
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



5 

Quantum Mechanical Three-Body Systems  
and Its Application in Muon Catalyzed Fusion 

S. M. Motevalli and M. R. Pahlavani  
Department of Physics, Faculty of Sciences,  

University of Mazandaran, Babolsar 
Iran 

1. Introduction 

A negative muon is a lepton of the second generation with mass number about times 
heavier than that of electrons, and has a finite lifetime of 62.197 10 sec

  . This lifetime 
is amply long for most experiments. Muon catalyzed fusion (μCF) is a physical phenomenon 
in which the negative muon is able to cause fusion at room temperature and thereby 
eliminating the need for high temperature plasmas or powerful lasers (Owski, 2007; Imo et 
al., 2006; Filchenkov et al., 2005; Filipowicz et al., 2008; Pahlavani & Motevalli, 2008, 2009; 
Marshal, 2001; Bystritsky et al., 2006, Nagamine et al., 1987; Nagamine, 2001; Ponomarev, 
2001). In comparison with (μCF), hot fusion schemes are made difficulty by the electrostatic 
(Coulomb) repulsion between positively charged nuclei. In the two conventional approaches 
to control fusion namely, Magnetic Confinement Fusion (MCF) and Inertial Confinement 
Fusion (ICF), barrier is partially surmounted by energetic collisions. The particle densities, n 
and confinement times,  in the plasma, ( 810T K ) are typically more than ten orders of 
magnitude difference for these two schemes but the product of these quantities required for 
d−t fusion is 14 310 sec/n cm  . For the μCF, effectively 25 310 sec/n cm  , but this criterion 
does not tell the whole truth because, in μCF the objective is to tunnel through the barrier 
without the benefit of kinetic energy. It is known that the d−t fusion by the usual magnetic 
or inertia confinement suffering a lot of difficulties and problems causing from tritium 
handling, neutron damage to materials and neutron-induced radioactivity, etc.  

Study of the muon catalyzed fusion reactions is of great interest and carried out in many 
laboratories of the world recently (Ishida et al., 1999; Petitjean et al., 1992, 1993; Bystritsky et 
al., 2005; Pahlavani & Motevalli, 2008, Bystritsky et al., 2000; Matsuzaki et al., 2001). Muons 
can be created by the decay of pion which is generated in the collision of intermediate-
energy proton with target nuclei. In the muon catalyzed fusion process, after injection of 
muon in to deuterium and tritium mixture, either dǍ or a tǍ atom is formed, with a 
probability proportional to the relative concentrations of D and T in the mixture. These 
atoms are formed in exited states (Breunlich et al., 1989; Korenman, 1996) and then, due to 
cascade processes, de-excite to ground states. The following reactions illustrate direct 
formation of muonic dμ and tμ atoms 

 ( )dD d e       (1) 
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 ( )   tT t e       (2) 

where e  denotes an electron and d  and t  are the rate of reactions (1) and (2). The 
probability of formation of the dǍ atom that will reach its 1s ground state is quantified by the 
parameter 1sq , which is a function of target density, φ and tritium concentration, tC . Also it 
is very sensitive to the dǍ kinetic energy distribution (Menshikov & Ponomarev, 1984; 
Czaplinski et al., 1994). The difference between binding energies of tǍ and dǍ is about 48.1 
eV (Bom et al., 2005). Therefore, the transfer of a muon from dǍ to a triton is favorable for all 
temperatures in the given processes 

 48.1 ( )dtd t t d eV       (3) 

with a rate of 82.8 10dt  
 
(Caffery et al., 1987; Jones et al., 1987; Bystritsky et al., 1980; 

Breunlich et al., 1987). The muon mass is about 206.77 times larger than the mass of electron. 
Consequently, the size of a muonic hydrogen atom is smaller than the one of the electronic 
hydrogen by the same rate approximately. These small muonic atoms can approach other 
hydrogen nuclei experiencing reduced Coulomb barrier and then induce d–t fusions. The 
process in which a muonic molecule is formed is the most important step in the μCF. The 
formation of muonic molecules of hydrogen isotopes and their nuclear reactions have been 
the subject of many experimental and theoretical studies (Caffery et al., 1987; Jones et al., 
1987; Bystritsky et al., 1980). In collisions of tǍ muonic atoms with D2 and DT molecules, the 
muonic molecules dtǍ are formed during a time interval 810 secdt 

 
(Jones et al., 1983; 

Eliezer & Henis, 1994) according to the following resonance reactions 

  2 2 ( )dt dJ
t D dt d e 

         (4) 

   2 ( )dt tJ
t DT dt t e 

         (5) 

 dt dt d d dt t tC C        (6) 

in the excited rotational–vibrational (Jǎ) state with quantum number J=ǎ=1, where Cd and Ct 
are concentrations of deuterium and tritium nuclei, respectively. A strong resonance effect 
appears due to degeneracy in the excited state of the dtǍ and the electron molecule complex. 
The rate of formation of the dtǍ molecules has been found to depend strongly on temperature, 
density and on whether collision of the tǍ atom occurs with a D2 or a DT molecule (Bom et al., 
2005; Faifman et al., 1996; Ackerbauer et al., 1999). 

In fact, the radius of a muonic hydrogen ion (dtǍ) is much smaller (about ≈ 200 times) than a 
usual electron molecule, therefore the nuclei may tunnel the coulomb barrier with a high 

probability and fuse with a rate of ≈ 1012 sec−1 (Bogdanova et al., 1982). Resonant formation of 
the ddǍ molecule at very low temperatures was observed in solid and liquid D2 targets 

(Bogdanova et al., 1982). 

Developed methods in this field are based on detailed three-body equations which provide 

a correct description of the quantum mechanical three-body systems (Takahashi & 
Takatsuka, 2006; Kilic, Karr & Hilico, 2004; Nielsen et al., 2001; Pahlavani, 2010). Theoretical 

study of muonic three-body system comprises different theoretical methods, e.g. variational 
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methods (Viviani et al. 1998; Frolov, 1993), Born-Oppenheimer approximation (Beckel et al., 
1970; Kilic et al., 2004) and adiabatic expansion (Fano, 1981; Lin, 1995). 

The Born-Oppenheimer approach assumes the nuclei to be infinitely heavy with respect to 
the negatively charged particle. It should be kept in mind that the following Born-
Oppenheimer approach is the simplest solution to the three-body coulomb system. This 
approach is expected to be a poor approximation for calculations of muonic molecule 
eigenvalues. In this work, we calculate binding energies of the bound states of the ddǍ 
muonic three-body system molecule using the adiabatic expansion method. 

2. Adiabatic expansion approximation for the three-body system 

The exact Hamiltonian that describes muonic three-body system can be shown by following 
relation: 

 
1 2

1 22 2 1 2

1 2 1 2 1 2

1 1 1

2 2 2
R R r

z z z z z z
H

m m m r R r R R R

 

  

         
  
      (7) 

where 1 and 2 denote the two nuclei, their position is given by R1 and R2, and the muon 
coordinate is rǍ. The center of mass coordinate RCM is given by 

 
1 1 2 2

1 2
CM

m R m R m r
R

m m m

 



 


 

  
 (8) 

It is convenient to define Jacobi coordinate r and R as follow: 

 1 2

2

R R
r r


 

 
 

 (9) 

 2 1R R R 
  

 (10) 

where R is the internuclear coordinate and r is the muon coordinate to midpoint between the 
two nuclei. In these coordinates (R; r), the Hamiltonian denoted by equation (7) is change to 
the following operator: 

 
1 22 2 2 1 2

1 2 1 2

1 1 1
( / 2 )

2 2 2CMR R r r
T

z z z z z z
H

M M m r R r R R R

 

 

           
  
      (11) 

where 

 1 2TM m m m    (12) 

 
1 2

1 1 1

M m m
   (13) 

 
1 2

1 1 1

m m m m
 


 (14) 
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 1 2

1 2

m m

m m
 



 (15) 

After separation of variables, the non-relativistic Hamiltonian in units of 1e m   , can 

be given by 

 2 1 2
1

1
ˆ( , ) ( )

2 2
R r

z z
H o R H

M R


        (16) 

where 

 2 1 2
1

1 2

1

2
r

z z
H

m r r
      (17) 

where ô  represent the five dimensional variable. We use the set ˆ ( , , , , )o      where 

( , , )   define the Euler rotation specifying the body-fixed frame with its unit vectors to 

coincide with the principal axes of the inertia tensor of a three-body system. The hyper-

spheroidal coordinates  and  are easily expressed by the muon-nucleus distances r1, r2 and 

the internuclear distance R, 

 1 2 ( 1 1)
r r

R
 
     (18) 

 1 2 (1 )
r r

R
 
     (19) 

The three-body Hamiltonian (16) commutes with the total angular momentum operator for 

the three particle system, J, its projection on z-axis, Jz, and the total parity operator, 

( , )P R R r r   . Eigenfunctions of the Hamiltonian in the total angular momentum 

representation reads: 

 , ( , ) ( , , ) ( , , )
J

p JpJp
mJ M Mm

m J

R r F R D  


     (20) 

Adiabatic expansion of radial function, ( , , )Jp
mF R    is usually written in the form: 

 
1

1 1

0
1 0 0

( , , ) ( ; , ) ( ) ( ; , ) ( )
N

Jp JpJp
m Nlm klmNlm klm

N l l

F R R R R dk R R R
    

  
              (21) 

where ( )Jp
i R  describe relative motion of the nuclei. Let us consider the Wigner function, 

( , , )Jp
MmD    which is the eigenstates of J2, Jz and R.J/R with the eigenvalues J(J + 1), M and 

m (Davydov, 1973). It can be transformed under the inversion as follow: 

 ,( , , ) ( , , ) ( 1) ( , , )J J J m J
Mm Mm M mPD D D     

            (22) 
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If 0m  , the resultant Wigner functions would be different, and the angular functions consist 

both even and odd combinations. It is convenient to specify these combinations as follows: 

 ,

2 1
( , , ) ( 1) ( , , ) ( 1) ( , , )

4

Jp m J J J
Mm Mm M m

J
D D p D  

 
              (23) 

where ( 1)Jp     is the eigenvalue of the parity operator: 

 Jp Jp
Mm MmPD pD  (24) 

The functions presented in equation (23) (in bracket) are satisfying the following 

orthonormality condition: 

 
' '

' ' ' '' '

2 2 *

0 0 0
sin [ ( , , )] ( , , )Jp J p

Mm JJ pp MM mmM m
d d d D D

  
                 (25) 

If m = 0, both the Wigner functions in (22) are reduced to the ordinary spherical function 

( , )JMY    so that the dependence of ' disappears and the angular functions satisfying the 

conditions (24) and (25) are: 

 , 0

( , )
( , , )

2

JMJp
M m

Y
D 


 

    (26) 

In this case the parity is unambiguously specified by the quantum number J: p=+(-1)J . So, our 

basis functions have the following structure: 

 
( )

( , , , , , ) ( , , ) ( , ; )

Jp
jmJp Jp

jmMmMjm

R
R D R

R


             (27) 

The wave functions ( , , , , , )Jp
Mjm R       describing reactions hǍ+h, h = (p, d, t) can be 

decomposed over the solutions ( , ; )jm R    of the Coulomb two-center problem. ( , ; )jm R    
is the complete set of solutions of the Coulomb two-center problem, therefore 

 1 ( , ; ) ( ) ( ) ( , ; ) ( )i i iH R F E R R F         (28) 

describing the muon motion around fixed nuclei separated by a distance R. Ei(R) is the energy 

of a muon in the state i as a function of R. Here we show how to separate the variables through 

the use of the ellipsoidal (or, prolate spheroidal) coordinates 

 2 2( 1)(1 ) cos
2

R
x       (29) 

 2 2( 1)(1 ) sin
2

R
y       (30) 

 
2

R
z   (31) 
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Note that the coordinates ,   and 
 
are orthogonal, and we have the first fundamental form 

 2 2 2 2 2 2 2 2 2 2ds dx dy dz h d h d h d           (32) 

where 

 

2 2 2 2 2
2

2

1

4 1

yx z R
h


   

        
                      

 (33) 

 

2 2 2 2 2
2

2

1

4 1

yx z R
h


   

        
                      

 (34) 

   
2 2 2 2

2 2 21 1
4

yx z R
h  

  
      

                 
 (35) 

Thus 

2 1 h h h h h h

h h h h h h

     

          

           
                          

 

 
2 2 2

2 2
2 2 2 2 2 2

4
( 1) (1 )

( ) ( 1)(1 )R

  
       

                             
 (36) 

Note that through the coordinate transformation (29-31), we have 

 1 ( )
2

R
r     (37) 

 2 ( )
2

R
r     (38) 

Writing the wave function as ( , ; ) ( ) ( ) ( ) ( )i R F G H F       and changing the variable to 

spheroidal coordinates, equation (28) can be separated into following three one-dimensional 

equations: 

 
2

2
2

( )
( ) 0

d F
m F

d

 


   (39) 

 
2

2 2 2
2

( )
( 1) ( ) 0

1

d dG m
A q q G

d d

    
  

  
             

 (40) 

 
2

2 2 2
2

( )
(1 ) ( ) 0

1

d dH m
A q q H

d d

    
  

  
            

 (41) 
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where 

 
1 2( )

R

q z z
 


 (42) 

 
1 2( )

R

q z z
 


 (43) 

Note that A and q are unknown parameters and should be obtained from (40) and (41) as 

eigenvalues of the coupled system. Once A and q are obtained, then E can be obtained from 
q2=-R2E/2. By substitution of expression (8) into the Schrödinger equation with Hamiltonian 

(16) and after averaging over spherical angles ( , ) 

 

and the muon state, one obtains the 

radial equation 

 
2

2 2

1 ( 1)
( ) ( ) ( ) ( ) 0

2 2

J J
B O ii i

d J J
R V R U R R

M dR MR
  

       
 (44) 

where ( )iE E    is the collision energy and E is the total energy of the system and ( )iE   

is the ground state energy of muonic atom. 1 2( )B O

z z
V E E

R
    

 

is the potential 

corresponding to the Born-Oppenheimer approximation and 1 2
1(i

z z
U i H H i

R
  

 

is the 

adiabatic correction. The adiabatic potential VAd(R) is: 

 ( ) ( ) ( )Ad B O iV R V R U R   (45) 

The adiabatic potential VAd(R) for the (ddǍ) muonic three-body molecule is calculated in the 
adiabatic expansion method. The adiabatic potential curves and qualitatively similar for 
each of muonic molecules and are displayed for the (ddǍ) muonic molecule in Figure 1. 

Results of the calculations of binding energies of the bound states  ,J 
 
of the (ddǍ) muonic 

molecule are compared with the results of the other methods used in (Korobov et al., 1992; 
Kilic, Karr & Hilico, 2004) and are given in Table 1. 

 

(Kilic, Karr & Hilico, 2004) (Korobov et al., 1992)
Ad 

(Pahlavani&Motevalli, 2008)
States ( , )J   

325.070540  325.0735  325.06  (0 ,0)  

35.844227  35.8436  35.79  (0 ,1)  

226.679792  226.6815  226.62  (1 ,0)  

1.974985  1.97475  1.73  (1 ,1)  

--- 86.4936  86.20  (2 ,0)  

Table 1. Binding energies (eV ) of the states ( , )J  for the dd muonic molecule. 
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Fig. 1. Adiabatic potential curves, ( )AdV R , corresponding to dd
 
system (Pahlavani & 

Motevalli, 2008). 

The calculated binding energies are in good agreement with the previous calculations by 
other authors using different methods. 

3. Charge-asymmetric three-body system in hyper-spherical elliptic coordinate 
system 

Study of the nuclear synthesis reaction d−3He at low collision energies (below 1 keV) is of 
interest for its applications in nuclear and astrophysics (Belyaev et al.,1995). The relatively 
large energy gain as well as the lack of tritons in the initial and neutrons in the final channel 
makes this reaction a very attractive source of thermonuclear fusion energy. 

The negatively charged energetic muons, after stopping in the D−3He mixture, fuse to d or 
3He in order to form the mesic atoms in excited states. After a sequence of cascade 
transitions lasting about 10−11 sec at Liquid Hydrogen Density (LHD), mesic atoms are 
formed in the ground state (Ponomarev, 1991; Breunlich et al., 1989; Czaplinski et al., 1996). 

The three-body molecules,  3

J
He d


, are formed in collision of (dǍ) atoms in ground state 

with helium atoms via so-called electron conversion process, 

  3 3
1( ) ,

J
m

s
J

d He He d e e



 

     
 (46) 
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The molecule dissociates quickly with a rate of about 1012 sec−1 to the unbound ground state 
either by a well-known predissociation mechanism, via Auger transition or  -emission 

processes 

    3
1

J
p

sJ
He d d He


    (47) 

    3 3

1

J
A

J s
He d d He e

     (48) 

    3 3

1

J

J s
He d d He      (49) 

resulting a hydrogen nucleus and a mesic helium atom. This mechanism leads to transfer 
rates of the order 108 sec−1. The asymmetric-charged 3HeǍd molecule undergo nuclear fusion 
via two different channels, 

  3 14.64
J

He d p MeV       (50) 

  3 5 16.7
J

He d Li MeV      (51) 

The muon is released after the fusion and can proceed to cause another fusion. Thus the 
muon works as a catalyst and this cycle can be repeated many times during its lifetime. 

To test the stability of the mesic 3HeǍd system, we consider only Coulomb interaction 
between particles. As a starting point, we employ the aim of hyperspherical method to solve 
the multi-dimensional Schrödinger equation numerically for this three-body system. 

 ( )H T V E       (52) 

The wave function,  , can be constructed explicitly by exploiting a specific representation, 
namely, the hyper-spherical adiabatic expansion method. Here, T is the kinetic energy in its 
enter-of-mass coordinate frame, V is the potential energy, and E is the total energy of the 
system. We briefly discuss the general structure of the method and formulate its basic 
equations for a three-body system in hyper-spherical elliptic coordinates. The Hamiltonian 
of this molecule in Jacobian coordinates (R, r) can be shown by the following equation 
(Gusev et al., 1990; Stuchi et al., 2000) 

 
1 1

( ) ( )
2 2

i i
i i

H T V R r V
M m

 
       

 

 
 (53) 

where iM  and im  are reduced masses. It is convenient to define mass-scaled Jacobian 

vectors, ( ix


 and iy


), 

 i
i i

M
x R





 (54) 
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 i
i i

m
y r



 

 (55) 

Therefore the kinetic energy of the system can be rewritten as, 

  1
( ) ( )

2
i iT x y


    

 
 (56) 

In this relation, 3
1/2( / )d totHe

m m m m  is an arbitrary coefficient with dimension of mass 

and index i=1,2,3 refer to a set of Jacobian coordinates ( ix


, iy


). The transformation of 

Jacobian coordinates (e.g. ( 1x


, 1y


)) in to another set (e.g. ( 2x


, 2y


)), can be done as follows: 

 2 1 1cos sinx x y   
  

 (57) 

 2 1 1sin cosy x y  
  

 (58) 

where can be regarded as a rotational parameter which is shown by, 

 
3

3

( )
tan ; 0

2

d He

d He

m m m m
Arc

m m

   
  
   
  

 (59) 

It is convenient to calculate these sets of Jacobian coordinates ( ix


, iy


) for mesic three-body, 

3HeǍd system. These three sets should be used as coordinates in configuration space. 

Therefore this system contains six dimensions (d=6). In hyperspherical coordinates, ( , )  , 

2 2x y    represents the size of the system and 0( , )s    , consist of five variables, 

where s  denote a set of two angles defining the shape of the system and 0  refer to a set 

of three angles defining the overall orientation of the three-body system. The Hamiltonian, 
in this coordinate system, will take the following form: 

 
2

5 5
2

1

2
H V 

   
    

         
 (60) 

where 2  is regarded as the square of general angular momentum operator. Our aim is to 
solve the eigenvalue equation ( , ) ( , )H E       in the adiabatic expansion method. The 
idea of adiabatic separability between the hyper-radius   and the hyper-angular variables   
in three-body systems was first exploited by Macek (Macek, 1968) for studying doubly excited 
states of the Helium atom. The wave equation of the system in this method can be defined by: 

 
5

2( , ) ( ) ( , )F 


   


      (61) 

Here the quantum number, j characterizes a channel function, the radial functions, ( )jF   

satisfy the system of coupled ordinary differential equations and ( ; )j   are angular 

functions. For any value of  , these functions form a set of complete orthogonal basis 

which satisfy the following relation: 
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  ( ) ( ; ) 0adH U       (62) 

In this relation, Had is the adiabatic Hamiltonian which is defined by, 

 21

2
adH C    (63) 

where C V  is the effective charge of the system. In the first step we try to solve the 
differential equation (62), which contains coordinate   as a parameter. The hyper-spherical 
elliptic coordinates ( , )  on S (projection of the hyper-sphere .const   onto shape space) 
are induced by conical coordinates on its 3D image. The hyper-spherical elliptic coordinates 
( , )   are defined in the following intervals (Tolstikhin et al., 1995) 

2 2      

 2 2 2       (64) 

The definition of ( , )   resembles the representation of plane elliptic coordinates. In order to 

rewrite Eq. (62) in a new set of coordinates, ( , )  , it is necessary to define the square of 

general angular momentum operator, 2  in this set of coordinates, 

   2 16
cos cos2 cos2 cos

cos cos
   

     
     

          
 

 
2 24 sin 2 1 1

cos cos cos cos2 cos2 cos

m 
     

 
     

 (65) 

where m is azimuthal quantum number which is the projection of the general angular 
momentum along body-fixed axis. The potential energy, V, of the system is the sum of three 
inter-particle Coulombian interactions potential, 

 
2 22

2 3 3 11 2

12 23 31

( , )Z Z e Z Z eZ Z e C
V

r r r

 


     (66) 

As it was mentioned earlier, ( , )C V   , is the effective charge. The inter-particle 

distances 12r , 23r  and 31r  are simply defined by the following relations: 

12
3

1 cos cos sin sin
2 2 2 22

r d d
    


                 
       

 

 23
1

sin
4

r
  


   
 

 (67) 

31
2

sin
4

r
  


   
 
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where 
3

2
1

d He

m
d

m m

  


 and 
3

3

d He

d He

m m
d

m m
 



 are mass related constants respectively. The 

effective charge C of 3HeǍd molecule as a function of variables   and   is shown in Fig. 2. 

The steep spike at ( , ) ( 2 ,2 ),(2 ,2 )       , corresponds to the strong attractive coulomb 

singularities of effective charge C and associated to collisions in the pairs dǍ and 3HeǍ, when 
muon is very close to the nucleus. The singular Coulomb repulsion between two positively 
charged particles, are represented by the repulsive wall at the neighborhoods of the 

( , ) (0,2 2 )     .  

 

Fig. 2. Variation of effective charge C as a function of hyper-angular variables 2 2      

and 2 2 2       for the 3HeǍd molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 

2010). 

By substituting Eqs. (65) and (66) for 2  and V into Eq. (62), we obtain a differential 
equation for adiabatic Hamiltonian that should be solve with appropriate boundary 
conditions. In the case, for infinite small values of  , the solutions of adiabatic Hamiltonian 

(62) can be constructed in the following form (Pahlavani & Motevalli, 2008): 

 ( , ) ( ) ( )N X Y      (68) 

where N is the normalization parameter. With some mathematical simplification, one 
obtains the following set of ordinary differential equations: 
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  
2 22 cos 2

(cos cos2 ) 0
cos cos2

m
L U A X    

 
 

      
  

 (69) 

  
2 22 cos 2

(cos2 cos ) 0
cos2 cos

m
L U A Y    

 
 

      
  

 (70) 

where A is the separation constant and the one-dimensional derivative operators, L  and 

L  are defined as, 

 8 (cos cos2 )
d d

L
d d

  
 

   (71) 

 8 (cos2 cos )
d d

L
d d

  
 

   (72) 

The resultant equations are subject to the regularity of boundary conditions and can be 
satisfied only for certain values of A and U. The method for solving these set of differential 
equations, are very similar to those equations which we presented in our previous work 
(Pahlavani & Motevalli, 2008), when we have studied the motion of muon in the two-center 
Coulomb problem in prolate spheroidal coordinate system for the symmetric mesic system 

ddǍ. By solving these equations, one obtains the functions      ,n n    , where  n  and 

 n   are quantum numbers correspond to number of zeros of the functions  X   and 

 Y   that appeared in Eqs. (69) and (70). These functions form a set of complete bases and 

satisfy the following normalization condition, 

                    
2 2 2

2 2
, ,n n n n n n n nds

  
        

     
 

   
     (73) 

where ds is the surface element that can be defined by, 

  
2

cos cos
4 cos2

ds d d
    


   (74) 

The results of the calculations are displayed graphically in Fig. 3. The normalization factor 

( ) ( )n nN   , is a function of the rotational parameter, at different quantum numbers  n 
 
and 

 n  . Calculated values of adiabatic potential  U   as a function of hyper-radius   have 

been shown in Fig. 4. By substituting Eq. (61) into Eq. (52), one can obtain the following set 

of ordinary differential equations for radial functions ( )jF  : 

 
2

2 2

15
2 ( ) ( ) ( ) 0

8

d
E U F W F

d
  


   

 

         
   

  (75) 

where ( )jU   is the adiabatic potential and the operator ( )jW    has the following form: 

www.intechopen.com



 
Some Applications of Quantum Mechanics 

 

122 

 

Fig. 3. Variation of normalization parameter    n nN   for the cases:    , 0,1n n   and 

   , 0,2n n    for the 3HeǍd molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 2010). 

 

Fig. 4. The adiabatic potential as a function of hyper-radius coordinate for the 3HeǍd 

molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 2010). 
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 ( ) 2 ( ) ( )
d

W R S
d

    


   (76) 

The above equation is a set of differential equations coupled by the following nonadiabatic 
terms: 

 ( ) ( ; ) ( ; )R      



  


 (77) 

 
2

2
( ) ( ; ) ( ; )S      




  


 (78) 

where the brackets represent integration over the angular variables  . The hyperspherical 
adiabatic approximation amounts to retaining only one term in Eq. (61) (Macek, 1968). Then 

the radial function, ( )jF   satisfies the following differential equation 

 
2

2 2

15
2 ( ) ( ) 0

8

d
E U W F

d
   

 

         
   

 (79) 

This approximation turns out to be surprisingly accurate in the sense that in many situations 

the non adiabatic couplings in Eq. (75) are rather weak. Subject to this reality and 
considering appropriate boundary conditions, we obtain solutions of the differential 

equation (79) numerically. Finally, the calculated values of the binding energies of the 

bound states ( , )J   for the 3HeǍd system are compared with available data obtained using 

other methods in Table 2. 

 

(Pahlavani et al., 
2010) 

(Hara & Ishihara, 
1989) 

(Kravtsov et al., 
1993) 

(Gershtein & 
Gusev, 1993) 

 States ( , )J   

70.879  70.74  70.6  69.96   (0 ,0)  

48.391  47.90  48.2  46.75   (1 ,0)  

9.346  --- 9.6  ---  (2 ,0)  

Table 2. Binding energy EB (eV) of the bound states ( , )J   (the quantum numbers of 

rotational-vibrational state) for the 3HeǍd molecule. 

The Born–Oppenheimer approach assumes the nuclei to be infinitely heavy with respect to 
the negatively charged particle. It should be kept in mind that Born–Oppenheimer approach 

is the simplest solution to the three-body Coulomb system. Usually, the most accurate 
results for the ground state energy levels of mesic three-body molecule were obtained from 
variational calculations. Comparison of our result for J = 0 with the ones obtained by the 

available variational calculation (Bogdanova et al., 1982) indicates difference that dose not 
exceed 0.2%. One can conclude that this fact supports the validity of adiabatic expansion in 
hyper-spherical elliptic coordinates method which have been used. 

www.intechopen.com



 
Some Applications of Quantum Mechanics 

 

124 

4. Muon stripping in the muon catalyzed fusion 

The sticking of muons to alpha particles after fusion is an unwanted process and eliminates 
muons from the chain of fusion reactions. This process is the main loss mechanism in the 
ǍCF. The probability of forming a muonic helium ion is called initial sticking probability 

0( 0.912%)S   (Hu, Hale & Cohen, 1994). Where muonic helium ions are formed with an 

energy of 3.47 ( 5.83 . .)in inE MeV v a u    then are slowed down toward thermal energy by 

collision with the surrounding D2 and DT molecules (Jones, 1986). During the same time, as 

long as the kinetic energy exceeds the appropriate threshold ( 10 )thE KeV  , the αǍ ion can 

be stripped as a result of collisions. This process is referred to as reactivation and final 

sticking fraction, s that conventionally related to the initial sticking fraction by 

0(1 )S S R   . The reactivation coefficient, R depends upon the stopping power of the 

media and several important cross sections. Stripping process can occur through several 
channels. Collisions of the (αǍ)1s ions with the surrounding D2 and DT molecules during the 
slowing down process can result in αǍ charge transfer, ionization or excitation of the discrete 
αǍ levels. Stripping (charge transfer plus ionization) can also happen from the αǍ which is 
the results of the sticking or collisional excitation processes.  

The kinetic of reactivation is described by the various rates in a set of coupled differential 
equations. The fraction of stripped muonic helium ions in terms of population probabilities 
can be written as 

  ( )
( )

( ) ( )
strip i

istrip
i

dP t
v t P t

dt
 . (80) 

where  ( ) ( )i
strip v t  are velocity-dependent stripping rates from the individual energy levels 

and ( )iP t  are the time dependent population probabilities for the state i of muonic helium 

ion. The time-dependent population probabilities for the state i of the muonic helium ion are 
determined by 

 ( )( )( )
( ) iii

pop i depop

dP t
P t

dt
    (81) 

where ( )i
pop  and ( )i

depop are the rates of populating and de-populating probability of state i, 

respectively. These rates can be given by the following relations: 

 

 ' ''

'

'
'

''

' '

' '
' '

( ) ( )( ) ( )

( )

( )( )

( ) ( )

( )

( ) ( )

ii

i ii i

i i i ii i i
pop raAu de ex i

i n n

i ii i
ex Starki i

i n n i n n

P t

P t P t

 






 

  

 



 

   

 
 (82) 

  ' ' '' '

' ' '
' ' '

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )i i ii i i

i i i i i i i ii i i i
ra exstrip Audepop de ex Stark

i n n i n n i n n

         


  

         (83) 
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where ǌAu, ǌra, ǌde−ex, ǌex, ǌStark and ǌstrip are the Auger de-excitation, radiative, Coulomb de-
excitation, Coulomb excitation, Stark mixing and striping rates, respectively. In general, ǌ is 
given by 

 1(sec )N v    (84) 

where N, v and ǔ are density of surrounded media, relative velocity and cross section for all 
processes under consideration, respectively. The time and velocity dependence in Eq. (80) 
are coupled through the energy-loss equation for muonic helium ion given by 

    
1/2

2dE E
v S E S E

dx m

 
  



 
     

 
 (85) 

where S = −dE/dx is the stopping power of the surrounding media and m  is the mass of 

muonic helium ion. The initial conditions are: (0) 3.47inE E MeV   , (0) 0stP  and the 

initial values of populated levels are determined by the initial sticking, 0 0(0) ( ) /i s sP i  . The 

populations ( )iP t
 
for 1,2,...,6n  and the l sublevels are treated in detail for 4n  . The 

reactivation coefficient R is equivalent to the stripping fraction ( )stP t at t  . The intensity 

of X-ray transition in muonic helium ion is another quantity which can be measured 
experimentally and calculated along with reactivation coefficient (R). Muons in excited 

levels of the   may de-excite under X-ray emission. The X-ray spectrum depends not 

only on the initial sticking in the atomic levels and the reactivation of the muon but also on 
intra-atomic transitions due to inelastic collisions, internal and external Auger effect and 
Stark mixing. The photon intensity per sticking event is calculated using 

 ( )

( ) ( )

( )
i i

i in n
ra i

i n n i n n

d
P t

dt









  
    (86) 

The number of X-ray photons emitted per fusion is the most useful quantity that can be 

measured experimentally. The X-ray yields for the n n  transition is given by 

 ( ) n n sY n n       (87) 

The calculation for muon stripping probability from αǍ+ and the intensity of X-ray 
transitions have been done by solving a set of coupled differential equations numerically. 
The time-dependent population probabilities Pi(t) for 1s, 2s, 2p, 3s, 3p, 3d are shown in Fig. 5 

for a deuterium–tritium target at density φ=1.2 L.H.D (L.H.D≡ Liquid Hydrogen Density = 4.25 
× 1022 atoms/cm3). The initial populations of all excited states are seen to drop to 0 during the 

stopping time, and only 1s orbital stays occupied. 

The time-dependent stripping fraction, Pst(t) and surviving fraction of the initial kinetic 
energy, E/E0  are shown in Fig. 6. Slowing down of αǍ+  from 5.83 . .v a u   to 

1 . .v a u  takes about 114 10 (sec)stopt   . This time is longer than the lifetime of the 
excited αǍ+ states so that the cascade of αǍ+ actually takes place during the slowing down 
process. The calculated reactivation coefficient, final sticking and the average number of X- 
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Fig. 5. The population probabilities Pi(t) as a function of time in a D–T target at density 

φ=1.2 L.H.D (Pahlavani & Motevalli, 2008). 

 

Fig. 6. Stripping fraction, R (heavy solid curve), surviving fraction of initial kinetic energy, 

E/E0 (dashed curve) in a D–T target at density φ = 1.2 L.H.D (Pahlavani & Motevalli, 2008). 
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rays per sticking ( , , )K K K    as a function of density are shown in Fig. 7 for 4LHD  . 
The most K  radiation actually emitted by αǍ+ atoms that formed in the ground state. If αǍ+ 
is formed in the 2p state more than one (2 1 )K p s   X-ray expected per sticking. Our 
theoretical results for stripping are compared in Table 3 with other theoretical and 
experimental data. It is evident that experimental results of the effective sticking probability 
are smaller than the theoretical calculations, however, our results agree well with 
experiment. 

 

Fig. 7. The density dependence of initial sticking, 0(%)s , final sticking, (%)s , reactivation 

coefficient, R and K-series X-ray per sticking ( , , )K K K   for dtμ fusion ( K  and K  

multiplied by factor 3) (Pahlavani, Motevalli, 2008). 

The density dependence of probability of muon reactivation, final sticking coefficient and 

intensity of X-rays emitted by muonic helium ion have been studied numerically. In order to 

do this, we consider all reactions that separate muon from muonic helium ion, namely 

coulomb excitation and de-excitation, ionization, charge transfer, Stark mixing, radiative 

transitions and Auger de-excitation. Using a set of coupled differential equations, the time 

dependence of muon reactivation coefficient (R) and surviving fraction of the initial 

kinematic energy of αǍ+ (E/E0) in the D–T mixture for different fuel density have been 

calculated. The measurement of muonic helium ion X-ray provides an independent method 

to test our knowledge about muon reactivation and sticking. Results based on our 

calculation shown that the muon reactivation increases when the average number of X-rays 

per sticking reduces with increasing density. Our calculated results are in good agreement 

with available experimental data (Ishida, Nagamine et al., 1999; Petitjean et al., 1993; 

Breunlich et al., 1987; Bossy et al., 1987; Jones, Taylor & Andeson, 1993; Nagamine et al., 

1993; Ishida et al., 2001; Petitjean, 2001) at all. 
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Final sticking (%) ReactivationSource

  1.2Density LHD

0.555  0.391(Pahlavani & Motevalli, 2008)

0.57 0.07  ---(Markushin, 1988) 

0.57  0.36(Refelski et al.,1989) 

0.664  0.248(Takahashi, 1987) 

0.59  ---(Cohen, Hale, Hu, 1996) 

  Experimets 

0.39 0.10  ---PSI (Bossy et al., 1987) 

0.45 0.05  ---PSI (Breunlich et al., 1987) 

0.48 0.02 0.04   ---PSI (Petitjean et al., 1993) 

0.43 0.05 0.06   ---LAMPF (Jones, Taylor & Andeson, 1993) 

0.51 0.004  ---KEK (Nagamine et al., 1993) 

0.434 0.030  ---RIKEN-RAL, Liquid (Ishida, Nagamine et al., 1999) 

0.421 0.030   RIKEN-RAL, Solid (Ishida, Nagamine et al., 1999) 

0.532 0.030  ---RIKEN (Ishida et al., 2001) 

  1.45Density LHD  

0.551  0.395  (Pahlavani, Motevalli, 2008) 

  Experiment 

0.505 0.029  ---PSI (Petitjean, 2001) 

Table 3. The reactivation coefficient, R and final sticking, ωs(%) for muonic helium ion in 

different densities. 

5. Conclusions 

The quantum-mechanical three-body problem plays an important role in modern physics by 
providing an appropriate description of three-particle systems in presence of Coulomb and 
nuclear forces. Developed methods in this field are based on detailed three-body equations 
which provide a correct description of the quantum mechanical three-body systems 
(Takahashi & Takatsuka, 2006; Kilic, Karr & Hilico, 2004; Nielsen et al., 2001; Pahlavani, 
2010). Theoretical study of muonic three-body system comprises different theoretical 
methods, e.g. variational methods (Viviani et al. 1998; Frolov, 1993), Born-Oppenheimer 
approximation (Beckel et al., 1970; Kilic et al., 2004) and adiabatic expansion (Fano, 1981; 
Lin, 1995). In this investigation, we presented an appropriate method that enables us to 
study the solutions of Schrodinger equation for 3HeǍd system. The adiabatic expansion in 
hyper-spherical elliptic coordinates has shown a good approach for calculating the adiabatic 
potential. Fast convergent of this method led us to obtain precise results for the existence of 
the bound states in 3HeǍd three-body molecule. The obtained results for the adiabatic 
potential of this system are comparable with results gathered from other approximation 
methods. 
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The corresponding eigenvalue problem has been solved and the binding energy of this 
system is calculated. The obtained results agreed with the expected values of various 
theoretical methods. This approach can be applied for other three-body systems with variety 
of masses and charges. The obtained results are of significant importance for experimental 
and theoretical investigation of d− 3He nuclear fusion especially at low collision energies. 

In section 4, the obtained results show that the muon cycle coefficient increases almost 
slowly with the density of deuterium and tritium mixture. The energy required to produce a 
muon estimated to be about 5000 MeV. Since each deuterium and tritium fusion generates 
17.6 MeV, we see that the number of catalysis reactions by a muon should be about 285 to 
reach the scientific break-even (1/3 of the commercial break-even). The break-even point is 
reached when the fusion process generates as much energy as was initially put in (i.e., the 
energy output equals the energy input). The output energy of the number of catalysis 
reactions by a muon in it’s lifetime (ǕǍ = 2.197 Ǎsec), is much smaller than the input energy 
required to produce a muon. Therefore, a fusion energy system based on the muon 
catalyzed fusion in deuterium and tritium fuel seems to be viable at plasma conditions with 
fuel densities about 100 times of L.H.D. 
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