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1. Introduction 

Among the equivalent formulations of quantum mechanics, Heisenberg’s matrix mechanics 
and quantum theory, based on the Schrödinger wave equation, are the most technically 
advanced. Since the advent of quantum mechanics, these two schemes have provided the 
mathematical tools and the primary basis for the description of quantum phenomena. The 
path integral method developed by Dirac and Feynman has important advantages in the 
quantisation of gauge theories. We discuss here the formulation of quantum mechanics in 
phase space, known as deformation quantisation.  
Deformation quantisation uses the Wigner-Weyl association rule (Weyl, 1927, 1929, 1931; 
Wigner, 1932) to establish a one-to-one correspondence between the functions in the phase 
space and the operators in the Hilbert space. Wigner’s function appears as the Weyl symbol 
of the density matrix. A consistent dynamical description of the systems with the help of the 
Wigner function leads to deformation quantization. A useful formulation of the Wigner-
Weyl association rule was proposed by Groenewold (1946) and Stratonovich (1957).  
Groenewold introduced a non-commutative associative -product (star-product) of the 
functions in the phase space (Groenewold, 1946). The evolution of the quantum systems is 
determined by the antisymmetric part of the -product (Groenewold, 1946; Moyal, 1949), 
known as the Moyal bracket. The Moyal bracket represents the quantum deformation of the 
Poisson bracket. Deformation quantisation preserves many features of classical Hamiltonian 
dynamics. 
The formulation of deformation quantisation is based on the Wigner function and the Moyal 
bracket (i.e., the -product). The Wigner-Weyl association rule is necessary to prove the 
equivalence of deformation quantisation and the standard formalisms of quantum 
mechanics.  
Extensive literature has reported on the formulation of quantum mechanics in the phase 
space and the -product. We refer the reader to excellent reviews by Bayen et al. (1978a, 
1978b), Carruthers & Zachariasen (1983), Balazs & Jennings (1984), Hillery et al. (1983), 
Karasev & Maslov (1991), and Osborn & Molzahn (1995), where one may find additional 
references. Wigner’s function, as a fundamental object of deformation quantisation, has 
numerous applications in many-body physics, kinetic theory, collision theory, and quantum 
chemistry. Transport models, originally created to simulate chemical reactions, have been 
modified and are widely used to describe heavy-ion collisions. 
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Deformation quantisation does not have many recognised successful applications in 
quantum theory. Recently, attempts have been made to use specific properties of the 
formalism to investigate semiclassical expansion (Osborn & Molzahn, 1995; McQuarrie et 
al., 1998) and to calculate the determinants of one-loop operators in field theory (Pletnev & 
Banin, 1999; Banin et al., 2001) and the high-order corrections to the Bohr-Sommerfeld 
quantisation rule (Gracia-Saz, 2004; Cargo et al., 2005). Potential applications of deformation 
quantisation in transport models are presented in this review.  
Transport models for heavy-ion physics are designed for phenomenological descriptions of 
the complex dynamics of nuclear collisions. Several types of advanced transport models are 
based on the Boltzmann-Uhlenbeck-Ueling equations (BUU) (Blaettel et al., 1993), 
(relativistic) quantum molecular dynamics (QMD/RQMD) (Sorge et al., 1989; Aichelin, 1991; 
Faessler, 1992), or antisymmetrised molecular dynamics (AQMD) (Feldmeier & Schnack, 
1997). These approaches have the correct classical limit and they contain special plug-ins 
and quantum-mechanical attributes, such as Pauli blocking for binary collisions of fermions. 
Numerical solutions are implemented through the distribution of test particles (BUU) or 
centroids of wave packets (QMD, AQMD) for classical trajectories in the phase space. For 
AQMD, the wave packets are antisymmetrised in their parameters. The transport models 
provide a solid basis for a phenomenological description of a variety of complex nuclear 
collisions phenomena. However, quantum coherence effects and non-localities are beyond 
the scope of these models. The internal consistencies of the approximations in the models 
remain a subject of debate, promoting further developments (see, for example, papers by 
Kohler (1995) and Feldmeier & Schnack (1997) and references therein). 
The most striking feature of the transport models is the depiction of the trajectories in the 
phase space, which are test particles or centroids of wave packets. The evolution of the 
system of classical particles can be calculated using standard programs to solve first-order 
ordinary differential equations (ODEs). At the same time, the evolution of wave functions of 
many-body systems is a field-theoretic problem with an infinite number of degrees of 
freedom that cannot be solved either analytically or numerically. 
Any simulation of many-body quantum dynamics must be based on a concept of 
trajectories, which is the only attribute allowing access to an approximate description of 
complex quantum systems. 
The concept of phase-space trajectories arises naturally in the formalism of deformation 
quantisation through the Wigner transformation of the operators of the canonical 
coordinates and momenta in the Heisenberg representation. These trajectories satisfy the 
quantum version of Hamilton’s equations (Osborn & Molzahn, 1995; Krivoruchenko & 
Faessler, 2006b) and are the characteristics by which the time-dependent Weyl’s symbols for 
the other operators can be determined (Krivoruchenko & Faessler, 2006b; Krivoruchenko et 
al., 2006c, 2007). In the classical limit, quantum characteristics reduce to classical trajectories. 
Knowledge of the quantum phase flow, i.e., the quantum trajectories, is equivalent to a 
complete knowledge of the quantum dynamics. 
In this chapter, we provide an introduction to deformation quantisation and demonstrate 
the usefulness of the formalism in solving the evolution problem for many-body systems in 
terms of semiclassical expansion. We show that, in any fixed order of expansion over the 
Planck’s constant, the evolution problem can be reduced to a statistical-mechanics problem 
of calculating an ensemble of quantum characteristics in the phase space and their Jacobi 
fields. In comparison with the corresponding rules of classical statistical mechanics, the 
rules for computing the probabilities and time-dependent averages of observables are 
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modified. The evolution equations represent a finite system of first-order ODEs for quantum 
trajectories in the phase space and the associated Jacobi fields (Krivoruchenko et al., 2006c). 
The method of quantum characteristics allows the consistent inclusion of specific quantum 

effects, such as non-localities and coherence, in the description of the propagation of 

particles in the transport models. 

In the next section, the Wigner-Weyl association rule is described, and the concept of the -

product is introduced using the Groenewold method (Groenewold, 1946). Section 3 is 

devoted to the properties of the quantum characteristics. We explore the transformation 

properties of the canonical variables and functions in phase space under unitary 

transformations in Hilbert space using the Wigner-Weyl correspondence rule. The role of 

quantum characteristics coincides with the role of characteristics in a solution of the classical 

Liouville equation. Section 4 starts from the semiclassical expansion of -functions around 

the normal functions. The results are then applied to the decomposition of the functions of 

the quantum characteristics. Quantum characteristics, when expanded in a power series of 

Planck’s constant, are found by solving a coupled system of ODEs for quantum 

characteristics and the associated Jacobi fields. The numerical methods for solving many-

body scattering problem, including the rule for the calculation of the average values of 

physical observables, are discussed in Section 5. Special features of the scattering problem 

are discussed in Section 6. 

In the field of deformation quantisation, the terminology is not well established. 

Deformation quantisation is synonymous with Weyl-Groenewold quantisation and -

product quantisation. The -product is synonymous with the Moyal product. Wigner’s 

image of an operator is Weyl’s symbol. The Moyal bracket is also known as the sine bracket. 

The quantum Liouville equation is synonymous with the Groenewold equation and is the 

Wigner image of the von Neumann equation. 

2. The Wigner-Weyl association rule, the -product and the Wigner function 

In Hamiltonian formalism, classical systems with n degrees of freedom are described by 2n 
canonical coordinates and momenta 

2n( )i 1 n
1 nξ = q ,...,q ,p ,...,p .R

 

The Poisson bracket for these variables takes the simple form 

 { }k l klξ ,ξ = -I . (1) 

The matrix 

n

n

0 -E
I =

E 0
, 

where nE  is the identity matrix, endows the phase space with a symplectic structure. In the 

following, we use the form ijI  to lower and raise the indices, e.g., ji ji
j i ijA = A I , A = I A ,  

where ji
ijI = I  and A  is a vector in the phase space. 

In quantum mechanics, the canonical variables are mapped into operators of the canonical 
coordinates and momenta in a Hilbert space: 

www.intechopen.com



 
Some Applications of Quantum Mechanics 70

i 1 n
1 n( ,..., , ,..., ) ( ( ))  2 nOp L Rx q q p p . 

These operators obey the commutation relations 

 k l[ , ]  kl= -i Ix x . (2) 

The operators ( ( )) 2 nOp L Rf  are denoted by Gothic letters, and the functions in phase space 
2n

R  are denoted by Latin letters. 

The Wigner-Weyl correspondence iiξ x  extends to arbitrary functions and operators. A 

set of operators ( ( )) 2 nOp L Rf  in the Hilbert space is a set closed under multiplication by c-

numbers and summation. This set forms a vector space V . The elements of its basis can be 

numbered by the phase space coordinates 2niξ R . Typically, the Weyl-Groenewold basis is 

used: 

 k( ) (2 ) ( ) exp( ( ) )
(2 )



2n
n 2n

kn

d ǈ iξ = π ǅ ξ - = - ǈ ξ -
π

B x x . (3) 

The vectors ( )ξ VB  satisfy the following properties: 

 

2n

2n 2n

2n
'

( ) ( ),

( ) 1,
(2 )

( )Tr[ ( ) ] ,
(2 )

[ ( )] 1,

[ ( ) ( )] (2 ) ( '),

[ ( ) ( ) ( )] (2 ) ( )exp( )(2 ) ( ),
2

( )exp( ) ( ) (2 ) ( ') (
2

2n

n

2n

n

n

n n
ξξ

n
ξξ

ξ = ξ

d ξ ξ =
π

d ξ ξ ξ =
π

Tr ξ =

Tr ξ ξ' = π ǅ ξ - ξ
i

Tr ξ ξ' ξ'' = π ǅ ξ'- ξ π ǅ ξ - ξ''

iξ - ξ' = π ǅ ξ - ξ












 

 

B B

B

B B f f

B

B B

B B B

B B B



 ),ξ'

 (4) 

where ξξ'  is the Poisson operator 

k l

 
 


kl

ξξ' = -I
ξ ξ'

 . 

In Equation (4), the first line is obvious. The equations in lines two to five are equivalent to 
Equations (4.15) – (4.18) in Groenewold (1946). The last equation can be found, e.g., in 
Krivoruchenko et al. (2006a). The equation in the 6th line is a consequence of the 5th and 7th 
equations.  
The Wigner-Weyl association rule ( ) f ξ f  takes, in the basis ( )ξB , the simple form 

(Groenewold, 1946; Stratonovich, 1957): 

 ) [ ( ) ],f(ξ = Tr ξB f  (5) 
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 ( ) ( ).
(2 ) 

2n

n

d ξ
= f ξ ξ

π
f B  (6) 

In particular, i i i[ ( ) ] ξ = Tr ξr B x . The reciprocal relation i iξ r , defined by the second 
line, also holds.  
The function ( )f ξ  can be interpreted as a coordinate of the operator f  in the basis ( )ξB , and 

[ ( ) ]Tr ξB f can be viewed as the scalar product of ( )ξB  and f . Other operator bases are also 
discussed (Balazs & Jennings, 1984).  

The set ( ( ))2 nOp L R  is closed under the addition and the multiplication of the operators. 

Thus, vector space V  acquires the structure of associative algebra. For any two functions 

( )f ξ  and ( )g ξ , a third function can be constructed (Groenewold, 1946): 

 ( ) ( ) [ ( ) ]f ξ g ξ Tr ξ B fg . (7) 

The operation is called star-product (-product) of ( )f ξ  and ( )g ξ . The explicit form of -
product is as follows 

 ( ) ( ) ( )exp( ) ( )
i

f ξ g ξ = f ξ g ξ
2

  , (8) 

where  ξξ  . The -product splits into symmetric and skew-symmetric parts 

   
 i

f g f g f g
2

 .   (9) 

The skew-symmetric component is known as the Moyal bracket (Groenewold, 1946; Moyal, 
1949). In the classical limit, the Moyal bracket f g  turns into the Poisson bracket 
{ , } ( ) ( )f g f ξ g ξ . 
Weyl’s symbol of the symmetrised product of the operators of the canonical coordinates and 
momenta )( ... s1 2 ii ix x x  coincides with the dot (ordinary) product of the associated canonical 
variables 

2 s1 i( i) i[ ( ) ... ] ...s1 2 ii iTr ξ = ξ ξ ξB x x x , 

which is explicitly symmetric for permutations of the indices. The symmetrised products of 

the Hermitian operators iu  correspond to the symmetrised -products of the associated 

real functions ( ) [ ( ) ]i iu ξ = Tr ξB u : 

( ) )([ ( ) ... ] .   s s1 12 2i ii ii iTr ξ u (ξ) u (ξ) ... u (ξ)B u u u
 

The ○-product is not associative. Its order here is not important, because the indices are 

symmetrised. 

Weil’s map from functions to operators was originally formulated in terms of the Taylor 
expansion. Consider the decomposition of a function near zero 

( )1
( )

!

 
 

 s1

s1

s
ii

ii
s=0

f 0
f ξ = ξ ...ξ .

s ξ ... ξ  
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According to the Weyl rule (Weyl, 1927, 1929, 1931), the function ( )f ξ  maps into the 

operator Tf  

T ( )

(0)1
...

!






 

 s1 2

s1

s
ii i

ii
s=0

f

f
=

s ξ ... ξ

f x

x x x
. 

Note that the indices of summation over the coordinate components are automatically 
symmetrised. A simple calculation,  

2

2

T( ) [ ( ) ]

(0

,

)1

!

(0)1

!







 


 





s1

s1

s1

s1

T

s
ii i

ii
s=0

s
ii i

ii
s=0

f ξ = Tr

f
= ξ ξ ... ξ

s ξ ... ξ
f

= ξ ξ ...ξ
s ξ ... ξ

  

B f

 

shows that the Taylor expansion of the product of the operators of the canonical coordinates 
and momenta provides the correspondence rule, completely equivalent to Equation (6). 
Thus, we obtain T Tf (ξ) = f(ξ) f f .  

For any operator ( ( )) 2 nOp L Rf , one may find a function f(ξ)  such that = f( )f x . This 

property shows the completeness of the set of operators of canonical coordinates and 

momenta in ( ( ))2 nOp L R . 

The average value of a physical observable f  is determined by the trace of fr , where r  is 

the density matrix, or by averaging the function f(ξ)  over the Wigner function 

 ( ) [ ( ) ].W ξ = Tr ξB r  (10) 

Because [ ] = 1Tr r , the Wigner function is normalised to unity 

( ) 1
(2 )

2n

n

d ξ
W ξ =

π 
. 

The average value of f  is given by 

 [ ] ( ) ( ) ( ) ( )
(2 ) (2 )  

2n 2n

n n

d ξ d ξ
= Tr = f ξ W ξ = f ξ W ξ

π π
f fr . (11) 

In this case, the -product of ( )f ξ  and ( )W ξ  can be replaced by a dot product, because the 
derivatives of the Poisson operator are reduced to surface integrals and can be omitted. 
Not every normalised function in phase space can be interpreted as the Wigner function. 
The eigenvalues of the density matrix are nonnegative. For each density matrix, one may 

then find a Hermitian matrix 1 / 2r , such that 1 / 2 1 / 2r r r . For any Wigner function ( )W ξ  a 

function 1/2( )W ξ  exists, such that 1/2 1/2( ) ( ) ( )W ξ W ξ W ξ .  
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For a pure state, =|ψ >< ψ|r , and the Wigner function equals ( )W(ξ) =< ψ| ξ |ψ >B . To 

show that the Wigner map, which is described in standard textbooks, is equivalent to 

Equation (5), we first find the mixed matrix elements of the basis vectors of V : 

n

| ( )|

2
2 exp ( )·( ) |

 

       
 

x q,p k

i
p k q x x k

B

,
 

where x and q are the canonical coordinates and k and p
 
are the canonical momenta. After 

simple transformations, the usual expression then follows: 

( ) | ( )|

| | ( )| |
(2 )

| exp( ) | .
2 2

  

    

      









n n

n

n

W q,p ψ q,p ψ

d xd k ψ x x q,p k k ψ
π

x i x
d x ψ q xp q ψ

B

B  

Applying the Schwartz inequality to the integral and taking the normalisation condition 

| 1ψ ψ  into account, one obtains the constraint ( ) n n-2 W ξ 2  (Baker, 1958). The value 

of ( )W ξ  is bounded, provided |ψ >  has a finite norm, which is the case for bound states of 

discrete spectrum and wave packets in the continuum. 

3. Quantum trajectories in phase space as characteristics 

One-parameter unitary transformations acting on the operators of the canonical coordinates 

and momenta generate the trajectories in the phase space by Wigner’s association rule. 

Knowledge of these trajectories is equivalent to knowledge of the quantum dynamics. The 

time-dependent symbols of the operators are functions of the trajectories. In this sense, the 

phase-space trajectories play a special role, similar to the role of classical trajectories in 

solving the Liouville equation. 

The Liouville equation is a partial differential equation (PDE). Its general solution can be 
represented by its characteristics. The characteristics of the classical Liouville equation are 
the classical trajectories of the particles. Quantum trajectories solve the Groenewold 
evolution equation. For this reason, we call them "quantum characteristics."  

3.1 Wigner map of unitary transformation 

Consider a unitary transformation acting on the operators '  f f U fU , where 

1  U U UU . The operators of the canonical coordinates and momenta are transformed 

according to the rule i i   ix x' U x U , while their Weyl’s symbols are transformed 

according to the rule 

 ( ) [ ( ) ]. i i iξ ξ' = u ξ Tr ξ iB U x U   (12) 

Thus, unitary transformations in the space n( ( ))2Op L R  generate, through the Wigner 
association rule, a coordinate transformation in the phase space 2n

R . Such transformations 
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are not canonical (see below), and we call them "unitary transformations". The 
transformation law of functions under the unitary transformation takes the form 

 

s2

( ) ( ) [ ( ) '] [ ( ) ]

1
[ ( ) ... ]

s!

1
[ ( ) ... ]

s!

1
( ) ... ( )

s!

( (

( )

















  


  


  









s1

2

2

2

s1

s1 2

s1

1

s1 2

s
ii i

ii i
s=0

s
ii i

ii i
s=0

s
ii i

ii i
s=0

f ξ f' ξ Tr ξ Tr ξ

f(0)
Tr

ξ ξ ... ξ
f(0)

= =

=

= Tr
ξ

=

ξ ... ξ
f(0)

u ξ u ξ u ξ
ξ ξ ... ξ

f u

  



B f B U fU

B U x x x U

B x' x' x'

)).ξ

 (13) 

This expression defines a composite -function. The -product here may be substituted by 
the ○-product. The ○-product contains even powers of the Planck's constant in its 

decomposition. Consequently, the expansion around ( ( ))f u ξ  contains even powers of  . 

Provided that ( )u ξ  is a linear function, ( ( )) ( ( ))f u ξ = f u ξ . In the general case, the 

composition law of two functions is not local: ( ( )) ( ( )) ( ( )) f u ξ f u ξ f u ξ .  

3.2 Conservation of Moyal bracket 

The antisymmetrised products of an even number of operators of canonical coordinates and 
momenta are c-numbers. These products are invariant under unitary transformations:  

 1 1] ][ [... ... 2s 2s2 2i ii i i i=U x x x U x x x . (14) 

In the phase space, this equation is expressed as:  

1 1] ][ [( ) ( ) ... ( )

.

...

1
( )

2 (2s)!

2s 2s2 2

2s-1 2s1 2

i ii i i i

s
i ii iǔ

ǔ

u ξ u ξ u ξ = ξ ξ ξ

-i
= - I ...I

   
 
 



     
 

The summation is over all of the permutations of the indices. The sign is plus or minus, 

depending on whether the sequence  is an even or odd permutation of (i1,i2,...,i2n). The 

invariance of the antisymmetrised products of even numbers of operators of canonical 

coordinates and momenta constitutes a quantum analogue of the Poincaré theorem on the 

conservation of 2n forms in classical Hamiltonian dynamics (Krivoruchenko et al, 2006c). In 

particular,  

 ( ) ( ) j j iji iu ξ u ξ = ξ ξ = -I . (15) 

The real functions ( )iu ξ  are associated, by virtue of Equation (6), with the Hermitian 

operators ix' . If ( )iu ξ  satisfies Equation (15), then the operators ix'  obey the commutation 

relations 

j ji[ ( ), ( )] [ , ] ijiu u = = -i Ix x x x . 
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We are mainly interested in the case in which U  is the evolution operator. Applying a 

unitary transformation to the product fg , we obtain the function ( , )( ) ( )| Ǉ u ξ Ǖf Ǉ g Ǉ   that is 

associated with the expression U fgU  and the function ( ( )) ( ( ))f u ξ g u ξ    associated with 

the expression    U fU U gU . These operators coincide, so their symbols coincide: 

 ( , )( ) ( )| ( ( )) ( ( ))Ǉ u ξ Ǖf Ǉ g Ǉ = f u ξ g u ξ    .  (16) 

In the first case, the -product is calculated with respect to iǇ , and it is calculated with 
respect to iξ  in the second case. Equation (16) shows that the -product can be calculated 
in the original coordinate system prior to the change of the variables, or we can first change 
the variables and then compute the -product. Equation (16) holds separately for the 
symmetric and antisymmetric parts of the -product. 
Thus, we can calculate the -product for any of the unitary equivalent coordinate systems. 

Dynamic equations constructed using the summation and multiplication of -functions are 

generally covariant under unitary transformations in phase space. The -product is not 

invariant under canonical transformations.  
Example: The classical Liouville equation is covariant under canonical transformations. This 
equation, however, is not covariant under unitary transformations. The quantum Liouville 
equation, i.e., the Wigner map of the von Neumann equation, is covariant under unitary 
transformations and is not covariant under canonical transformations. 

3.3 Phase flow generated by an evolution operator  

The one-parameter family of the unitary transformations describe the evolution of quantum 
systems, and it is usually parameterised in the form 

( () exp )

iǕ = - ǕU H , 

where H  is the Hamiltonian operator. The functions ( )iu ξ , defined in Equation (12), acquire 

the dependence on the parameter Ǖ , so that we can write ( )iu ξ,Ǖ . These functions determine 

the quantum phase flow, which is a quantum-mechanical analogue of the phase flow in the 

Hamiltonian formalism of classical mechanics. 

Equation (13) shows that the evolution of the symbols of the operators in the Heisenberg 

representation is completely determined by the functions ( )iu ξ,Ǖ . 
We use the term "canonical transformation" in the conventional sense to refer to the 
coordinate transformations that preserve the Poisson bracket. The transformations 
preserving the Moyal bracket are unitary transformations. These transformations 
correspond to the action of a unitary operator in the Hilbert space. The unitary 
transformation in the phase space represents the quantum deformation of the canonical 
transformation.  

Quantum characteristics arise in Heisenberg’s matrix mechanics. Suppose that we have solved 

the evolution equations for the operators of the canonical coordinates and momenta in the 

Heisenberg representation. These operators evolve according to i i( ) ( ) ( ) Ǖ Ǖ Ǖix x U x U . We 

use the earlier assertion that, for any operator f , one can find a function ( )f ξ  through which 

f  is represented in the form ( )f x . The same operator f  at time Ǖ  is equal to 
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( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( ( ))     Ǖ Ǖ Ǖ Ǖ f Ǖ f Ǖ Ǖ f Ǖf U fU U x U U xU x . 

This equation shows that the operators of the canonical coordinates and momenta are 

characteristics that determine the evolution for all of the operators in ( ( ))2 nOp L R . This 

property is fully transferred to the phase space upon deformation quantisation. 

3.4 Energy conservation and composition law for trajectories 

Energy conservation in the process of evolution means 

 ( ) ( ( ))H ξ = H u ξ,Ǖ , (17) 

where ( ) [ ( ) ]H ξ = Tr ξB H is the Hamiltonian function of the quantum system. We see that 
energy is conserved along quantum characteristics, but not in the geometric sense. The -
product sign in the argument indicates the non-local nature of the conservation law. 
The law of composition of the particle trajectories also has a non-local character: 

( ) ( ( ) )1 2 1 2u ξ,Ǖ + Ǖ = u u ξ,Ǖ ,Ǖ . 

Such compositions, but without the -product, are valid for the trajectories of classical 
particles. The -product does not allow considering the motion of particles as movement 
along a certain trajectory in the geometrical sense. 

3.5 Quantum Hamilton equations  

Quantum trajectories can be found by solving Hamilton’s equations, which can be written in 
one of four equivalent forms: 

 

( , )

( , )

{ }|

|














i i
Ǉ u ξ Ǖ

i
Ǉ u ξ Ǖ

i i

i

u (ξ,Ǖ) = Ǉ ,H(Ǉ)
Ǖ

= Ǉ H(Ǉ)

= u (ξ,Ǖ) H( u (ξ,Ǖ))

= u (ξ,Ǖ) H(ξ),






 (18) 

with the initial conditions 

i iu (ξ,0) = ξ . 

These equations appear as Wigner’s image of the evolution equations for operators of the 

canonical coordinates and momenta in the Heisenberg representation. The equivalence of 

the different records of the right-hand side can be verified with the help of the above-

described properties of the -product, the rules of substitution (Equation (16)), and the 

condition of energy conservation (Equation (17)). Note that ,i{ ( )} ( ) ( )i iǇ ,H Ǉ = Ǉ H Ǉ = H Ǉ . 

The substitution ( , )Ǉ u ξ Ǖ  in the first line of Equation (18) leads to a modification of the 

classical expression for the right-hand side and, correspondingly, to quantum deformation 

of the classical phase flow. The value of  iu (ξ,Ǖ) / Ǖ  depends on the phase space coordinate 
iu (ξ,Ǖ) , as in classical mechanics, and on the infinite number of partial derivatives of iu (ξ,Ǖ)  

as a specific manifestation of the quantum non-locality.  
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An equivalent form of Equation (18), using a cluster expansion of the -exponentials, was 
given by Osborn & Molzahn (1995). Equation (18) was found independently by 
Krivoruchenko & Faessler (2006b).  

3.6 Quantum Liouville equation  

The functions corresponding to physical observables evolve in the Heisenberg 

representation according to the equation 

 ( ) Tr[ ( ) ( ) ( )] ( ( ),0) f ξ,Ǖ = Ǖ Ǖ = f u ξ,ǕB U fU , (19) 

while the Wigner function remains constant. The evolution law can be expressed in terms of 

Green's function in the phase space as 

( ) ( 0)
(2 ) 

2n

n

d ǈ
(ξ,Ǖ) = G ξ,ǈ,Ǖ f ǈ,

π
f . 

With the help of quantum characteristics, a compact expression for Green’s function can be 
written as 

2n( ) (2 ) ( ) nǅ uG ξ,ǈ,Ǖ = π (ξ,Ǖ) - ǈ . 

The function ( )f ξ,Ǖ  obeys the Groenewold evolution equation (Groenewold, 1946) 

 ( )





f f(ξ,Ǖ) = (ξ,Ǖ) H ξ
Ǖ

, (20) 

which is the Wigner map of the evolution equation of the operator f  in the Heisenberg 

representation. The right-hand side can be replaced by the equivalent expressions 

( ( ))f(ξ,Ǖ) H u ξ,Ǖ  or ( , )( )|  Ǉ u ξ Ǖ(Ǉ,0) Hf Ǉ  . 

The solutions to the evolution equations for the quantum characteristics and functions 

( )f ξ,Ǖ  can be represented as a formal power series in the parameter  : 

 





s

(...(( ( )) ( )) ( ))
!

( (( ( ) ( )) ( )) ( )).
!





  

  





s
i i

s=0

s

s=0 s

Ǖ
u (ξ,Ǖ) = ξ H ξ H ξ ...H ξ ,

s

Ǖ
f( u(ξ,Ǖ)) ... f ξ H ξ H ξ ...H ξ

s
=

 (21) 

Unitary coordinate transformations are canonical to the first order in   (Dirac, 1930; Weyl, 

1931).  
For higher orders, deviations from the canonicity arise (Krivoruchenko & Faessler, 2006b). 
Until recently, these deviations were not well understood.1 The infinitesimal 
transformations generate canonical or unitary global transformations depending on how we 

                                                                 
1 In the papers by B. Leaf, J. Math. Phys. 9, 769 (1968) and T. Curtright and C. Zachos, J. Phys. A 32, 771 
(1999), erroneous conclusions about the entire coincidence of classical and quantum trajectories can be 
found. 

www.intechopen.com



 
Some Applications of Quantum Mechanics 78

define the multiplication. If this is the usual dot product, then we obtain the canonical 
transformations. If this is the -product, then we obtain unitary transformations. 

If an operator A  commutes with H , then its symbol is preserved in the sense of 

( ) ( ( ))A ξ = A u ξ, . The density matrix of a stationary state commutes with H ; therefore, in 

the Schrödinger representation S S( ) ( ( ))W ξ = W u ξ,- , the Wigner function does not evolve. 

In the harmonic oscillator, the quantum trajectory depends linearly on iξ  and coincides 

with the classical trajectory. In this case, the -symbol in the argument of the Wigner 
function can be omitted, and we can write S S( ) ( ( ))W ξ = W u ξ,-  for a stationary state and 

S S( ) ( ( ),0)W ξ,Ǖ = W u ξ,-  for an arbitrary state.  

4. Semiclassical expansion of quantum characteristics 

The methods of this section apply to the evolution problem. The most promising 
applications appear to be connected to many-body scattering and transport models. 
The problem of evolution can by divided into two parts. First, we seek a solution to the 
quantum Hamilton equations. Second, we use Equation (19) to find the time-dependent 
symbols of the operators. The key issue is an efficient algorithm to calculate the -functions. 
These functions arise in the quantum Hamilton equations and in solving the evolution 
problem for functions. 

4.1 Semiclassical expansion of -functions 

We consider the semiclassical expansion of f( u(ξ, ))  around f(u(ξ, )) . The function f(ξ)  

can be represented through its Fourier transform 

 ( ) exp( ) ( )
(2 ) 

2n
k

kn

d ǈ i
f ξ = ǈ ξ f ǈ

π
. (22) 

Determining how to calculate exp( )U , where ( )


k
k

i
U = ǈ u ξ,Ǖ , is sufficient. With the help 

of Equation (13), we find  

 2 4 6
2 4exp( ) 1 + + + ( ) exp( )   U c c O U , 

where 

 
2 2

1
(2 3 )

48
1

(90( ) 60( ) 48( ) 45( )( )
23040

60( )( ) 20( )( ) 30(UUP U)P U)

1
(6 45 30( ) 40( ) 1

11520


2 2
2

2 2 2 2 2 2 2 2
4

2 2 2 2

4 4 4 4
1 2

c = - UUP U + UP U ,

c = UP U UP U + UP U P U + UUP U UP U + UP U UP U

                   + UUP U UP U + UUP U UUP U +

UUUUP U + UUUP U + UUP U + UUP U + 5 ).4UP U

 (23) 

The operator P acts as follows: 
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( ) ( )

,ijkl2 ,kl 2 ,kl 4
,kl ,k ,l ,ijkl

,ijkl ,ijkl4 4
1 ,ij ,kl 2 ,i , jkl

,ijkl ,ijkl4 4
,i , j ,kl ,i , j ,k ,l

AP B = A B ,  ABP C = A B C ,  AP B = A B ,

ABP C = A B C ,  ABP C = A B C ,

ABCP D = A B C D ,  ABCDP E = A B C D E ,

 

where 

 


 
1 1 s s1 s

1 s 1 ss1

s
j i j i,i ...i

,i ...i , j ...jii

A(ξ)
A(ξ) = ,  A(ξ) = A(ξ) I ...I .

ξ ... ξ
 (24) 

Osborn & Molzahn (1995) and Gracia-Saz (2004) developed a diagram technique to calculate 

Weyl’s symbols of composite operators for higher orders of the  -expansion. Equation (23) 
from Krivoruchenko et al. (2006c), obtained with the use of MAPLE, agrees with the 
calculation of Gracia-Saz (2004). 

The expansion of ( ( ))f u ξ,  is now straightforward. We replace    i
iǈ -i / u and 

( )  i iU u ξ / u  to obtain 

2

2
4

( ( )) ( ( )) ( ) ( ) ( ) ( ( ))
24

( ) ( ) ( ( )) ( ).
16

ji k ,lm
,l ,m ,ijk

ji ,kl
,kl ,ij

f u ξ,Ǖ = f u ξ,Ǖ - u ξ,Ǖ u ξ,Ǖ u ξ,Ǖ f u ξ,Ǖ

- u ξ,Ǖ u ξ,Ǖ f u ξ,Ǖ + O

 


 


 

The derivatives of ( ( ))f u ξ,Ǖ  are calculated with respect to u.  
As a simple application, one can find a semiclassical expansion of the Weyl symbol for the 
finite-temperature density matrix (Wigner, 1932): 

2 2
,lm ,kl 4

,l ,m ,kl3 2

( )
( ) exp(- )

( )
exp(- ) 1 + ( ) ( ) ( ) ( ) ( ) + ( ) .

24 16



 
  

 

  

H ξ
W ξ

T

H ξ
= H ξ H ξ H ξ H ξ H ξ O

T T T



 

After the replacement 1 / / T iǕ , the expression for the Weyl symbol of the evolution 

operator ( ) = exp( )

iǕ - ǕU H  is derived.  

The evolution operator and its Weyl’s symbol are singular as 0 . The expansion of the 

semiclassically admissible -functions starts, however, with a classical expression, which is 

independent of  . The question of what happened to the singularity arises. The answer is 

obtained by considering the time-dependent operator ( ) ( ) ( )Ǖ Ǖ= Ǖf U fU . The derivatives of 

( )Ǖf  of order k are expressed in terms of k commutators. Each commutator generates  . The 

commutator [ ]

i

,H f  and the high-order terms ] ]. ][ [ [ ..
  
i i i

, ,..., ,H H H f  are regular as 0 . 

Therefore the Weyl symbol of ( )Ǖf  has a classical limit. 

In transport models, the solutions to the evolution problem are based on solving systems of 
ODEs. We now turn our attention to the construction of the ODEs. 
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4.2 Semiclassical expansion of quantum Hamilton equations 

Suppose we have a system of N particles. The interaction of the particles is described by 
some potential. The initial-state wave function is assumed to be known. Consequently, the 
initial-state Wigner function is known. 
The first step in solving the evolution problem consists of finding the quantum 
characteristics, using Equation (18). We expand the solution in powers of Planck's constant 

 r( )


 i 2r i

r=0

u (ξ,Ǖ) = u ξ,Ǖ . (25) 

Here, ( )i
0u ξ,Ǖ is the classical trajectory starting at time 0Ǖ  at 2niξ R . The initial conditions 

for the quantum corrections 1r at 0Ǖ are then set equal to zero. As a result, 

 
i i
0

r

( 0) , 0

( ) 0, 1.
u ξ, = ξ r = ,

u ξ,0 = r
 (26) 

The right side of Equation (18) is the -function, so we use the decomposition  

 ( , )( ( )) { }| ( ( ) ))


  i i 2r i
Ǉ u ξ Ǖ r 0 r

r=0

F u ξ,Ǖ Ǉ ,H(Ǉ) = F u ξ,Ǖ ,...,u (ξ,Ǖ . (27) 

If the functions iu (ξ,Ǖ)  are known, then the functions ( ( ) ))i
r 0 rF u ξ,Ǖ ,...,u (ξ,Ǖ  are completely 

determined. ( ( ) ))i
r 0 rF u ξ,Ǖ ,...,u (ξ,Ǖ  also depends on the derivatives of ( ) )0 ru ξ,Ǖ ,...,u (ξ,Ǖ  with 

respect to iξ . In particular,  

 

( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

24
1

( ) ( ) ( )
16

i i
0 0 0

j ji i k l ,mn i
1 0 1 0 , j ,m 0 ,n 0 0 , jkl1 0

j k ,lm i
,lm 0 0 , jk0

F u = F u ,

F u ,u = u ξ,Ǖ F u - u ξ,Ǖ u ξ,Ǖ u ξ,Ǖ F u

- u ξ,Ǖ u ξ,Ǖ F u .

 (28) 

4.3 Jacobi fields 

The second line of Equation (28) contains the first- and second-order derivatives of 0
iu (ξ,Ǖ)  

with respect to iξ . Therefore, we should monitor the evolution of the trajectories and their 

derivatives with respect to the initial coordinates 

 
1 t 1 t

t i
i r
r , j ... j j j

( )
( )

...


 

u ξ,Ǖ
J ξ,Ǖ =

ξ ξ
.  (29) 

These values determine the decomposition of f( u(ξ, ))  and determine the high-order 

quantum corrections to the phase-space trajectories. 
We call these values "Jacobi fields". This term is adopted in Hamiltonian mechanics for the 

first-order derivatives of 0
iu (ξ,Ǖ) , that determine the stability of the systems. The value of 
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ji i
0, j 0( ) ( ) / J ξ,Ǖ = u ξ,Ǖ ξ  is known as the Jacobi matrix, and its determinant is called the 

Jacobian. In quantum mechanics, the derivatives of higher orders are involved. In the 
following, the number r is called the order of the Jacobi field, the number of lower indices t 
is called the degree of Jacobi field. 
In the notation of Equation (29), the first pair of evolution equations becomes 

 

( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

24
1

( ) ( ) ( )
16






i i
0 0

j ji i k l,mn i
1 0 , j 0,n 0 0 , jkl1 0,m

j k,lm i
0 0 , jk0,lm

u ξ,Ǖ = F u ,
Ǖ

u ξ,Ǖ = u ξ,Ǖ F u - J ξ,Ǖ J ξ,Ǖ J ξ,Ǖ F u
Ǖ

- J ξ,Ǖ J ξ,Ǖ F u .

 (30) 

In the first line, the classical Hamilton equations are recognisable. The second and third lines 

determine the lowest-order quantum correction to the classical trajectory.  

The system in Equation (30) is not yet closed. It needs to be supplemented by the equations 

of motion of ( )i
0, jJ ξ,Ǖ  and ( )i

0, jkJ ξ,Ǖ . These equations are obtained by taking the first- and 

second-order derivatives of the first equation with respect to the initial coordinates:  

 
,k( ) ( ) ( )

( ) ( ) ( ) ( ) + ( ) ( ).






i i k
0, j 0 0, j

i i l m i l
0, jk 0 ,lm 0, j 0,k 0 ,l 0, jk

J ξ,Ǖ = F u J ξ,Ǖ ,
Ǖ

J ξ,Ǖ = F u J ξ,Ǖ J ξ,Ǖ F u J ξ,Ǖ
Ǖ

 (31) 

Differentiating Equation (26) on iξ , we obtain the initial conditions for the Jacobi fields. In 

general, 

 

1 t

i i
r , j j

i
r , j ...j

( 0) 0

( ) 0, 0 2 or 1 1.



  

J ξ, = , r = ,

J ξ,0 = r = ,t r ,t
 (32) 

The coordinates iξ  enter Equations (30) and (31) as parameters. Thus, we meet a typical 

case of first-order ODEs, for the variables ( )i
0u ξ,Ǖ , ( )i

1u ξ,Ǖ , ( )i
0, jJ ξ,Ǖ and ( )i

0, jkJ ξ,Ǖ  with the 

initial conditions given in Equations (26) and (32). 
Here, we show a proof of the statement (Krivoruchenko et al., 2006c) that, in any fixed order 

of  , we still have a finite system of first-order ODEs for the variables ( )i
ru ξ,Ǖ  and the 

associated Jacobi fields. 

4.4 Reduction of the quantum Hamilton equations to a finite system of first-order 
ODEs 

Let us consider the effect of the -product. According to Equation (8), each power of   is 

accompanied by differentiation. For order 2s , expansion of ( ( ))iF u ξ,Ǖ  contains the 

derivatives of order 2s at most. Therefore, the Jacobi fields have the highest degree 2s (

1 2s t ). 
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This assertion can be strengthened. The number of indices t in reality also depends on the 

order r of the Jacobi fields 
1 t

i
r , j ... j ( )J ξ, . In the expansion in Equation (13), the derivatives of 

the trajectory i
0( )u ξ,Ǖ  of order  2s, the derivatives of the trajectory i

1( )u ξ,Ǖ  of order  2s – 

2, ..., and the derivatives of the trajectory i
s 1( )u ξ,Ǖ  of order  2 survive among all of the 

derivatives of orders  2s. The highest-order correction i
s( )u ξ,Ǖ  has no derivatives. Thus, 

the maximum number of lower indices of 
1 t

i
r , j ... j ( )J ξ, , involved in the expansion to order 

2s , depends on r and equals 2 2s r  ( 1 2 2  t s r ). 

Let us consider in more detail the equations of evolution to order 2s  for a fixed r  s.  
The first part of the ODE system can be written as 

 rr 0 1 0 1 -1, ,..., , , ,...,( )



i i
r ru = F u u u J J J

Ǖ
, (33) 

where the index r takes the values 1 ... s. In the argument for the function on the right-hand 
side, we dropped the indices of the trajectories and the Jacobi fields. Note that the time 
derivative depends on the Jacobi fields of order r – 1 at most. 
The higher-order corrections depend on the lower-order corrections. In the right-hand side 

of Equation (33), the Jacobi fields have the following degrees: 
1 t

i
0, j ... j ( )J ξ, - not more than 2r, 

1 t

i
1, j ... j ( )J ξ,  - not more than 2r - 2, and so on. In the highest order 2s -term, the maximum 

degree of 
1 t

i
r 1, j ... j ( )J ξ, , entering the right-hand side, is equal to 2s – 2r + 2. The functions 

r 0 1 0 1 -1r, ,..., , , ,...,( )i
rF u u u J J J  do not depend on the variables with r’ for r < r’. Equation (33) 

clearly allows the determination of the trajectories 0 s( ) )u ξ,Ǖ ,...,u (ξ,Ǖ , provided that the Jacobi 

fields are known.  
We now supplement the resulting system (Equation (33)) with the equations of evolution of 
the Jacobi fields. 

Consider first Equation (33) for r = 0, i.e., the classical Hamilton equations. The right-hand 
side depends only on 0( )iu ξ,Ǖ . Differentiating this equation from one to 2s times, we obtain 
evolution equations for the zero-order Jacobi fields of degrees t = 1 ... 2s. Equation (33) for r 
= 0 and the 2s of these equations form a closed system of ODEs whose solutions are well 
defined. 
As a next step we consider Equations (33) for r = 1. The right-hand side depends on the 

trajectories 0( )iu ξ,Ǖ  and 1( )iu ξ,Ǖ  and the Jacobi fields 
1 t0, ( )i

j ...jJ ξ,  for t = 1, 2. Differentiating 

this equation with respect to iξ  from one to 2s - 2 times, we obtain the evolution equations 

for the first-order Jacobi fields 
1 t1, ( )i

j ...jJ ξ,  of degrees t = 1 ... 2s - 2. After differentiating, the 

right-hand side depends on the Jacobi fields 
1 t

i
0, j ... j ( )J ξ,  of degrees  2s (= 2 + 2s - 2), while 

the Jacobi fields 
1 t

i
1, j ... j ( )J ξ,  arising from differentiating ( )i

1u ξ,Ǖ  do not have degrees that 

are higher than the number of derivatives taken, i.e., not above 2s - 2. Thus, to determine 

1 t

i
1, j ... j ( )J ξ, , additional information about the zero-order Jacobi fields is not required. From 

these equations, we can find 1( )iu ξ,Ǖ  and 
1 t

i
1, j ... j ( )J ξ,  of degrees t   2s - 2. 
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Further arguments are fairly obvious. We are moving in the direction of increasing the order 
of Jacobi fields. Consider the general case. We take the derivatives of Equation (33) from one 
to 2s - 2r times and obtain the evolution equations for the order-r Jacobi fields of degrees t = 
1 ... 2s - 2r. 

 
1 tr, j .. r.j r , ,..., , , ,...( ) ( ),


i i

0 1 0 1 rJ ξ, = G u u u J J J
Ǖ

. (34) 

Consider the right-hand side of Equation (33). It depends on the Jacobi fields 
1 t

i
0, j ... j ( )J ξ,  of 

degrees  2r. After differentiating one to 2s - 2r times, a dependence on the Jacobi fields 

1 t

i
0, j ... j ( )J ξ,  of degrees  2s (= 2r + 2s - 2r) is acquired. Consequently, for any r, the right-

hand side of Equations (34) depends on the zero-order Jacobi fields of degree 2s at most. 
Furthermore, the right-hand side of Equation (33) depends on the first-order Jacobi fields of 
degrees  2r - 2. After the differentiation, a dependence on the first-order Jacobi fields of 
degrees  2s - 2 (= 2r - 2 + 2s - 2r) occurs in Equation (34). The upper value is also 
independent of r.  
For a fixed r, Equation (33) depends on the h–order Jacobi fields (h < r) of degrees t  2r – 2h. 

Thus, the evolution equations for the Jacobi fields 
1 t

i
r , j ... j ( )J ξ,  of degrees t = 1 ... 2s - 2r 

contain the trajectory functions r( ) ( )0u ξ,Ǖ ,...,u ξ,Ǖ  and the Jacobi fields 
1 t

i
h , j ... j ( )J ξ,  of orders 

h = 0 ... r and degrees t = 1 ... 2s – 2h.  
The truncation of the expansion at any s provides us with the complete system of first-order 

ODEs for the trajectories and the Jacobi fields. The system is determined by Equations (33) 

and (34) with the initial conditions given in Equations (26) and (32). 

In terms of the mathematical induction, the above arguments indicate that Equations (33) 

and (34) are sufficient to determine the trajectories and the Jacobi fields for some r, provided 

that the trajectories and the Jacobi fields of lower orders < r are determined. We have seen 

that this is true for r = 0, 1; therefore, it is true for all r. 

4.5 Perspectives of transport models 

We show the lists of the dynamical variables and the numbers of the independent degrees of 
freedom in the decomposition of the quantum Hamilton equations up to the fourth order in  :  

0
0

2
0 0, 0,

1

2

4
0 0, 0, 0, 0,

1 1, 1,

2

2 3 4

: ( )

2

: ( )& ( ), ( )

( )

2 (2 + 3 + 2 )

: ( )& ( ), ( ), ( ), ( )

( )& ( ), ( )

( )

(18 + 43 + 47 + 20 + 4 ) / 3













i

i i i
j jk

i

i i i i i
j jk jkl jklm

i i i
j jk

i

u ξ,Ǖ
n

u ξ,Ǖ J ξ,Ǖ J ξ,Ǖ

u ξ,Ǖ

n n n

u ξ,Ǖ J ξ,Ǖ J ξ,Ǖ J ξ,Ǖ J ξ,Ǖ

u ξ,Ǖ J ξ,Ǖ J ξ,Ǖ

u ξ,Ǖ

n n n n n
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Here, n = 3N, where N is the number of particles. In higher orders, lists of each line are 
extended by two units at the expense of the Jacobi fields of higher degrees. A new line 
containing the next order correction to quantum trajectory is also added. 

Table 1 shows the number of dynamic degrees of freedom for orders 0 , 2 , and 4  for the 
potential scattering of a proton (a nucleus) with nuclei. The spin degrees of freedom of the 
nucleons are disregarded. 
 

Reaction 0 2 4  
2H + 2H 24 7 824 499 224 

9Be + 9Be 108 647 568 671 416 128 

p + 238U 1 434 1 477 494 654 254 426 548 725 264 
238U + 238U 2 856 11 660 059 824 7 945 116 177 770 184 

Table 1. The number of dynamical degrees of freedom for the potential scattering of protons 
(nuclei) with nuclei of orders 0 , 2 , and 4 . 

As the number of Jacobi fields involved in the dynamics increases rapidly with the 
increasing order of the expansion, limitations due to the semiclassical expansion being 
restricted by computing power must be considered. Since the mid 1960's, the performance of 
computers has doubled approximately every 15 months. Due to technical peculiarities of 
processor manufacturing, this regime is expected to continue for 5 - 15 years. 
 

 

Fig. 1. Computer power in flops (floating points operations) required to simulate the proton-
nucleus and nucleus-nucleus collisions listed in Table 1 as compared with the growth in 
power of supercomputers (solid line), personal supercomputers (dashed line) and personal 
computers (dot-dashed line) starting from 1990. The orders 2  and 4  of the simulations 
are shown in square brackets.  

The theoretical foundations of the transport models used to simulate heavy-ion collisions 
were created in the late 1980s - early 1990s  (Sorge et al., 1989; Aichelin, 1991; Faessler, 1992; 
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Blaettel et al., 1993). Many uncertainties exist in the estimates of the times of the simulations. 
We assume that simulations of 238U + 238U collisions with a supercomputer required about 
one week in 1990. The calculations are restricted by zero order in the Planck’s constant; 
hence, Jacobi fields are not involved. We are dealing with 2856 dynamical degrees of 
freedom, as indicated in Table 1, plus the spin degrees of freedom of the nucleons and, 
potentially, the number of meson degrees of freedom which depends on the beam energy. 
The calculation time appears to grow linearly with the number of degrees of freedom. 
Hence, we obtain the estimates shown in Figure 1. 

2H + 2H reactions of order 4  and 9Be + 9Be reactions of order 2  could be simulated with 

supercomputers in 1999. 9Be + 9Be reactions of order 4 , p + 238U and 238U + 238U reactions of 

order 2  should be simulated with supercomputers by 2011 - 2016. A delay will occur, if 
computing power is limited to the use of personal supercomputers and computers.  
Since the early 1990s, computing power has increased by about five orders of magnitude. 

This dramatic rise in computing power makes it possible to include Jacobi fields in the 

collision dynamics, to extend beyond the purely classical treatment of phase-space 

trajectories, currently adopted in all of the transport models. 

5. Averaging over the Wigner function using the Monte Carlo method 

The reduction of the evolution problem to the search for quantum trajectories and the 

associated Jacobi fields makes it possible to calculate averages using the Monte Carlo 

method. The problem becomes a task of statistical physics with the modified rules of 

calculations of probabilities and average values.  

The average of the observable associated with an operator f  at time   can be found from the 

evolution equation (Equation (19)) for the associated function ( )f ξ . We then use the 

decomposition (Equation (13)). In the Heisenberg representation, the average is determined 

by the integral of ( )f ξ  multiplied by the Wigner function, given at the initial time 

( 0) ( )W ξ, W ξ  

 ( ) ( ( )) ( )
(2 ) 

2n

n

d ξ
f ξ,Ǖ = f u ξ,Ǖ W ξ

π
 . (35) 

We partition the phase space 2n
R  into two regions +  and - , so that  2n

   = R , in 

which the Wigner function is positive and negative, respectively. Therefore, we have 

( ) ( ) ( )+ -W ξ = W ξ - W ξ  with ( ) 0 W ξ  in  . Outside these regions, the functions ( )W ξ  

vanish. As a next step, we generate events in   (i.e., we select the points 2i n
 ξ R ), 

distributed according to the normalised probability densities ( ) / W ξ W , with 

( )
2

2n

n

d ξ
W = W ξ

( π )
  

. 

First consider the region + . We generate 2n + 1 numbers i( , )ξ Ǆ  with the values of iξ  

uniformly distributed in +  and the value of Ǆ  uniformly distributed in the interval 
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max(0, / ) W W , where max max( ( )) ξ
W = W ξ . If the joint probability density of the variables 

i( , )ξ Ǆ  is given by ( ( ) / ) ǉ W ξ W - Ǆ , then the marginal probability density of iξ  equals 

max /

0

( ) / ( ( ) / )

W W

W ξ W = ǉ W ξ W - Ǆ dǄ
 

    . 

To obtain a sample  i
aξ  of events a = 1,…,N+  distributed with the probability density 

( ) / W ξ W , it is straightforward to discard those generated numbers that do not satisfy the 

condition ( ) /  W ξ W Ǆ . 

Suppose we generated the numbers i( , )ξ Ǆ  at some step. If ( ) /  W ξ W Ǆ  holds, then we 

shift the number N+ of successful tests by one unit and assign i i
aξ = ξ  for a = N+. Next, we 

calculate the quantum trajectory ( )i
+ au ξ ,Ǖ  and the associated Jacobi fields, find the value of 

( ( ))+ af u ξ ,Ǖ  in the required order of the  -expansion and store the information. If the 

inequality ( ) /  W ξ W Ǆ  is not satisfied, then the event is simply discarded, and we 

generate the next set of numbers i( , )ξ Ǆ . The saved values  i
aξ  are distributed with the 

probability density ( ) / W ξ W . A similar procedure applies to the   region. 

Suppose we have generated N+ and N- successful events  aξ . To find the average value 

of ( )f ξ,Ǖ , the values ( ( )) af u ξ ,Ǖ  should be multiplied by W , divided by the number of 

successful tests and summed to give the following: 

 
N N

a 1 a 1

( ) ( ( )) ( ( ))
 

 


  

  + a a

W W
f ξ,Ǖ f u ξ ,Ǖ f u ξ ,Ǖ

N N
  . (36) 

This equation completes the reduction of the quantum evolution problem to the problem of 
calculating the statistical averages over an ensemble of quantum characteristics and 
associated Jacobi fields. 

6. The scattering problem 

In the scattering problem, elementary particles and bound states are considered on an equal 
footing. We fix the in- and out- scattering states at Ǖ =  and define clusters  of 
elementary particles and bound states with momenta 'p  and ''p  in the initial and final 
asymptotic states, respectively. Wigner functions have the form 

 

( ) (2 ) ( ) ('

'

)

( ) (2 ) ( ( )'













3
in α i α α

i αα
3

out α i α α
i αα

''

W ξ = π ǅ '- W ξ ,

W ξ = π ǅ - )W ξ .

p p

p p
 (37) 

Here, ( )i 1 n
1 nξ = q ,...,q ,p ,...,p , ξ  are the variables of the particles in cluster . Each cluster 

contains 
i

1

  particles, in total 

i

1 N
 

  . A similar situation holds for the partition of 

particles in the final state. 
The Wigner functions ( )inW ξ  and ( )outW ξ  are constructed as products of the asymptotic 

Wigner functions of non-interacting elementary particles and bound states. On the right 
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sides of Equation (37), '( ) ''( ) 1    W ξ W ξ  for elementary particles, while Wigner 

functions of bound states must be constructed on the basis of the wave functions of the 
bound states of the clusters. 

The transition probability is the square modulus of the S-matrix element 
2

fiw = out|in . In 

terms of the Wigner function, 

 ( ( )) ( )
(2 ) 

2n

fi out inn

d ξ
w = W u ξ,Ǖ W ξ

π
 , (38) 

where n = 3N. The technique described in the previous sections is fully applicable to 
Equation (38), and it applies to the scattering problem. 

7. Conclusion 

In this chapter, we discussed the basic properties of the formalism of deformation 
quantisation and its applications to the description of the evolution of many-body systems 
in terms of the expansion in powers of the Planck's constant.  

We described the dynamics of quantum systems in phase space. In our presentation, a 

special role is assigned to quantum trajectories i( )u ξ,Ǖ , which appear as the Weyl symbols 

of the operators of the canonical coordinates and momenta in the Heisenberg representation. 

These trajectories differ from the classical trajectories and from the de Broglie - Bohm 

trajectories. The transformation of the coordinate system in phase space, associated with 

quantum trajectories, preserves the Moyal bracket and does not preserve the Poisson 

bracket. In this sense, the quantum trajectories and phase flow, which they define, can be 

regarded as a quantum deformation of classical trajectories and phase flow in the formalism 

of classical Hamiltonian mechanics. The quantum trajectories satisfy the quantum Hamilton 

equations that are infinite-order PDEs. 
Deformation quantisation preserves many features of classical Hamiltonian mechanics. The 
classical Hamilton's equations are the characteristics equations of the classical Liouville 
equation for particle distributions in phase space. Accordingly, the solutions of the 
Hamilton equations contain all of the dynamic information needed to determine the time 
dependence of all of the observables, including the distribution function.  
The same situation occurs in quantum physics. Solutions to the quantum Hamilton 
equations define quantum trajectories, which possess all of the properties of characteristics. 
As a rule, characteristics satisfy a system of first-order ODEs, for example, the system of 
Hamilton’s equations. Characteristics are used further to construct solutions of first-order 
PDEs, such as the classical Liouville equation. The peculiarity of quantum mechanics is that 
quantum trajectories obey infinite-order PDEs, and they also solve evolution equations that 
are infinite-order PDEs. 
In the Heisenberg representation, the evolution of the Weyl symbol of operator can be 
written as 

( ) ( ( ),0)f ξ,Ǖ = f u ξ,Ǖ
. 

The relationships of fundamental interest, such as the one shown above, are formulated in 

terms of the -functions that are not local and form a special class of functionals. To date, 
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no effective methods exist for calculating -functions, with the possible exception of the 

expansion in powers of the Planck's constant. We have outlined recipes to eliminate the -

symbols from the arguments of composite functions using the semiclassical expansion.  

For any fixed order of the semiclassical expansion, the quantum characteristics are 
constructed by solving a finite system of first-order ODEs. This important circumstance 
makes it possible to approach the problem of quantum evolution of complex systems using 
numerically efficient ODE integrators. The evolution problem thereby reduces to a 
statistical-mechanics problem of constructing an ensemble of the quantum characteristics 
and the associated Jacobi fields. After constructing the quantum characteristics, the physical 
observables can be found without further recourse to quantum dynamics.  

A clear gap exists between the classical dynamics of a particle and its quantum dynamics. In 
the first case, we are dealing with a finite number of degrees of freedom. In the second case, 
we are dealing per se with field theory and an infinite number of dynamical degrees of 
freedom. We see that this gap is filled with the Jacobi fields of higher orders. By increasing 
the order of  -expansion, the number of Jacobi fields is growing rapidly. This provides, in 
principle, a smooth transition from classical dynamics to quantum dynamics and from 
mechanics to field theory. 
Quantum characteristics are useful for calculating the evolution of complex quantum 
systems - atoms, molecules and nuclei. The main advantage of deformation quantisation is 
its proximity to the classical picture of evolution in phase space. Specific quantum effects, 
such as coherence and non-localities, appear due to the increase in the number of dynamical 
degrees of freedom: Jacobi fields. The method of quantum characteristics allows for the 
consistent inclusion of non-localities and coherence in the transport models. 
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