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1. General principles 

The term mycotoxin was used for the first time in 1961 in the aftermath of a veterinary crisis 
in England, during which thousands of animals died. The disease was linked to a peanut 
meal, incorporated in the diet, contaminated with a toxin produced by the filamentous 
fungus Aspergillus flavus (Bennet & Klich, 2003; Richard, 2007). 
In general, mycotoxins are low-molecular-weight compounds that are synthetized during 
secondary metabolism by filamentous fungi; their chemical structure may range from 
simple C4 compounds to complex substances (Paterson & Lima, 2010). 
Mycotoxins are natural contaminants in raw materials, food and feeds. Mould species that 
produce mycotoxins are extremely common, and they can grow on a wide range of 
substrates under a wide range of environmental conditions; they occur in agricultural 
products all around the world (Bennet & Klich, 2003). Many mycotoxins may be toxic to 
vertebrates and other animal groups and, in low concentrations, some of them can cause 
autoimmune illnesses, and have allergenic properties, while others are teratogenic, 
carcinogenic, and mutagenic (Bennet & Klich, 2003; Council for Agricultural Science and 
Technology [CAST], 2003). 
Apparently, mycotoxins have no biochemical significance on fungal growth; they may have 
developed to provide a defense system against insects, microorganisms, nematodes, animals 
and humans (Etzel, 2002). 
Exposure to mycotoxins may occur through ingestion, inhalation, and dermal contact, and it 
is almost always accidental. Most cases of mycotoxicoses (animals and humans) result from 
eating contaminated food. Human exposure can be direct via cereals or indirect via animal 
products (e.g. meat, milk and eggs) (CAST, 2003). 
Most mycotoxins are relatively heat-stable within the conventional food processing 
temperature range (80–121°C), therefore so little or no destruction occurs under normal 
cooking conditions, such as boiling and frying, or even following pasteurization (Milicevic 
et al., 2010). The stability of mycotoxins during food processing has been reviewed in the 
work by Bullerman & Bianchini (2007). In general, the application of a food process reduces 
mycotoxin concentrations significantly, but does not eliminate them completely. The food 
processes that have been examined include physical treatments (cleaning and milling) and 
thermal processing (e.g. cooking, baking, frying, roasting and extrusion). The different 
treatments have various effects on mycotoxins, and those that utilize the highest 
temperatures have the greatest effects: roasting or cooking at high temperatures (above 150 
°C) appear to reduce mycotoxin concentrations significantly (Bullerman & Bianchini, 2007). 
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It has been estimated that 25% of the world’s crops are affected by fungal growth, and 
commodities may be, both pre- and post-harvest, contaminated with mycotoxins. The 
mycotoxins that can be expected in food differ from country to country in relation to the 
different crops, agronomic practices and climatic conditions (Bryden, 2007). Since climate 
changes affect the growth of mycotoxigenic fungi, mycotoxin production is also influenced 
(Magan et al., 2003). 
Currently, more than 400 mycotoxins are known. Scientific attention has mainly focused on 
those that have proven to be carcinogenic and/or toxic in humans and animals. Five classes 
of mycotoxins are considered the most significant in agriculture and in the food industry: 
aflatoxins (aflatoxin B1), ochratoxins (ochratoxin A), fumonisins (fumonisin B1), 
zearalenone, and patulin which are derived from polyketide (PK) metabolism, and 
trichothecenes (deoxynivalenol), whose biosynthetic pathway is of terpenoid origin. PKs are 
metabolites that are derived from the repetitive condensation of acetate units or other short 
carboxylic acids, via an enzymatic mechanism that is similar to that responsible for fatty 
acid synthesis (Huffman et al., 2010). 
Aflatoxin, ochratoxin, fumonisin, trichothecene, zearalenone and patulin are the most 
widespread mycotoxins in animal feed and human food. The chemical structure, 
biosynthetic pathway, mycotoxigenic fungi, the influence of environmental factors and 
toxicology will be briefly described for each class. Zearalenone will not be dealth with in the 
present work as, because of its hormonal activity, there is considerable knowledge about 
ZEA and its derivatives which can be found in the literature on growth hormones. 

1.1 Toxigenic fungi 
Aspergillus, Alternaria, Claviceps, Fusarium, Penicillium and Stachybotrys are the recognized 
genera of mycotoxigenic fungi (Milicevic et al., 2010; Reddy et al., 2010). Many of these genera 
are ubiquitous and, in some cases, apparently have a strong ecological link with human food 
supplies. The natural fungal flora associated with food production is dominated by the 
Aspergillus, Fusarium and Penicillium genera (Sweeney & Dobson, 1998). Fusarium species are 
pathogens that are found on cereal crops and other commodities, and they produce 
mycotoxins before, or immediately after, the harvest. Some species of Aspergillus and 
Penicillium are also plant pathogens or commensals, but these genera are more commonly 
associated with commodities and food during drying and storage (Pitt, 2000). 
Toxigenic moulds are known to produce one or more of these toxic secondary metabolites. 
However, not all moulds are toxigenic and not all secondary metabolites from moulds are 
toxic. Many fungi produce several mycotoxins simultaneously, especially Fusarium species. 
Moreover, recent studies have demonstrated that the necrotrophic pathogens of wheat, 
Stagonospora nodorum, Pyrenophora tritiirepentis and Alternaria alternata, are also capable of 
synthesizing an array of mycotoxic compounds during disease development (Solomon, 2011). 
Nowadays, the identification and quantification of mycotoginenic fungi are carried out by 
PCR. Diagnostic PCR-based systems are now available for all of the most relevant toxigenic 
fungi: producers of aflatoxins, trichotecenes, fumonisins and patulin (Niessen, 2007; 
Paterson, 2006). The primers for mycotoxin pathway sequences have been reviewed in the 
work by Paterson (2006). 

1.2 Influence of environmental factors on mycototoxin production 

The production of mycotoxins is highly susceptible to temperature, moisture, water activity 
(aw), pH and oxygen concentration, the same environmental factors that affect the growth of 
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toxygenic fungi. Moisture and temperature are two factors that have a crucial effect on 
fungal proliferation and toxin biosynthesis (Bryden, 2007; Paterson & Lima, 2010). The 
incidence and level of mycotoxin contamination are closely related to the geographic 
position and to seasonal factors as well as to the cultivation, harvesting, stocking, and 
transport conditions (Milicevic et al., 2010). 
Mycotoxin contaminations can be divided into the one that occurs in the developing crop (pre-
harvest) and the one that develops after maturation (post-harvest). In the pre-harvest period, 
preventive measures are included in good agronomic practices, such as the careful use of 
insecticides and fungicides, irrigation to avoid moisture stress, harvesting at maturity and 
improvement by genetic resistance to fungal attack. During the post-harvest period, the 
control of the moisture and temperature of the stored commodity will largely determine the 
degree of fungal activity and consequently the mycotoxin synthesis (Bryden, 2007). Treatments 
with chemicals, including sodium bisulfite, ozone, and ammonia, acids and bases, represent an 
opportunity to control fungal growth and mycotoxin biosynthesis in stored grains (Bozoglu, 
2009; Magan, 2006; Magan & Aldred, 2007). In recent years, a good control of mycotoxigenic 
fungi has been achieved using plant products (e.g. extracts and essential oils) as environmental 
friendly fungicides (Nguefacka et al., 2004; Reddy et al., 2010; Thembo et al., 2010). 
Moreover, biological control represents a new opportunity in control strategies: there is 
evidence that Bacillus sp., propionic acid bacteria and lactic acid bacteria (LAB) are able to 
inhibit fungal growth and mycotoxin production (Bianchini & Bullerman, 2010).  

1.3 Toxicology and health 

Mycotoxins are toxic to vertebrates and humans at low concentrations. Mycotoxicoses in 
humans or animals have been characterized as food or feed related, non-contagious, non-
transferable, and non-infectious (Zain, 2011). 
Mycotoxins have various acute and chronic effects on humans and animals, depending on the 
species. Within a given species, the impact of mycotoxins on health is influenced by age, sex, 
weight, diet, exposure to infectious agents, and the presence of other mycotoxins (synergistic 
effects) and pharmacologically active substances (Milicevic et al., 2010; Zain, 2011).  
The majority of mycotoxins currently known are grouped, according to their toxic activity, 
under chronic conditions as mutagenic, carcinogenic or teratogenic. Grouping according to 
their site of action results in hemo-, hepato-, nephron-, dermato-, neuro- or immunotoxins 
(Niessen, 2007). 
The most important mycotoxins worldwide are aflatoxins, fumonisins, ochratoxins, 
deoxinyvalenol and zearalenone. Carcinogenic properties have been recognized with regard 
to aflatoxin and fumonisins (Mazzoni et al., 2011; Wogan, 1992).  
Aflatoxin B1 (AFB1) has been linked to human primary liver cancer, in which it acts 
synergistically with HBV infection and it has been classified as a carcinogen in humans 
(Group 1 carcinogen). Fumonisin B1, the most abundant of the numerous fumonisin 
analogues, was classified as a Group 2B carcinogen (possibly carcinogenic to humans) (Zain, 
2011; Wild & Gong, 2010).  
The potential role of dietary factors to counteract the toxic effects of mycotoxins has been 
reviewed by Galvano et al. (2001): the effect of antioxidants, food components and additives 
on reducing toxicity, by decreasing toxin formation and enhancing the metabolism, has been 
reported. 
A mixture of mycotoxins may occur simultaneously, depending on the environmental 
conditions and substrate availability (Milicevic et al., 2010). Therefore it can be expected that 
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humans and animals are exposed to a mixture rather than to individual compounds. For 
example, the interactive (synergistic) cytotoxic effects of Ochratoxin A (OTA), Ochratoxin B 
(OTB), citrinin, and patulin, which are produced by a number of Penicillium and Aspergillus 
species, have recently been evaluated by Heussner et al. (2006). 

2. Aflatoxins 

Aflatoxins (AFs) are the best known and most widely studied mycotoxins. They were first 
isolated in the early 1960s when 100,000 turkey poults died after consuming aflatoxin-
contaminated peanut meal in the UK (the so-called Turkey X disease); this event was 
followed by proliferation in research on fungal toxins contaminating food and feeds. AFs 
were found to be the most potent naturally formed carcinogen, and researchers started their 
investigating on factors that influence this production (Blount, 1960; CAST, 1989). 
AFs are highly toxic, mutagenic, and carcinogenic compounds (Wogan, 1999). They are 
secondary metabolites that are produced mainly by Aspergillus parasiticus and Aspergillus 
flavus; in fact, the name ‘‘aflatoxin” is derived from the first letter in Aspergillus, and the 
first three letters in flavus. These fungi are found in many countries, especially in tropical 
and subtropical regions, where the temperature and humidity conditions are optimal for the 
growth of moulds and the production of toxin (Rustom, 1997). 
 

 
Fig. 1. Principal aflatoxins and metabolites. 

AFs are natural contaminants of several agricultural products, such as: corn, peanuts, 
cottonseed, and other grain crops (Gourama & Bullerman, 1995). Diet is the major way 
through which humans as well as animals are exposed to these mycotoxins. AFM1 is 
transformed at the hepatic level by means of cytochrome P450 enzymes and excreted into 
the milk in the mammary glands of both humans and lactating animals after the animals 
have ingested feeds contaminated with AFB1 (Oveisi et al., 2007; Prandini et al., 2009). 
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Structurally, AFs are difurocoumarin derivatives that fluoresce under ultraviolet light. 
Depending upon colour of the fluorescence, AFs are divided into aflatoxin B1 and B2 (AFB1, 
AFB2) for blue, and G1 and G2 (AFG1, AFG2) for green (Dalvi, 1986) (Figure 1). Aflatoxin 
M1 and M2 (AFM1, AFM2), known as milk-AFs, are the metabolites of AFB1 and AFB2, 
respectively (Carnaghan et al., 1963). Other metabolites of AFB1 are aflatoxin Q1 (AFQ1) 
and aflatoxicol. Of the known AFs, AFB1 is the most common produced mycotoxin and the 
most potent; it has been reported to be the most powerful natural carcinogen in mammals 
(Creppy, 2002). 
The biosynthesis of aflatoxins is a complex process, involving multi-enzymatic reactions. 
Genetic studies on the molecular mechanism of aflatoxin B1 biosynthesis have identified an 
aflatoxin pathway gene cluster of 70 kilobase pairs in length consisting of at least 24 identified 
structural genes including a positive regulatory gene as the transcription activator. The 
structural genes encode cytochrome P450 monooxygenases, dehydrogenases, oxidases, 
methyltransferases, a polyketide synthase and two unique fatty acid synthases (Yu et al., 2002). 

2.1 Fungi 

Aflatoxins are closely related to a group of aspergilli: A. flavus, A. parasiticus, and A. nomius; 
although one report also adds a sclerotium producing strain of A. tamarii, which is closely 
related to A. flavus, to the list (Goto et al., 1996). Earlier reports of the production of 
aflatoxins by other aspergilli, penicillia or even a species of Rhizopus, have not been 
adequately confirmed (Moss, 2002a). 
A. flavus and A. parasiticus, which are found worldwide in the air and soil, usually infest 
both living and dead plants and animals, and as a consequence, aflatoxins in agricultural 
commodities are primarily produced by A. flavus and A. parasiticus. A. flavus produces only 
B aflatoxins, while A. nomius and A. parasiticus produce both B and G toxins (Rustom, 1997; 
Yu et al., 2002). 

2.2 Food 

Aflatoxin contamination of food and feeds is a serious problem worldwide. Studies focusing 
on AF contamination in foodstuffs have in fact been reported in many countries, especially 
those in tropical and subtropical regions, such as Asia and Africa (Bankole et al., 2010; 
Shundo et al., 2009; Soubra et al., 2009). 
Aflatoxin contamination can develop both in the pre- and post-harvest periods, but the 
highest levels are usually associated with post-harvest spoilage of food commodities, stored 
under inappropriate high moisture content and high temperature conditions which facilitate 
the rapid growth of moulds; the level of contamination depends on the plant stress, 
temperature, water activity, genotype, culture and storage conditions, but appropriate post-
harvest treatments, under dry cool settings, should control this source of contamination 
(Moss, 2002a; Wilson & Payne, 1994). 
As far as pre-harvest, is concerned, aflatoxigenic fungi have a complex ecology. The spores 
of A. flavus and A. parasiticus can germinate on the stigma surfaces of plants, and the germ 
tube can penetrate the developing embryo in a manner which mimics pollen germ tubes. 
The mycelium can establish an endotrophic relationship, which is not harmful to a healthy 
plant, while if the plant is stressed (e.g. drought), significant levels of aflatoxin may be 
produced during field growth. Under these circumstances food commodities may already 
be contaminated at harvesting and, even though the concentrations are never as high as 
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those formed in stored commodities, they can be economically significant and this field 
contamination is much more difficult to control than post-harvest spoilage (Hill et al., 1983; 
Moss, 2002a). 
Although a wide variety of foods are susceptible to aflatoxin contamination, it has most 
commonly been associated with peanuts, maize, pistachio, dried fruit, nuts, spices, figs, 
vegetable oils, cocoa beans, corn, rice and cotton seeds (JECFA, 1998; Reports on 
Carcinogens [ROC], 2003). Among the agricultural commodities usually infected by 
aflatoxigenic fungi (Table 1) some are food sources while others are used as animal feeds: 
the greatest difficulty is that aflatoxin affects the health of the humans and the livestock 
that consume these commodities and the related products. Speijers & Speijers (2004) 
reported that AFB1 and OTA are amongst the most frequently observed combinations of 
mycotoxins in different plant products. According to several other authors, cereals, olives 
and dried vines are other commodities which could support aflatoxigenic and 
ochratoxigenic mould growth and OTA and AFB1 production (Molinié et al., 2005; 
Zinedine et al., 2006). 
While aflatoxin B1 is frequently found in contaminated feeds, aflatoxin M1, its hydroxylated 
metabolite, is normally not present in food, except though carry-over from animal feeds 
(Fallah, 2010; Kamkar, 2008): following the ingestion of contaminated feedstuffs by lactating 
dairy cows, AFB1 is biotransformed, by hepatic microsomal cytochrome P450 into AFM1, 
and is then excreted into the milk (Frobish et al., 1986). Moreover, the AFM1 content in milk 
is closely correlated to the level of AFB1 in the raw feedstuffs (Bakirci, 2001). AFM1 can be 
detected in milk 12–24 h after the first ingestion of AFB1; generally, it is deemed that 
approximately 1–3% of the aflatoxin B1 present in animal feeds appears as AFM1 in milk, 
depending on the animal, time of milking and many other factors. When the intake of the 
contaminated source is stopped, the concentration of the toxin in the milk decreases to an 
undetectable level within 72 h (Gurbay et al., 2006). Additionally, when specific conditions 
during feed storage are prevalent for the growth of aflatoxigenic species, an additional 
production and accumulation of AFB1 may occur; this in turn leads to the accumulation of 
additional AFM1 in the milk. Aflatoxin M1 can survive pasteurization and has even been 
reported in UHT milk (Unusan, 2006). 
AFM1 binds to casein, has a high stability and concentrates in curd during cheese 
production, in different proportions according to the applied technology (Barbiroli et al., 
2007; Brackett & Marth, 1982). In this way, it can also be present in dairy products, 
manufactured with contaminated milk, at higher concentrations than in the milk (Govaris 
et al., 2001; Lopez et al., 2001; Oruc et al., 2006). Cheese-making and the ripening period 
do not result in a reduction in the toxin (Dragacci et al., 1995; Yousef & Marth, 1985). This 
is why the risk remains, not only in commercially available milk, but also in other derived 
dairy products. The concentration of AFM1 in cheese varies according to the type of 
cheese, water content and production technologies (Bakirci, 2001; Lopez et al., 2001). Since 
the sources of aflatoxin contamination in animal feeds differ because they are location 
dependent and the incidence and occurrence of AFM1 contamination in animal feeds from 
different countries varies, there are many reports on AFM1 contamination in cheese and 
other dairy products from different countries: Slovenia, North Africa, Turkey, Brazil and 
Portugal (Bakirci, 2001; Elgerbi et al., 2004; Oliveira et al., 2006; Martins & Martins, 2000; 
Torkar & Vengus, 2008). 
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Food commodity Country 

Soy beans Argentina 
Almonds; Brazil nuts USA 
Dried figs Austria, Switzerland 
Nutmeg Japan 
Chilli Pakistan 
Herbs, spices UK 
Spices Sweden 
Peanuts India, Sudan, Brazil, Egypt, South Africa 
Maize Argentina, India, China, Uganda, Nigeria, USA 
Pistachio nuts Netherlands, USA, Turkey,  
Wheat Uruguay, China, Russia 
Rice Ecuador, China, India 
Millet India 
Sunflower oil China, Russia 
Coconut India 
Mustard seed India 

Table 1. Presence of aflatoxins in food commodities (Moss, 2002a; Rustom, 1997). 

2.3 Toxicity 
Aflatoxins can be both acute and chronic toxins; acute poisoning is usually rare and 
exceptional, while chronic toxicity is of serious concern and it drives international concern 
about the occurrence of aflatoxins in food (Moss, 2002a). 
AFB1 is toxic for a wide range of animal species. AFB1 is principally a hepatotoxin and 
hepatocarcinogen (JECFA, 1998), but it can cause a myriad of other effects: 
immunosuppresion, reduced growth rate, lowered milk and egg production, reduced 
reproductivity, reduced feed utilization and efficiency and anemia. AFB1 has been shown to 
induce hepatocellular carcinoma in many animal species including fish, poultry, non-human 
primates, and rodents (Wogan, 1992). 
Species susceptibility to various acute toxic manifestations, as measured by TD50, is also 
variable (Gold et al., 1984). A wide variation exists in species susceptibility to AFB1 
hepatocarcinogenesis. 
In humans, acute aflatoxicosis is manifested by vomiting, abdominal pain, pulmonary edema, 
coma, convulsions, and death with cerebral edema and fatty involvement of the liver, kidneys, 
and heart (Mwanda et al., 2005). Epidemiological studies have consistently demonstrated that 
AFB1 is a liver carcinogen in humans (Groopman et al., 1988; Van Rensburg et al., 1985). The 
International Agency for Research on Cancer has concluded that there is sufficient evidence for 
the carcinogenicity of AFB1 in humans and hence placed this mycotoxin in group I. 
AFB1 is not mutagenically active itself. It is primarily metabolized in the liver and has 
several metabolites, such as aflatoxicol and AFQ1. AFB1 is mainly activated by cytochrome 
P450 dependent monooxygenase; most of the metabolic products, such as AFM1 and AFQ1, 
are less toxic than the parent AFB1, but aflatoxin B1-8-9-expoxide (AFBO) is the most toxic 
metabolite (Hwan Do & Choi, 2007). The carcinogenic and mutagenic action of AFB1 might 
be the result of the affinity of the electrophilic and highly reactive AFBO for cellular 
nucleophiles, such as DNA (Coulombe, 1993). Thus, epoxidation is generally considered in 
metabolite activation, while hydroxylation, hydration, and demethylation are considered 
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metabolic detoxications. The toxic and carcinogenic effects of aflatoxin B1 are intimately linked 
to both the rate of activation and the rate of detoxification at the primary and secondary levels 
of metabolism, in a similar way to chlorinated hydrocarbon (Olaniran et al., 2006). 

3. Ochratoxin A 

Mycotoxin ochratoxin A (OTA) was discovered in 1965 in South Africa (Van der Merwe et 
al., 1965): it was isolated as a toxic metabolite of Aspergillus ochraceus from corn meal 
artificially inoculated with the fungus. In 1969, naturally occurring OTA was isolated from a 
commercial corn sample in the United States (Shotwell et al., 1969). Later, it was recognized 
as a secondary metabolite of several Aspergillus and Penicillium spp. which are characterized 
by widespread occurrence and different behavior which depends on the ecological niches, 
the products affected and the environment (Duarte et al., 2010). 
OTA is one of the most relevant mycotoxins, with great public health and agroeconomic 
significance, due to the confirmed nephrotoxic, genotoxic, neurotoxic, imunotoxic, 
embriotoxic and teratogenic effects and its suspected carcinogenicity (JECFA, 2008). OTA 
has been documented as a global contaminant of a wide variety of commodities and staple 
food. Humans are directly and indirectly exposed to OTA: it can enter the food chain, 
through contamination of the ingredients or foodstuffs consumed by humans, or the feed 
chain, through contamination of the feeds for animals destined for human consumption 
(Cark & Snedeker, 2006). 
The chemical name of OTA is N-[(3R)-(5-Chloro-8-hydroxy-3-methyl-1-oxo-7-
isochromanyl)carbonyl]-L-phenylalanine; OTA belongs to a group of metabolites with a 
similar chemical structure, as shown in Figure 2 and Table 2. 
 

 
Fig. 2. General structure of OTA and its metabolites (El Khoury & Atoui, 2010). 

The biosynthetic pathway for OTA has not yet been completely established; however, the 
isocoumarin group is a pentaketide skeleton formed from acetate and malonate via a 
polyketide synthesis pathway with the L-phenylalanine being derived from the shikimic 
acid pathway (O’Callaghan et al., 2003). 
OTA is a weak organic acid (the pKa is 7.1 and the molar mass is 403.8 g mol-1). In acidic 
conditions, OTA is soluble in polar organic solvents, slightly soluble in water and insoluble 
in petroleum ethers and saturated hydrocarbons. In alkaline conditions, OTA is soluble in 
aqueous sodium bicarbonate solutions and in all alkaline ones. It has a melting point of 
about 90 °C, when crystallized from benzene as a solvate (El Khoury & Atoui, 2010; Keeper-
Goodman & Scott, 1989). Due to its resistance to acidic conditions and high temperatures, 
OTA is characterized by high stability. Thus, it is very difficult to eliminate the molecule: 
OTA is only partially degraded at normal cooking conditions and after three hours of high 
pressure steam sterilization at 121 °C, or even at 250 °C, its destruction is not complete 
(Boudra et al., 1995). 
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Name R1 R2 R3 R4 R5 

OTA Phe* Cl H H H 
OTB Phe H H H H 
OTC Ethyl-ester, Phe Cl H H H 
OTA methyl-ester Methyl-ester, Phe Cl H H H 
OTB methyl-ester Methyl-ester, Phe H H H H 
OTB-ethyl-ester Ethyl-ester, Phe H H H H 
OTǂ OH Cl H H H 
OTǃ OH H H H H 
4-R-hydroxy OTA Phe Cl H OH H 
4-s-hydroxy OTA Phe Cl OH H H 
10-hydroxy OTA Phe Cl H H OH 
Tyr* analog of OTA Tyr Cl H H H 
Ser* analog of OTA Ser Cl H H H 
Hyp* analog of OTA Hyp Cl H H H 
Lys* analog of OTA Lys Cl H H H 

Table 2. Radicals in OTA metabolites *(Phenylalanine; Tyrosine; Serine; Hydroxyproline; 
Lysine) (El Khoury & Atoui, 2010). 

3.1 Fungi 

Ochratoxin A is produced by Aspergillus and Penicillium species listed in Table 3. These 
microorganisms differ according to the ecological conditions and commodities that 
characterize different geographical regions. In general, Penicillium verrucosum is responsible 
for OTA contamination in cool-temperate conditions, whereas Aspergillus ochraceus is 
particularly relevant in hot-tropical regions (Battaccone et al., 2010; Scudamore, 2005). 
The major Aspergillus producers in food and feeds are A. alliaceus, A. carbonarius, A. 

ochraceus, A. steynii and A. westerdijkiae. A. melleus, A. ostianus, A. persii and A. petrakii may 
produce trace amounts of OTA, but since the publication by Ciegler (1972) and Hesseltine et 
al. (1972) no further confirmation has been found. 
In the genus Penicillium, P. verrucosum and P. nordicum are the only species that are able to 
produce OTA (Abruhnosa et al., 2010; El Khoury & Atoui, 2010). P. chrysogenum, P. 
brevicompactum, P. crustosum, P. olsonii and P. oxalicum have been claimed as OTA producers, 
but a confirmation of these findings is required (Paterson, 2006). 
 

Aspergillus section Circumdati 

A. cretensis; A. flocculosus; A. ochraceus ; A. pseudoelegans; A. roseoglobulosus; A. sclerotiorum ; 
A. steynii; A. sulphureus ; A. westerdijkiae; Neopetromyces muricatus 

Aspergillus section Flavi 

A. alliaceus; Petromyces albertensis 

Aspergillus section Nigri 

A. carbonarius; A. lacticoffeatus; A. niger; A. sclerotioniger; A. citricus ; A. fonsecaeus 

Penicillium 

P. nordicum; P. verrucosum

Table 3. OTA producing fungi (Abrunhosa et al., 2010; El Khoury & Atoui, 2010; Moss, 
2002b). 
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3.2 Food 

OTA has a widespread diffusion, and it has in fact been detected in agricultural 
commodities, livestock products and processed food (Abrunhosa et al., 2010). 
The main OTA contamination concerns cereals and their products, listed in Table 4, which 
include food and beverages for human consumption, but also by-products that are usually 
utilized as animal feeds. Ochratoxin contamination can occur from temperate to tropical 
climates, from hot and wet climatic conditions to low temperature environments, and affects 
numerous countries: Northern America, Northern and Western Europe, African countries, 
South Asia and South America (Battaccone et al., 2010; Cabanes et al., 2010; El Khoury & 
Atoui, 2010; Moss, 2002b). Vega et al. (2009) suggests that cereals should be considered a 
major source of OTA contamination, as 50% of human daily intake of this mycotoxin is due 
to the consumption of different cereal derived products. 
 

cereals 

Corn (grains, gluten); Rice; Wheat; Barley; Oats; Rye; Sorghum; Millet 
cereal products for human consumption 

Beer; Baby food; Breakfast cereals; Bread 
cereal feed products 

Cracked grains; Cereal cleanings; Wheat bran; Corn bran; Rice bran 

Table 4. Cereals contaminated by OTA (Abrunhosa et al., 2010; Scudamore et al., 2003). 

Cereals may be colonized by both Aspergillus and Penicillium. The two fungal species do not 
invade the crop in the field, but mainly do in the post-harvest phase. Considering that the 
main abiotic factors that influence mould growth and OTA production are water availability 
and temperature, cereals should be dried quickly after harvesting and maintained at a lower 
moisture content than 14.5% during storage to avoid OTA contamination (Magan & Aldred, 
2005). OTA is mainly concentrated in the seed coat, which is often used for animal feeding. 
Moreover, on-farm production and the storage of barley and wheat with a high moisture 
content increases the risk of mould growth and toxin production (Scudamore et al., 2003). 
Some cereal processing, like malting, malt fermentation, bread production and feed 
extrusion, can contribute significantly to reduce OTA concentration in the final food 
products (Baxter et al., 2001; Scott et al., 1995; Scudamore et al., 2003). Other practices can 
increase OTA values; for example, cracked grains and cereal cleanings are often the most 
contaminated fractions and are usually directed for feed proposes (Scudamore et al., 2003). 
Wine is considered the second source of the human consumption of OTA. Many works have 
highlighted the presence of considerable levels of this toxin in wines, musts and grape 
juices. This occurrence has been explained by the fact that grapes are contaminated in the 
vineyard by various ochratoxigenic species, belonging above all to the Aspergillus section 
Nigri genus (A. carbonarius and A. niger aggregates) and that OTA production increases 
rapidly with the maturation stage. Thus, the date of the grape harvest would have an 
important effect on the OTA content in grapes and their derived products (Cabanes et al., 
2002; El Khoury et al., 2006). 
OTA contamination of many other raw agricultural products has been well documented; 
such a contamination occurs in a variety of food and feeds, such as coffee beans, pulses, 
spices, meat and cheese products (Wolff et al., 2000). 
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3.3 Toxicity 

OTA can have several effects, such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and 
immunotoxic effects on several species of animals, and can cause kidney and liver tumours 
in mice and rats; OTA toxicity varies depending on the sex, the species and the cellular type 
of the tested animal (El Khoury & Atoui, 2010). 
Nephropathy is the main toxic effect of OTA; it is potentially nephrotoxic in all non-
ruminant mammals (Ribelin et al., 1978). OTA plays an important role in the etiology of 
porcine nephropathy (Elling et al., 1985). This mycotoxin was also associated with human 
nephropathy and it is suspected to be the cause of the human Balkan Endemic Nephropathy 
(BEN) and the Tunisian Nephropathy (TCIN) (Hassen et al., 2004; Pfohl-Leszkowicz, 2009). 
The administration of OTA at gestation period in rats induced many malformations in the 
central nervous system. OTA can be regarded as a possible cause of certain lesions as well as 
damage at the cerebral level. OTA seems to be highly toxic for the nervous cells and able to 
reach the neural tissue (Soleas et al., 2001). 
OTA is a potent teratogen for laboratory animals. It can cross the placenta and accumulate in 
fetal tissue, causing various morphological anomalies. It has been reported to elicit prenatal 
dysmorphogenesis in rats, mice, hamsters and chick embryos (El Khoury & Atoui, 2010). 
OTA also has an immunosuppressor effect. Necroses of lymphoid tissues has been reported, 
and humoral and cellular immunity affections have also been described (Creppy et al., 1991; 
Holmberg et al., 1988). OTA seems to play a role in the inhibition of proliferation of the 
peripheral T and B lymphocytes and stops the production of interleukin 2 (IL2) and its 
receptors (Lea et al., 1989). Moreover, it blocks the activity of killer cells as well as the 
production of interferon (Pfohl-Leszkowicz & Castegnaro, 1999). OTA is taken as an 
important immunosupressor agent, in fact it is considered to be the cause of lymphopenia, 
regression of the thymus, and suppression of the immunity response (Petzinger & 
Weidenbach, 2002). 
OTA is anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity 
in experimental animals. Hepatocellular tumors, renal cell tumors, hepatomas, and 
hyperplastic hepatic nodules have been observed in male mice (Huff et al., 1992). OTA has 
been correlated with hepatocellular and renal-cell carcinomas and adenomas in mice and 
rats (El Khoury & Atoui, 2010). On the other hand there are no adequate studies of the 
relationship between exposure to OTA and human cancer; incidence and mortality from 
urothelial urinary tract tumours have been correlated with the geographical distribution of 
Balkan endemic nephropathy in Bulgaria and Yugoslavia (Feier & Tofana, 2009). 

4. Trichothecenes 

Trichothecin was first isolated from Trichothecium roseum and described by Freeman and 
Morrison in 1949. The discovery of trichothecin was followed by the isolation and 
description of other trichothecenes (TCTs), such as diacetoxyscirpenol (DAS), T-2 toxin (T-
2), nivalenol (NIV) and deoxynivalenol (DON) (Yazar & Omurtag, 2008). 
The Alimentary Toxic Aleukia (ATA) that occurred in Russia during World War II was caused 
by T-2 toxin and its derivatives; F. sporotrichioides was isolated from contaminated grains 
(Yazar & Omurtag, 2008). DON is the most prevalent toxin associated with Fusarium Head 
Blight (FHB), and it belongs to the phytotoxic type B trichothecene (Foroud & Eudes, 2009). 
TCTs are the most important group of mycotoxins and they are produced above all by 
various Fusarium plant pathogen species (Kimura et al., 2007). They are non-volatile, low-
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molecular-weight tricyclic sesquiterpenes with a basic 12,13-epoxy-trichothec-9-ene ring 
system (Figure 3) and are further classified as macrocyclic, or non macrocyclic depending on 
the presence of a macrocyclic ester or an ester–ether bridge between C-4 and C-15 (Bennett 
& Klich, 2003; Merhej et al., 2011). Trichothecenes are a family of more than 200 related 
compounds which are divided into four subclasses (Types A–D), according to their 
characteristic functional groups. Type A has a functional group other than a ketone at 
position C-8; Type B has a ketone at position C-8; Type C has a second epoxy group at C-7,8 
or C-9,10 and Type D contains a macrocyclic ring between C-4 and C-5 with two ester 
linkages (Sweeney & Dobson, 1998). The major Type A trichothecenes in Fusarium species 
include T-2 toxin (T-2) and HT-2 toxin (HT-2), both of which have an isovalerate function in 
C-8. Type B TCTs include Fusarenone-X, deoxynivalenol (DON) and nivalenol. 
 

 
Trichothecene R1 R2 R3 R4 

Deoxynivalenol (DON) -OH -H -OH -OH
Nivalenol (NIV) -OH -OH -OH -OH

Fig. 3. Chemical structure of trichothecens.  

The trichothecene biosynthetic pathway in Fusarium has been reported extensively by 
Sweeney & Dobson (1998) and Desjardins & Proctor (2007); it begins with the cyclization of 
the isoprenioid intermediate farnesyl pyrophosphate to trichodiene by the enzyme 
trichodiene synthase. After this a number of oxygenation, isomeritation, cyclization, and 
esterification leading from trichodiene to dyacetoxyscirpenol, T-2 toxin and 3-
acetyldeoxynivalenol (Huffman et al., 2010). The recent advances concerning the regulation 
of trichothecene biosynthesis in Fusarium and the potential implication of various general 
regulatory circuits has been reported in the work of Merhej et al. (2011); the knowledge of 
the role of these regulatory systems might be useful in designing new strategies to reduce 
mycotoxin accumulation. 
Deoxynivalenol (DON) is the most studied mycotoxin produced by Fusarium. DON, also 
known as vomitotoxin, is a polar organic compound, which is soluble in water and polar 
organic solvents (e.g. aqueous methanol, ethanol, chloroform, acetonitrile and ethyl acetate); 
it is optically active. The chemical name of DON is 12,13-epoxy-3ǂ,7ǂ,15-
trihydroxytrichothec-9-en-8-one, and the molar mass is 296,32 g mol-1. DON is very stable at 
temperatures within the 170°C to 350°C interval with no reduction in DON concentration 
after 30 min at 170°C (Sobrova et al., 2010). DON shows great stability during 
storage/milling and in the processing and cooking of food. 

4.1 Fungi 

The Fusarium genus includes a number of important plant pathogens that produce a wide 
range of mycotoxins (TCTs, fumonisine and zearalenone) which are mainly found in cereal 
grains (Vesonder & Golinski, 1989). Fusarium is the main genus implicated in the production 
of the non-macrocyclic TCTs. Many toxigenic Fusarium species have been associated with 
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infected grain, and the predominant pathogens are F. graminearum and F. culmorum. During 
infection, F. graminearum produces various mycotoxins in grains, in particular 
deoxynivalenol (DON), a type B trichothecene. F. graminearum is the most important DON 
producer, followed by Fusarium culmorum, but other species such as Fusarium sporotrichioides 
or Fusarium langsethiae have also been reported. The geographical distribution of the species 
is probably related to temperature requirements (Merhej et al., 2011). From an economic 
point of view, the most important TCT producers are Fusarium species that cause Fusarium 
Head Blight (FHB) in small-grain cereals and Gibberella Ear Rot (GER) in maize (Bottalico & 
Perrone, 2002). The first documented FHB-outbreak occurred in England in 1884, where the 
disease was named “wheat scab”. Outbreaks have since been reported in the Americas, 
Asia, Australia, Europe, and South Africa (Foroud & Eudes, 2009). These diseases are 
associated with the temperature in the grain growing region: F. graminearum (optimal 
growth range between 24 and 26°C, minimum aw value 0.90) is more dominant in warmer 
regions (North America and China), while F. culmorum (psychrotrophic strain, optimal 
temperature growth 21°C) is more dominant in cooler regions (northern Europe) (Sweeney 
& Dobson, 1998). 
The main species responsible for the production of T-2 toxin is F. sporotrichioides. The natural 
occurrence of this species has been reported in Asia, Africa, South America, Europe and 
North America (CAST, 2003).  
Apart from Fusarium, several other fungal genera are capable of producing TCTs: 
Myrothecium, Phomopsis, Stachybotrys, Trichoderma, Trichothecium. Macrocyclic TCTs are 
produced largely by Myrothecium, Stachybotrys and Trichothecium (Bennett & Klich, 2003). 
Fusarium species are pathogens that are found on cereal crops and they produce mycotoxins 
before, or immediately after, harvesting. Consequently, strategies for the prevention of TCTs 
from entering human and animal food chain include the elimination of TCTs in grains in the 
field, detoxification of TCTs that are already present in food and feeds, and inhibition of 
TCTs absorption in the gastrointestinal tract (He et al., 2010). 
To date, the control of Fusarium proliferation in the field is not ensured, therefore, 
generation of resistant varieties of crop plants still remain the best way to reduce grain 
contamination by Fusarium without using chemical fungicides. The discovery of biological 
or chemical molecules which would be able to specifically block the biosynthetic pathway in 
order to limit the residual synthesis of toxins is a new challenge (Merhej et al., 2011). 
At harvest and during the storage of cereals, the key factor for TCT formation is the 
presence of conidia and humidity combined with temperature. Minimizing or avoiding 
conidia contaminated materials, cleaning at an early stage during the harvest and drying the 
grain at low temperatures will allow cereals to be stored for more than 12 months without 
increasing TCTs levels (Yazar & Omurtag, 2008). 

4.2 Food 

TCTs are mainly associated with cereals grown in the temperate regions of Europe, America 
and Asia: wheat, barley, oats, rye, maize and rice (Yazar & Omurtag, 2008). Their presence 
has also been reported in soybeans, potatoes, sunflower seeds, peanuts and bananas. TCTs 
have also been found in processed foods, especially those produced from cereals (bread, 
breakfast cereals, noodles, and beer). The TCTs that are dominant in grains are 
deoxynivalenol (DON), nivalenol, and their acetylated derivatives (Foroud & Eudes 2009; 
Karlovsky, 2011). Corn, wheat, barley, oats, rice, rye and other crops have been reported to 
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contain T-2 toxin (CAST, 2003). Moreover, TCTs can enter the food chain through milk, meat 
and eggs from livestock and poultry that are fed with contaminated feeds, although the 
exposure risk to human through the consumption of animal tissue is much less than the 
direct consumption of contaminated grains (He et al., 2010).  
Food and feed contamination by TCT have been associated with chronic and fatal toxicoses 
of humans and animals, including Alimentary Toxic Aleukia in Russia and Central Asia, 
Akakabi-byo (red mould disease) in Japan, and swine feed refusal in the central United 
States (Karlovsky, 2011). The epidemy that occurred in Russia between 1942 and 1948, 
where at least 100,000 people died, was caused by the ingestion of grain contaminated with 
T-2 produced by F. sporotrichoides or F. poae (Foroud & Eudes, 2009) . 

4.3 Toxicity 

At the cellular level, the main mechanism of TCT mycotoxins appears to be a primary 
inhibition of ribosomal protein synthesis, which is followed by a secondary disruption of 
DNA and RNA synthesis (Desjardins & Proctor, 2007; Richard, 2007; Zain, 2011), 
cytotoxicity, and apoptosis (Rocha et al., 2005; Rotter et al., 1996). 
TCTs affect dividing cells, such as those coating the gastrointestinal tract, the skin, and 
lymphoid and erythroid cells. The toxic action of TCTs results in extensive necrosis of the 
oral mucous and skin in contact with the toxin, an acute effect on the digestive tract and 
decreased bone marrow and immune functions (Richard, 2007; Rocha et al., 2005). 
In general, acute exposure of animals to DON resultes in decreased feed consumption 
(anorexia) and vomiting (emesis), while longer exposure causes reduced growth, and 
adverse effects on the thymus, spleen, heart, and liver (Sobrova et al., 2010). 
Nowadays, the real concern is not related to acute exposure, but to a prolonged daily 
exposure, which leads to chronic toxicity, since it has been demonstrated that DON 
deregulates the immune response and induces cytokine up regulation (Merhej et al., 2011; 
Pestka & Smolinskj, 2005). It has been demonstrated that the ingestion of DON with 
contaminated feeds and food leads to growth retardation, and reproductive disorders in 
animals (Pestka, 2010; Rocha et al., 2005; Sobrova et al., 2010). To date, all the animal species 
evaluated have shown a differential level of susceptibility to DON with the pigs being the 
most susceptible (Pestka & Smolinski, 2005). 
Human exposure to DON-contaminated grains has been reported to cause acute temporary 
nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, and fever (Sobrova et al., 
2010). 
In general, TCTs are heat-stable molecules and are not fully eliminated during the processes 
currently used in cereal-based food manufacturing (Hazel & Patel 2004). They are also stable 
at neutral and acidic pH and consequently, they are not hydrolyzed in the stomach after 
ingestion (Yazar & Omurtag 2008). Since DON is water soluble, its level is reduced in 
cooked pasta (Sobrova et al., 2010). 
The chemical detoxification of DON by ozone (Young et al., 2006), ammonia, chlorine, 
hydrogen peroxide (He et al., 2010), sodium bisulfite (Young et al. 1986), sodium carbonate 
(Abramson et al. 2005), and chlorine dioxide (Wilson et al., 2005) has been demonstrated. 
Therefore, the best way to prevent contamination would be to limit TCT biosynthesis at the 
field level during crop cultivation (Merhej et al., 2011). 
The enzymes involved in biological detoxification of DON and their application to 
genetically engineered crops and feed additives have been reviewed in the work by 
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Karlovsky (2011). Bacterial enzymes that catalyze oxidation, epimerization, and, but to a 
lesser extent, de-epoxidation of DON as well as of the application of acetylation in plant 
biotechnology have been described (He et al., 2010).  

5. Fumonisins 

Fumonisins are a group of non-fluorescent mycotoxins. They were discovered and 
characterized in 1988 (Bezuidenhout et al., 1988). The predominant fungus isolated from 
fumonisin contaminated corn, associated with the outbreak of Equine 
Leukoencephalomalacia (ELEM) in South Africa in 1970 and Porcine Pulmonary Edema 
(PPE) in Iowa, Illinois, and Georgia in 1989, was F. verticillioides (Yazar & Omurtag, 2008). 
To date, twenty-eight fumonisins have been isolated and they can be divided into four series 
(A, B, C and P). FB1, FB2 and FB3 are the principal fumonisins analyzed as natural 
contaminants of cereals (CAST, 2003; Yazar & Omurtag, 2008). Fumonisin B1 is generally the 
most abundant member of this mycotoxin family; it comprises about 70 % of the total 
fumonisin content of Fusarium cultures (Reddy et al., 2010). Fumonisins have a similar 
structure to sphingosine, which forms the backbone of sphingolipids within the cell 
membrane (Sweeney & Dobson, 1998). 
Fumonisins are polyketide metabolites, derived from the repetitive condensation of acetate 
units or other short carboxylic acids, via a similar enzymatic mechanism to that responsible 
for fatty acid synthesis (Huffman et al., 2010). The fumonisin biosynthetic pathway in 
Fusarium species begins with the formation of a linear dimethylatedpolyketide and 
condensation of the polyketide with alanine, followed by a carbonyl reduction, 
oxygenations, and esterification with two propane-1,2,3-tricarboxylic acids (Desjardins & 
Proctor, 2007).  
Fumonisin biosynthetic genes have been mapped to one locus in the F. verticillioides genome 
(Desjardins & Proctor, 2007). 
 

 
Fig. 4. Chemical structure of fumonisin B1. 

The basic chemical structure of fumonisins is a C-20 aliphatic chain with two ester linked 
hydrophilic side chains (Richard, 2007). The chemical structure of FB1 is 1,2,3-
Propanetricarboxylic acid, 1,1N-[1- (12 amino-4,9,11-trihydroxy-2-methyltridecyl)- 2-(1-
methylpentyl)-1,2-ethanediyl] Ester (Figure 4). FB2 is the C-10-deoxy analogue of FB1 and 
FB3 is the C-5-deoxy analogue of FB1(Yazar & Omurtag, 2008). The molecular mass of FB1 is 
721 g/mol, while FB2 and FB3 have the same value of molecular mass (705g/mol). FB1 is 
soluble in water to at least to 20 mg/ml, and in methanol and acetonitrile-water. FB1 and 
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FB2 are stable in methanol at −18 °C and degrade at 25 °C. However, in a mixture of 
acetonitrile/water (1:1) and at −25 °C, all fumonisins result to be stable (Wan Norashima et 
al., 2009). 

5.1 Fungi 

Fumonisins are produced by a number of Fusarium species, notably F. verticillioides (formerly 
Fusarium moniliforme=Gibberella fujikuroi), F. proliferatum, F. anthophilum, F. nygamai as well as 
Alternaria alternata f. sp. lycopersici (Kumar et al., 2008; Sweeney & Dobson, 1998; Yazar & 
Omurtag, 2008). Recently, Aspergillus niger has also been found to produce fumonisins (i.e., 
fumonisins B2 and B4), and a new B-series fumonisin (FB6) has been identified from this 
fungus (Huffman et al., 2010). 
Fumonisins found in food are produced mainly in the field; temperature and moisture 
conditions are important factors that affect Fusarium infection and toxin synthesis as is insect 
damage of corn ears and kernels (Richard, 2007; Yazar & Omurtag, 2008).  
At a field level, two approaches are known to reduce infections and mycotoxin 
accumulation: pre-harvesting control strategies, which consist of crop practices designed to 
reduce the infection and the development of toxinogenic fungi (Nicholson et al., 2004; Wan 
Norashima et al., 2009; ) and the utilization of genetically resistant hybrids (Munkvold, 2003; 
Blandino & Rejneri, 2008). Direct fungal control with chemical or biological products (e.g. 
microbial antagonist or competitor) has only recently been considered (Mazzoni et al., 2011). 
Mycotoxin risk can be reduced by enhancing the resistence of insect attack, by inducing the 
process of detoxification pathway that inhibits the production of mycotoxins and increasing 
the resistance of the plant to infection by means of genetic engineering. A recent approach to 
the search for hybrids that are resistant to mycotoxin contamination consists in the obtaining 
of genetically modified hybrids which create the resistance action through transgenes 
(Blandino & Rejneri, 2008; Wan Norashima et al., 2009). 
An increase in concentrations of fumonisins during storage does not appear to be a major 
problem. However, grains should be harvested without additional kernel damage, screened 
to remove broken kernels, dry stored and maintained at moisture concentrations < 14% 
(Richard, 2007). 

5.2 Food 

Fumonisins have been found to be a very common contaminant of corn-based food and 
feeds in Africa, China, France, Indonesia, Italy, the Philippines, South America, Thailand 
and the USA (Kumar et al., 2008).  
In addition to corn or corn-based food and feeds, the occurrence of fumonisins has also been 
reported in other products, such as: rice and sorghum (CAST, 2003), wheat noodles, curry, 
beer and corn-based brewing adjuncts (Yazar & Omurtag, 2008). 
Fumonisins B1 and B2 have been reported in “black oat” feeds from Brazil and forage grass 
in New Zealand. FB1 and FB2 have been found in rural areas of South Africa, in home-
grown corn produced and consumed by the people living in those areas. Commercial corn 
based human foodstuff from retail outlets in several countries contains fumonisins (Wan 
Norashima et al., 2009).  
Castelo et al. (1998) have reported that fumonisins found in artificially contaminated 
cornmeal samples are unstable under roasting conditions, but remain fairly stable during 
the canning and baking of corn-based foods because the canned and baked products reach 
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lower temperatures than the roasted products. Jackson et al. (1996) indicated that foods that 
reach greater temperatures than 150 ºC during processing may have lower fumonisin levels. 

5.3 Toxicity 

At a cellular level, the structural similarity between sphinganine and FB1 suggests that the 
action mechanism of this mycotoxin is mainly via the disruption of the sphingolipid 
metabolism. This mechanism is reflected in effects on cell growth and differentiation, in cell 
death (apoptosis) and carcinogenicity (Yazar & Omurtag, 2008). Fumonisins have often been 
found to be involved in liver and kidney toxicity; they have been shown to be 
hepatocarcinogenic in male rats and female mice and nephrocarcinogenic in male rats 
(Mazzoni et al., 2011). Purified FB1 has been shown to cause Equine Leukoencephalomalacia 
(ELEM) and Porcine Pulmunary Edema (PPE). In most animal species, the main target 
organs for FB1 are the liver and kidneys (Richard, 2007; Yazar & Omurtag, 2008; Wan 
Norashima et al., 2009). There is no carryover of fumonisins into milk in cattle and there 
appears to be little absorption of them in tissues (Richard et al., 2007). The high incidences of 
esophageal cancer in the Transkei region of South Africa, in northern Italy and in China 
have been linked to the ingestion of fumonisin contaminated maize; recent findings suggest 
that fumonisins might increase the risk of neural tube defects in populations that consume 
large amounts of contaminated maize (Mazzoni et al., 2011; Yazar & Omurtag, 2008). 

6. Patulin 

Patulin (PAT) was discovered in 1943 in relation to P. griseofulvum and P. expansum. The 
molecule was first studied as a potential antibiotic, but the subsequent research 
demonstrated its toxicological properties (Baert et al., 2007; Birkinshaw et al., 1943). PAT is 
produced by several species of Aspergillus, Penicillium, among these, P. expansum is the most 
relevant. In fact, almost all P. expansum isolates are PAT producers (Puel et al., 2010). This 
mycotoxins can be found in different food products and raw materials, but apples and apple 
by-products are of greatest concern regarding PAT accumulation: the frequency of 
contamination in other food resources and products is much lower than in apple processing 
(Moake et al., 2005). 
PAT has been reported to be mutagenic and to cause neurotoxic, immunotoxic, genotoxic 
and gastrointestinal effects in rodents; therefore, there is some concern that similar effects 
may occur in humans as a consequence of the long-term consumption of contaminated food 
or beverages (Hopkins, 1993). 
PAT, 4-Hydroxy-4H-furo[3,2-c]pyran-2(6H)-one, is a water-soluble unsaturated heterocyclic 
lactone (Figure 5). The biosynthesis involves a series of condensation and redox reactions. 
The pathway consists of approximately 10 steps, as suggested from several biochemical 
studies and from the identification of several mutants that are blocked at various steps in the 
PAT biosynthetic pathway. A cluster of 15 genes involved in PAT biosynthesis, containing 
characterized enzymes, a regulation factor and transporter genes, has recently been reported 
(Puel et al., 2010). 
PAT is a colourless and crystalline low-molecular weight compound, which is relatively 
heat resistant , with a melting point of 110 °C and a maximum UV absorption at 276 nm. It is 
soluble in water, ethanol, ethyl acetate, chloroform and acetone, while it is weakly soluble in 
ethyl ether and benzene and insoluble in petroleum ether, pentane and hexane (Pohland et 
al., 1982). PAT is unstable in a basic solution and stable in acidic media; in sulfurous 
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compound solutions, the instability is accompanied by the loss of biological activity 
(Harrison, 1989). It is stable at pH values ranging between 3,0 and 6,5: if the pH is higher, 
the lactone ring is opened and the toxic effect is lost (Janotovà et al., 2011). 
 

 
Fig. 5. Chemical structure of patulin. 

6.1 Fungi 

PAT has been isolated from several species of Penicillium, Aspergillus, Paecilomyces and 
Byssochlamys (Puel et al., 2010). Recent studies based on HPLC-DAD (High Pressure Liquid 
Chromatography-Diode Array Detector) or LC-MS (Liquid Chromatography-Mass 
Spectometry) analysis of secondary metabolites, have established the reliable PAT 
producing species, which are listed in Table 5. 
 

Aspergillus, Clavati group (Varga et al., 2007) 

A. clavatus; A. giganteus; A. longivesica

Penicillium (Frisvad et al., 2004) 
P. carneum; P. clavigerum; P. concentricum; P. coprobium; P. dipodomyicola; P. expansum; P. 

glandicola; P. gladioli; P. griseofulvum; P. marinum; P. paneum; P. sclerotigenum; P. vulpinum 

Paecylomyces (Samson et al., 2009) 
Paecylomyces saturatus

Byssochlamys (Samson et al., 2009) 
B. nivea

Table 5. Patulin producing fungi. 

6.2 Food 

Patulin-producing strains have been isolated from a variety of fruit and vegetables and both 
pastorized and unpastorized related products, but within the food industry, apples and 
apple products are of predominant concern as far as PAT contamination (Moake et al., 2005; 
Sant’Ana et al., 2008). PAT occurs mostly in apples evidently mould-damaged fruit, but 
sometimes fungal growth can occur internally, as a consequence of various kinds of 
damage, and can result in the occurrence of PAT in externally undamaged fruit. Therefore, 
apples must be handled adequately before and during processing to avoid all kinds of 
damage. It is also fundamental to reduce the possibility of contamination by eliminating 
mouldy fruit and taking particular care when cleaning containers (Codex, 2003b; Food and 
Agriculture Organisation of the United Nations [FAO], 2003). In terms of apple storage 
conditions, in general P. expansum shows psychrotrophic characteristics, in fact it is able to 
growth and produce PAT under refrigerated storage, but different strains show different 
capacities to produce PAT in different storage conditions (refrigeration and or controlled 
atmosphere) (Lovett et al., 1975; Paster et al., 1995; Taniwaki et al., 1989). The elimination of 
mouldy fruit is fundamental during storage because the greater the percentage of damaged 
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fruit in a stored batch, the greater the amount of PAT in the derived products. It has also 
been shown that the concentration of PAT in deck stored apples increases with storage time 
(FAO, 2003; Sydenham et al., 1997). In order to improve storage under refrigeration and in a 
controlled atmosphere against fungal growth and PAT production, additive treatments can 
be employed, including the use of sanitizers, natural or biological agents or a combination of 
the two (Chen et al., 2004). Another alternative is the use of polyethylene (PE) packages, 
with or without a controlled atmosphere, during storage and transport (Moodley et al., 
2002). PAT can be reduced in stored apples through a washing stage with tap water, or tap 
water with active chlorine, or with highly pressurized water; the decrease percent depends 
on the initial amount of mycotoxin. The use of pressurized water makes it possible to 
remove the rotten parts of the fruit and also to reduce the fungal population, but it can also 
suspend and disperse PAT and spores in the washing water because it disturbs the rotten 
areas (Acar et al., 1998; Marin et al., 2006; Sydenham et al., 1997). Of all the apple products, 
apple juice is the most important source of PAT in the human diet throughout the world 
(World Health Organisation [WHO], 1995); the main steps of this production are 
summarized in Figure 6. 
 

 
Fig. 6. Apple juice processing steps (modified from Sant’Ana et al., 2008) 

PAT can be removed from juice by means of stirring or filtering through granulated 
activated carbon (Kadakal & Nas, 2002); the obtained percent of PAT reduction depends on 
the type of carbon, type of activation (physical or chemical), the solid content of the juice 
and the contact time (Leggott et al., 2001). As far as the heat treatments of juice, it is known 
that PAT is heat stable in acidic environments; nowadays various research and controversial 
results exist concerning the effect of the first pasteurization of the juice on the toxin (Kadakal 
& Nas, 2003). Experimental studies, on various combinations of temperature/time, 
generally demonstrate the heat stability of PAT to various time/temperature binomials (e.g. 
80°C for 30 min, 100°C for 15 min at pH 2.0). Moreover, these studies show that if the 
contamination is high in the initial processing stages, it will be practically impossible to 
obtain significant reductions in the level of PAT. On the other hand, despite the studies 
showing no significant reduction in PAT in apple juice after pasteurization, the destruction 
of the spores of P. expansum reduces the risk of the subsequent production of this mycotoxin 
(FAO, 2003). Vacuum distillation is usually adopted for the concentration step of the juice 
and it can allow a reduction in the PAT level because of the time and temperature 
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exposition. Possibly PAT transformation occurs, while PAT removal to volatile phase is 
unprobable. As regard that, the results obtained in various studies are controversial, and in 
some cases show a certain reduction while in other no changes are observed (Kadakal & 
Nas, 2003; Leggott et al., 2000). The PAT levels in formulated juices may be affected by 
adding ingredients such as ascorbic acid, thiamine hydrochloride, pyridoxine hydrochloride 
and calcium pantothenate (Yazici & Velioglu, 2002). Nevertheless, the use of these additives 
has some limitations; as regard ascorbic acid, its use is influenced by the storage conditions 
and if it is oxidized, no further degradation of PAT is observable (Drusch et al., 2007). Other 
possible additives are sulphur dioxide, sodium benzoate and potassium sorbate (Lennox & 
McElroy, 1984; Roland et al., 1984), but the current demand for healthy food, free of 
additives, could result in an impediment to the use of such techniques. Thus, it is preferable 
to use treatments that guarantee the elimination/inactivation of the ascospores of the heat 
resistant fungi (such as filtration with diatomaceous earth) than to apply these additives. 
It can be said that, although the juice manufacturing process stages are capable of reducing 
the amount of PAT in the final products to a certain extent, the incidence of this mycotoxin 
throughout the World confirms its stability to some degree; when faced with the techniques 
currently in use, only the adoption of adequate controls to reduce the incidence of fruit 
damage and rot, during pre-harvest, harvest and post-harvest, can lead to an important 
reduction in the final product, whether it is fruit for direct consumption or one of the 
various fruit products (Sant’Ana et al., 2008). 

6.3 Toxicity 
The health risks of PAT for humans include acute and chronic symptom and effects at a 
cellular level. 
Some of the acute toxic signs that have consistently been reported are agitation, convulsions, 
dyspnea, pulmonary congestion, edema, and ulceration, hyperemia and distension of the 
gastro intestinal tract (WHO, 1995). Sub-acute toxicity has also been indicated: PAT is 
recognized to mainly induce gastrointestinal disorders; it has mainly been studied in rats, 
where it has been shown to induce weight loss, gastric and intestinal changes and 
alterations in the renal function (Puel et al., 2010).  
PAT is genotoxic; most assays carried out with mammalian cells have been positive while 
those with bacteria have mainly been negative. Some studies have indicated that PAT 
impairs DNA synthesis. These effects might be related to the ability PAT to react with 
sulphydryl groups and to induce oxidative damage (Liu et al., 2007). The IARC has placed 
PAT in group 3, as “not classifiable as to its carcinogenicity to humans” (IARC, 1986). PAT 
can also alter the immune response of the host (Oswald & Comera, 1998). Several in vitro 
studies have demonstrated that PAT inhibits various macrophage functions. PAT has also 
been found to reduce the cytokine secretion of IFN-Ǆ and IL-4 by human macrophages and 
of IL-4, IL-13, IFN-Ǆ, and IL-10 by human peripheral blood mononuclear cells and human T 
cells (Luft et al., 2008; Wichmann et al., 2002). In vivo studies using mice have indicated 
variable effects of PAT on the immune system, such as an increased number of splenic T 
lymphocytes and depressed serum immunoglobulin concentrations (Escoula et al., 1988; 
Paucod et al., 1990). As regard humans, exposure to PAT, at levels that are consistent with 
potential human exposure in food, would not be likely to alter immune responses (Llewellyn 
et al., 1998). When injected into the air cell of chick eggs, PAT is found embryotoxic, depending 
on the age of the embryo, and teratogenic (Ciegler et al., 1976). PAT can induce a reduction in 
the protein and DNA content, in the yolk sac diameter, crown rump length, and somite 
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number count; it can also increase the frequency of defective embryos. Anomalies can include 
growth retardation, hypoplasia of the mesencephalon and telencephalon, and hyperplasia 
and/or blisters of the mandibular process (Smith et al., 1993). 
At a cellular level, PAT is believed to cause cell damage by forming adducts with thiol-
containing cellular components (Barhoumi & Burghardt, 1996); in fact, many enzymes with 
a sulfhydryl group in their active site are sensitive to PAT. PAT has also been shown to 
induce intra- and intermolecular protein cross-links (Fliege & Metzler, 1999). Finally, PAT 
can interact directly with DNA and RNA inhibiting transcription and translation (Lee & 
Roschenthaler, 1987). 
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