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Order of Time Derivatives in
Quantum-Mechanical Equations

Jan Jerzy Sławianowski
Institute of Fundamental Technological Research, Polish Academy of Sciences

5B, Pawińskiego str., 02-106 Warsaw, Poland

1. Introduction

The problem is rather old, almost as quantum mechanics itself. The first, primary idea of
Schrödinger was the relativistic one, with the d’Alembert operator on the left-hand side of
quantum-mechanical equation, so, with the second-order time derivatives. Unfortunately, it
turned out that the following results were in a rather clear contradiction with experimental
data, although some kind of compatibility did exist. Schrödinger felt disappointed and
at least temporarily he rejected his primary equation. Later on, basic on the idea of
Lagrange-Hamilton optical-mechanical analogy and on certain de Broglie ideas, he in a
sense derived his famous equation which seemed to remain in a beautiful agreement
with spectroscopic data and was approximately compatible with the Bohr-Sommerfeld
quantization rules. Nevertheless, it was of course drastically incompatible with the relativistic
idea of Poincare symmetry. But, after the fall of the primary substantial interpretation by
Schrödinger, it was compatible with the Born statistical interpretation of his formalism, and
with the corresponding continuity equation for the probabilistic density (Veltman, 2003).
Later on history was rather complicated. Dirac formulated his relativistic quantum theory
of electrons based on first-order space-time derivatives of multicomponent wave functions.
The multicomponent character of waves had to do obviously with the particle spin. It
was also understood that the relativistic velocity-dependence of the electron mass and the
spin phenomena act in opposite directions, and because of this non-relativistic Schrödinger
equation seemed to be better than his second order equation, rediscovered later on by Klein
and Gordon. The formalism of quantum field theory rehabilitated the Klein-Gordon equation,
i.e., primaevally the relativistic Schrödinger equation, as one describing some physics. And,
let us also mention that the field-theoretic approach based on the Pauli exclusion principle
removed certain problems with the quantum-mechanical Dirac equation for a single electron.
And certain inconsistencies on one-particle relativistic theory were resolved. The only, and
fundamental inadequacy which remained, was one connected with the essential non-linearity
of the quantum field-theoretic equations for the field operators and the resulting interpretation
difficulties. Nevertheless, they were in a sense solvable on the basis of renormalization
procedure.
But in spite of everything said, the problem is still alive. There are certain not completely clear
facts within the framework of field theory based on the Dirac-Clifford paradigm of first-order
differential equations of quantum mechanics with h̄/2-spin. One can show that they become
more clear when we assume that in a sense some second-order equations are primary and
the first-order ones are some approximations valid for slowly-varying fields. There are also
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some arguments from geometrodynamics and gauge theories, one of fundamental methods in
modern fields theory. It is known that there are certain disadvantages in geometrodynamical
gauge models based on the Poincare group as a gauge group, in spite of certain correct results
following from that approach. It seems that the main reason is the fact that Poincare group
is not semi-simple. The best way out seems to take the simplest semisimple extension of
this group, namely the conformal group of Minkowski space. It must be stressed that this
group does not act in the space-time manifold, which in geometrodynamics is a general
non-flat manifold of a dynamical structure. Instead, it acts as a purely internal group
operating with internal degrees of freedom of our matter fields. To be more precise, instead
its universal conformal group CO(1, 3), one should use its universal covering group SU(2, 2)
of pseudo-unitary mappings with the signature (+,+,−,−), acting in the target spaces of
matter fields and on the gauge connection components. The primary field equations are
differential ones of the second-order in matter fields. After the careful rewriting in terms of
the basic elements of Lie algebra SU(2, 2)′, the internal group rules both matter and geometry
(gravitation). The use of conformal group is interesting in itself. It is the smallest semi-simple
group containing Poincare group. It is also the largest group which in the geometrically
Minkowskian formulation preserves the family of relativistic uniformly accelerated motions
(described by the flat time-like hyperboles). It turns out that there are interesting aspects
of this approach, having some correspondence with the usual gravitation theory and with
generally-relativistic spinor fields. In the specially-relativistic limit, the theory seems to
predict the existence of pairs of fundamental quarks and leptons, just as it is really in Nature.
We mean here the quark pairs (u, d), (c, s), (t, b) and those of leptons (νe, e), (νµ, µ), (ντ , τ).
It is interesting that in this limit the fermion fields are described by the Klein-Gordon-Dirac
equation combining the Klein-Gordon and Dirac operators, and that in this limit the Dirac
behaviour of fields seems to be more remarkable. There are certain interesting facts concerning
the spin-statistics problem. It seems that on the very fundamental level some fermion-boson
mixing may appear, or that the two possibilities will be unified by some quite new approach.
This framework seems to be related, in a rather unexpected way, to another aspect of the
problem of the order of time derivatives in quantum mechanics. Namely, certain quite
interesting aspects of the quantum-mechanical and quantum field-theoretic problems appears,
when one temporarily forgets about the quantum nature of equations, and considers them
simply as some Hamiltonian systems of mathematical physics. Certain primary ideas
concerning this problem were formulated in our papers a few years ago (Sławianowski &
Kovalchuk, 2002; 2008; 2010; Sławianowski et al., 2004; 2005). There are some arguments
which seem to show that there is some so-to-speak inadequacy in the first-order Schrödinger
equation. In any case, the second-order corrections seem to be just admissible if not desirable.
There are also certain indications for that from the theory of stochastic processes. This
approach has certain common points with the former gauge-theoretic one. Namely, once using
the language of Hamiltonian dynamics (perhaps infinite-dimensional one) we do not feel any
longer the usual reluctance of quantum people to the idea of non linearity. In particular, it
turns out that the dynamical scalar product, i.e., one non-constant, but satisfying a closed
system of equations with the wave amplitudes, is a natural constituent of the approach. The
theory becomes then essentially nonlinear. Essentially, i.e., in such a way that nonlinearity
is not an accidental term imposed onto some basic linear background. Everything is then
nonlinear in the zeroth-order approximation. Nonlinearity is an essential feature, similar to
one used in non-Abelian gauge theories and may be perhaps responsible for the decoherence
and measurement paradoxes.
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Order of Time Derivatives in Quantum-Mechanical Equations 3

We have formulated some arguments in favour of SU(2, 2) as a fundamental gauge group.
Let us mention, incidentally, that this simply provokes the next question: Why the subgroup
SU(2, 2) ⊂ GL(4, C) but not just the whole GL(4, C)? The latter group appears in a natural
way as the structure group of the principal fibre bundle of the complexification of the usual
bundle of frames over the four-dimensional space-time manifold. Obviously, it preserves
the signature of sesquilinear forms, nevertheless changing them otherwise. Therefore, the
bispinor sesquilinear Hermitian form G of signature (+,+,−,−) becomes an a priori free
Hermitian form, the signature however being in a sense an integral of motion.

2. On the track of the scalar Klein-Gordon-Dirac formalism

The generally-relativistic Lagrangian of the Dirac field is given by the expression:

L =
i

2
eµ

AγAr
s

(
Ψ̃rDµΨ

s − DµΨ̃rΨ
s
)√

|g| − mΨ̃rΨ
r
√
|g| (1)

with the following meaning of symbols:

(a) Ψ̃ denote the Dirac-conjugation of Ψ,

Ψ̃r = Ψ
s
Gsr, (2)

where G denotes the Dirac-conjugation form of mass, i.e., sesquilinear Hermitian form of the
natural signature (+,+,−,−). If the Finkelstein-Penrose-Weizsäcker-van der Waerden point
of view on the two-component spinors is accepted, then G is intrinsic, because the C4-space is
then expressed as the Cartesian product of two mutually antidual copies of C2. Without this
point of view, analytically Ψ is C4-valued.
(b) Dirac matrices γA satisfy the following anticommutation rules:

{
γA, γB

}
= γAγB + γBγA = 2ηAB I4, (3)

[
γAB

]
= diag (1,−1,−1,−1) . (4)

Besides, γA are Hermitian with respect to Γ:

Γ
A

rs = ΓA
sr = ΓA

sr = GrzγAz
s. (5)

(c) The quantities eµ
A are components of the tetrad field. Its dual cotetrad eA

µ is analytically
given by the reciprocal expression

eA
µeµ

B = δA
B. (6)

(d) The metric tensor gµν is built of eA
µ in a quadratic way:

gµν = ηABeA
µeB

ν, [ηAB] = diag (1,−1,−1,−1) . (7)

The Greek and capital Latin indices are shifted with the help of gµν and ηAB.
(e) The operation Dµ symbolizes the covariant differentiation of bispinors. It is given by the
following sequence of expressions:

Γ
α

βµ = eα
AΓ

A
BµeB

β + eα
AeA

β,µ, (8)

Γ
A

Bµ =
1

2
Tr

(
γAωµγB

)
, (9)
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ωµ =
1

2
ΓLKµΣ

LK =
1

2
ηLMΓ

M
KµΣ

LK , (10)

Σ
LK =

1

4

(
γLγK − γKγL

)
, (11)

where, obviously, the following identities hold:

ηACΓ
C

Bµ + ηBCΓ
C

Aµ = 0, ∇Γ
µgαβ = 0. (12)

This means that the following is satisfied:

Γ
α

βµ =
{

α
βµ

}
+ Sα

βµ + Sβµ
α − Sµ

α
β.

This means that
{

α
βµ

}
are coefficients of the Levi-Civita connection built of the metric g, and

Sα
βµ = Γ

α
[βµ] is the torsion tensor of Γ

α
βµ.

In a sense this is a gauge theory. There are, however, certain objections against it, although
from some point of view the theory works in a satisfactory way as a gauge frame. Let us quote
mentioned objections:
(a) The use of tetrads seems to be essential here. This is important. In the standard gauge
theories, e.g., in Salam-Weinberg model, or in quantum chromodynamics, the field of frames
does not occur explicitly in the formalism. The idea of the local gauge Minkowski translations
leads us far beyond the ground of the theory.
(b) Another non-pleasant and strange feature of the theory is the doubtful meaning of
the gauge invariance under the group SU(2, 2), just as its quotient SL(2, C). Namely, for
the massless particles it is so that field equations are SU(2, 2)/conformally invariant. But
Lagrangian is not so, and because of this the Noether theorem is not either. And at the same
time the mass form Grs just underlies the inertial properties of those Lagrangians. So, it is
natural to expect that it should be essential for the invariance of Lagrangian. Therefore,
perhaps Lagrangian should be transformed exactly up to the purely internal rule under
SU(2, 2), just like it is done under the subgroup SL(2, C) in Einstein-Cartan theory. Namely,
that for any A ∈ SU(2, 2) it should be modified as follows under A ∈ SL(2, C) in (1):

(AΨ)r (x) = Ar
sΨ

s (x) . (13)

This is a purely internal rule, like those for SL(2, C) in (1), without any external correction.
In this way, the number of geometric degrees of freedom is increased, but it should be so if
SU(2, 2) are to be Hamiltonian symmetries.
(c) Finally, there is a strange feature of Lagrangian (1), namely, the one that it is essentially
based on the covariant vector density

Jr
sµ :=

(
DµΨ̃sΨ

r − Ψ̃sDµΨ
r
)√

|g|, (14)

or, to be more honest, on its contravariant upper-index version

Jr
s
µ := gµν

(
DνΨ̃sΨ

r − Ψ̃sDνΨ
r
)√

|g|. (15)

The idea is that Jr
s
µ looks as a typical bosonic current. What is the symmetry group

responsible for it? The algebraic prescription for Jr
s
µ does suggest that it is the group U(2, 2)
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Order of Time Derivatives in Quantum-Mechanical Equations 5

and that the corresponding Lagrangian for Ψ should be just the complex-four-dimensional
Lagrangian for the field Ψ, this time invariant under the total U(2, 2), no longer by SL(2, C).
Nevertheless, some fundamental question remains, namely one concerning the relationship
between Klein-Gordon equation of order two and first-order Dirac equation. It is though clear
that the structural properties of differential equations are in very malicious way sensitive to
the removing highest-order derivative term.
It is interesting to begin the analysis from some rather academic example of the scalar
complex field interacting in a minimal way with the gauge filed eµ, i.e., dynamically ruled
by the unitary group U(1). Namely, let us assume the primeval globally invariant by U(1)
Lagrangian for Ψ : M → C,

Lm =

(
1

2
gµν∂µΨ∂νΨ − c

2
ΨΨ

)√
|g|. (16)

Now, as usually we introduce the covector gauge field eµ and the covariant derivative of Ψ,

DµΨ := ∂µΨ − iqeµΨ. (17)

Substituting Dµ instead of ∂µ to (16) we obtain as usual the locally-invariant expression

Lm =
1

2
gµνDµΨDνΨ

√
|g| − c

2
ΨΨ

√
|g|. (18)

This is Lagrangian for Ψ. The corresponding term for

fµν = ∂µeν − ∂νeµ (19)

is as usually given by

Lg = −1

4
gµκgνλ fµν f

κλ

√
|g|, (20)

and the total Lagrangian for (Ψ, f ) is given by the sum

L = Lm + Lg (21)

(the subscripts m, g refer respectively to the matter and gauge field).
Let us rewrite the matter term in the following form:

Lm = qgµνeµ
i

2

(
Ψ∂νΨ − ∂νΨΨ

)√
|g|

−
(

c

2
− q2

2
gµνeµeν

)
ΨΨ

√
|g|+ 1

2
gµν∂µΨ∂νΨ

√
|g|. (22)

The first term, built of the first derivatives and of the algebraic expressions of fields, leads to
first-order differential equations with respect to Ψ. The last, Klein-Gordon term leads through
variational principle to the second-order equations in Ψ. The rigorous field equations have
the following form:

qieµ∂µΨ −
(

c

2
− q2

2
eµeµ − iq

2
eµ

;µ

)
− 1

2
gµν∂µ∂νΨ = 0, (23)

∂ν f µν =
qi

2

(
Ψ∂µΨ − (∂µΨ)Ψ

)
+ q2eµ

ΨΨ. (24)
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Obviously, the semicolon symbol in (23) denotes the g-metric Levi-Civita affine connection,
or rather divergence. It is interesting that the vector field eµ plays a role similar to that of
gravitational tetrad, in spite of all differences. And in general, the pair (Ψ, eµ) is formally
analogous to the pair (Ψr, eµ

A), or equivalently
(
Ψ

r, eA
µ
)
, i.e., bispinor and tetrad/cotetrad.

But there is no rigorous Clifford analogy. It is interesting that on the right hand side of (24)
there is a combination of two terms: Dirac-like current and Schrödinger current.
It is interesting that the system of equations (23), (24) may be simplified by assuming that the
system of first-order derivatives of Ψ is smaller than the system of quantities built of Ψ in an
algebraic way, and similarly, the system of second derivatives of Ψ is smaller than the first- and
zeroth-order derivatives of Ψ. But this means that the system (23), (24) may be approximated
by the following one:

ieµ∂µΨ −
(

c

2q
− q

2
eµeµ − i

2
eµ

;µ

)
Ψ = 0, (25)

∂ν f µν = q2eµ
ΨΨ. (26)

It is interesting that this system, except the Clifford analogy, is structurally similar to the Dirac
system of equations. It is difficult to state a priori if the essentially nonlinear system (25),
(26) may have anything to do with reality. Nevertheless, the point is that it is both nonlinear,
and as a system imposed on the pair

(
Ψ, eµ

)
it shows certain similarity to the Dirac-Maxwell

system. And the bosonic current i
(
∂µΨΨ − Ψ∂µΨ

)√
|g| is an obvious counterpart of the

SU(2, 2) current given by i
(

DµΨ̃sΨ
r − Ψ̃sDµΨ

r
)√

|g|. Obviously, the model (25), (26) is a

bit non-physical and crazy, especially with its separation of terms. Nevertheless, it seems to
follow from it that the above demands and objections concerning the U(2, 2)-invariance and
the particular role of the bosonic currents and tetrads may be easily answered on the basis of
the spinor counterpart of Lm (22) and its first-order limit (23), (24).

3. Second order Klein-Gordon equation

We need a few things, for instance, affine connection in space-time manifold, spinor
connection, U(2, 2)-gauge field, metric tensor, and in certain approaches some field of frames,
e.g., generalization of the tetrad field. The space-time manifold M is assumed structure-less
and nothing but the differential-geometric structure is assumed in it. Unlike this, in the target
space C4, we assume some internal geometry based on the use of some sesquilinear Hermitian
G form of signature (+,+,−,−), as mentioned above. This form does belong to the internal
structure of C4, and to be more rigorous, we can assume it to be a complex linear space of
dimension four, endowed with the mentioned neutral signature. When this form is fixed,
it distinguishes within the complex group GL(4, C), the pseudounitary group consisting of
transformations preserving G, so that the following holds:

Gr̄s = Gz̄tU
z̄

rUt
s. (27)

The Lie algebra of this group consists of linear mappings u which satisfy:

Gr̄zuz
s + Gs̄zuz

r = 0. (28)

So, roughly speaking, U(2, 2)′ consists of matrices (linear mapping of the target space) which
are G-anti-Hermitian. Let us mention that any particular choice of Γ is only a matter of
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convenience. It is only its global signature that matters. As mentioned, in the Weyl, Penrose,
Finkelstein and Weizsäcker procedure the typical choice is

[Gr̄s] =

[
0 I2

I2 0

]
. (29)

In the Dirac procedure one prefers the choice:

[Gr̄s] =

[
I2 0
0 −I2

]
. (30)

Transition between these representations is described by the matrix

1√
2

[
I2 I2

I2 −I2

]
. (31)

Similarly, the Weyl, Penrose, Finkelstein and Weizsäcker procedure leads to the following
expressions for the Dirac matrices:

γA = ηABγB =

[
0 σ̃A

σA 0

]
=

[
0 ηABσB

σA 0

]
. (32)

In the Dirac representation we have that

γ0 =

[
I2 0
0 −I2

]
=

[
σ0 0
0 −σ0

]
, γR =

[
0 σR

−σR 0

]
, R = 1, 2, 3. (33)

Obviously, those are two particular choices, we quote them only as the two most important
ones.
The globally U(2, 2)-invariant second-order Klein-Gordon Lagrangian for the C4-valued
scalar field on M is given by

Lm(Ψ; g) =
b

2
gµν∂µΨ

r̄
∂νΨ

sGr̄s

√
|g| − c

2
Gr̄sΨ

r̄
Ψ

s
√
|g|. (34)

Making use of the Dirac-conjugate field,

Ψ̃r := Ψ
s̄
Gs̄r, (35)

we can rewrite (34) in the following form:

Lm(Ψ; g) =
b

2
gµν∂µΨ̃∂νΨ

√
|g| − c

2
Ψ̃Ψ

√
|g|. (36)

First let us consider the problem of the local U(2, 2) ≃ U(4, G)-invariance. To do that we must
begin with introducing the connection form of the U(4, G)-connection. This is a u(4, G)-valued
differential form

M ∋ x 
→ ϑx ∈ L (Tx M, u(4, G)) (37)

transforming under the local U(4, G)-valued local transformations U : M → U(4, G) as
follows:

(Uϑ)x = U(x)ϑxU(x)−1 − dUxU(x)−1. (38)
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This connection form is controlled by the two real parameters corresponding to SU(2, 2) ≃
SU(4, G) and to the one-parameter dilatation group. The corresponding covariant derivative
of the four-component Klein-Gordon field has the following form:

∇µΨ = ∂µΨ + g

(
ϑµ − 1

4
Tr ϑµI

)
Ψ +

q

4
Tr ϑµΨ = ∂µΨ + gϑµΨ +

q − g

4
Tr ϑµΨ. (39)

Similarly for the Dirac-conjugate field we have the following dual formula:

∇µΨ̃ = ∂µΨ̃ − gΨ̃

(
ϑµ − 1

4
Tr ϑµI

)
− q

4
Ψ̃Tr ϑµ = ∂µΨ̃ − gΨ̃ϑµ − q − g

4
Ψ̃Tr ϑµ. (40)

The curvature form Φ = Dϑ is then expressed as follows:

Φµν = dϑµν + g
[
ϑµ, ϑν

]
= ∂µϑν − ∂νϑµ + g

[
ϑµ, ϑν

]
. (41)

Let us observe that the conserved Noether current following from the Noether theorem
applied to (34) is given by

jrsµ =
b

2

(
Ψ

r∂µΨ̃s − ∂µΨ
r
Ψ̃s

)√
|g|. (42)

One can show that the gauge invariant Lagrangian for the Ψ-matter has the following form:

Lm(Ψ, ϑ, g) =
b

2
gµν∇µΨ̃∇νΨ

√
|g| − c

2
Ψ̃Ψ

√
|g|. (43)

The gauge-invariant current

J(Ψ, ϑ, g)r
sµ =

b

2

(
Ψ

r∇µΨ̃s −∇µΨ
r
Ψ̃s

)√
|g| (44)

may be obtained from the Lagrangian (43) by performing its differentiation with respect to the
connection ϑ,

∂Lm(Ψ, ϑ, g)

∂ϑr
sµ

= gJs
r
µ +

q − g

4
Jz

zµδs
r. (45)

This was about the matter Lagrangian. What concerns the gauge Lagrangian, the simplest
possibility of the gauge-invariant model is the following one:

LYM(ϑ, g) =
a

4
Tr

(
ΦµνΦ

κλ

)
gµκgνλ

√
|g|+ a′

4
Tr ΦµνTr Φ

κλgµκgνλ
√
|g|, (46)

where a, a′ are constants. The first term, controlled by the parameter a is the main,
Maxwell-like expressions. The second term is additional one, built of the traces of field
strengths. It is an auxiliary expression, nevertheless it is geometrically admissible and it
may be some reasonable, helpful correction to the first one. In any case, it is a merely
supplementary expression, although it may be convenient and physically justified.
Let us observe that in spite of the non-homogeneous transformation rule (38), the curvature
two-form (41) transforms according to the tensorial homogeneous rule under (37), (38):

(UΦ)x = U(x)Φ(x)U(x)−1. (47)
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Because of this the Yang-Mills Lagrangian (46) is invariant under the local U(2, 2) ≃ U(H, G)
transformations (38). And similarly, the matter Lagrangian (43) is invariant.
This is the main, gauge constituent of the theory. Let us now mention only about the
relationship of SU(2, 2)-matrices Φ to the representations SL(2, C) ∋ A 
→ U[A] ∈ U(2, 2)
corresponding to the Weyl-Penrose-Finkelstein-Weizsäcker and to the Dirac representation of
Gr̄s. In the first group of representation (W-P-F-W) we have the following realizations of U[A]:

U[A] =

[
A 0

0 A−1+

]
, u[a] =

[
a 0
0 −a+

]
(48)

respectively for SL(2, C) and its Lie algebra. In Dirac representation

U[A] =
1

2

[
A + A−1+ A − A−1+

A − A−1+ A + A−1+

]
, u[a] =

1

2

[
a − a+ a + a+

a + a+ a − a+

]
(49)

for the group and algebra. The right “plus” superscript denotes obviously the Hermitian
matrix conjugate. Obviously, quite independently of the choice of any representation the
following holds:

U[A]γKU[A]−1 = γLP[A]LK , (50)

where P : SL(2, C) → SO(1, 3)↑ is the covering projection. The mappings U : SL(2, C) →
U(2, 2) and P : SL(2, C) → SO(1, 3)↑ generate the corresponding homomorphisms of Lie
algebras, u : SL(2, C)′ → U(2, 2)′ and p : SL(2, C)′ → SO(1, 3)′. They are synchronized by

[u[a], (γ)K ] = γL p[a]LK . (51)

It is also worth to note the following expressions:

P[A]LK =
1

4
Tr

(
γLU[A]γKU[A]−1

)
, (52)

p[a]LK =
1

2
Tr

(
γLu[a]γK

)
, (53)

and

u[a] =
1

2
p[a]LKΣL

K , (54)

where after the shift of indices we have that

Σ
LK =

1

4

(
γLγK − γKγL

)
=

1

4

[
γL, γK

]
. (55)

4. What about the metric tensor?

In the gauge Lagrangians above, the metric tensor in a sense played the parameter role.
Our idea was to construct the U(2, 2) ≃ U(H, G)-invariant theory of gravitation. The main
constituents of the theory were the four-component complex Klein-Gordon field and the
corresponding Maxwell-like gauge field. We will show that there are interesting and very
important points for which this is important, perhaps even just exciting. But there is some
weak point which was not yet completely explained. It is just the role and physical status of
the metric tensor, which is present in the Klein-Gordon and gauge Lagrangian, however its
geometric and physical sense is not yet full understood. It is clear that it must occur there if we
are to be able to construct Lagrangians. But what is its meaning and how to identify properly
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its physical role? As one of potentials of gravitation, or as some secondary variable? And if the
second possibility is to be chosen, what are the primary variables the byproduct of which is
the metric tensor? Situation in this respect was clear only in the standard Einstein General
Relativity. There it was just the only gravitational potential (or perhaps a superpotential
if the connection coefficients were interpreted as proper potentials). But within any gauge
framework the metric tensor is a merely one of a few potentials.In this paper we concentrate
on the theory aspects not very sensitive to this problem. Instead, we shall present a few
possibilities.
First of all, let us notice that quite naively, one can assume the Hilbert-Einstein term for the
metric tensor g,

LHE(g) = −dR(g)
√
|g|+ l

√
|g|. (56)

where d, l are real constants. The special case d = 0 is not to be a priori rejected. Namely, if
d = 0 and perhaps l = 0, then variation of the action functional with respect to gµν enables one
to express gµν through the other variables. But of course, the choice (56) looks rather naive.
In any case, the total Lagrangian of the form

L(Ψ, ϑ, g) := Lm(Ψ, ϑ, g) + LYM(ϑ, g) + LHE(g) (57)

leads, after the variational procedure for the action, to the following system of equations:

gµν
g

∇µ

g

∇νΨ +
c

b
Ψ = 0, (58)

χµν
;ν + g [ϑν, χµν] = gJµ +

q − g

4
Tr JµI, (59)

d

(
R(g)µν − 1

2
R(g)gµν

)
=

l

2
gµν +

1

2
Tµν, (60)

with the meaning of symbols as below:

1. The semicolon “;” is the g-Levi-Civita covariant differentiation.

2. The symbol
g

∇µ denotes the complete covariant differentiation. The Levi-Civita covariant
differentiation of the space-time indices is joined there with the U(2, 2) ≃ U(H, G)
covariant differentials of internal indices. Let us quote a typical example:

g

∇µYr
ν + gϑr

sµYs
ν +

q − g

4
ϑz

zµYr
ν −

g
{

λ
µν

}
Yr

λ, (61)

and similarly, i.e., dually, or in the Leibniz-multiplication sense, for other quantities.

3. χ is the field momentum conjugate to ϑ, so

χr
s
µν =

∂LYM

∂ϑs
rµ,ν

= −aΦ
r
sαβgαµgβν

√
|g| (62)

−a′δr
sΦ

z
zαβgαµgβν

√
|g|,

or in the shortened form with the g-shifting of indices,

χµν = −aΦ
µν
√
|g| − a′I Tr Φ

µν
√
|g|. (63)
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4. Tµν denotes the symmetric energy-momentum tensor of the fields ϑ, Ψ, so we have that

Tµν = T
µν
m + T

µν
YM, (64)

where, obviously,

T
µν
m = − 2√

|g|

(
∂Lm

∂gµν
−

(
∂Lm

∂gµν,α

)

,α

)
, (65)

T
µν
YM = − 2√

|g|

(
∂LYM

∂gµν
−

(
∂LYM

∂gµν,α

)

,α

)
. (66)

We do not quote the explicit formulae.

As mentioned, the Hilbert-Einstein term of Lagrangian in (57) looks rather naive, although
perhaps it may be reasonable. Equations resulting from the version with vanishing coefficients
(or vanishing “d” at least) also seem to be not bad, and in any case not to be a priori rejected.
And, as mentioned, the field equations following from the first two terms of (57) seem
promisible. But, as said above, the Hilbert-Einstein term seems to spoil the whole taste of
the gauge approach. In Einstein-Cartan theory it was the tetrad field who saved the situation,
nevertheless, also for some price (as mentioned, in no other gauge theory one explicitly uses
the field of frames as a dynamical variable). What may be done in our formalism to replace in
a reasonable way the role of tetrad? We would like to answer this question before the further
development of our theory. There are a few, at least three natural ways. Certainly there is no
possibility to build the metric tensor from the gauge field, in the sense:

gµν := pϑr
sµϑs

rν + qϑr
rµϑs

sν, (67)

what apparently might seem natural. The point is, however that (67) is only globally, but not
locally U(2, 2)-invariant. But one can do it in a local way, by introducing some fields more
elementary than the metric itself.

1. We may assume that besides the connection form ϑ, the geometrodynamical sector
involves some additional C4-valued (H-valued, let us say) differential one-form W:

M ∋ x 
→ Wx ∈ L(Tx M, C
4).

Analytically we describe this object as Wr
µ. And we assume that it is homogeneously

transformable under the locally acting U(2, 2),

Wx 
→ U(x)Wx, i.e., ′Wr
µ = Ur

s(x)Ws
µ. (68)

This form gives rise to the metric tensor field on M as follows:

g(W)µν := Re
(

W̃rµWr
ν

)
= Re

(
W̃µWν

)
. (69)

Therefore, this expression is the symmetric, thus real part of the Hermitian tensor W∗
x G.

The quantity is locally U(2, 2)-invariant. The simplest gauge-invariant Lagrangian is given
by

L(W, ϑ) = a∇W̃µν∇W
κλgµκgνλ

√
|g|+ b

√
|g|. (70)
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In this expression a, b are some real constants, gµαgαν = δµ
ν, and ∇W denotes the exterior

covariant differential of W, so that

∇Wµν = dWµν + g
(
ϑµWν − ϑνWµ

)
+

′q − g

4

(
Tr ϑµWν − Tr ϑνWµ

)
. (71)

Here ′q, the coupling constant, is the kind of electric charge of W. Let us stress,
the Lagrangian (70) is locally invariant under U(2, 2). It is interesting that after the
SL(2, C)-reduction W is a 3/2-spin particle. This resembles the super-symmetric idea of
gravitino.

2. Let us suppose that besides of ϑ, the geometric sector contains also another U(2, 2)′-valued
differential form W, M ∋ x 
→ Wx ∈ L(Tx M, U(2, 2)′). Analytically it is represented by the
system of quantities Wr

sµ. But unlike the connection form ϑ, just like in the previous idea,
it suffers a homogeneous transformation rule under U(2, 2),

Wx 
→ U(x)WxU(x)−1, ′Wr
sµ = Ur

zWz
tµU−1t

s. (72)

The corresponding metric field g(W) on M is given by

g(W)µν = aTr
(
WµWν

)
+ bTr WµTr Wν, (73)

where a, b are constants and obviously a = 0; the a-term is dominant, whereas the b-term
is a merely correction.

The exterior covariant differential of W is given by

∇Wµν = dWµν + g
[
ϑµ, Wν

]
− g

[
Wν, ϑµ

]
. (74)

The corresponding Maxwell Lagrangian for the form W is given by

L(W, ϑ) = aTr
(
∇Wµν∇W

κλ

)
gµκgνλ

√
|g|

+ bTr
(
∇Wµν

)
Tr (∇W

κλ) gµκgνλ
√
|g|+ c

√
|g| (75)

with constant coefficients a, b, c.

3. There is also a different model, maximally economic in the sense that its only dynamical
variables are ϑ and Ψ. There is neither g nor any other geometric quantity used as
Lagrangian argument. Instead, we use the metric-like tensor built in a locally-invariant
gauge way from the basic field quantities:

g(Ψ, ϑ)µν = aRe
(
∇µΨ̃∇νΨ

)
= aRe

(
Gr̄s∇µΨ

r̄∇νΨ
s
)

. (76)

Obviously, it would be meaningless to substitute this metric to the usual Klein-Gordon
Lagrangian, because the result would be trivial. However, there are modified Born-Infeld
type schemes, in a sense very interesting ones, as usual Born-Infeld schemes are. The typical
Born-Infeld scheme for (Ψ, ϑ) is the following one:

L(Ψ, ϑ) =

√∣∣∣∣det

[
b

2
gµν +

a

4
Tr

(
FµκFνλ

)
gκλ +

a′

4
Tr FµκTr Fνλgκλ

]∣∣∣∣. (77)

68 Measurements in Quantum Mechanics

www.intechopen.com



Order of Time Derivatives in Quantum-Mechanical Equations 13

This is the most natural Born-Infeld scheme.
Let us mention, there are also similar, but modified expressions with some “potential” terms,
e.g.,

L(Ψ, ϑ) =
a

4
Tr

(
FµνF

κλ

)
gµκgνλ

√
|g|

+
a′

4
Tr FµνTr F

κλgµκgνλ
√
|g|+ b

√
|g|. (78)

In both expressions (77), (78) the space-time metric is given by (76), and a, a′, b are some real
constants.

5. The main ideas of the Klein-Gordon U(2, 2)-ruled theory

Without judging the three presented models of the metric field, or rather the four of them if
the Hilbert-Einstein possibility is admitted, we have nevertheless formulated them. And from
the point of view of aesthetic criteria, they look quite reasonable. But now, let us discuss the
main results of the very U(2, 2)-invariant Klein-Gordon gauge model of gravity as ruled by
the first two terms of (57), or even by the total (57).
The field equations (58), (59), (60) become qualitatively readable when some special basis is
chosen in the Lie algebra of U(2, 2). This basis is somehow related to the twistor geometry,
although literally it is something else than the conformal geometry in Minkowskian space.
The basis elements are built algebraically of γA-matrices.
Let us introduce the following matrices built algebraically of γA-s:

γ5 = −γ5 = −γ0γ1γ2γ3, (79)
Aγ = iγAγ5 = −iγ5γA, (80)

Σ
AB =

1

4

(
γAγB − γBγA

)
. (81)

It is clear that Aγ-s satisfy the opposite-sign anticommutation rules

{
Aγ, Bγ

}
= −2ηAB I. (82)

One can show that

Aγ = BγηBA = − i

6
εABCDγBγCγD, (83)

where the convention ε0123 = 1 is used.
The Lie algebra U(2, 2)′ = U(H, G)′ may be spanned in the R-sense on the matrices

iγA, iAγ, Σ
AB, iγ5, iI4. (84)

Removing from this system the imaginary matrix iI4, we obtain the basis of SU(2, 2)′ =
SU(H, G)′. The matrices iγA, iAγ do not R-span Lie algebras. But it is clear that their sum
and difference are bases of Abelian Lie subalgebras:

τA :=
1

2
(γA + Aγ) , χA :=

1

2

(
γA − Aγ

)
, (85)

[τA, τB] = 0,
[
χA, χB

]
= 0. (86)
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In the twistor language the quantities τA generate Minkowskian translations, while χA are
generators of the group of proper conformal mappings. Obviously, this interpretation is true
only within the framework of Minkowskian-conformal geometry. The literal meaning of this
interpretation is lost within the internal interpretation of those mappings. Nevertheless, the
commutation rules of the conformal group are still valid. It becomes internal group just like
the Lorentz group in Einstein-Cartan theory.
The connection from ϑ may be expanded as follows:

ϑµ =
1

2
Ω̆

AB
µΣAB + Bµ

1

i
γ5 + AµiI + eA

µiτA + fAµiχA, (87)

where, obviously, Ω̆
AB

µ = −Ω̆
BA

µ.
It may be convenient to introduce the object

Ω
A

Bµ := Ω̆
A

Bµ + 2BµδA
B, (88)

where the following holds:

Bµ =
1

8
Ω

A
Aµ, Ω̆

A
Bµ = Ω

A
Bµ − 1

4
Ω

C
CµδA

B. (89)

Therefore, 8Bµ may be identified with the trace, and Ω̆
A

Bµ — with the trace-less part of the

object Ω
A

Bµ. So, it may be natural to write ϑµ as follows:

ϑµ =
1

2
Ω

AB
µ

(
ΣAB +

1

4
nAB

1

i
γ5

)
+ eA

µiτA + fAµiχA + AµiI, (90)

or alternatively

ϑµ =
1

2g
Γ̆

AB
µΣAB +

1

4g
Qµ

1

i
γ5 +

1

g
εA

µiτA +
1

g
ϕAµiχA + AµiI, (91)

or just as

ϑµ =
1

2g
Γ

AB
µ

(
ΣAB +

1

4
nAB

1

i
γ5

)
+

1

g
εA

µiτA +
1

g
ϕAµiχA + AµiI, (92)

where the following auxiliary gauge symbols are used:

Γ
A

Bµ = gΩ
A

Bµ, Γ̆
A

Bµ = Γ
A

Bµ − 1

4
Γ

C
CµδA

B, (93)

Qµ = 4gBµ =
g

2
Ω

A
Aµ =

1

2
Γ

A
Aµ, (94)

εA
µ = geA

µ, ϕAµ = g fAµ. (95)

The systems of differential forms
[
Ω

A
B = (1/g)ΓA

B

]
,
[
eA

]
, [ fA] are parts of the connection

form ϑ, and because of this, the action of x-dependent matrices U on them is inhomogeneous.
But when we restrict ourselves to the U-injected group SL(2, C), the transformation rule
for

[
eA

]
, [ fA] becomes homogeneous. It is just the correspondence rule with the situation

of Einstein-Cartan theory where
[
eA

]
was a gravitational cotetrad. Let us remind that in

GL(2, C)-invariant spinor theory, Qµ = (1/2)ΓA
Aµ was the Weyl covector, and there was
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necessity to use an additional version of the cotetrad, transforming under dilatations in the
inverse way. If we used the world metric gµν, then Qµ was the Killing covector, i.e.,

∇λgµν = −Qλgµν, (96)

in the sense of the GL(2, C)-part of the U(2, 2)-connection.
Let us stress that in certain formulae it is still more convenient to use the γA, Aγ-expansion
than those based on τA, χA, namely,

ϑµ =
1

2
Ω

AB
µΣAB + Bµ

1

i
γ5 + AµiI + EAµiγA + FAµiAγ, (97)

where the following notation is used:

EA =
1

2

(
eA + ηAB fB

)
= ηABEB, FA =

1

2

(
eA − ηAB fB

)
= ηABFB. (98)

Let us now take the following expansion of the curvature vector-valued two-form:

Φ = T(e)AiτA + T( f )AiχA +
1

2
R̃AB

ΣAB + G
1

i
γ5 + FiI, (99)

where the following partially clear symbols are used:

T(e)A = deA + gΩ
A

B ∧ eB = deA + Γ
A

B ∧ eB, (100)

T( f )A = d fA + g fB ∧ Ω
B

A = d fA + fB ∧ Γ
B

A, (101)

R̃A
B = R(Ω)A

B − 1

4
R(Ω)C

CδA
B − 2geA ∧ fB

+2gηACηBDeD ∧ fC =
1

g

(
R(Γ)A

B − 1

4
R(Γ)C

CδA
B

−2g2eA ∧ fB + 2g2ηACηBDeD ∧ fC

)
, (102)

G =
1

4g
dQ − geA ∧ fA =

1

g

(
1

8
R(Γ)A

A − g2eA ∧ fa

)
, (103)

F = dA, (104)

where R(Γ), R(Ω) denote the curvature two-form:

R(Γ)A
B = dΓ

A
B + Γ

A
C ∧ Γ

C
B, R(Ω)A

B = dΩ
A

B + gΩ
A

C ∧ Ω
C

B. (105)

Let us remember that the torsion of a linear connection may be interpreted as a contribution
to affine connection. The corresponding space-time objects, i.e., connections, torsions and
curvatures are given by

Γ(e)k
ij = ek

AΓ
A

Bje
B

i + ek
AeA

i,j, (106)

Γ( f )k
ij = − fAiΓ

A
Bj f kB + f kA fAi,j, (107)

S(e)k
ij = Γ(e)k

[ij] = −1

2
ek

AT(e)A
ij, (108)

S( f )k
ij = Γ( f )k

[ij] = −1

2
f kAT( f )Aij, (109)

R(e)m
kij = em

AeB
kRA

Bij, (110)

R( f )m
kij = − fAk f mBRA

Bij. (111)
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We do not quote the total explicit form of field equations. Being generally-covariant, they are
over-determined, therefore, as usual suspected to be inconsistent. Nevertheless, substituting
to the field equations the non-excited matter Ψ = 0, and the above equations (106)–(111),
one can show that there are certain non-trivial solutions. Namely, let us take the following
Einstein-Dirac metrics:

h(e, η)µν = ηABeA
µeB

ν,

h( f , η)µν = ηAB fAµ fBν. (112)

And now, let us substitute the following conditions to the field equations (58), (59), (60):

Ψ = 0, fAµ = kηABeB
µ, gµν = ph(e, η)µν, (113)

Qµ = 0, Aµ = 0, S(e)λ
µν = S( f )λ

µν = 0. (114)

It is simply marvellous that the very complicated system of equations following from (58),
(59), (60) after substituting (106)–(114) is solvable, moreover, it is reducible to something very
simple. Namely, the very complicated system of equations for the geometric fields reduces
step by step to

Rµν − 1

2
Rgµν = −12

g2k

p
gµν, (115)

where Rµν denotes the twice contravariant Ricci tensor built of gαβ, and R is the curvature
scalar. Substituting there k = 1, p = 1, one obtains simply the following equation

Rµν − 1

2
Rgµν = −12g2gµν. (116)

In any case one deals here with the Einstein equation with the cosmological constant. It is
remarkable that this coupling constant is proportional to the gauge coupling constant. Such
a coupling between microphysical model and macroscopic or even just cosmic scale physics
is marvellous and philosophically fascinating. When the Einstein-Hilbert dynamics of gµν is
used, we obtain also the condition

Tµν = 0. (117)

But there is no contradiction between (117) and (115)/(116). There exist some common
solutions, namely, ones corresponding to the constant curvature spaces:

Rαβµν =
4g2k

p

(
gαµgβν − gανgβµ

)
. (118)

It is again the fascinating idea that the conformal flatness of space-time, expressed by (118)
is so nicely compatible with the assumption that the theory is invariant under the covering
group of the conformal group.
The field sector of the model corresponds smoothly to the gauge Poincare gravitation. When
the field Lagrangian is expressed in terms of the above quantities e, f , S(e), S( f ), R(e),
R( f ), one obtains expression quadratic in field variables just like in Poincare gauge models.
However, the use of the semisimple SU(2, 2) results in well-defined, rigorous ratio of constant
coefficients, not accidental one like in Poincare model.
What concerns material sector, the use of the second-order Klein-Gordon equation and the
presence of second-order derivatives of the matter field, is a drastic difference in comparison
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with the first-order Dirac equation. However, the situation is not very bad, on the contrary, it
may seem promising and desirable. If we substitute to the matter equation the Dirac-Einstein
assumption, e.g., with p = 1, k = 1, then we obtain the following Dirac-Klein-Gordon
equation:

eµ
AiγA

(
∇µ + Sν

νµ I4

)
Ψ − 4bg2 − c

2bg
Ψ +

1

2g

g

∇µ

g

∇νΨ = 0, (119)

where ∇µ is the SL(2, C)-part of the U(2, 2)-covariant derivative and
g

∇µ joints that

differentiation with Γ
A

B-differentiation of objects with the capital Lorentz indices and with
the g-Levi-Civita differentiation. It is interesting that the first two terms of (119) correspond
exactly with the Dirac theory in Einstein-Cartan space-time. However, there is quite a
natural question if the third, second-order d’Alembert term does not destroy completely this
similarity.
The simplest way to answer this question is to consider the specially-relativistic situation,
when gµν = ηµν, Γ

A
Bµ = 0, eA

µ = δA
µ. It is clear that under this substitution one obtains the

Dirac-Klein-Gordon differential equation

iγµ∂µΨ − 4bg2 − c

2bg
Ψ +

1

2g
ηµν∂µ∂νΨ = 0. (120)

It is obvious that the general solution of this equation is a combination of two Dirac waves
with two possible masses, namely, m±, where

m2
± =

c

b
− 2g2

(
1 ±

√
c

bg2
− 3

)
. (121)

This result is obtained when the amplitudes U(p) exp
(
ipµxµ

)
are substituted to (120). This

means that there is a range of “Dirac" behaviour, c/b > 3g2. The primeval mass parameter
must be sufficiently large for that. Then the solution of (120) will be a superposition of two
Dirac fields. If c/b = 3g2, then one obtains the exactly Dirac behaviour. This means that there
is no splitting of mass and that m = |g|. Below this threshold we are dealing with tachyonic
or decay phenomena. It is also very interesting that if c/b = 4g2, then one of the partner
states is massless, namely, m− = 0, m+ = 2|g|. Obviously, the doubling of mass within the
Dirac behaviour needs some explanation in terms of experimental data. Let us quote three
possibilities (Sławianowski & Kovalchuk, 2008):

• If the energy gap m+ − m− is very small (i.e., |g| is small enough), then perhaps it is below
the present accuracy of our experimental abilities.

• If the energy gap m+ − m− is so large that perhaps it is too difficult to create/excite the
state of higher mass.

• And finally, the most important and promising explanation. Perhaps the
mass-state-doubling does exist and is just observed. This would be just the explanation
of the mysterious relationship between fundamental quarks and fermions in the standard
model of weak interactions. We mean their occurance in pairs (u, d), (c, s), (t, b) (quarks)
and (νe, e), (νµ, µ), (ντ , τ) (leptons) (Veltman, 2003). For example, the situation c/b = 4g2

might be a naive explanation of the pairing between heavy leptons and their nuetrinos.
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6. Some additional interpretation problems

In one of our earlier papers we have discussed the idea of higher-order derivatives just from
the point of view of the order of time derivatives (Sławianowski & Kovalchuk, 2002; 2010;
Sławianowski et al., 2004; 2005), because the other continuous variables were absent. The
Schrödinger equation was then interpreted as a Hamiltonian system of mathematical physics.
And it was just then where the second-order time derivatives seemed not only admissible,
but just necessary. In the field problems, this concerns, of course, the occurrence of all
second-order space-time derivatives of the field quantities/wave functions. And, as shown
above, those second-order space-time derivatives just seem desirable, not only admissible.
The next important question is: why just U(2, 2) ⊂ GL(4, C), not the total GL(4, C)? But
it is seen that it is only signature (+,+,−,−) of Hermitian G-forms, not the group U(2, 2)
itself that matters. Namely, the mass form Grs must by present in Lagrangian, however
not as a fixed constant Hermitian form but as a dynamical, x-dependent form of signature
(+,+,−,−). The corresponding Lagrangian term would be proportional to

GszGtr ∂Grs

∂xµ

∂Gzt

∂xν
gµν, (122)

or perhaps to the Born-Infeld term

√
det

[
GszGtrGrs,µGzt,ν

]
(123)

independent on the mentioned choice of the space-time metric gµν. This term is evidently
GL(4, C)-invariant.
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