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1. Introduction 

Optical waveguides find multifarious applications in integrated optical devices as well as 
various forms of communication systems. In order to get a good understanding of the 
optical features of waveguides, the basic requirement is to analyze the propagation 
characteristics of electromagnetic (EM) waves through the guide. In this context, the study 
of EM wave propagation through various types of optical fibers and waveguides has been 
greatly dealt with, which can be witnessed through the vast research reports by the relevant 
R&D community, as appeared in the literature. In this context, several forms of optical 
waveguides implementing different composite materials [1–6] and/or new forms of 

geometrical cross-sections [713] have been developed most of which are now widely 
recognized for their use in the fabrication of integrated optical circuits and in the laser beam 
technology. These include unconventional types of waveguide geometries too [3,13]. 

The study of EM wave propagation through conventional optical fibers does not involve 
much difficulty. Among the various types of fiber structures, fibers with tapers and flares 
have received considerable attention over the years because of their promising applicability 

in the area of fused fiber couplers [1430]. These tapered optical fibers (TOFs) are of 
practical interest for the fabrication of all-optical components as these miniaturized optical 
components find enormous potential applications in the areas related to optical sensors as 
well as other in-line integrated optic applications where directional couplers and beam 

expanders are being used [3134]. 

It is noteworthy that dielectric TOFs can be used with much efficiency in evanescent wave 
fiber-optic absorption sensors. This way, TOFs become one of the most promising means in 
high-speed transmission systems. Optically, the taper transitions transform the local 
fundamental mode from a core mode in the untapered fiber to a cladding mode in the taper 
waist – the basis of many of its all-optical applications including multiplexing and 
modulation. It is desirable for the transition to be as short as possible, allowing the resulting 
component to be compact and insensitive to the degradation of the environment. 

Treatment of TOFs presents formidable mathematical difficulties, and therefore, a 
recourse has to be taken to a variety of approximate methods. In the present article, we 
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make a review of the different types of reported TOFs. Starting with the very fundamental 
form of TOF, which is the dielectric TOF, we venture into the investigations of their other 
complicated forms, viz. helical clad TOFs (or TOFs with twists) and the liquid crystal 
TOFs. 

Fundamental studies on tapered guides include emphasis on optical fiber up-tapers for 
single-mode hardware applications and laser transmission evaluation. Among the various 
techniques, the implementation of split-step method would be one of the potential ways for 
the analytical treatment of a TOF, wherein the guide itself can be viewed in the analogy with 
a stack of large number of fibers of increasing (or decreasing) cross-sectional dimension with 
an end-to-end contact. The present article discusses the formulation of TOFs with regard to 
the various possible modes as it falls in the region of interest where one would require a 
suitable fiber design. In this context, the study of dispersion characteristics of 
fibers/waveguides has importance in the determination of their performance. Apart from 
that, the propagation of power also plays the determining role in selecting the suitability of 
the guide for specific applications. 

Helical structures find useful applications in all low- and medium-power traveling wave 
tubes, the analyses of which generally include waveguides under slow-wave structures with 
conducting sheath and tape helixes [35]. Such a concept can be implemented in the case of 
optical fibers taking into consideration the case of sheath helix windings [36]. A closer look 
at the dispersion behavior of such TOFs would be rather interesting as the helix pitch angle 
itself plays a major role to control the dispersion behavior of the guide. The present article 
covers all these issues corresponding to particular values of the helix pitch angle – windings 
perpendicular and parallel to the direction of EM wave propagation. Under the assumption 
of a small variation of the core radius in the longitudinal direction, it is demonstrated that 
the helix pitch greatly affects the propagation through the guide, making thereby the angle 
of pitch as one of the dominant controlling parameters, so far as the fiber design is 
considered. This is further verified through the comparison of results with those obtained 
for dielectric TOFs without helical windings. 

Liquid crystal fibers (LCFs) exhibit polarization anisotropy, which make them of much 

technological interest and useful for many optical applications [5,3739]. It is interesting to 
note that the macroscopic optical properties of liquid crystals can be manipulated by 
suitably applying the external electrical fields [40]. This feature essentially remains of 
promising use in optical sensing. Radial and azimuthal would be two different types of 
anisotropy, which LCFs may possess. The present article also incorporates a section that 
reports the study of an amalgamation of the taper structure and the clad anisotropy; it is 
demonstrated that the LCF structure supports enhanced power in the outer clad region – a 
much desirable characteristics for optical sensing and field coupling devices. 

The arrangement of the present article is made in this way – the entire volume is divided 
into five different sections. Apart from the ongoing Section 1, we described the dielectric 
TOFs in Section 2, where the attempts are made to discuss the dispersion relations of 
dielectric TOFs along with the sustained transmission of power. In Section 3, twisted 
TOFs are described where the twists are introduced through the helical wraps at the 
core/clad interface. In this section, the effects on the dispersion relations due to the angle 
of twists are emphasized. Section 4 incorporates the study of LCFs where the effects of 
introducing a radially anisotropic layer at the outermost TOF region are investigated. The 
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transmission of power through such LCFs is also touched upon. A concluding remark is 
presented in Section 5 that wraps the themes of the results obtained corresponding to the 
different types of TOFs. 

2. Dielectric tapered fibers 

The analytical treatment of TOFs remains much complicated. In order to deal with the 

problem, among the available techniques, the split-step method is the one which can be 

utilized with much accuracy. In this method, a TOF can be viewed in the analogy with a 

stack of large number of tiny sections of fibers with increasing (or decreasing) cross-

sectional dimension with an end-to-end arrangement. 

Fundamental studies of TOFs have been appeared in the literature [3134]. However, the 

dispersion characteristics of TOFs are less discussed. In this section, we present the 

formulation of TOFs in respect of possible sustained modes as it remains important to work 

on the fiber design based on the requirements. Further, the study of dispersion 

characteristics of fibers/waveguides is much important in the determination of their 

performance. In the following sub-sections, using Maxwell’s field equations, we make an 

attempt to present the dispersion characteristics and cutoff situations of a dielectric TOF 

with the special mention of the dispersion curves corresponding to different modes. The 

features of such TOFs in respect of the transmission of power are also described 

emphasizing the power confinement factor of the guide. 

2.1 Theoretical development 

To deduce the exact field solutions for dielectric TOFs, the full set of Maxwell’s equations 

resulting in the vector-wave equation for the system must be implemented. Fig. 1 illustrates 

the transverse view of a step-index dielectric TOF where the core/clad regions have 

refractive index (RI) values as n1 and n2, respectively. For simplicity, we consider the clad 

section as infinitely extended. We use the cylindrical polar coordinate system (, , z) for the 

analysis with the z-axis as the direction of propagation. We consider fiber with a linearly 

tapered core having varying taper radius  represented by the function 
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In eq. (1)  is the overall geometrical magnification factor, a0 is the fiber core radius at the 

input end and (z2 – z1) is the length of the taper [41]. Eq. (1) represents the function to 

determine the size of the varying radius along the tapered core. The function  and its 

derivative remain continuous at z = z1 and z = z2. The region z < z1 corresponds to the fiber 

pigtail whereas z > z2 to the expanded cylindrical section (straight tip) following the taper. 

For the analytical treatment, we follow the method reported earlier by Amitay et al. [41], i.e. 

z1 = 0. 
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Fig. 1. Transverse view of dielectric TOF. 

In another way, the linearly tapered geometrical profile of the fiber core may also be defined 
by 

  ( ) i i o

z
z

l
      , (2) 

where  = i and  = o represent the radius of the input and the output ends, respectively, 
of the tapered fiber, and l is the length of the taper. 

We assume that the core/clad regions are made of linear, homogeneous, isotropic and non-

magnetic (i.e. 1 = 2  0, the free-space permeability) materials, and they have the 

permittivity as 1 and 2, respectively. The time t-harmonic and the axis z-harmonic electric 
and magnetic fields will have their functional dependences of the form 

 E = E0 () ej ej(t  z), (3a) 

 H = H0 () ej ej(t  z) (3b) 

with  as the angular frequency,  as the propagation constant in the axial direction and  as 

the azimuthal periodicity. In the present case,  is no longer a constant owing to the gradual 
variation of the cross-sectional dimension with increasing distance z. Instead, it becomes a 
function of z. Thus, assuming a small variation of the core radius, we can use Taylor series 

expansion [13] for  so that 

 0 z
z

       
, (4) 

where the higher order terms are suppressed. In eq. (4) 0 is the axial component of the 
propagation vector at the origin z = 0. 
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It can be shown that, using the transverse field components, the system of tapered guide 
will be represented by the equation [13] 

 
2 2

2
2 2 2

1 1
0

    
   

  
   

 
, (5) 

where  is the field (i.e. Ez or Hz, as the case may be) and 2 = 2  2 with  and  ( 0) as 

the permittivity and the permeability of the medium, respectively. It can also be shown that 

eq. (5) will have Bessel functions [42] as the solutions, and therefore, fields in the core/clad 

sections will be described by Bessel and the modified Bessel functions, and/or their linear 

combinations. The core region will have the expressions for Ez and Hz as 

   ( )
1 ( ) j j t z

z aE C J u e e  
      (6a) 

and 

   ( )
2 ( ) j j t z

z aH C J u e e  
     , (6b) 

respectively, whereas the clad section will have those as 

   ( )
3 ( ) j j t z

z aE C K w e e  
     , (7a) 

   ( )
4 ( ) j j t z

z aH C K w e e  
     . (7b) 

In eqs. (6) and (7), C1, C2, C3 and C4 are arbitrary constants, the values of which can be 

determined by using the boundary conditions, and the parameters u and w are defined as  

 2 2 2 2 2
0 1 1u k         (8a) 

and 

 2 2 2 2 2
0 2 2w k        , (8b) 

respectively. Implementing the longitudinal field components, one can explicitly obtain the 

transverse field components at an arbitrary radial point  = a as 
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, (9a) 
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, (9b) 
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, (10a) 
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    2 2 3 42
j

a a
a

j j
H C wK w C K u e

w


  


   


    
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. (10b) 

In eqs. (9) and (10), the suffixes 1 and 2, respectively, refer to the situations in the core and 
the clad sections, and the prime represents the differentiation with respect to the argument. 

Further, the propagation constant  is essentially governed by eq. (4). 

2.2 Dispersion characteristics 

According to the continuity conditions, the transverse field components must have a smooth 
match at the core/clad boundary, which will ultimately yield four equations, the solutions 
to which would exists only if the determinant formed by the coefficients is zero. This will 

finally provide the eigenvalue equation in  as [43] 

   
2 2

2 2
1 2 02 2

1 1
0
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Under the approximation of very small RI difference, one would have 2 2 2
1 2k k   , and eq. 

(11) will acquire the form 

 
2 2

1 1

a u w
 




      
 

. (12) 

Using the recurrence relations for ( )J   and ( )K  , there are two sets of equations for eq.  
(12) corresponding to the positive and the negative signs. The positive sign will yield 

 
 
 
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 

1 1 0a a

a a

J u K w

uJ u wK w

 

 

 
 

   , (13) 

the solution to which will yield a set of EH modes. Corresponding to the negative sign, one 
would have 

 
 
 

 
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1 1 0a a

a a

J u K w

uJ u wK w

 

 

 
 

    (14) 

giving thereby a set of HE modes. Once again, using the recurrence relations, one can match 
all the tangential field components at the layer interface to obtain 

www.intechopen.com



 
Tapered Optical Fibers – An Investigative Approach to the Helical and Liquid Crystal Types 

 

191 

 
 

 
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 
2 2m a m a

m a m a

uJ u wK w

J u K w

 
 

   . (15) 

Eq. (15) represents the characteristic equation for the linearly polarized (LP) modes, where m 
is a new parameter defined as 

  

(16)

 

However, under the limit w  0, one can obtain 

 
 

 
1

0
lim 0m a

w
m a

wK w

K w







    for   m = 0, 1, 2,. . . (17) 

Under the circumstance, eq. (15) will assume the form 

 
 

 
2 0m a

m a

uJ u

J u




  . (18) 

The solution to eq. (17) provides the knowledge of the dependence of the normalized 

propagation constant b on the normalized frequency parameter V [44]. The number of 

sustained modes in a guide (as a function of V) may be represented in terms of a normalized 

propagation constant 

 
 2 22 2

2
2 2 2

1 2

/a k nw
b

V n n

 
 


. (19) 

In eq. (19), k is the free-space propagation constant. For a small index difference, eq. (19) 
reduces to the form 

 
2

1 2

n
k

b
n n

   
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
. (20) 

Under the limiting condition 2 0w  , the cutoff characteristic equation for the lowest mode 
( = 0) of the fiber can be obtained as 

 J0(ua) = 0. (21) 

If Sn represents the solutions to eq. (21) (with n = 1, 2, 3 etc. correspond to first, second, third 
etc. solutions), we would then have 

 ua = Sn. (22) 

One would finally obtain by implementing eqs. (4), (8a) and (21) that 
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for EH modes 
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                         
. (23) 

Eq. (23) is essentially a quadratic equation in z, and it can be shown that, under the weak 
guidance approximation, the factor Sn in eq. (23) will have its value as 2.405 for the 

fundamental LP11 mode [44]. Further, eq. (23) can be solved for z numerically for 
different values of z. For a conventional fiber, the z-component of the propagation constant 

decreases with the decrease in fiber radius, and therefore, the propagation vector  should 

also decrease, making thereby a negative z. On the other hand, for increasing fiber 

radius (with z), z must be positive. We thus consider the roots of eq. (23) so that those 

meet the physical situation. Fig. 2 depicts a plot of the variation of z with z under the 
assumption of decreasing taper cross-section with the increase in z. We notice that the 

quantity z increases rapidly with z near the origin; with the increase in the taper length, 
it shows a very small increase. 

 

Fig. 2. Variation of d /dz with the longitudinal distance z. 

We now make an attempt to analyze the dispersion relation for the TOF. We consider the 
fiber core as made of polysterene material (with RI n1 = 1.6) and the clad of methyl 
methacrylate (RI n2 = 1.48). Step-index guides made of such materials are good candidates 

for low cost links. The operating wavelength is kept fixed at 1.55 m because the attenuation 
of polysterene materials is relatively low at this wavelength. 

Fig. 3 illustrates the variation of the left hand side of eq. (11), as abbreviated as f(u,w), with 

the dimensionless quantity u. We observe the existence of the first intersection of the curve 

with the f(u,w) = 0 axis near u = 1. Fig. 4 depicts the variation of the left hand side of eq. 

(17), as abbreviated as f(u), with u, which shows the cutoff value to be near u = 0.7 – a 
value less than that obtained corresponding to fig. 3, as discussed above. As such, the results 
of figs. 3 and 4 remain consistent. 
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Fig. 3. Variation of the function f(u, w) with u. 

 

Fig. 4. Variation of the function f(u) with the dimensionless quantity u. 

Fig. 5 represents the dispersion pattern of the TOF – the plot of b (in terms of /k) against V 
– for a few low order modes. We observe each mode to exist only for values of V < 2. More 
explicitly, the cutoff values are crowded together in the region V = 0.15 – 1.50. The curves 
exhibit a tendency towards saturation near V > 2.5. Further, there exists another crowding 

for V-values exceeding 4.5. The modes are cutoff when /k = n2, and in this case, the modes 
exhibit cut off when /k = 1.48. Only five modes (fig. 5) – HE11, TE01, TM01, EH11 and HE12 – 
are found to exist in the tapered region of the TOF. 

Fig. 6 depicts the variation of the normalized propagation constant b against the normalized 
frequency parameter V in terms of LP modes; five such modes are found to exist. We notice that, 
for a TOF with 0 < V < 0.5, there will be only one guided mode, namely, LP01 mode. Similarly, for 
0 < V < 1, only LP01 and LP11; for 1 < V < 1.5, only LP01, LP21 and LP11; for 1.5 < V < 2, only LP02 
and LP03 guided modes exist. The number of modes decreases rapidly as V is reduced. 
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Fig. 5. Variation of /k with the normalized frequency parameter V. 

 

Fig. 6. Variation of the normalized propagation constant b with the normalized frequency 
parameter V. 

A conventional circular core fiber becomes single-mode when V < 2.405 for which only the 
HE11 (or the LP01) mode exists [44]. Comparing it with the present case of dielectric TOF, we 
observe that it becomes single-mode corresponding to the value of V approximately less 
than 0.7 (HE11 or LP01 mode exists in the fiber) – the feature attributed to the tapered 
geometrical nature of the guide. Thus, it can be inferred that the cutoff value is observed to 
greatly reduce in the case of dielectric TOFs. 

2.3 Power propagation characteristics 

The transmission of power [4,45] through the dielectric TOF remains important in the 

applications point of view. In the present subsection, we attempt to report the analysis of the 
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power confinement pattern in a dielectric TOF made of polysterene core and cladded with 

methyl methacrylate. Such plastic clad fibers (PCF) exhibit considerably greater attenuation 

than the conventional silica fibers. But, high numerical apertures and large acceptance angles of 

these PCFs essentially result in an easy launching of optical signals. The technique of split-step 

method, as discussed earlier, is implemented to deduce the formulations. The analysis becomes 

much rigorous through the implementation of Maxwell’s field equations, and the results are 

ultimately obtained with much greater accuracy. The results presented in this subsection is 

aimed to provide the variation of the power confinement factor in the dielectric TOF core and 

the clad sections corresponding to some low order modes and different taper lengths. 

As stated above, the continuity conditions require that the transverse EM field components 
should have a smooth match at the core/cladding interface. Based on this, and the above 
field eqs. (9) and (10), the amount of power [46] transmitted through the core and the clad 
sections can be explicitly given by the following expressions [47]: 
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In eqs. (24) and (25), we used the symbols with their meanings as 
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Further, in eqs. (24) and (25), the used constant C1 is involved with the remaining constants 
C2, C3 and C4 as follows: 
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The constant C1 in eqs. (26) can be determined by a normalization condition considering the 
input power. 

Now, in the context of investigating the distribution of power in different TOF sections, figs. 

79 illustrate the dependence of the power confinement factor along the tapered length. For 

the analysis, we keep the radius of the taper input i fixed to 50 m, and the output taper 
cross-sectional size is varied. As stated earlier, the TOF core and the clad regions are, 
respectively, made of polysterene (with RI n1 = 1.6) and methyl methacrylate (RI n2 = 1.48). 

The operating wavelength 0 is kept fixed at 1.55 m. We present the plots of power for 

meridional ( = 0) and the lowest skew ( = 1) modes. 

Figs. 7 and 8 illustrate the power confinement in the tapered core (against the taper length l) 

corresponding to the azimuthal mode indices  = 0 and 1, respectively. We take into account 

three different values of the output core radius, namely, 100 m, 150 m and 200 m. We 
observe that the power confinement increases with the increase in output cross-sectional 
dimension, and also, the taper length. Corresponding to the meridional mode, the increase 
in power is fairly linear throughout the taper length; doubling of the output cross-section 
makes the power to increase by 20%. This increase in power is very much expected because 
fibers with larger dimensions transmit more amount of power. 

Fig. 8 corresponds to the case of lowest skew mode with  = 1. We observe that, for smaller 
taper lengths, the power patterns show initially a sharp and fairly linear increase with the 
increase in taper length l. However, with the further increase in l, power increases, and 
ultimately reaches almost a saturation stage. Moreover, the nature of saturation becomes  
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Fig. 7. Variation of core confinement factor corresponding to  = 0. 

 

Fig. 8. Variation of core confinement factor corresponding to  = 1. 
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more pronounced corresponding to larger cross-sectional size. Fig. 8 also demonstrates that, 

for i = 50 m and o = 200 m, and for larger taper lengths, more than 95% of power is 

confined in the TOF core, which determines that the skew modes transmit more amount of 

power as compared to the meridional modes. Further, skew modes transmit power better 

uniformly with increasing value of l – the rise in power is about 45% with the increase in 

output cross-section, and with the increase in taper length. As such, for skew modes, a fairly 

uniform distribution of power takes place among the sustained modes in this case – a 

desirable aspect for optical communications. 

Fig. 9 depicts the power confinement with taper length corresponding to the meridional 

mode ( = 0). We observe that the confinement almost linearly decreases with increasing l, 

with a pronounced decrease for larger output cross-sections. Corresponding to the skew 

mode ( = 1; fig. 10), we observe that the confinement factor exhibits an initial sharp 

decrease in the clad section with increasing l, followed by relatively slower decrease with 

larger values of l. Further, the decrease in power is more corresponding to larger taper 

output cross-section (e.g. 200 m). Thus, the noticeable fact remains that, by increasing the 

output cross-sectional size, a markedly higher power is transmitted through the TOF core, 

and a pronounced decrease in power is observed in the TOF clad. 

 

Fig. 9. Variation of clad confinement factor corresponding to  = 0. 

Comparison of figs. 7–10 yields that a larger taper output dimension causes a fairly good 

uniformity in the distribution of power. However, it is noteworthy that the power 

distribution is also affected by the cross-sectional size at the taper input end. But, in our 

analysis, we fixed the taper input radius to 50 m. A physical interpretation of the 

uniformity in power distribution can be given in a way that, when the radii i and/or o of 

the tapered sections are small, it behaves like a few-mode component, making thereby the  
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Fig. 10. Variation of clad confinement factor corresponding to  = 1. 

power distribution patterns to bear some sort of noisy characteristics. The component starts 
behaving like a multimode structure corresponding to larger radii values – the feature more 
prominent in the case of skew modes. 

3. Helical clad tapered dielectric optical fibers 

Helical structures find enormous applications in low- and medium-power traveling wave 
tubes (TWTs) [35], the analyses of which generally include waveguides under slow-wave 
structures with conducting sheath and tape helixes. The investigators have reported the 
implementation of this concept in the case of optical fibers [36]. As such, helical clad 
fibers, particularly with sheath helix patterns, fall among the category of new fiber types 
[48–54]. 

The analytical treatment of helical clad tapered fibers remains much complicated owing to 
the boundary conditions. The tapered structure may be handled by implementing the split-
step method, similar to as discussed in the previous sections. An investigation of the 
dispersion characteristics of such tapered fibers with helical clads would be rather 
interesting as the helix pitch angle essentially plays a determining role to alter the dispersion 
behavior [50–54] of the guide. 

In following subsections, we will deal with the preliminary ground work of helical clad 
dielectric TOFs, implementing a sheath helical pattern within the core-clad interface, 
because the purposely introduced helix pitch angle essentially brings in modifications in the 
dispersion profile. The use of Maxwell’s equations can ultimately provide the dispersion 
relations for the structure, and the cutoff situations can be obtained under the chosen values 
of helix pitch. 
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3.1 Analytical approach 

We consider a step-index linearly tapered helical clad optical fiber, as shown in fig. 11, the 
clad section of which is considered to be infinitely extended. A helical winding is introduced 

at the core/clad interface with the pitch angle as . With the use of cylindrical polar 

coordinated (,,z), the wave propagation takes place along the direction of z, and the linear 
tapered function for structure is defined by eq. (2). The region z < z1 in fig. 11 corresponds to 
the fiber pigtail, and that with z > z2 to the expanded cylindrical section following the 

tapered section. The values of helix pitch angle  = 0 and  = 90 correspond to the two 
extreme situations – the former one indicates the winding to be perpendicular to the 
longitudinal direction whereas the latter one states those to be parallel to the z-axis. We 
assume that the core/clad sections are made of linear and isotropic non-magnetic materials, 

and therefore, 1 = 2  0, the free-space permeability. Further, 1 and 2 are, respectively, 
the permittivity values of the core/clad sections. 

 

Fig. 11. Transverse view of TOF with helical wraps. 

Considering the time t-harmonic and the axis z-harmonic EM fields, β becomes a function of 
the longitudinal distance z. Assuming a small variation of the core radius, the dependence of 
β may be expressed in the form of Taylor series expansion, as given in eq. (4). The 
longitudinal electric/magnetic fields in the core/clad sections will be described by Bessel 
and the modified Bessel functions, as shown in eqs. (6) and (7). Further, the transverse field 

components at an arbitrary radial point  = a will be as given in eqs. (9) and (10). 

3.2 Dispersion characteristics 

The continuity conditions require that the transverse components of electric/magnetic fields 
at the core/clad boundary should get a smooth match. However, in the present case of 
helical clad fibers, the boundary conditions are essentially modified [35,55], which follows 
from the fact that the components of the electric field vanish in the direction of helix. 

Following that, a 44 matrix may be formed from the coefficients of the four unknowns in 
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four different equations, and the matrix should be vanishing in order to have a non-trivial 
solution to those four equations. In this way, the eigenvalue equation in β may be finally 
deduced as [56] 
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Eq. (27) is the characteristic dispersion relation for helical clad tapered fibers. We may now 

consider two extreme values of the helix pitch angle ψ, namely ψ = 0 and ψ = 90, to be 

used to observe the effect of helix introduced at the core/clad interface. In this stream, when 

eq. (27) is solved for ψ = 0 (i.e. when the helical turns are perpendicular to the optical axis 

of the TOF), we finally obtain the characteristic dispersion relation as [56] 
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Corresponding to the case of helical turns being parallel to the optical axis (i.e. ψ = 90) of 
the TOF, eq. (27) provides [56] 
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Much changes in the shape of eqs. (28) and (29) essentially indicate the dominant effect of 
the helical clad in controlling the dispersion behavior of the guide. A deeper look at the 
dispersion relations under the helix pitch angles 0 and 90 (by solving eqs. (27) and (28), 
respectively) will numerically provide the values of the modal propagation constant β. In 
general, the dispersion equations may have multiple solutions for each value of azimuthal 
mode index . These solutions may be represented as βm; m being the order of the 
solution corresponding to a given value of . Each value of βm corresponds to one 
possible mode. The limiting condition w2  0 determines the cutoff characteristics of the 
guide. Under the cutoff situations, corresponding to the helix pitch angles ψ = 0 and ψ = 
90, we write the obtained equations in symbolic forms as 1( ) 0f u   and 2( ) 0f u  , 
respectively. 
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In our computations, we consider the helical TOF as made of polystyrene core (n1 = 1.6) and 
methyl methacrylate clad (n2 = 1.48). Also, similar to the previous cass, ǌ0 = 1.55 μm is the 
operating wavelength. 

Fig. 12 illustrates the plot of f1(u,w) (based on eq. (28)) against the dimensionless quantity u 

corresponding to the perpendicular (to the axis) helical turns, i.e.  = 0. We chose two 

different illustrative values of the azimuthal mode index, viz.  = 1 and  = 2, and observe that 

the curves intersect the horizontal axis at around u = 0.65. As such, there exist modes at this 

intersection point, and the exact values of the modal propagation constants may be evaluated. 

 

Fig. 12. Variation of the function f1(u,w) with u corresponding to ψ = 0. 

Fig. 13 depicts the variation of f1(u) with the dimensionless quantity u; f1(u) being the form 

of eq. (28), when solved under the limit w2  0 (not explicitly shown here). Thus, the cutoff 

variation of f1(u) corresponding to two values of the azimuthal index  (namely, 1 and 2)  

 

Fig. 13. Variation of the function f1(u) with u corresponding to ψ = 0. 
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shows the intersection with the horizontal axis at around u = 0.60, which is less than the 
value of u (= 0.65), as observed in fig. 12. This shows the consistency of the results obtained 
in figs. 12 and 13. However, comparing the results with those reported earlier corresponding 
to the case of conventional dielectric TOFs without helical windings (Section 2; figs. 3 and 4), 
we observe that the existence of a helical wrap has the effect to increase the modal 
propagation constants. 

Corresponding to the case of helical windings being parallel to the optical axis (i.e.  = 90), 
fig. 14 presents the plot of the left hand side f2(u,w) of eq. (29) against the dimensionless 
quantity u corresponding to the azimuthal mode index value as  = 1. We notice that the 
plot has the form of almost a straight line with the intersection at about u = 0.70. Thus, as 
compared to the case of  = 0 (fig. 12), the u-crossing value becomes larger in this case, 
and therefore, the value of modal propagation constant decreases. 

 

Fig. 14. Variation of the function f2(u,w) with u corresponding to ψ = 90 and  = 1. 

Fig. 15 illustrates the cutoff characteristics when eq. (28) is solved under the limit w2  0. 
We notice the intersection in this case to be at around u = 0.60 – a value less than that found  

 

Fig. 15. Variation of the function f2(u) with u corresponding to the case of ψ = 90 and  = 1. 
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in fig. 12, indicating thereby the results of figs. 12 and 15 to be consistent. However, upon 
comparing the results with the case of dielectric TOFs without helical turns, we observe the 
general tendency that the helical clad TOFs increase the modal propagation constants. This 
essentially determines the controlling feature of the helical turns at the core/clad interface. 

It can thus be inferred that, in helical clad TOFs, modes travel with higher propagation 
constants under the situation when the helical wraps are perpendicular to the optical axis of 
the guide than the case of parallel ones. However, compared with the situation of 
conventional dielectric TOFs, we observe that the existence of helix has the tendency to 
increase the modal propagation constants – the important role of the helix to control the 
propagation characteristics of dielectric TOFs. 

4. Tapered fibers with liquid crystal clad 

Liquid crystal optical fibers [3739] possess several technological applications due to the 
fairly large polarization anisotropy [40] of liquid crystals. Owing to the large electro-optic 
coefficient of liquid crystals, the macroscopic optical properties of them can be manipulated 
by suitably applying external electrical fields. 

In this section, we deal with the case of a three-layer liquid crystal tapered optical fiber 
(LCTOF) structure for which Maxwell’s equations are implemented for a rigorous analysis. 
We consider the LCTOF having the outermost clad made of radially anisotropic liquid 
crystal material; the fiber core and the inner clad regions being made of isotropic dielectrics. 
It is to be pointed out here that the radial anisotropy of liquid crystals may be obtained by 
the capillary action after inserting the liquid crystal section into a capillary tube coated with 
N, N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl chloride. 

A tapered structure of the fiber core is considered along the longitudinal direction because, 
as stated before, TOFs are of immense use in optical sensors and other in-line integrated 
optic applications. As such, an amalgamation of features in respect of fiber geometry and 
the material, i.e. a tapered core fiber with radially anisotropic outermost liquid crystal clad, 
would provide enhanced usefulness of the guide. With the advancement of the discussions, 
we concentrate on the dispersion profile corresponding to the low order TE and TM modes. 
Though the studies related to radially anisotopic LCTOFs have been reported before by 
Choudhury et al. [5], the present study provides a blend of liquid crystal material and 
tapered structure. We treat the LCTOF structure by implementing the split-step method, as 
discussed before. 

4.1 Theory 

Fig. 16(a) illustrates the cross-sectional view of LCTOF, which is made of homogeneous, 
isotropic and non-magnetic core and the inner clad. The outermost clad of the LCTOF is 
infinitely extended, and consists of radially anisotropic liquid crystal material. A 
comparison of the cases of radial and azimuthal anisotropies of the liquid crystal section 
makes the situation much clear; fig. 16(b) illustrates the case when the liquid crystal 
molecules assume azimuthal anisotropy; in figs. 16(a) and 16(b), the elongation of liquid 
crystal molecules is presented by dashed lines. 

Fig. 17 represents the transverse view of the tapered nature of the fiber cross-section, where 
the core/inner clad sections have the RI values as n1 and n2, respectively, with n1 > n2. Also,  
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Fig. 16. LCTOF cross-section with nematic liquid crystal outermost clad (a) radial 
anisotropy, and (b) azimuthal anisotropy. 

 

Fig. 17. Transverse view of the LCTOF of taper length l. 

we consider the presence of radially anisotropic liquid crystal molecules in the infinitely 
extended outer clad with the ordinary and the extraordinary RI values as no and ne, 
respectively. The linear taper nature of the fiber is defined by eq. (2). 

The fiber geometry essentially needs the use of cylindrical polar coordinate system (, , z) 
wherein the z-axis remains along the direction of wave propagation, and coincides with the 
principal axes of the outer clad. The extraordinary principal axis has a radial orientation, 
and therefore, the infinitely extended outer clad possesses the RI distribution given as 
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n = ne  and  n = nz  with  ne > n1 > n2 > no, 

as depicted figs. 18(a) and 18(b). Here n, n and nz are, respectively, the RI values along the 

-, - and z-directions. 

 

Fig. 18. The RI distribution pattern of the LCTOF. 

Considering the time t-harmonic and the axis z-harmonic EM fields, coupled wave 

propagation equations for the transverse field components can be written as [5] 
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In eqs. (30), 2
t  is the Laplacian operator in the cylindrical coordinate system, k0 is the free-

space propagation constant. Owing to the variation of the propagation constant  due to the 
varying cross-sectional dimension with distance z, -values in eqs. (30) are governed by 
Taylor series expansion, as presented in eq. (4). 

It is to be stated at this point that, in anisotropic guides, TEmn, TMmn and hybrid modes 

contain all the three electric field components E, E and Ez. However, there are some 
special modes which do not contain all the three electric field components for which the 
index profiles in the zero electric field directions are irrelevant to the mode cutoff 
conditions. In our computations, we consider the lower order TE and TM modes, viz. TE01 

and TM01. For the TE01 mode, there is only one transverse electrical field component e, 

which is independent of the coordinate . Thus, corresponding to this mode, we have e = 

0 and e/ = 0. On the other hand, for TM01 mode, there is only one non-zero 

component e, which is independent of the coordinate . Therefore, corresponding to the 
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TM01 mode, we have e = 0 and e/ = 0. We will now treat the cases of TE and TM 
modes individually. 

4.1.1 Transverse electric (TE) mode 

As stated earlier, in the case of TE01 mode we have e = 0 and e/ = 0. Using these in eq. 
(30b), the wave equation corresponding to TE modes in LCTOFs can be deduced as [5] 

 
2

2 2 2
02 2

1 1
0

e e
k n e

 
 

  

   
     

  
. (31) 

In eq. (31),  and  are defined by eqs. (2) and (4), respectively. It can be shown that the 
solutions to eq. (31) will be in the form of combinations of Bessel and the modified Bessel 
functions. Using those solutions, harmony of the EM fields and Maxwell’s field equations, 
the field components in the case of TE01 mode may finally be obtained as follows [5]: 

  
0

exp ( )H e j t z 
  


      with    exp ( )H h j t z     , (32a) 

  
0

exp ( )z

e ej
H j t z

   
  

 
    

  with   exp ( )z zH h j t z   . (32b) 

In eqs. (32), 0 is the free-space permeability as the mediums are considered to be non-
magnetic in nature. The use of eqs. (32) and the solutions to eq. (31) will ultimately provide 
the field components in the different fiber sections as follows [5]: 

Core region: 

   1 1
0

( )exp ( )
I

H A J u j t z 
   


   , (33a) 

   1 1 1
0

1
( ) ( ) exp ( )z I

j
H A uJ u J u j t z    

 
    
 

. (33b) 

Inner clad region: 

     2 1 3 1
0

( ) ( ) exp ( )
II

H A K w A I w j t z  
    


    , (34a) 

 2 1 1
0

1
( ) ( )z II

j
H A wK w K w  

 
    

 
 

  3 1 1

1
( ) ( ) exp ( )A wI w I w j t z    


    
 

. (34b) 

Outer clad region: 
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   4 1
0

( )exp ( )
III

H A K v j t z 
   


   , (35a) 

   4 1 1
0

1
( ) ( ) exp ( )z III

j
H A vK v K v j t z    

 
    
 

. (35b) 

In eqs. (33), (34) and (35), J(), K() and I(() represent Bessel and the modified Bessel 

functions, and the prime stands for the differentiation with respect to the argument of the 

function. Also, A1, A2, A3 and A4 are the arbitrary constants to be determined by the 

boundary conditions. 

4.1.2 Transverse magnetic (TM) mode 

In the case of TM01 mode, since e = 0 and e/ = 0, eq. (30a) yields the wave equation for 
LCTOF as [5] 

  
22

2 2 2
02 2

1 1
0z

e e n
k n e

n

 
 




  

                

. (36) 

In eq. (36) too,  is defined by eq. (2). Further, it can be shown that the non-zero field 

components for LCTOF in this case will assume the form [5] 

  
2

2
exp ( )e

z
o

e en
E j j t z

n

   
 

 
     

, (37a) 

  2 0 exp ( )H n e j t z  


 


  . (37b) 

Once again, in eqs. (37) too,  and  are considered to be according to as defined by eqs. (2) 

and (4), respectively. By using eqs. (37) and the solutions to eq. (36), the EM field 

components will be represented in this case as follows [5]: 

Core region: 

   1 1 1

1
( ) ( ) exp ( )z I

j
E B uJ u J u j t z    

 
     
 

, (38a) 

   20
1 1( )exp ( )

I
H B n J u j t z  


  


  . (38b) 

Inner clad region: 

 2 1 1

1
( ) ( )z II

j
E B wK w K w  

 
     

 
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  3 1 1

1
( ) ( ) exp ( )B wI w I w j t z    


    

 
, (39a) 

     20
2 1 3 1( ) ( ) exp ( )

II
H n B K w B I w j t z   


   


   . (39b) 

Outer clad region: 

   4 1 1

1
( ) ( ) exp ( )z III

j
E B v K v K v j t z    

 
        
 

, (40a) 

   20
4 1( )exp ( )

III
H B n K v j t z  


  


  . (40b) 

In eqs. (38), (39) and (40), B1, B2, B3 and B4 are arbitrary constants to be defined by the 

boundary conditions, and the new quantities  and v have the meanings as 

  20 / en n   (41) 

and 

 2 2 2
0

o
e

e

n
v n k

n
   , (42) 

respectively. 

4.2 Dispersion characteristics 

4.2.1 Dispersion relation for TE mode 

In order to obtain the dispersion relation, the continuity conditions of fields are to be 
imposed at the layer interface. As such, we consider the localized values of radial 

parameters (of LCTOF) to define the interface, e.g. we state  = a as the core-inner clad 

interface and  = b as the inner clad-outer clad interface; a and b, respectively, being the 
local parametric values of the LCTOF core and the inner clad radii. We now match the fields 
at the defined layer interfaces, which provide four equations altogether. Now, collecting the 
coefficients of the unknown arbitrary constants from those four equations, after a few 

lengthy steps, a 44 matrix can be deduced, as follows [57]: 

 

11

31

0

0












   

12

22

32

42










   

13

23

33

43










   24

44

0

0 TE






   
 

   (say) = 0. (43) 

In eq. (43), various symbols have their meanings as follows: 

   11 0/ aJ u    ,    12 0/ aK w    , 
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   13 0/ aI w    ,    12 0/ bK w    , 

   23 0/ bI w    ,    24 0/ bK v    , 

        31 0/ 1 /a a aj uJ u J u       , 

        32 0/ 1 /a a aj wK w K w       , 

        33 0/ 1 /a a aj wI w I w       , 

        42 0/ 1 /b b bj wK w K w       , 

        43 0/ 1 /b b bj wI w I w       , 

        44 0/ 1 /b b bj vK v K v       . 

Eq. (43) represents the dispersion relation for the LCTOF in the case when the TE modes are 

excited, and the solutions to this equation will provide different TE modes existing in the 

fiber under consideration. Further, it must be remembered that eq. (43), when solved under 

the limit 2 0w  , will provide the cutoff characteristics of the LCTOF. 

4.2.2 Dispersion relation for TM mode 

Following the procedure as discussed above for the case of TE modes, matching the field 

components at the localized radial parameters  = a (core-inner clad interface) and  = b 
(inner clad-outer clad interface), we finally obtain (after collecting the coefficients of the 

unknown constants) the dispersion relation (in the form of a 44 matrix) corresponding to 
the case of TM mode excitation of the LCTOF, as follows [57]: 

 

11

31

0

0












   

12

22

32

42










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33

43










   24

44

0

0 TM






   
 

   (say) = 0 (44) 

where the symbols have their meanings as given in the following: 

        2
11 / 1 /a a aj uJ u J u       , 

        2
12 / 1 /a a aj wK w K w       , 

        2
13 / 1 /a a aj wI w I w       , 

        2
22 / 1 /b b bj wK w K w       , 
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        2
23 / 1 /b b bj wI w I w       , 

        2
24 / 1 /b b bj vK v K v       , 

   2
31 0 / an J u     ,     2

32 0 / an K w     , 

   2
33 0 / an I w     ,     2

42 0 / an K u     , 

   2
43 0 / bn I w     ,     2

44 0 / bn K v     . 

The solutions to eq. (44) will provide different TM modes existing in the LCTOF. Also, 
solving eq. (44) under the condition 2 0w   will provide the LCTOF cutoff features. 

4.2.3 Comparison of dispersion characteristics for TE and TM modes 

Eqs. (43) and (44), corresponding to the TE and the TM mode excitations, provide the 
eigenvalue equations for the LCTOF. In the case of isotropic guides, viz. liquid crystal 
waveguides, TE and TM modes are difficult to separate owing to the reason that the 
direction independent RI values yield identical propagation constants and field cutoffs. 
However, the TE and the TM modes undergo different polarizations in such guides because 
of the direction dependent RIs, and therefore, these modes possess different values of 
propagation constants and field cutoffs. 

We will now analyze these to determine the LCTOF characteristics in respect of their 
dispersion behavior and field cutoffs. The LCTOF in our consideration has three different 
sections with radially anisotropic liquid crystal outer clad. We take the RI values of the core 
and the inner clad as n1 = 1.5 and n2 = 1.46, respectively, and the outermost section has 
nematic liquid crystal as BDH mixture 14616 having the respective ordinary and the 
extraordinary RI values as no = 1.457 and ne = 1.5037. We consider the excitation of low-

order modes (with the azimuthal index  as 1, 2 and 3), and the taper length l is taken to be 5 

cm. Further, the localized values of the core and the inner clad radii are taken as a = 60 m 

and a = 120 m, respectively, and the operating wavelength is kept as 1.55 m. 

Fig. 19(a) presents the plots of the left hand side of eq. (43) corresponding to three different 

values of . The crossings of the curves with the horizontal axis represent the existence of 

modes with a particular value of the propagation constant . We observe in fig. 19(a) that 

the zero crossings show a little increase with the increase in . We notice that the 

propagation constant  of the first mode corresponding to  = 1 is close to 5.935106 m1; -
values corresponding to the other existing modes can also be estimated from such 
intersections of the curves. 

Eq. (43), when solved under the limit 2 0w  , gives the cutoff features under the TE mode 
excitation. Fig. 19(b) illustrates the cutoff situation of the TE modes. We observe that, when 
compared with the plots of fig. 19(a), the zero crossings of the curves indicate lesser cutoff -
values (for  = 1, the cutoff -value is close to 5.918106 m1) than the -values of the first 
existing mode. This essentially indicates that the results of figs. 19(a) and 19(b) are consistent. 
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Fig. 19a. Plot of the dispersion relation for the TE modes. 

 

Fig. 19b. Plot of the cutoff characteristics for the TE modes. 

Figs. 20 present the results corresponding to the TM modes for three different values of , 
namely 1, 2 and 3. Fig. 20(a) illustrates the plots of the left hand side of eq. (44), and fig. 20(b) 
corresponds to the cutoff plots when eq. (44) is solved under the limit 2 0w  . From fig. 
20(a) we notice that the propagation constant for the first mode corresponding to  = 1 exists 
around  = 6.076106 m1, which is smaller than the correspondingly observed zero crossing 
in the case of TE modes. Thus, as compared to the TE modes, the TM modes have the  

www.intechopen.com



 
Tapered Optical Fibers – An Investigative Approach to the Helical and Liquid Crystal Types 

 

213 
 

 

Fig. 20a. Plot of the dispersion relation for the TM modes. 

 

Fig. 20b. Plot of the cutoff characteristics for the TM modes. 

tendency the lower the -values. We also notice that the propagation constants increase with 

the increase in azimuthal index , which is similar to the situation observed in the case of TE 

modes. As observed from fig. 20(b) corresponding to the cutoff feature in the case of TM 

modes, the first zero crossings of the curves exist earlier than those seen in the 

corresponding plots in fig. 20(a), indicating thereby the consistency of the results presented 

in figs. 20(a) and 20(b). The analysis of the dispersion characteristics reveals the noticeable 

fact that the TE eigenmodes propagate in LCTOF with larger propagation constants as 

compared to the TM eigenmodes. 

www.intechopen.com



 
Fiber Optic Sensors 

 

214 

4.3 Features of power transport 

As stated before, the individual useful properties of liquid crystal fibers and tapered fibers 
essentially motivate for the investigation of LCTOFs – the subject matter of the ongoing 
section. The applications of optical fibers are determined based on the power confinement 
characteristics. Thus, apart from the propagation behavior of the guide in terms of dispersion 
features and mode cutoffs, a glimpse of the power confinement factor remains equally 
important in order to emphasize the usefulness of the guide. As such, the discussion of the 
present subsection is pivoted to the analytical investigation of the power confinement in 
LCTOF structure. Using Maxwell’s equations, a rigorous analysis is made of the confinement 
factors of the low order TE and TM modes sustained in the different LCTOF sections. In this 
context, variations in the core/clad dimensions are considered, and the illustrations are made 
of the power confinement factors against the length of the tapered section of the LCTOF. 

4.3.1 Expressions of power for TE mode 

In eqs. (33), (34) and (35), the values of arbitrary constants A1, A2, A3 and A4 can be 

evaluated by implementing the continuity conditions. Finally, after deducing the values of 

A2, A3 and A4 in terms of A1, the power [46] transmitted through the different sections of 
anisotropic LCTOF can be obtained as [58,59] 

  22
1 1 1 1

0 0 0

( ) ( ) ( )
a a

IP A u J u J u d J u d

 


      


    
  
  , (45) 

 22 2
1 1 1 1 1

0

( ) ( ) ( )

 


 

      


         
 

b b

a a

IIP A C w I w I w d I w d  

 22
2 1 1 1 1 2 1 1( ) ( ) ( ) 2 ( ) ( )

b b b

a a a

C w K w K w d K w d C C K w I w d

  

  

        
        
    
    

 1 1 1 1( ) ( ) ( ) ( )
b b

a a

w K w I w d w I w K w d

 

 

       
   

  , (46) 

  
2

22 1 1 2 1
1 1 1 1

0 1

( ) ( )
( ) ( ) ( )

( )
b b

b b
III

b

C I w C K w
P A K v d v K v K v d

K v


 

       
 

       
    
   (47) 

where 
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. (49) 

Eqs. (45), (46) and (47), respectively, determine the power propagating through the fiber 
core, inner dielectric clad and the outer liquid crystal clad of the LCTOF under the situation 
when the TE modes are excited. In eqs. (45)–(49) a and b are the localized values of the 
LCTOF core and the inner clad radii, respectively; the outermost liquid crystal section is 
having an infinite extension. We used the split-step technique to analyze the problem, and a 
and b are the values of radii of a particular step. It is also to be remembered that the values 
of propagation constant  in all the equations are defined by eq. (4). 

Further, in eqs. (45), (46) and (47), the constant A1 can be determined by a normalization 
condition considering the input power. Now, if PT is the total power transported by the TE01 
modes of LCTOF, i.e. 

 T I II IIIP P P P   , (50) 

then PI/PT, PII/PT and PIII/PT will, respectively, determine the power confinement factor in 
the fiber core, inner clad and the outer clad of the LCTOF. 

4.3.2 Expressions of power for TM mode 

Following the above procedure implemented for TE modes, by the use of eqs. (38), (39) and 
(40) along with the continuity conditions, the expressions of power in the different sections 
of LCTOF under the TM mode excitation can finally be derived as [58,59] 
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  
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In eqs. (51), (52) and (53), the constant B3 can be determined by the normalization condition 
considering the input power. Now, if pT is the total power transported by the TM modes of 
the LCTOF, i.e. 

 T I II IIIp p p p   , (54) 

then pI/pT, pII/pT and pIII/pT will, respectively, determine the relative power distributions in 
the LCTOF core, inner clad and the outer clad regions. In eqs. (51), (52) and (53) too, the 

parameters a, b and  will assume the forms as described above in the case of TE modes. 

4.3.3 Analysis of power transmission by TE and TM modes 

We now analyze the LCTOF characteristics in respect of the power confinement factors (or 

the relative power distributions) corresponding to the cases of TE and TM modes. In our 

computations, we consider the core/inner clad RI values as n1 = 1.462 and n2 = 1.458, 

respectively. Further, as stated before, the infinitely extended outermost section is taken to 

be nematic liquid crystal BDH mixture 14616 having the respective ordinary and 

extraordinary RI values as no = 1.457 and ne = 1.5037. For simplicity, we considered the 

modes with the azimuthal index value  = 1. The taper length l is taken to be 5 cm and the 

operating wavelength as 1.55 m. 

Figs. 21a, 21b and 21c illustrate the logarithmic plots of the power confinement patterns in 
the core, the inner clad and the outer clad, respectively, of the LCTOF under the case of TE 

mode excitation, and the azimuthal mode index  = 1. While obtaining this, the input end 

core radius of the LCTOF tapered region is taken to be fixed (as 60 m) whereas the output 

end core radius is varied (to be as 80 m, 100 m, 120 m and 140 m). We observe in these 
figures that the confinement factor increases with the increase in taper length along the 
direction of propagation; the lowest value of confinement corresponds to the situation when 

the outer core radius remains minimum (i.e. 80 m). This becomes explicit because lesser 
amount of power is transported by the guides of lower dimensions. Apart from this, a 
gradual increase in power confinement remains due to a steady increase in the LCTOF 
dimension as the wave propagates across the tapered section. We also notice that the 
confinement reaches a kind of saturation in the region near the output end of the tapered 
section. 

Further analysis of figs. 21 reveals that, apart from the trend of increase in confinement 

factor, a very small amount of power is confined within the tapered core section (fig. 21a), 

and this feature sustains with all the chosen dimensions of LCTOF. Corresponding to the 

similar values of fiber dimensions and other operating conditions, the confinement is 

increased in the inner clad (fig. 21b) along with the trend of its variation remaining almost 

same, as that noticed in fig. 21a. The confinement shows a pronounced enhancement in the 

outer clad (fig. 21c), and remains maximum in this region. It is also seen that the increase in 

confinement in the outermost liquid crystal section simultaneously causes to decrease the 

same in the LCTOF core or the inner clad, and this may be viewed in a way as if the power  
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Fig. 21a. TE mode power confinement in LCTOF core. 

 

Fig. 21b. TE mode power confinement in the inner clad of LCTOF. 
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Fig. 21c. TE mode power confinement in the outermost clad of LCTOF. 

is leaking off the fiber core, and propagating through the clad. This feature is essentially 

attributed to the presence of liquid crystal in the outermost clad region, and is of much use 

in sensing applications. 

Figs. 22 correspond to the logarithmic variations of the power confinement for TE modes 

with  = 1 when the output end radius of the tapered core is fixed as 100 m, and the input 

end radius is varied. We observe from the figures that the power confinement remains 

maximum corresponding to the minimum value of the input core radius (i.e. 10 m). With 

the increase in LCTOF core input end radius, the confinement becomes uniform without 

exhibiting much change along the taper length, and this is very much obvious as the taper 

section undergoes maximum variation in respect of its dimensional structure along its 

length with minimum value of radius of the input end. 

Fig. 22a shows that the power confinement remains almost uniform when the core radius at 

the input end is 70 m, and it presents maximum variation corresponding to the situation 

when the input end core radius is 10 m. On comparing figs. 22a, 22b and 22c we observe 

that the maximum amount of power confinement is attained in fig. 22c. This is just a replica 

of the situation that we observe in figs. 21c – the maximum amount of power is confined in 

the outermost section of the LCTOF. This feature of LCTOF is expected to find prominent 

usefulness in optical sensing, particularly the situations when the evanescent field sensing 

remains the best option. Apart from sensing, such a characteristic of LCTOF would also be 

useful in field coupling devices, wherein a relatively high amount of power is required to be 

present in the outermost section of the fiber. 
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Fig. 22a. TE mode power confinement in LCTOF core. 

 

 

Fig. 22b. TE mode power confinement in the inner clad of LCTOF. 
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Fig. 22c. TE mode power confinement in the outermost clad of LCTOF. 

Figs. 23a, 23b and 23c illustrate the logarithmic plots of the relative power distributions in 
the LCTOF core, the inner clad and the outermost liquid crystal clad, respectively, along the 
taper length. These figures present a comparative feature of the cases with different values 
of the azimuthal index. We consider two illustrative values (viz. 10 m and 30 m) of the 

core radius of the input taper end, and the core output end radius is taken to be 100 m. We 
observe from fig. 23a that, for both the values of input core radius, the modes with higher 
azimuthal index ( = 2) transport a little higher amount of power as compared to that by the 

lower azimuthal index value ( = 1), and the difference increases as we move to look at the 
situations of power confinements in the inner and the outer clads. We notice from fig. 23c 
that the confinement remains maximum in the outermost liquid crystal clad, and also, the 

modes with  = 2 carry substantially large amount of power than those with  = 2. 

The aforesaid discussions correspond to the situations when the TE modes are excited in an 
LCTOF. Now, considering the excitation of the TM modes, the logarithmic variations of the 
power confinement factor are illustrated in figs. 24 and 25 for the azimuthal index  = 1 and 
the tapered section length as 5 cm. 

Fig. 24a corresponds to the power transmission through the LCTOF core when the different 
parameters are chosen similar to the case of TE modes, i.e. a fixed input end core radius as 

60 m and varying output end core radius as 80 m, 100 m, 120 m and 140 m. We 
observe from fig. 24a that a relatively high amount of power is confined into the core as 
compared to the situation of TE modes (fig. 21a). Further, fig. 24b shows that the highest 
amount of power is found to be sustained in the inner clad, which is in contrast to the 
feature observed corresponding to the case of TE modes which presents the maximum 
amount of power to be confined in the outermost clad. In the present case, of TM mode  
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Fig. 23a. TE mode power distribution in the LCTOF core. 

 

Fig. 23b. TE mode power distribution in the LCTOF inner clad. 

excitation, we observe that the power confinement in the outermost liquid crystal clad (fig. 
24c) is slightly less than that in the inner clad region. 

We also observe that the trend of variation of the confinement factor in TM mode excitation 

seems to be opposite to that noticed corresponding to the case of TE modes. This is because, 

in figs. 24a and 24b, confinement falls with the increase in the taper length, and remains  

www.intechopen.com



 
Fiber Optic Sensors 

 

222 

 

Fig. 23c. TE mode power distribution in the LCTOF outer clad. 

 

Fig. 24a. TM mode power confinement in LCTOF core. 

minimum at the output end of the taper section. This is attributed to the TM mode 
properties whereby the power is gradually being coupled to the neighboring regions of the 
guide with increasing fiber dimensions. 
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Fig. 24b. TM mode power confinement in the inner clad of LCTOF. 

 

Fig. 24c. TM mode power confinement in the outermost clad of LCTOF. 

Figs. 25 illustrate the logarithmic plots of power confinement in different fiber sections with 
fixed output end dimension of the taper section and varying size of the input end. 
Confinement in the fiber core is presented in fig. 25a, whereas those in the inner and the 
outer clads are illustrated in figs. 25b and 25c, respectively. We consider the output end  
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Fig. 25a. TM mode power confinement in LCTOF core. 

 

Fig. 25b. TM mode power confinement in the inner clad of LCTOF. 

radius to be 100 m whereas the different input end radii are 10 m, 30 m, 50 m and 70 

m. We observe in these figures that the confinement remains strongest corresponding to 

the largest input end dimension, i.e. 70 m radius. Also, with such a fiber structure, the 
confinement remains most uniform too. This is attributed to the fact that the waves face 
maximum variations in respect of their boundaries with large difference in the output and  
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Fig. 25c. TM mode power confinement in the outermost clad of LCTOF. 

the input end dimensions. However, the noticeable fact remains that the maximum amount 
of power is confined in the inner clad section, and the outermost clad sustains slightly less 
amount of power than the inner clad; the core section confines the minimum amount of 
power. 

In order to have a comparative look at the power confinements by the modes with different 
azimuthal indices under the TM mode excitation, figs. 26a, 26b and 26c illustrate the 
logarithmic plots of the power confinement factor in the LCTOF core, the inner clad and the 
outermost liquid crystal clad, respectively, along the taper length. Once again, we use in our 

computations two illustrative values (viz. 10 m and 30 m) of the core radius of the input 

taper end, and the core output end radius is taken to be fixed as 100 m. We observe from 

these figures that the modes with  = 1 and  = 2 transport almost similar amount of power 
in all the three LCTOF sections, which is unlike the situation observed in the case of the TE 
mode excitation where the modes with higher azimuthal index transmit substantially large 
amount of power than those with lower azimuthal index value. 

It can thus be inferred that, in LCTOFs with radially anisotropic liquid crystal outermost 
clad, the TE modes transmit the maximum amount of power in the outermost section of the 
fiber. This feature is not that pronounced corresponding to the TM mode excitation as the 
confinement mostly remains in the inner clad section in this case. As stated before, the 
higher amount of power distribution in the outermost clad section can be interpreted as if 
the power is leaking off the LCTOF core, and transferred to the fiber clad. This feature is 
strongly observed in the case of TE mode excitation, and the phenomenon is attributed to 
the presence of radially anisotropic liquid crystal material in the outermost clad. 
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Fig. 26a. TM mode power distribution in LCTOF core. 

 

 

Fig. 26b. TM mode power distribution in LCTOF inner clad. 

Apart from the material used in LCTOF fabrication, the taper structure of guide essentially 

plays a vital role to transfer power to the outermost clad. TOFs are already established in 

coupling applications, and the inclusion of liquid crystal section makes the structure more  
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Fig. 26c. TM mode power distribution in LCTOF outer clad. 

attractive for promising use. Thus, an amalgamation of the taper structure and the clad 

anisotropy brings in an enhanced confinement of power in the outermost clad section, and 

this feature opens up a demanding usefulness of LCTOFs in optical sensing and other 

coupling applications. 

5. Conclusion 

The article basically describes the EM wave propagation characteristics of TOFs considering 

various forms of them, viz. simple dielectric TOFs, dielectric TOFs with twists in the form of 

helical clad, and TOFs with radially anisotropic liquid crystal clad. The study of dielectric 

TOFs is presented under the assumption of a small variation of the core radius with the fiber 

length. The eigenvalue equations for such TOFs are developed, and the dispersion 

characteristics are described, which show almost similar features as that for conventional 

dielectric fibers. However, the study reveals that the tapered feature of fibers greatly affects 

the cutoff value of the normalized frequency parameter, and it is much reduced as 

compared to that exhibited by conventional fibers. The power transmission characteristics of 

such dielectric TOFs is also described in the form of the relative power distribution over the 

taper length considering the cases of meridional and the lowest skew modes. It is noticed 

that, in the case of meridional mode, the relative power exhibits some sort of linear 

dependence on the taper length. Corresponding to the skew mode, the power remains 

relatively uniform over the taper length, and the uniformity increases with the increase in 

the dimension of the taper output. The feature of uniform distribution of optical power in 

fibers remains much useful for communication purposes. 

While dealing with the case of helical clad TOFs, the dispersion characteristics and the 

cutoff situations are deduced corresponding to two particular values of the helix pitch 

www.intechopen.com



 
Fiber Optic Sensors 

 

228 

angle – helical turns being parallel (i.e. 0) and perpendicular (i.e. 90) to the direction of 

wave propagation. It is found that the modes travel through the fiber with higher 

propagation constant under the situation when the helical turns are perpendicular to the 

optical axis than the case of parallel wraps. However, when the propagation features are 

compared with the situation of fibers without helical wraps, it is noticed that the helical 

turns possess the tendency to increase the modal propagation constants. This exhibits the 

importance of the helix pitch angle in controlling the propagation characteristics of such 

TOFs. 

Study of LCTOFs with radially anisotropic liquid crystal clads is also touched upon, and 
the dispersion characteristics as well as the features of power transmission corresponding 
to the TE and TM mode excitations are reported. It is found that the TE eigenmodes 
propagate in the guide with larger propagation constants as compared to the TM ones. 
The results further reveal that, in the case of TE mode excitation, a large amount of power 
remains in the outermost liquid crystal region with substantial difference in the power 
sustained in the fiber core and the inner dielectric clad. The existence of a large amount of 
power in the outermost clad region is attributed to the presence of radially anisotropic 
liquid crystal medium used in the LCTOF. Further, the tapered structure of guide also 
plays the role for the proliferation of power transfer to the outermost clad. As such, a large 
amount of TE mode power in the outermost liquid crystal clad essentially indicates the 
prominent use of LCTOFs in optical sensing and/or coupling applications. At this point, 
it is noteworthy that TOFs are proved much promising for field coupling, and the 
incorporation of liquid crystal section makes them more demanding, as demonstrated 
through the results. 
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