity of application software realized with the
nine rules of Safely Embedded Software in addition to hardware diagnosis and hardware
redundancy like e. g. a clock time watchdog. Moreover environmental monitoring (supply
voltage, temperature) has to be provided by hardware means.

Temporal control flow monitoring needs control hooks maintained by the operation system
or by specialized basic software.

State of the art implementation techniques (IEC61508, 1998; ISO26262, 2011) like actuator
activation by complex command sequences or distribution of command sequences
(instructions) in different memory areas have been applied. Furthermore, it is recommended
to allocate original and coded variables in different memory branches.

Classical RAM test techniques can be replaced by SES since fault propagation techniques
ensures the propagation of the detectability up to the check just before the output to the plant.

A system partitioning is possible, the comparator function might be located on another
ECU. In this case, a safety protocol is necessary for inter ECU communication. Also a
partitioning of different SIL functions on the same ECU is proposed by coding the functions

48 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Safely Embedded Software for State Machines in Automotive Applications 19

with different prime multipliers A1, A2 and A3 depending on the SIL level. The choice of
the prime multiplier is determined by maximizing their pairwise lowest common multiple.
In this context, a fault tolerant architecture can be realized by a duplex hardware using in
each channel the SES approach with different prime multipliers Ai. In contrast to classical
faul-tolerant architectures, here a two channel hardware is sufficient since the correctness of
data of each channel are checked individually by determination of their divisibility by Ai.

An application of SES can be motivated by the model driven approach in the automotive
industry. State machines are modeled with tools like Matlab or Rhapsody. A dedicated safety
code weaving compiler for the given tools has been proposed. The intention is to develop a
single channel state chart model in the functional design phase. A preprocessor will add the
duplex channel and comparator to the model. Afterwards, the tool based code generation can
be performed to produce the required C code.

Either a safety certification (IEC61508, 1998; ISO26262, 2011; Bärwald, 2010) of the used tools
will be necessary, or the assembler code will be reviewed. The latter is easier to be executed in
the example and seems to be easier in general. Further research in theory as well as in practice
will be continued.

7. References

AUTOSAR consortium. (2011). AUTOSAR, Official AUTOSAR web site:www.AUTOSAR.org.
Braband, J. (2005). Risikoanalysen in der Eisenbahn-Automatisierung,Eurailpress, Hamburg.
Douglass, B. P. (2011). Safety-Critical Systems Design, i-Logix, Whitepaper.
Ehrenberger W. (2011). Software-Verifikation, Hanser, Munich.
Forin, P. (1989). Vital Coded Microprocessor Principles and Application for Various Transit Systems,

IFAC Control, Computers, Communications, pp. 79-84, Paris.
Hummel, M., Egen R., Mottok, J., Schiller, F., Mattes, T., Blum, M., Duckstein, F. (2006).

Generische Safety-Architektur für KFZ-Software, Hanser Automotive, 11, pp. 52-54,
Munich.

Mottok, J., Schiller, F., Völkl, T., Zeitler, T. (2007). Concept for a Safe Realization of a State
Machine in Embedded Automotive Applications, International Conference on Computer
Safety, Reliability and Security, SAFECOMP 2007, Springer, LNCS 4680, pp.283-288,
Munich.

Wappler, U., Fetzer, C. (2007). Software Encoded Processing: Building Dependable Systems with
Commodity Hardware, International Conference on Computer Safety, Reliability and
Security, SAFECOMP 2007, Springer, LNCS 4680, pp. 356-369, Munich.

IEC (1998). International Electrotechnical Commission (IEC):Functional Safety of Electrical /
Electronic / Programmable Electronic Safety-Related Systems.

ISO (2011). ISO26262 International Organization for Standardization Road Vehicles Functional
Safety, Final Draft International Standard.

Leaphart, E.G., Czerny, B.J., D’Ambrosio, J.G., Denlinger, C.L., Littlejohn, D. (2005). Survey
of Software Failsafe Techniques for Safety-Critical Automotive Applications, SAE World
Congress, pp. 1-16, Detroit.

Motor Industry Research Association (2004). MISRA-C: 2004, Guidelines for the use of the C
language in critical systems, MISRA, Nuneaton.

Börcsök, J. (2007). Functional Safety, Basic Principles of Safety-related Systems, Hüthig,
Heidelberg.

Meyna, A., Pauli, B. (2003). Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik, Hanser,
Munich.

49Safely Embedded Software for State Machines in Automotive Applications

www.intechopen.com

20 Will-be-set-by-IN-TECH

Noble, J., Weir, C.(2001). Small Memory Software, Patterns for Systems with Limited Memory,
Addison Wesley, Edinbourgh.

Oh, N., Mitra, S., McCluskey, E.J. (2002). 4I:Error Detection by Diverse Data and Duplicated
Instructions, IEEE Transactions on Computers, 51, pp. 180-199.

Rebaudengo, M., Reorda, M.S., Torchiano, M., Violante, M. (2003). Soft-error Detection Using
Control Flow Assertions, 18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 581-588, Soston.

Ozello, P. (2002). The Coded Microprocessor Certification, International Conference on Computer
Safety, Reliability and Security, SAFECOMP 1992, Springer, pp. 185-190, Munich.

Schäuffele, J., Zurawka, T. (2004). Automotive Software Engineering, Vieweg, Wiesbaden.
Tarabbia, J.-F.(2004), An Open Platform Strategy in the Context of AUTOSAR, VDI Berichte Nr.

1907, pp. 439-454.
Torres-Pomales, W.(2000). Software Fault Tolerance: A Tutorial, NASA, Langley Research Center,

Hampton, Virginia.
Chen, X., Feng, J., Hiller, M., Lauer, V. (2007). Application of Software Watchdog as

Dependability Software Service for Automotive Safety Relevant Systems, The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, Edinburgh.

Steindl, M., Mottok, J., Meier,H., Schiller, F., and Fruechtl, M. (2009). Diskussion des Einsatzes
von Safely Embedded Software in FPGA-Architekturen, In Proceedings of the 2nd
Embedded Software Engineering Congress, ISBN 978-3-8343-2402-3, pp. 655-661,
Sindelfingen.

Steindl, M. (200). Safely Embedded Software (SES) im Umfeld der Normen für funktionale Sicherheit,
Jahresrückblick 2009 des Bayerischen IT-Sicherheitsclusters, pp. 22-23, Regensburg.

Mottok, J. (2009) Safely Embedded Software,In Proceedings of the 2nd Embedded Software
Engineering Congress, pp. 10-12, Sindelfingen.

Steindl, M., Mottok, J. and Meier, H. (2010) SES-based Framework for Fault-tolerant Systems,
in Proceedings of the 8th IEEE Workshop on Intelligent Solutions in Embedded
Systems, Heraklion.

Raab, P., Kraemer, S., Mottok, J., Meier, H., Racek, S. (2011). Safe Software Processing by
Concurrent Execution in a Real-Time Operating System, in Proceedings, International
Conference on Applied Electronics, Pilsen.

Laumer, M., Felis, S., Mottok, J., Kinalzyk, D., Scharfenberg, G. (2011). Safely Embedded Software
and the ISO 26262, Electromobility Conference, Prague.

Bärwald, A., Hauff, H., Mottok, J. (2010). Certification of safety relevant systems - Benefits of using
pre-certified components, In Automotive Safety and Security, Stuttgart.

50 Embedded Systems – Theory and Design Methodology

www.intechopen.com

Embedded Systems - Theory and Design Methodology

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0167-3

Hard cover, 430 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and

play an important role of specific control functions, have permitted various aspects of industry. Therefore, we

can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-

ranging embedded systems to continue their growth, a number of high-quality fundamental and applied

researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of

research topics on embedded systems, including basic researches, theoretical studies, and practical work.

Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies

condensed in this book will be helpful to researchers and engineers around the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Juergen Mottok, Frank Schiller and Thomas Zeitler (2012). Safely Embedded Software for State Machines in

Automotive Applications, Embedded Systems - Theory and Design Methodology, Dr. Kiyofumi Tanaka (Ed.),

ISBN: 978-953-51-0167-3, InTech, Available from: http://www.intechopen.com/books/embedded-systems-

theory-and-design-methodology/safely-embedded-software-for-state-machines-in-automotive-applications

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

