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1. Introduction 

Embedded system is a special-purpose computer system which is designed to perform a 
small number of dedicated functions for a specific application (Sachitanand, 2002; Kamal, 
2003). Examples of applications using embedded systems are: microwave ovens, TVs, VCRs, 
DVDs, mobile phones, MP3 players, washing machines, air conditions, handheld 
calculators, printers, digital watches, digital cameras, automatic teller machines (ATMs) and 
medical equipments (Barr, 1999; Bolton, 2000; Fisher et al., 2004; Pop et al., 2004). Besides 
these applications, which can be viewed as “noncritical” systems, embedded technology has 
also been used to develop “safety-critical” systems where failures can have very serious 
impacts on human safety. Examples include aerospace, automotive, railway, military and 
medical applications (Redmill, 1992; Profeta et al., 1996; Storey, 1996; Konrad et al., 2004). 

The utilization of embedded systems in safety-critical applications requires that the system 
should have real-time operations to achieve correct functionality and/or avoid any 
possibility for detrimental consequences. Real-time behavior can only be achieved if the 
system is able to perform predictable and deterministic processing (Stankovic, 1988; Pont, 
2001; Buttazzo, 2005; Phatrapornnant, 2007). As a result, the correct behavior of a real-time 
system depends on the time at which these results are produced as well as the logical 
correctness of the output results (Avrunin et al., 1998; Kopetz, 1997). In real-time embedded 
applications, it is important to predict the timing behavior of the system to guarantee that 
the system will behave correctly and consequently the life of the people using the system 
will be saved. Hence, predictability is the key characteristic in real-time embedded systems.  

Embedded systems engineers are concerned with all aspects of the system development 
including hardware and software engineering. Therefore, activities such as specification, 
design, implementation, validation, deployment and maintenance will all be involved in the 
development of an embedded application (Fig. 1). A design of any system usually starts 
with ideas in people’s mind. These ideas need to be captured in requirements specification 
documents that specify the basic functions and the desirable features of the system. The 
system design process then determines how these functions can be provided by the system 
components.  
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Fig. 1. The system development life cycle (Nahas, 2008). 

For successful design, the system requirements have to be expressed and documented in a 
very clear way. Inevitably, there can be numerous ways in which the requirements for a 
simple system can be described. 

Once the system requirements have been clearly defined and well documented, the first step 
in the design process is to design the overall system architecture. Architecture of a system 
basically represents an overview of the system components (i.e. sub-systems) and the 
interrelationships between these different components. Once the software architecture is 
identified, the process of implementing that architecture should take place. This can be 
achieved using a lower-level system representation such as an operating system or a 
scheduler. Scheduler is a very simple operating system for an embedded application (Pont, 
2001). Building the scheduler would require a scheduling algorithm which simply provides 
the set of rules that determine the order in which the tasks will be executed by the scheduler 
during the system operating time. It is therefore the most important factor which influences 
predictability in the system, as it is responsible for satisfying timing and resource 
requirements (Buttazzo, 2005). However, the actual implementation of the scheduling 
algorithm on the embedded microcontroller has an important role in determining the 
functional and temporal behavior of the embedded system. 

This chapter is mainly concerned with so-called “Time-Triggered Co-operative” (TTC) 
schedulers and how such algorithms can be implemented in highly-predictable, resource-
constrained embedded applications. 

The layout of the chapter is as follows. Section  2 provides a detailed comparison between 
the two key software architectures used in the design of real-time embedded systems, 
namely "time-triggered" and "event-triggered". Section  3 introduces and compares the two 
most known scheduling policies, "co-operative" and "pre-emptive", and highlights the 
advantages of co-operative over pre-emptive scheduling. Section  4 discusses the 
relationship between scheduling algorithms and scheduler implementations in practical 
embedded systems. In Section  5, Time-Triggered Co-operative (TTC) scheduling algorithm 
is introduced in detail with a particular focus on its strengths and drawbacks and how such 
drawbacks can be addressed to maintain its reliability and predictability attributes. Section  6 
discusses the sources and impact of timing jitter in TTC scheduling algorithm. Section  7 
describes various possible ways in which the TTC scheduling algorithm can be 
implemented on resource-constrained embedded systems that require highly-predictable 
system behavior. In Section  8, the various scheduler implementations are compared and 
contrasted in terms of jitter characteristics, error handling capabilities and resource 
requirements. The overall chapter conclusions are presented in Section  9. 

2. Software architectures of embedded systems 

Embedded systems are composed of hardware and software components. The success of an 
embedded design, thus, depends on the right selection of the hardware platform(s) as well 
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as the software environment used in conjunction with the hardware. The selection of 
hardware and software architectures of an application must take place at early stages in the 
development process (typically at the design phase). Hardware architecture relates mainly 
to the type of the processor (or microcontroller) platform(s) used and the structure of the 
various hardware components that are comprised in the system: see Mwelwa (2006) for 
further discussion about hardware architectures for embedded systems. 

Provided that the hardware architecture is decided, an embedded application requires an 
appropriate form of software architecture to be implemented. To determine the most 
appropriate choice for software architecture in a particular system, this condition must be 
fulfilled (Locke, 1992): “The [software] architecture must be capable of providing a provable 
prediction of the ability of the application design to meet all of its time constraints.” 

Since embedded systems are usually implemented as collections of real-time tasks, the 
various possible system architectures may then be determined by the characteristics of these 
tasks. In general, there are two main software architectures which are typically used in the 
design of embedded systems:  

Event-triggered (ET): tasks are invoked as a response to aperiodic events. In this case, the 
system takes no account of time: instead, the system is controlled purely by the response to 
external events, typically represented by interrupts which can arrive at anytime (Bannatyne, 
1998; Kopetz, 1991b). Generally, ET solution is recommended for applications in which 
sporadic data messages (with unknown request times) are exchanged in the system (Hsieh 
and Hsu, 2005). 

Time-triggered (TT): tasks are invoked periodically at specific time intervals which are 
known in advance. The system is usually driven by a global clock which is linked to a 
hardware timer that overflows at specific time instants to generate periodic interrupts 
(Bennett, 1994). In distributed systems, where multi-processor hardware architecture is 
used, the global clock is distributed across the network (via the communication medium) to 
synchronise the local time base of all processors. In such architectures, time-triggering 
mechanism is based on time-division multiple access (TDMA) in which each processor-node 
is allocated a periodic time slot to broadcast its periodic messages (Kopetz, 1991b). TT 
solution can suit many control applications where the data messages exchanged in the 
system are periodic (Kopetz, 1997).  

Many researchers argue that ET architectures are highly flexible and can provide high 
resource efficiency (Obermaisser, 2004; Locke, 1992). However, ET architectures allow 
several interrupts to arrive at the same time, where these interrupts might indicate (for 
example) that two different faults have been detected at the same time. Inevitably, dealing 
with an occurrence of several events at the same time will increase the system complexity 
and reduce the ability to predict the behavior of the ET system (Scheler and Schröder-
Preikschat, 2006). In more severe circumstances, the system may fail completely if it is 
heavily loaded with events that occur at once (Marti, 2002). In contrast, using TT 
architectures helps to ensure that only a single event is handled at a time and therefore the 
behavior of the system can be highly-predictable.  

Since highly-predictable system behavior is an important design requirement for many 
embedded systems, TT software architectures have become the subject of considerable 
attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT 
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architectures are a good match for many safety-critical applications, since they can help to 
improve the overall safety and reliability (Allworth, 1981; Storey, 1996; Nissanke, 1997; 
Bates; 2000; Obermaisser, 2004). Liu (2000) highlights that TT systems are easy to validate, 
test, and certify because the times related to the tasks are deterministic. Detailed 
comparisons between the TT and ET concepts were performed by Kopetz (1991a and 1991b).  

3. Schedulers and scheduling algorithms 

Most embedded systems involve several tasks that share the system resources and 
communicate with one another and/or the environment in which they operate. For many 
projects, a key challenge is to work out how to schedule tasks so that they can meet their 

timing constraints. This process requires an appropriate form of scheduler1. A scheduler can 
be viewed as a very simple operating system which calls tasks periodically (or aperiodically) 
during the system operating time. Moreover, as with desktop operating systems, a 
scheduler has the responsibility to manage the computational and data resources in order to 
meet all temporal and functional requirements of the system (Mwelwa, 2006).  

According to the nature of the operating tasks, any real-time scheduler must fall under one 
of the following types of scheduling policies: 

Pre-emptive scheduling: where a multi-tasking process is allowed. In more details, a task 
with higher priority is allowed to pre-empt (i.e. interrupt) any lower priority task that is 
currently running. The lower priority task will resume once the higher priority task finishes 
executing. For example, suppose that – over a particular period of time – a system needs to 
execute four tasks (Task A, Task B, Task C, Task D) as illustrated in Fig. 2. 

A

C

B

D

Time
 

Fig. 2. A schematic representation of four tasks which need to be scheduled for execution on 
a single-processor embedded system (Nahas, 2008). 

Assuming a single-processor system is used, Task C and Task D can run as required where 
Task B is due to execute before Task A is complete. Since no more than one task can run at 
the same time on a single-processor, Task A or Task B has to relinquish control of the CPU. 

                                                 
1 Note that schedulers represent the core components of “Real-Time Operating System” (RTOS) kernels. 
Examples of commercial RTOSs which are used nowadays are: VxWorks (from Wind River), Lynx 
(from LynxWorks), RTLinux (from FSMLabs), eCos (from Red Hat), and QNX (from QNX Software 
Systems). Most of these operating systems require large amount of computational and memory 
resources which are not readily available in low-cost microcontrollers like the ones targeted in this 
work. 
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In pre-emptive scheduling, a higher priority might be assigned to Task B with the 
consequence that – when Task B is due to run – Task A will be interrupted, Task B will run, 
and Task A will then resume and complete (Fig. 3). 

Time

BA - - A C D

 

Fig. 3. Pre-emptive scheduling of Task A and Task B in the system shown in Fig. 2: Task B, 
here, is assigned a higher priority (Nahas, 2008). 

Co-operative (or “non-pre-emptive”) scheduling: where only a single-tasking process is 

allowed. In more details, if a higher priority task is ready to run while a lower priority task 

is running, the former task cannot be released until the latter one completes its execution. 

For example, assume the same set of tasks illustrated in Fig. 2. In the simplest solution, Task 

A and Task B can be scheduled co-operatively. In these circumstances, the task which is 

currently using the CPU is implicitly assigned a high priority: any other task must therefore 

wait until this task relinquishes control before it can execute. In this case, Task A will 

complete and then Task B will be executed (Fig. 4). 

Time

B C DA

 

Fig. 4. Co-operative scheduling of Task A and Task B in the system shown in Fig. 2 (Nahas, 
2008). 

Hybrid scheduling: where a limited, but efficient, multi-tasking capabilities are provided 

(Pont, 2001). That is, only one task in the whole system is set to be pre-emptive (this task is 

best viewed as “highest-priority” task), while other tasks are running co-operatively (Fig. 5). 

In the example shown in the figure, suppose that Task B is a short task which has to execute 

immediately when it arrives. In this case, Task B is set to be pre-emptive so that it acquires 

the CPU control to execute whenever it arrives and whether (or not) other task is running.  

Time

B C - DA - - A B - C

 

Fig. 5. Hybrid scheduling of four-tasks: Task B is set to be pre-emptive, where Task A, Task 
C and Task D run co-operatively (Nahas, 2008). 

Overall, when comparing co-operative with pre-emptive schedulers, many researchers have 

argued that co-operative schedulers have many desirable features, particularly for use in 

safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bates, 2000; Pont, 2001). 

For example, Bates (2000) identified the following four advantages of co-operative 

scheduling over pre-emptive alternatives:  
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 The scheduler is simpler. 

 The overheads are reduced.  

 Testing is easier. 

 Certification authorities tend to support this form of scheduling.  

Similarly, Nissanke (1997) noted: “[Pre-emptive] schedules carry greater runtime overheads 
because of the need for context switching - storage and retrieval of partially computed results. [Co-
operative] algorithms do not incur such overheads. Other advantages of co-operative algorithms 
include their better understandability, greater predictability, ease of testing and their inherent 
capability for guaranteeing exclusive access to any shared resource or data.” 

Many researchers still, however, believe that pre-emptive approaches are more effective 
than co-operative alternatives (Allworth, 1981; Cooling, 1991). This can be due to different 
reasons. As in (Pont, 2001), one of the reasons why pre-emptive approaches are more widely 
discussed and considered is because of confusion over the options available. Pont gave an 
example that the basic cyclic scheduling, which is often discussed by many as an alternative 
to pre-emptive, is not a representative of the wide range of co-operative scheduling 
architectures that are available. 

Moreover, one of the main issues that concern people about the reliability of co-operative 
scheduling is that long tasks can have a negative impact on the responsiveness of the 
system. This is clearly underlined by Allworth (1981): “[The] main drawback with this co-
operative approach is that while the current process is running, the system is not responsive to 
changes in the environment. Therefore, system processes must be extremely brief if the real-time 
response [of the] system is not to be impaired.” 

However, in many practical embedded systems, the process (task) duration is extremely 

short. For example, calculations of one of the very complicated algorithms, the 

“proportional integral differential” (PID) controller, can be carried out on the most basic (8-

bit) 8051 microcontroller in around 0.4 ms: this imposes insignificant processor load in most 

systems – including flight control – where 10 ms sampling rate is adequate (Pont, 2001). 

Pont has also commented that if the system is designed to run long tasks, “this is often 
because the developer is unaware of some simple techniques that can be used to break down these tasks 

in an appropriate way and – in effect – convert long tasks called infrequently into short tasks called 

frequently”: some of these techniques are introduced and discussed in Pont (2001). 

Moreover, if the performance of the system is seen slightly poor, it is often advised to 

update the microcontroller hardware rather than to use a more complex software 

architecture. However, if changing the task design or microcontroller hardware does not 

provide the level of performance which is desired for a particular application, then more 

than one microcontroller can be used. In such cases, long tasks can be easily moved to 

another processor, allowing the host processor to respond rapidly to other events as 

required (for further details, see Pont, 2001; Ayavoo et al., 2007). 

Please note that the very wide use of pre-emptive schedulers can simply be resulted from a 

poor understanding and, hence, undervaluation of the co-operative schedulers. For 

example, a co-operative scheduler can be easily constructed using only a few hundred lines 

of highly portable code written in a high-level programming language (such as ‘C’), while 

the resulting system is highly-predictable (Pont, 2001). 
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It is also important to understand that sometimes pre-emptive schedulers are more widely 

used in RTOSs due to commercial reasons. For example, companies may have commercial 

benefits from using pre-emptive environments. Consequently, as the complexity of these 

environments increases, the code size will significantly increase making ‘in-house’ 

constructions of such environments too complicated. Such complexity factors lead to the 

sale of commercial RTOS products at high prices (Pont, 2001). Therefore, further academic 

research has been conducted in this area to explore alternative solutions. For example, over 

the last few years, the Embedded Systems Laboratory (ESL) researchers have considered 

various ways in which simple, highly-predictable, non-pre-emptive (co-operative) 

schedulers can be implemented in low-cost embedded systems. 

4. Scheduling algorithm and scheduler implementation 

A key component of the scheduler is the scheduling algorithm which basically determines the 

order in which the tasks will be executed by the scheduler (Buttazzo, 2005). More 

specifically, a scheduling algorithm is the set of rules that, at every instant while the system 

is running, determines which task must be allocated the resources to execute. 

Developers of embedded systems have proposed various scheduling algorithms that can be 

used to handle tasks in real-time applications.  The selection of appropriate scheduling 

algorithm for a set of tasks is based upon the capability of the algorithm to satisfy all timing 

constraints of the tasks: where these constraints are derived from the application 

requirements.  Examples of common scheduling algorithms are: Cyclic Executive (Locke, 

1992), Rate Monotonic (Liu & Layland, 1973), Earliest-Deadline-First (Liu & Layland, 1973; 

Liu, 2000), Least-Laxity-First (Mok, 1983), Deadline Monotonic (Leung, 1982) and Shared-

Clock (Pont, 2001) schedulers (see Rao et al., 2008 for a simple classification of scheduling 

algorithms). This chapter outlines one key example of scheduling algorithms that is widely 

used in the design of real-time embedded systems when highly-predictable system behavior 

is an essential requirement: this is the Time Triggered Co-operative scheduler which is a 

form of cyclic executive. 

Note that once the design specifications are converted into appropriate design elements, the 

system implementation process can take place by translating those designs into software 

and hardware components. People working on the development of embedded systems are 

often concerned with the software implementation of the system in which the system 

specifications are converted into an executable system (Sommerville, 2007; Koch, 1999). For 

example, Koch interpreted the implementation of a system as the way in which the software 

program is arranged to meet the system specifications. 

The implementation of schedulers is a major problem which faces designers of real-time 

scheduling systems (for example, see Cho et al., 2005). In their useful publication, Cho and 

colleges clarified that the well-known term scheduling is used to describe the process of 

finding the optimal schedule for a set of real-time tasks, while the term scheduler 

implementation refers to the process of implementing a physical (software or hardware) 

scheduler that enforces – at run-time – the task sequencing determined by the designed 

schedule (Cho et al., 2007). 
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Generally, it has been argued that there is a wide gap between scheduling theory and its 
implementation in operating system kernels running on specific hardware, and for any 
meaningful validation of timing properties of real-time applications, this gap must be 
bridged (Katcher et al., 1993). The relationship between any scheduling algorithm and the 
number of possible implementation options for that algorithm – in practical designs – has 
generally been viewed as ‘one-to-many’, even for very simple systems (Baker & Shaw, 1989; 
Koch; 1999; Pont, 2001; Baruah, 2006; Pont et al., 2007; Phatrapornnant, 2007). For example, 
Pont et al. (2007) clearly mentioned that if someone was to use a particular scheduling 
architecture, then there are many different implementation options which can be available. 
This claim was also supported by Phatrapornnant (2007) by noting that the TTC scheduler 
(which is a form of cyclic executive) is only an algorithm where, in practice, there can be 
many possible ways to implement such an algorithm.  

The performance of a real-time system depends crucially on implementation details that 
cannot be captured at the design level, thus it is more appropriate to evaluate the real-time 
properties of the system after it is fully implemented (Avrunin et al., 1998). 

5. Time-triggered co-operative (TTC) scheduling algorithm 

A key defining characteristic of a time-triggered (TT) system is that it can be expected to 
have highly-predictable patterns of behavior. This means that when a computer system has 
a time-triggered architecture, it can be determined in advance – before the system begins 
executing – exactly what the system will do at every moment of time while the system is 
operating. Based on this definition, completely defined TT behavior is – of course – difficult 
to achieve in practice.  Nonetheless, approximations of this model have been found to be 
useful in a great many practical systems. The closest approximation of a “perfect” TT 
architecture which is in widespread use involves a collection of periodic tasks which operate 
co-operatively (or “non-pre-emptively”). Such a time-triggered co-operative (TTC) 
architecture has sometimes been described as a cyclic executive (e.g. Baker & Shaw, 1989; 
Locke, 1992). 

According to Baker and Shaw (1989), the cyclic executive scheduler is designed to execute 
tasks in a sequential order that is defined prior to system activation; the number of tasks is 
fixed; each task is allocated an execution slot (called a minor cycle or a frame) during which 
the task executes; the task – once interleaved by the scheduler – can execute until completion 
without interruption from other tasks; all tasks are periodic and the deadline of each task is 
equal to its period; the worst-case execution time of all tasks is known; there is no context 
switching between tasks; and tasks are scheduled in a repetitive cycle called major cycle. The 
major cycle can be defined as the time period during which each task in the scheduler 
executes – at least – once and before the whole task execution pattern is repeated. This is 
numerically calculated as the lowest common multiple (LCM) of the periods of the 
scheduled tasks (Baker & Shaw, 1989; Xu & Parnas, 1993). Koch (1999) emphasized that 
cyclic executive is a “proof-by-construction” scheme in which no schedulability analysis is 
required prior to system construction. 

Fig. 6 illustrates the (time-triggered) cyclic executive model for a simple set of four periodic 

tasks. Note that the final task in the task-group (i.e. Task D) must complete execution before 

the arrival of the next timer interrupt which launches a new (major) execution cycle. 
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Task B

Task C

Task D

Task A

 
Fig. 6. A time-triggered cyclic executive model for a set of four periodic tasks (Nahas, 
2011b). 

In the example shown, each task is executed only once during the whole major cycle which 
is, in this case, made up of four minor cycles. Note that the task periods may not always be 
identical as in the example shown in Fig. 6. When task periods vary, the scheduler should 
define a sequence in which each task is repeated sufficiently to meet its frequency 
requirement (Locke, 1992). 

Fig. 7 shows the general structure of the time-triggered cyclic executive (i.e. time-triggered 

co-operative) scheduler. In the example shown in this figure, the scheduler has a minor cycle 

of 10 ms, period values of 20, 10 and 40 ms for the tasks A, B and C, respectively. The LCM 

of these periods is 40 ms, therefore the length of the major cycle in which all tasks will be 

executed periodically is 40 ms. It is suggested that the minor cycle of the scheduler (which is 

also referred to as the tick interval: see Pont, 2001) can be set equal to or less than the 

greatest common divisor value of all task periods (Phatrapornnant, 2007). In the example 

shown in Fig. 7, this value is equal to 10 ms. In practice, the minor cycle is driven by a 

periodic interrupt generated by the overflow of an on-chip hardware timer or by the arrival 

of events in the external environment (Locke, 1992; Pont, 2001). The vertical arrows in the 

figure represent the points at which minor cycles (ticks) start. 

A C

Minor

cycle

Major cycle

t (ms)0 10 20

A

30 40

B BBB A B

 

Fig. 7. A general structure of the time-triggered co-operative (TTC) scheduler (Nahas, 2008). 

Overall, TTC schedulers have many advantages. A key recognizable advantage is its 
simplicity (Baker & Shaw, 1989; Liu, 2000; Pont, 2001). Furthermore, since pre-emption is not 
allowed, mechanisms for context switching are, hence, not required and, as a consequence, 
the run-time overhead of a TTC scheduler can be kept very low (Locke, 1992; Buttazzo, 
2005). Also, developing TTC schedulers needs no concern about protecting the integrity of 
shared data structures or shared resources because, at a time, only one task in the whole 
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system can exclusively use the resources and the next due task cannot begin its execution 
until the running task is completed (Baker & Shaw, 1989; Locke, 1992).  

Since all tasks are run regularly according to their predefined order in a deterministic 
manner, the TTC schedulers demonstrate very low levels of task jitter (Locke, 1992; Bate, 
1998; Buttazzo, 2005) and can maintain their low-jitter characteristics even when complex 
techniques, such as dynamic voltage scaling (DVS), are employed to reduce system power 
consumption (Phatrapornnant & Pont, 2006). Therefore, as would be expected (and unlike 
RM designs, for example), systems with TTC architectures can have highly-predictable 
timing behavior (Baker & Shaw, 1989; Locke, 1992). Locke (1992) underlines that with cyclic 
executive systems, “it is possible to predict the entire future history of the state of the machine, once 
the start time of the system is determined (usually at power-on). Thus, assuming this future history 
meets the response requirements generated by the external environment in which the system is to be 
used, it is clear that all response requirements will be met. Thus it fulfills the basic requirements of a 
hard real time system.” 

Provided that an appropriate implementation is used, TTC architectures can be a good 

match for a wide range of low-cost embedded applications. For example, previous studies 

have described – in detail – how these techniques can be applied in various automotive 

applications (e.g. Ayavoo et al., 2006; Ayavoo, 2006), a wireless (ECG) monitoring system 

(Phatrapornnant & Pont, 2004; Phatrapornnant, 2007), various control applications (e.g. 

Edwards et al., 2004; Key et al., 2004; Short & Pont, 2008), and in data acquisition systems, 

washing-machine control and monitoring of liquid flow rates (Pont, 2002). Outside the ESL 

group, Nghiem et al. (2006) described an implementation of PID controller using TTC 

scheduling algorithm and illustrated how such architecture can help increase the overall 

system performance as compared with alternative implementation methods. 

However, TTC architectures have some shortcomings. For example, many researchers argue 

that running tasks without pre-emption may cause other tasks to wait for some time and 

hence miss their deadlines. However, the availability of high-speed, COTS microcontrollers 

nowadays helps to reduce the effect of this problem and, as processor speeds continue to 

increase, non-pre-emptive scheduling approaches are expected to gain more popularity in 

the future (Baruah, 2006). 

Another issue with TTC systems is that the task schedule is usually calculated based on 

estimates of Worst Case Execution Time (WCET) of the running tasks.  If such estimates 

prove to be incorrect, this may have a serious impact on the system behavior (Buttazzo, 

2005).  

One recognized disadvantage of using TTC schedulers is the lack of flexibility (Locke, 1992; 

Bate, 1998). This is simply because TTC is usually viewed as ‘table-driven’ static scheduler 

(Baker & Shaw, 1989) which means that any modification or addition of a new functionality, 

during any stage of the system development process, may need an entirely new schedule to 

be designed and constructed (Locke, 1992; Koch, 1999). This reconstruction of the system 

adds more time overhead to the design process: however, with using tools such as those 

developed recently to support “automatic code generation” (Mwelwa et al., 2006; Mwelwa, 

2006; Kurian & Pont, 2007), the work involved in developing and maintaining such systems 

can be substantially reduced. 
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Another drawback of TTC systems, as noted by Koch (1999), is that constructing the cyclic 
executive model for a large set of tasks with periods that are prime to each other can be 
unaffordable. However, in practice, there is some flexibility in the choice of task periods (Xu 
& Parnas, 1993; Pont, 2001). For example, Gerber et al. (1995) demonstrated how a feasible 
solution for task periods can be obtained by considering the period harmonicity relationship 
of each task with all its successors.  Kim et al.  (1999) went further to improve and automate 
this period calibration method. Please also note that using a table to store the task schedule 
is only one way of implementing TTC algorithm where, in practice, there can be other 
implementation methods (Baker & Shaw, 1989; Pont, 2001). For example, Pont (2001) 
described an alternative to table-driven schedule implementation for the TTC algorithm 
which has the potential to solve the co-prime periods problem and also simplify the process 
of modifying the whole task schedule later in the development life cycle or during the 
system run-time. 

Furthermore, it has also been reported that a long task whose execution time exceeds the 
period of the highest rate (shortest period) task cannot be scheduled on the basic TTC 
scheduler (Locke, 1992). One solution to this problem is to break down the long task into 
multiple short tasks that can fit in the minor cycle. Also, possible alternative solution to this 
problem is to use a Time-Triggered Hybrid (TTH) scheduler (Pont, 2001) in which a limited 
degree of pre-emption is supported. One acknowledged advantage of using TTH scheduler 
is that it enables the designer to build a static, fixed-priority schedule made up of a 
collection of co-operative tasks and a single (short) pre-emptive task (Phatrapornnant, 2007). 
Note that TTH architectures are not covered in the context of this chapter. For more details 
about these scheduling approaches, see (Pont, 2001; Maaita & Pont, 2005; Hughes & Pont, 
2008; Phatrapornnant, 2007). 

Please note that later in this chapter, it will be demonstrated how, with extra care at the 
implementation stage, one can easily deal with many of the TTC scheduler limitations 
indicated above. 

6. Jitter in TTC scheduling algorithm 

Jitter is a term which describes variations in the timing of activities (Wavecrest, 2001). The 

work presented in this chapter is concerned with implementing highly-predictable 

embedded systems. Predictability is one of the most important objectives of real-time 

embedded systems which can simply be defined as the ability to determine, in advance, 

exactly what the system will do at every moment of time in which it is running. One way in 

which predictable behavior manifests itself is in low levels of task jitter. 

Jitter is a key timing parameter that can have detrimental impacts on the performance of 

many applications, particularly those involving period sampling and/or data generation 

(e.g. data acquisition, data playback and control systems: see Torngren, 1998). For example, 

Cottet & David (1999) show that – during data acquisition tasks – jitter rates of 10% or more 

can introduce errors which are so significant that any subsequent interpretation of the 

sampled signal may be rendered meaningless. Similarly, Jerri (1977) discusses the serious 

impact of jitter on applications such as spectrum analysis and filtering. Also, in control 

systems, jitter can greatly degrade the performance by varying the sampling period 

(Torngren, 1998; Marti et al., 2001).  
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When TTC architectures (which represent the main focus of this chapter) are employed, 
possible sources of task jitter can be divided into three main categories: scheduling overhead 
variation, task placement and clock drift. 

The overhead of a conventional (non-co-operative) scheduler arises mainly from context 
switching. However, in some TTC systems the scheduling overhead is comparatively large 
and may have a highly variable duration due to code branching or computations that have 
non-fixed lengths. As an example, Fig. 8 illustrates how a TTC system can suffer release 
jitter as a result of variations in the scheduler overhead (this relates to DVS system). 
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Fig. 8. Release jitter caused by variation of scheduling overhead (Nahas, 2011a). 

Even if the scheduler overhead variations can be avoided, TTC designs can still suffer from 
jitter as a result of the task placement. To illustrate this, consider Fig. 9.  In this schedule 
example, Task C runs sometimes after A, sometimes after A and B, and sometimes alone.  
Therefore, the period between every two successive runs of Task C is highly variable. 
Moreover, if Task A and B have variable execution durations (as in Fig. 8), then the jitter 
levels of Task C will even be larger. 

Speed

Task

A

Task

C

Task

Period

Task

Period

Task

Period

Task

C

Task

A

Task

C

Task

B

Task

C

Task

B

 

Fig. 9. Release jitter caused by task placement in TTC schedulers (Nahas, 2011a). 

For completeness of this discussion, it is also important to consider clock drift as a source of 
task jitter.  In the TTC designs, a clock “tick” is generated by a hardware timer that is used 
to trigger the execution of the cyclic tasks (Pont, 2001).  This mechanism relies on the 
presence of a timer that runs at a fixed frequency. In such circumstances, any jitter will arise 
from variations at the hardware level (e.g. through the use of a low-cost frequency source, 
such as a ceramic resonator, to drive the on-chip oscillator: see Pont, 2001). In the TTC 
scheduler implementations considered in this study, the software developer has no control 
over the clock source.  However, in some circumstances, those implementing a scheduler 
must take such factors into account.  For example, in situations where DVS is employed (to 
reduce CPU power consumption), it may take a variable amount of time for the processor’s 
phase-locked loop (PLL) to stabilize after the clock frequency is changed (see Fig. 10). 
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Fig. 10. Clock drift in DVS systems (Nahas, 2011a). 
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As discussed elsewhere, it is possible to compensate for such changes in software and 
thereby reduce jitter (see Phatrapornnant & Pont, 2006; Phatrapornnant, 2007). 

7. Various TTC scheduler implementations for highly-predictable embedded 
systems 

In this section, a set of “representative” examples of the various classes of TTC scheduler 
implementations are reviewed. In total, the section reviews six TTC implementations.  

7.1 Super loop (SL) scheduler 

The simplest practical implementation of a TTC scheduler can be created using a “Super 

Loop” (SL) (sometimes called an “endless loop: Kalinsky, 2001). The super loop can be used 

as the basis for implementing a simple TTC scheduler (e.g. Pont, 2001; Kurian & Pont, 2007). 

A possible implementation of TTC scheduler using super loop is illustrated in Listing 1. 

 

 

int main(void) 

   { 

   ... 

   while(1) 

      { 

      TaskA(); 

      Delay_6ms(); 

      TaskB(); 

      Delay_6ms(); 

      TaskC(); 

      Delay_6ms(); 

      } 

 

   // Should never reach here  

   return 1 

   } 

Listing 1. A very simple TTC scheduler which executes three periodic tasks, in sequence.  

By assuming that each task in Listing 1 has a fixed duration of 4 ms, a TTC system with a 

10 ms “tick interval” has been created using a combination of super loop and delay 

functions (Fig. 11).  

Time

System

Tick

Task A

10 ms

Task B Task C

4 ms 4 ms 4 ms

 

Fig. 11. The task executions resulting from the code in Listing 1 (Nahas, 2011b). 

In the case where the scheduled tasks have variable durations, creating a fixed tick interval 
is not straightforward. One way of doing that is to use a “Sandwich Delay” (Pont et al., 
2006) placed around the tasks.  Briefly, a Sandwich Delay (SD) is a mechanism – based on a 
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hardware timer – which can be used to ensure that a particular code section always takes 
approximately the same period of time to execute.  The SD operates as follows: [1] A timer is 
set to run; [2] An activity is performed; [3] The system waits until the timer reaches a pre-
determined count value.   

In these circumstances – as long as the timer count is set to a duration that exceeds the 
WCET of the sandwiched activity – SD mechanism has the potential to fix the execution 
period. Listing 2 shows how the tasks in Listing 1 can be scheduled – again using a 10 ms 
tick interval – if their execution durations are not fixed 

int main(void) 
   { 
   ... 
   while(1)  
      { 
     // Set up a Timer for sandwich delay 
     SANDWICH_DELAY_Start();    
     // Add Tasks in the first tick interval 
     Task_A(); 
     // Wait for 10 millisecond sandwich delay 
     // Add Tasks in the second tick interval  
     SANDWICH_DELAY_Wait(10); 
     Task_B(); 
     // Wait for 20 millisecond sandwich delay 
     // Add Tasks in the second tick interval 
     SANDWICH_DELAY_Wait(20); 
     Task_C(); 
     // Wait for 30 millisecond sandwich delay 
     SANDWICH_DELAY_Wait(30); 
      } 
   // Should never reach here  
   return 1 
   } 

Listing 2. A TTC scheduler which executes three periodic tasks with variable durations, in 
sequence.  

Using the code listing shown, the successive function calls will take place at fixed intervals, 
even if these functions have large variations in their durations (Fig. 12). For further 
information, see (Nahas, 2011b). 

Time

System

Tick

10 ms

Task B Task CTask A

6 ms 9 ms 4 ms

 

Fig. 12. The task executions expected from the TTC-SL scheduler code shown in Listing 2 
(Nahas, 2011b). 

7.2 A TTC-ISR scheduler 

In general, software architectures based on super loop can be seen simple, highly efficient 
and portable (Pont, 2001; Kurian & Pont, 2007). However, these approaches lack the 
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provision of accurate timing and the efficiency in using the power resources, as the system 
always operates at full-power which is not necessary in many applications.  

An alternative (and more efficient) solution to this problem is to make use of the hardware 
resources to control the timing and power behavior of the system. For example, a TTC 
scheduler implementation can be created using “Interrupt Service Routine” (ISR) linked to 
the overflow of a hardware timer. In such approaches, the timer is set to overflow at regular 
“tick intervals” to generate periodic “ticks” that will drive the scheduler. The rate of the tick 
interval can be set equal to (or higher than) the rate of the task which runs at the highest 
frequency (Phatrapornnant, 2007).  

In the TTC-ISR scheduler, when the timer overflows and a tick interrupt occurs, the ISR will 
be called, and awaiting tasks will then be activated from the ISR directly. Fig. 13 shows how 
such a scheduler can be implemented in software. In this example, it is assumed that one of 
the microcontroller’s timers has been set to generate an interrupt once every 10 ms, and 

thereby call the function Update(). This Update() function represents the scheduler ISR. 
At the first tick, the scheduler will run Task A then go back to the while loop in which the 
system is placed in the idle mode waiting for the next interrupt. When the second interrupt 
takes place, the scheduler will enter the ISR and run Task B, then the cycle continues. The 
overall result is a system which has a 10 ms “tick interval” and three tasks executed in 
sequence (see Fig. 14) 

while(1) 

{

Go_To_Sleep();  

}

BACKGROUND 

PROCESSING
FOREGROUND 

PROCESSING

void Update(void)

{

Tick_G++;

switch(Tick_G)

{

case 1:

Task_A();

break;

case 2:

Task_B();

break;

case 3:

Task_C();

Tick_G = 0;

} 

}

10ms timer

while(1) 

{

Go_To_Sleep();  

}

BACKGROUND 

PROCESSING
FOREGROUND 

PROCESSING

void Update(void)

{

Tick_G++;

switch(Tick_G)

{

case 1:

Task_A();

break;

case 2:

Task_B();

break;

case 3:

Task_C();

Tick_G = 0;

} 

}

10ms timer

 

Fig. 13. A schematic representation of a simple TTC-ISR scheduler (Nahas, 2008). 

Whether or not the idle mode is used in TTC-ISR scheduler, the timing observed is largely 
independent of the software used but instead depends on the underlying timer hardware 
(which will usually mean the accuracy of the crystal oscillator driving the microcontroller).  
One consequence of this is that, for the system shown in Fig. 13 (for example), the successive 
function calls will take place at precisely-defined intervals, even if there are large variations 
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in the duration of tasks which are run from the Update()function (Fig. 14). This is very 
useful behavior which is not easily obtained with implementations based on super loop. 

C

Tick interval

TimeTick 0 Tick 1

B
Idle

mode

Tick 2

A

Major

cycle

Tick 3  

Fig. 14: The task executions expected from the TTC-ISR scheduler code shown in Fig. 13 
(Nahas, 2008). 

The function call tree for the TTC-ISR scheduler is shown in Fig. 15. For further information, 
see (Nahas, 2008).  

Main () Sleep ()Task ()Update ()

 

Fig. 15: Function call tree for the TTC-ISR scheduler (Nahas, 2008). 

7.3 TTC-dispatch scheduler 

Implementation of a TTC-ISR scheduler requires a significant amount of hand coding (to 
control the task timing), and there is no division between the “scheduler” code and the 
“application” code (i.e. tasks). The TTC-Dispatch scheduler provides a more flexible 
alternative. It is characterized by distinct and well-defined scheduler functions. 

Like TTC-ISR, the TTC-Dispatch scheduler is driven by periodic interrupts generated from 

an on-chip timer. When an interrupt occurs, the processor executes an Update() function. 
In the scheduler implementation discussed here, the Update() function simply keeps track 
of the number of ticks. A Dispatch() function will then be called, and the due tasks (if 
any) will be executed one-by-one.  Note that the Dispatch() function is called from an 
“endless” loop placed in the function Main(): see Fig. 16.  When not executing the 
Update() or Dispatch() functions, the system will usually enter the low-power idle 
mode. 

In this TTC implementation, the software employs a SCH_Add_Task() and a 
SCH_Delete_Task() functions to help the scheduler add and/or remove tasks during the 
system run-time. Such scheduler architecture provides support for “one shot” tasks and 
dynamic scheduling where tasks can be scheduled online if necessary (Pont, 2001). To add a 
task to the scheduler, two main parameters have to be defined by the user in addition to the 
task’s name: task’s offset, and task’s period.  The offset specifies the time (in ticks) before the 
task is first executed.  The period specifies the interval (also in ticks) between repeated 
executions of the task.  In the Dispatch() function, the scheduler checks these parameters 
for each task before running it. Please note that information about tasks is stored in a user-

defined scheduler data structure. Both the “sTask” data type and the “SCH_MAX_TASKS” 
constant are used to create the “Task Array” which is referred to throughout the scheduler 
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as “sTask SCH_tasks_G[SCH_MAX_TASKS]”. See (Pont, 2001) for further details. The 
function call tree for the TTC-Dispatch scheduler is shown in Fig. 16.  

Main () Sleep ()Task ()Dispatch ()Update ()

 

Fig. 16. Function call tree for the TTC-Dispatch scheduler (Nahas, 2011a). 

Fig. 16 illustrates the whole scheduling process in the TTC-Dispatch scheduler. For example, 
it shows that the first function to run (after the startup code) is the Main() function. The 
Main()calls Dispatch()which in turn launches any tasks which are currently scheduled 
to execute. Once these tasks are complete, the control will return back to Main() which calls 

Sleep() to place the processor in the idle mode.  The timer interrupt then occurs which 
will wake the processor up from the idle state and invoke the ISR Update(). The function 
call then returns all the way back to Main(), where Dispatch() is called again and the 
whole cycle thereby continues. For further information, see (Nahas, 2008). 

7.4 Task Guardians (TG) scheduler 

Despite many attractive characteristics, TTC designs can be seriously compromised by tasks 

that fail to complete within their allotted periods. The TTC-TG scheduler implementation 

described in this section employs a Task Guardian (TG) mechanism to deal with the impact 

of such task overruns. When dealing with task overruns, the TG mechanism is required to 

shutdown any task which is found to be overrunning. The proposed solution also provides 

the option of replacing the overrunning task with a backup task (if required). 

The implementation is again based on TTC-Dispatch (Section  7.3).  In the event of a task 

overrun with ordinary Dispatch scheduler, the timer ISR will interrupt the overrunning task 

(rather than the Sleep() function).  If the overrunning task keeps executing then it will be 

periodically interrupted by Update() while all other tasks will be blocked until the task 

finishes (if ever): this is shown in Fig. 17. Note that (a) illustrates the required task schedule, 

and (b) illustrates the scheduler operation when Task A overrun by 5 tick interval. 
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Fig. 17. The impact of task overrun on a TTC scheduler (Nahas, 2008). 
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In order for the TG mechanism to work, various functions in the TTC-Dispatch scheduler 
are modified as follows: 

 Dispatch() indicates that a task is being executed. 

 Update() checks to see if an overrun has occurred.  If it has, control is passed back to 

Dispatch(), shutting down the overrunning task. 

 If a backup task exists it will be executed by Dispatch(). 

 Normal operation then continues. 

In a little more detail, detecting overrun in this implementation uses a simple, efficient 

method employed in the Dispatch() function. It simply adds a “Task_Overrun” variable 
which is set equal to the task index before the task is executed. When the task completes, 
this variable will be assigned the value of (for example) 255 to indicate a successful 

completion. If a task overruns, the Update() function in the next tick should detect this 
since it checks the Task_overrun variable and the last task index value. The Update() then 
changes the return address to an End_Task() function instead of the overrunning task. The 
End_Task() function should return control to Dispatch. Note that moving control from 
Update() to End_Task() is a nontrivial process and can be done by different ways 
(Hughes & Pont, 2004). 

The End_Task() has the responsibility to shutdown the overrunning task. Also, it 
determines the type of function that has overrun and begins to restore register values 
accordingly. This process is complicated which aims to return the scheduler back to its 
normal operation making sure the overrun has been resolved completely. Once the overrun 
is dealt with, the scheduler replaces the overrunning task with a backup task which is set to 
run immediately before running other tasks. If there is no backup task defined by the user, 
then the TTC-TG scheduler implements a mechanism which turns the priority of the task 
that overrun to the lowest so as to reduce the impact of any future overrunning by this task. 
The function call tree for the TTC-TTG scheduler can be shown in Fig. 18. 

Main ()
Backup

Task ()
Dispatch ()End Task ()Update ()

 

Fig. 18. Function call tree for the TTC-TG scheduler (Nahas, 2008). 

Note that the scheduler structure used in TTC-TG scheduler is same as that employed in the 
TTC-Dispatch scheduler which is simply based on ISR Update linked to a timer interrupt 
and a Dispatch function called periodically from the Main code (Section  7.3). For further 
details, see (Hughes & Pont, 2008). 

7.5 Sandwich Delay (SD) scheduler 

In Section  6, the impact of task placement on “low-priority” tasks running in TTC 
schedulers was considered. The TTC schedulers described in Sections  7.1 -  7.4 lack the 
ability to deal with jitter in the starting time of such tasks. One way to address this issue is to 
place “Sandwich Delay” (Pont et al., 2006) around tasks which execute prior to other tasks in 
the same tick interval.  
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In the TTC-SD scheduler described in this section, sandwich delays are used to provide 
execution “slots” of fixed sizes in situations where there is more than one task in a tick 
interval.  To clarify this, consider the set of tasks shown in Fig. 19. In the figure, the required 
SD prior to Task C – for low jitter behavior – is equal to the WCET of Task A plus the WCET 
of Task B.  This implies that in the second tick (for example), the scheduler runs Task A and 
then waits for the period equals to the WCET of Task B before running Task C.  The figure 
shows that when SDs are placed around the tasks prior to Task C, the periods between 
successive runs of Task C become equal and hence jitter in the release time of this task is 
significantly reduced. 
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Fig. 19: Using Sandwich Delays to reduce release jitter in TTC schedulers (Nahas, 2011a). 

Note that – with this implementation – the WCET for each task is input to the scheduler 

through a SCH_Task_WCET() function placed in the Main code. After entering task 

parameters, the scheduler employs Calc_Sch_Major_Cycle() and 

Calculate_Task_RT() functions to calculate the scheduler major cycle and the required 

release time for the tasks, respectively. The release time values are stored in the “Task 

Array” using the variable SCH_tasks_G[Index].Rls_time. Note that the required 

release time of a task is the time between the start of the tick interval and the start time of 

the task “slot” plus a little safety margin. For further information, see (Nahas, 2011a). 

7.6 Multiple Timer Interrupts (MTI) scheduler 

An alternative to the SD technique which requires a large computational time, a “gap 

insertion” mechanism that uses “Multiple Timer Interrupts” (MTIs) can be employed. 

In the TTC-MTI scheduler described in this section, multiple timer interrupts are used to 

generate the predefined execution “slots” for tasks. This allows more precise control of 

timing in situations where more than one task executes in a given tick interval. The use of 

interrupts also allows the processor to enter an idle mode after completion of each task, 

resulting in power saving. In order to implement this technique, two interrupts are required:  

 Tick interrupt: used to generate the scheduler periodic tick. 

 Task interrupt: used – within tick intervals – to trigger the execution of tasks.  

The process is illustrated in Fig. 20.  In this figure, to achieve zero jitter, the required release 

time prior to Task C (for example) is equal to the WCET of Task A plus the WCET of Task B 

plus scheduler overhead (i.e. ISR Update() function).  This implies that in the second tick 

(for example), after running the ISR, the scheduler waits – in idle mode – for a period of time 

equals to the WCETs of Task A and Task B before running Task C.  Fig. 20 shows that when 

an MTI method is used, the periods between the successive runs of Task C (the lowest 

priority task in the system) are always equal. This means that the task jitter in such 
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implementation is independent on the task placement or the duration(s) of the preceding 

task(s). 
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Fig. 20. Using MTIs to reduce release jitter in TTC schedulers (Nahas, 2011a). 

In the implementation considered in this section, the WCET for each task is input to the 

scheduler through SCH_Task_WCET() function placed in the Main() code. The scheduler 
then employs Calc_Sch_Major_Cycle() and Calculate_Task_RT() functions to 
calculate the scheduler major cycle and the required release time for the tasks, respectively. 
Moreover, there is no Dispatch() called in the Main() code: instead, “interrupt request 
wrappers” – which contain Assembly code – are used to manage the sequence of operation 
in the whole scheduler. The function call tree for the TTC-MTI scheduler is shown in Fig. 21 
(compare with Fig. 16). 

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task () Sleep ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

 

Fig. 21. Function call tree for the TTC-MTI scheduler (in normal conditions) (Nahas, 2011a). 

Unlike the normal Dispatch schedulers, this implementation relies on two interrupt 

Update() functions: Tick Update() and Task Update(). The Tick Update() – which 

is called every tick interval (as normal) – identifies which tasks are ready to execute within 

the current tick interval. Before placing the processor in the idle mode, the Tick Update() 

function sets the match register of the task timer according to the release time of the first due 

task running in the current interval. Calculating the release time of the first task in the 

system takes into account the WCET of the Tick Update() code. 

When the task interrupt occurs, the Task Update() sets the return address to the task that 

will be executed straight after this update function, and sets the match register of the task 

timer for the next task (if any). The scheduled task then executes as normal.  Once the task 

completes execution, the processor goes back to Sleep() and waits for the next task 

interrupt (if there are following tasks to execute) or the next tick interrupt which launches a 

new tick interval. Note that the Task Update() code is written in such a way that it always 

has a fixed execution duration for avoiding jitter at the starting time of tasks. 

It is worth highlighting that the TTC-MTI scheduler described here employs a form of “task 
guardians” which help the system avoid any overruns in the operating tasks. More 
specifically, the described MTI technique helps the TTC scheduler to shutdown any 
overrunning task by the time the following interrupt takes place. For example, if the 
overrunning task is followed by another task in the same tick, then the task interrupt – 
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which triggers the execution of the latter task – will immediately terminate the overrun. 
Otherwise, the task can overrun until the next tick interrupt takes place which will terminate 
the overrun immediately. The function call tree for the TTC-MTI scheduler – when a task 
overrun occurs – is shown in Fig. 22. The only difference between this process and the one 
shown in Fig. 21 is that an ISR will interrupt the overrunning task (rather than the Sleep() 
function). Again, if the overrunning task is the last task to execute in a given tick, then it will 

be interrupted and terminated by the Tick Update() at the next tick interval: otherwise, it 
will be terminated by the following Task Update(). For further information, see (Nahas, 
2011a). 

Main ()
Tick

Update ()
Sleep ()

Task

Update ()
Task ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

 

Fig. 22. Function call tree for the TTC-MTI scheduler (with task overrun) (Nahas, 2008). 

8. Evaluation of TTC scheduler implementations 

This section provides the results of the various TTC implementations considered in the 
previous section. The results include jitter levels, error handling capabilities and resource 
(i.e. CPU and memory) requirements. The section begins by briefing the experimental 
methodology used in this study. 

8.1 Experimental methodology 

The empirical studies were conducted using Ashling LPC2000 evaluation board supporting 
Philips LPC2106 processor (Ashling Microsystems, 2007). The LPC2106 is a modern 32-bit 
microcontroller with an ARM7 core which can run – under control of an on-chip PLL – at 
frequencies from 12 MHz to 60 MHz. 

The compiler used was the GCC ARM 4.1.1 operating in Windows by means of Cygwin (a 
Linux emulator for windows).  The IDE and simulator used was the Keil ARM development 
kit (v3.12). 

For meaningful comparison of jitter results, the task-set shown in Fig. 23 was used to allow 
exploring the impact of schedule-induced jitter by scheduling Task A to run every two ticks. 
Moreover, all tasks were set to have variable execution durations to allow exploring the 
impact of task-induced jitter. 

For jitter measurements, two measures were recorded: Tick Jitter: represented by the 
variations in the interval between the release times of the periodic tick, and Task Jitter: 
represented by the variations in the interval between the release times of periodic tasks. 
Jitter was measured using a National Instruments data acquisition card ‘NI PCI-6035E’ 
(National Instruments, 2006), used in conjunction with appropriate software LabVIEW 7.1 
(LabVIEW, 2007). The “difference jitter” was reported which is obtained by subtracting the 
minimum period (between each successive ticks or tasks) from the maximum period 
obtained from the measurements in the sample set. This jitter is sometimes referred to as 
“absolute jitter” (Buttazzo, 2005). 
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Fig. 23. Graphical representation of the task-set used in jitter test (Nahas, 2011a). 

The CPU overhead was measured using the performance analyzer supported by the Keil 

simulator which calculates the time required by the scheduler as compared to the total 

runtime of the program. The percentage of the measured CPU time was then reported to 

indicate the scheduler overhead in each TTC implementation. 

For ROM and RAM memory overheads, the CODE and DATA memory values required to 

implement each scheduler were recorded, respectively. Memory values were obtained using 

the “.map” file which is created when the source code is compiled. The STACK usage was 

also measured (as DATA memory overhead) by initially filling the data memory with 

‘DEAD CODE’ and then reporting the number of memory bytes that had been overwritten 

after running the scheduler for sufficient period. 

8.2 Results 

This section summarizes the results obtained in this study. Table 1 presents the jitter levels, 

CPU requirements, memory requirements and ability to deal with task overrun for all 

schedulers. The jitter results include the tick and tasks jitter. The ability to deal with task 

overrun is divided into six different cases as shown in Table 2. In the table, it is assumed 

that Task A is the overrunning task. 

 

Scheduler 
Tick Jitter
(µs) 

Task A
Jitter 
(µs) 

Task B
Jitter 
(µs) 

Task C
Jitter 
(µs) 

CPU
% 

ROM 
(Bytes)

RAM 
(Bytes)

Ability to deal with task overrun 

TTC-SL 1.2 1.5 4016.2 5772.2 100 2264 124 1b 

TTC-ISR 0.0 0.1 4016.7 5615.8 39.5 2256 127 1a 

TTC Dispatch 0.0 0.1 4022.7 5699.8 39.7 4012 325 1b 

TTC-TG 0.0 0.1 4026.2 5751.9 39.8 4296 446 2b 

TTC-SD 0.0 0.1 1.5 1.5 74.0 5344 310 1b 

TTC-MTI 0.0 0.1 0.0 0.0 39.6 3620 514 3a 

Table 1. Results obtained in the study detailed in this chapter. 

From the table, it is difficult to obtain zero jitter in the release time of the tick in the TTC-SL 
scheduler, although the tick jitter can still be low. Also, the TTC-SL scheduler always 
requires a full CPU load (~ 100%). This is since the scheduler does not use the low-power 
“idle” mode when not executing tasks: instead, the scheduler waits in a “while” loop. In the 
TTC-ISR scheduler, the tick interrupts occur at precisely-defined intervals with no 
measurable delays or jitter and the release jitter in Task A is equal to zero. Inevitably, the 
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memory values in the TTC-Dispatch scheduler are somewhat larger than those required to 
implement the TTC-SL and TTC-ISR schedulers. The results from the TTC-TG scheduler are 
very similar to those obtained from the TTC-Dispatch scheduler except that it requires 
slightly more data memory. When the TTC-SD scheduler is used, the low-priority tasks are 
executed at fixed intervals. However, there is still a little jitter in the release times of Tasks B 
and Task C. This jitter is caused by variation in time taken to leave the software loop – 
which is used in the SD mechanism to check if the required release time for the concerned 
task is matched – and begin to execute the task. With the TTC-MTI scheduler, the jitter in the 
release time of all tasks running in the system is totally removed, causing a significant 
increase in the overall system predictability. 

Regarding the ability to deal with task overrun, the TTC-TG scheduler detects and hence 
terminates the overrunning task at the beginning of the tick following the one in which the 
task overruns. Moreover, the scheduler allows running a backup task in the same tick in 
which the overrun is detected and hence continues to run the following tasks. This means 
that one tick shift is added to the schedule. Also, the TTC-MTI scheduler employs a simple 
TG mechanism and – once an interrupt occurs – the running task (if any) will be terminated.  
Note that the implementation employed here did not support backup tasks. 

 

Schedule 
Shut down 
time (after 
Ticks) 

Backup task Comment 

1a --- 
Not 
applicable 

Overrunning task is not shut down.  The number of elapsed 
ticks – during overrun – is not counted and therefore tasks due 
to run in these ticks are ignored. 

1b --- 
Not 
applicable 

Overrunning task is not shut down.  The number of elapsed 
ticks – during overrun – is counted and therefore tasks due to 
run in these ticks are executed immediately after overrunning 
task ends. 

2a 1 Tick 
Not 
available 

Overrunning task is detected at the time of the next tick and 
shut down. 

2b 1 Tick 
Available –
BK(A) 

Overrunning task is detected at the time of the next tick and 
shut down: a replacement (backup) task is added to the 
schedule. 

3a WCET(Ax) 
Not 
available 

Overrunning task is shut down immediately after it exceeds its 
estimated WCET. 

3b WCET(Ax) 
Available –
BK(A) 

Overrunning task is shut down immediately after it exceeds its 
estimated WCET.  A backup task is added to the schedule. 

Table 2. Examples of possible schedules obtained with task overrun (Nahas, 2008). 

9. Conclusions 

The particular focus in this chapter was on building embedded systems which have severe 

resource constraints and require high levels of timing predictability. The chapter provided 

necessary definitions to help understand the scheduling theory and various techniques used 

to build a scheduler for the type of systems concerned with in this study. The discussions 

indicated that for such systems, the “time-triggered co-operative” (TTC) schedulers are a 

good match. This was mainly due to their simplicity, low resource requirements and high 

predictability they can offer. The chapter, however, discussed major problems that can affect 
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the performance of TTC schedulers and reviewed some suggested solutions to overcome 

such problems.  

Then, the discussions focused on the relationship between scheduling algorithm and 
scheduler implementations and highlighted the challenges faced when implementing 
software for a particular scheduler. It was clearly noted that such challenges were mainly 
caused by the broad range of possible implementation options a scheduler can have in 
practice, and the impact of such implementations on the overall system behavior.  

The chapter then reviewed six various TTC scheduler implementations that can be used for 
resource-constrained embedded systems with highly-predictable system behavior. Useful 
results from the described schedulers were then provided which included jitter levels, 
memory requirements and error handling capabilities. The results suggested that a “one size 
fits all” TTC implementation does not exist in practice, since each implementation has 
advantages and disadvantages. The selection of a particular implementation will, hence, be 
decided based on the requirements of the application in which the TTC scheduler is 
employed, e.g. timing and resource requirements. 
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