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1. Introduction

Time, as well as 3-position, sometimes is a parameter, but sometimes is an observable that
in quantum theory would be expected to be associated with an operator. However, almost
from the birth of quantum mechanics (cf., e.g., Ref.(Pauli, 1926; 1980)), it is known that time
cannot be represented by a selfadjoint operator, except in the case of special systems (such
as an electrically charged particle in an infinite uniform electric field)1. The list of papers
devoted to the problem of time in quantum mechanics is extremely large (see, for instance,
Refs. (Aharonov et al., 1998; Atmanspacher & Amann, 1998; Blanchard P & Jadczyk, 1996;
Busch et al., 1994; Delgado, 1999; Egusquiza & Muga, 1999; Giannitrapani, 1997; Góźdź A &
Dȩbicki, 2007; Grot et al., 1996; Holevo, 1978; 1982; Kijowski, 1997; Kobe et al., 1994; Kocha’nski
& Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami, 1968; 1969; 1970;
Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; 1990; 1992; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky, 1998; Olkhovsky et
al., 2004; Olkhovsky & Recami, 2007; Olkhovsky, 2009; 2011; Recami, 1976; 1977; Srinivas &
Vijayalakshmi, 1981; Toller, 1999; Wang & Xiong, 2007), and references therein). The same
situation had to be faced also in quantum electrodynamics and, more in general, in relativistic
quantum field theory (see, for instance, Refs.(Olkhovsky & Recami, 1968; 1969; Olkhovsky et
al., 2004; Olkhovsky & Recami, 2007)).
As to quantum mechanics, the very first relevant articles are probably Refs. (Holevo, 1978;
1982; Olkhovsky & Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al., 1974;
Olkhovsky, 1984; 1990; 1992; 1998; Recami, 1976; 1977), and refs. therein. A second set of
papers on time in quantum physics (Aharonov et al., 1998; Atmanspacher & Amann, 1998;
Blanchard P & Jadczyk, 1996; Busch et al., 1994; Delgado, 1999; Egusquiza & Muga, 1999;
Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Grot et al., 1996; Kijowski, 1997; Kobe et al.,

1 This is a consequence of the semi-boundedness of the continuous energy spectra from below (usually
from zero). Only for an electrically charged particle in an infinite uniform electric field, and other very
rare special systems, the continuous energy spectrum is not bounded and extends over the whole axis
from −∞ to +∞. It is curious that for systems with continuous energy spectra bounded from above
and from below, the time operator is however selfadjoint and yields a discrete time spectrum.
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1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007; Srinivas & Vijayalakshmi, 1981; Toller, 1999; Wang & Xiong, 2007) appeared in
the nineties, stimulated partially by the need of a consistent definition for the tunneling time.
It is noticeable, and let us stress it right now, that this second set of papers seems however to
have ignored Naimark’s theorem(Naimark, 1940), which had previously constituted (directly
or indirectly) an important basis for the results in Refs. (Holevo, 1978; 1982; Olkhovsky &
Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; 1990;
1992; 1998; Recami, 1976; 1977), moreover, all the papers (Aharonov et al., 1998; Atmanspacher
& Amann, 1998; Blanchard P & Jadczyk, 1996; Busch et al., 1994; Grot et al., 1996; Kobe et al.,
1994; Leo’n, 1997; Srinivas & Vijayalakshmi, 1981) attempted at solving the problem of time
as a quantum observable by means of formal mathematical operations performed outside the
usual Hilbert space of conventional quantum mechanics. Let us recall that Naimark’s theorem
states(Naimark, 1940) that the non-orthogonal spectral decomposition of a hermitian operator
can be approximated by an orthogonal spectral function (which corresponds to a selfadjoint
operator), in a weak convergence, with any desired accuracy.
The main goal of the first part of the present paper is to justify the use of time as a quantum
observable, basing ourselves on the properties of the hermitian (or, rather, maximal hermitian)
operators for the case of continuous energy spectra: cf., e.g., the Refs. (Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007)).
The question of time as a quantum-theoretical observable is conceptually connected with the
much more general problem of the four-position operator and of the canonically conjugate
four-momentum operator, both endowed with an hermitian and an anti-hermitian part, for
relativistic spin-zero particles: This problem is analyzed in the second part of the present
paper.
In the third part of this work, it is shown how non-hermitian operators can be meaningfully
and extensively used, for instance, for describing unstable states (decaying resonances). Brief
mentions are added of the cases of quantum dissipation, and of the nuclear optical potential.

2. Time operator in non-relativistic quantum mechanics and in quantum

electrodynamics

2.1 On Time as an observable in non-relativistic quantum mechanics for systems with

continuous energy spectra

The last part of the above-mentioned list (Aharonov et al., 1998; Atmanspacher & Amann,
1998; Blanchard P & Jadczyk, 1996; Busch et al., 1994; Delgado, 1999; Egusquiza & Muga, 1999;
Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Grot et al., 1996; Kijowski, 1997; Kobe et al.,
1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007; Toller, 1999; Wang & Xiong, 2007), of papers, in particular Refs. (Aharonov et al.,
1998; Atmanspacher & Amann, 1998; Blanchard P & Jadczyk, 1996; Delgado, 1999; Egusquiza
& Muga, 1999; Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Grot et al., 1996; Kijowski,
1997; Kobe et al., 1994; Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Toller,
1999; Wang & Xiong, 2007), appeared in the nineties, devoted to the problem of Time in
non-relativistic quantum mechanics, essentially because of the need to define the tunnelling

2. Time operator in non-relativistic quantum mechanics and in quantum 
electrodynamics 

2.1 On Time as an observable in non-relativistic quantum mechanics for systems with 
continuous energy spectra 
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Time as Quantum Observable, Canonical Conjugated to Energy 3

time. As remarked, those papers did not refer to the Naimark theorem2 (Naimark, 1940) which
had mathematically supported, on the contrary, the results in (Holevo, 1978; 1982; Olkhovsky
& Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; 1990;
1992; 1998; Recami, 1976; 1977), and afterwards in (Olkhovsky & Recami, 1992; Olkhovsky
et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007).
Indeed, already in the seventies (in Refs. (Olkhovsky & Recami, 1968; 1969; 1970; Olkhovsky,
1973; Olkhovsky et al., 1974; Recami, 1976; 1977) while more detailed presentations and
reviews can be found in (Olkhovsky, 1984; 1990; 1992; 1998) and independently in (Holevo,
1978; 1982)), it was proven that, for systems with continuous energy spectra, Time is a
quantum-mechanical observable, canonically conjugate to energy. Namely, it had been shown
the time operator

t̂ =

{

t, in the time (t-)representation, (a)

−ih̄
∂

∂E
, in the energy (E-)representation (b)

(1)

to be not selfadjoint, but hermitian, and to act on square-integrable space-time wave packets in
the representation (1a), and on their Fourier-transforms in (1b), once point E = 0 is eliminated
(i. e., once one deals only with moving packets, excluding any non-moving rear tails and the
cases with zero fluxes)3 In Refs.(Olkhovsky, 1984; 1990; 1992; 1998) and (Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky
& Recami, 2007), the operator t̂ (in the t-representation) had the property that any averages
over time, in the one-dimensional (1D) scalar case, were to be obtained by use of the following
measure (or weight):

W (t, x) dt =
j (x, t) dt

+∞
∫

−∞

j (x, t) dt

, (2)

where the the flux density j (x, t) corresponds to the (temporal) probability for a particle
to pass through point x during the unit time centered at t, when traveling in the positive
x-direction. Such a measure is not postulated, but is a direct consequence of the well-known
probabilistic spatial interpretation of ρ (x, t) and of the continuity relation ∂ρ (x, t)/∂ t +
divj (x, t) = 0. Quantity ρ(x, t) is, as usual, the probability of finding the considered moving
particle inside a unit space interval, centered at point x, at time t.
Quantities ρ(x, t) and j (x, t) are related to the wave function Ψ (x, t) by the ordinary
definitions ρ (x, t) = |Ψ (x, t)|2 and j (x, t) = ℜ[Ψ∗(x, t) (h̄/iµ)Ψ (x, t))]). When the flux
density j (x, t) changes its sign, quantity W (x, t) dt is no longer positive-definite and, as
in Refs.(Olkhovsky, 1984; Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; Olkhovsky &
Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007), it acquires the physical
meaning of a probability density only during those partial time-intervals in which the flux

2 The Naimark theorem states in particular the following(Naimark, 1940): The non-orthogonal spectral
decomposition of a maximal hermitian operator can be approximated by an orthogonal spectral
function (which corresponds to a selfadjoint operator), in a weak convergence, with any desired
accuracy.

3 Such a condition is enough for operator (1a,b) to be a hermitian, or more precisely a maximal
hermitian[2–8] operator (see also (Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; Olkhovsky &
Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007)); but it can be dispensed with by
recourse to bilinear forms (see, e.g., Refs.(Recami, 1976; 1977; Recami et al., 1983) and refs. therein), as
we shall see below.

19Time as Quantum Observable, Canonical Conjugated to Energy

www.intechopen.com



4 Will-be-set-by-IN-TECH

density j (x, t) does keep its sign. Therefore, let us introduce the two measures(Olkhovsky
& Recami, 1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007) by separating the
positive and the negative flux-direction values (that is, the flux signs)

W± (t, x) dt =
j± (x, t) dt

+∞
∫

−∞

j± (x, t) dt

(3)

with j± (x, t) = j (x, t) θ(±j).
Then, the mean value 〈t±(x)〉 of the time t at which the particle passes through position x,
when traveling in the positive or negative direction, is, respectively,

〈t±(x)〉 =

+∞
∫

−∞

t j± (x, t) dt

+∞
∫

−∞

j± (x, t) dt

=

+∞
∫

0

1

2

[

G∗(x, E) t̂ v G (x, E) + v G∗(x, E) t̂ G (x, E)
]

dE

+∞
∫

0

v
∣

∣G (x, E)
∣

∣

2
dE

, (4)

where G (x, E) is the Fourier-transform of the moving 1D wave-packet

Ψ (x, t) =

+∞
∫

0

G (x, E) exp(−iEt/h̄) dE =

=

+∞
∫

0

g(E) ϕ(x, E) exp(−iEt/h̄) dE

when going on from the time to the energy representation. For free motion, one has G(x, E) =

g(E) exp(ikx), and ϕ(x, E) = exp(ikx), while E = µ h̄2k2/ 2 = µ v2/ 2. In Refs. (Olkhovsky &
Recami, 1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007), there were defined the
mean time durations for the particle 1D transmission from xi to x f > xi , and reflection from
the region (xi, +∞) back to the interval x f ≤ xi. Namely

〈τT(xi, x f )〉 = 〈t+(x f )〉 − 〈t+(xi)〉 (5)

and
〈τR(xi, x f )〉 = 〈t−(x f )〉 − 〈t+(xi)〉, (6)

respectively. The 3D generalization for the mean durations of quantum collisions and nuclear
reactions appeared in (Olkhovsky, 1984; 1990; 1992; 1998). Finally, suitable definitions of the
averages 〈tn〉 on time of tn, with n = 1, 2 . . ., and of 〈 f (t)〉, quantity f (t) being any analytical
function of time, can be found in (Olkhovsky & Recami, 2007; 2008), where single-valued
expressions have been explicitly written down.
The two canonically conjugate operators, the time operator (1) and the energy operator

Ê =

{

E, in the energy (E-) representation, (a)

ih̄
∂

∂t
, in the time (t-) representation (b)

(7)

20 Measurements in Quantum Mechanics
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Time as Quantum Observable, Canonical Conjugated to Energy 5

do clearly satisfy the commutation relation(Olkhovsky & Recami, 2007; 2008; Recami, 1976;
1977)

[Ê, t̂] = ih̄. (8)

The Stone and von Neumann theorem(Stone, 1930), has been always interpreted as
establishing a commutation relation like (8) for the pair of the canonically conjugate operators
(1) and (7), in both representations, for selfadjoint operators only. However, it can be
generalized for (maximal) hermitian operators, once one introduces t̂ by means of the
single-valued Fourier transformation from the t-axis (−∞ < t < ∞) to the E-semiaxis (0 < E <

∞), and utilizes the properties(Akhiezer & Glazman, 1981; D ter Haar, 1971) of the “(maximal)
hermitian” operators: This has been shown, e.g., in the last one of Refs.(Olkhovsky & Recami,
1968; 1969) as well as in Refs.(Olkhovsky & Recami, 2007; 2008).
Indeed, from eq. (8) the uncertainty relation

∆E ∆t ≥ h̄/2 (9)

(where the standard deviations are ∆a =
√

Da, quantity Da being the variance Da =
〈a2〉 − 〈a〉2, and a = E, t, while 〈. . .〉 denotes the average over t with the measures W (x, t) dt
or W± (x, t) dt in the t-representation) can be derived also for operators which are simply
hermitian, by a straightforward generalization of the procedures which are common in the
case of selfadjoint (canonically conjugate) quantities, like coordinate x̂ and momentum p̂x .
Moreover, relation (8) satisfies(Olkhovsky & Recami, 2007; 2008) the Dirac “correspondence”
principle, since the classical Poisson brackets {q0, p0}, with q0 = t and p0 = −E, are equal
to 1. In Refs. (Olkhovsky, 1973; Olkhovsky et al., 1974; Olkhovsky, 1984; Recami, 1976;
1977), and (Olkhovsky & Recami, 2007; 2008), it was also shown that the differences, between
the mean times at which a wave-packet passes through a pair of points, obey the Ehrenfest
correspondence principle.
As a consequence, one can state that, for systems with continuous energy spectra, the
mathematical properties of (maximal) hermitian operators, like t̂ in eq. (1), are sufficient for
considering them as quantum observables. Namely, the uniqueness(Akhiezer & Glazman,
1981) of the spectral decomposition (although not orthogonal) for operators t̂, and t̂n (n > 1),
guarantees the “equivalence” of the mean values of any analytical function of time when
evaluated in the t and in the E-representations. In other words, such an expansion is
equivalent to a completeness relation, for the (approximate) eigenfunctions of t̂n (n > 1),
which with any accuracy can be regarded as orthogonal, and corresponds to the actual
eigenvalues for the continuous spectrum. These approximate eigenfunctions belong to the
space of the square-integrable functions of the energy E (cf., for instance, see, for instance
Refs. (Olkhovsky, 1984; 1990; 1992; 1998; Olkhovsky & Recami, 2007; Recami, 1976; 1977) and
refs. therein).
From this point of view, there is no practical difference between selfadjoint and maximal
hermitian operators for systems with continuous energy spectra. Let us repeat that the
mathematical properties of t̂n (n > 1) are enough for considering time as a quantum
mechanical observable (like energy, momentum, space coordinates, etc.) without having to
introduce any new physical postulates.
It is remarkable that von Neumann himself(Von Neumann, 1955), before confining himself for
simplicity to selfajoint operators, stressed that operators like our time t̂ may represent physical
observables, even if they are not selfadjoint. Namely, he explicitly considered the example of
the operator − ih̄ ∂/∂x associated with a particle living in the right semi-space bounded by a
rigid wall located at x = 0; that operator is not selfadjoint (acting on wave packets defined

21Time as Quantum Observable, Canonical Conjugated to Energy
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6 Will-be-set-by-IN-TECH

on the positive x-axis) only, nevertheless it obviously corresponds to the x-component of the
observable momentum for that particle: See Fig.1.

Fig. 1. For a particle Q free to move in a semi-space, bounded by a rigid wall located at x = 0,
the operator −i∂/∂x has the clear physical meaning of the particle momentum x-component
even if it is not selfadjoint (cf. von Neumann(Von Neumann, 1955), and Ref. (Recami, 1976;
1977)): See the text.

At this point, let us emphasize that our previously assumed boundary condition E 	= 0 can be
dispensed with, by having recourse (Olkhovsky & Recami, 1968; 1969; Recami, 1976; 1977) to
the bi-linear hermitian operator

t̂ =
−ih̄

2

↔
∂

∂E
(10)

where the meaning of the sign ↔ is clear from the accompanying definition

( f , t̂ g) =
(

f , − ih

2

∂

∂E
g
)

+
(

− ih

2

∂

∂E
f , g

)

.

By adopting this expression for the time operator, the algebraic sum of the two terms in the
r.h.s. of the last relation results to be automatically zero at point E = 0. This question will
be exploited below, in Sect. 3 (when dealing with the more general case of the four-position
operator). Incidentally, such an “elimination” (Olkhovsky & Recami, 1968; 1969; Recami, 1976;
1977) of point E = 0 is not only simpler, but also more physical, than other kinds of elimination
obtained much later in papers like (Egusquiza & Muga, 1999; Muga et al., 1999).
In connection with the last quotation, leu us for briefly comment on the so-called
positive-operator-value-measure (POVM) approach, often used or discussed in the second set
of papers on time in quantum physics mentioned in our Introduction. Actually, an analogous
procedure had been proposed, since the sixties (Aharonov & Bohm, 1961), in some approaches
to the quantum theory of measurements. Afterwards, and much later, the POVM approach
has been applied, in a simplified and shortened form, to the time-operator problem in the
case of one-dimensional free motion: for instance, in Refs. (Delgado, 1999; Egusquiza &
Muga, 1999; Giannitrapani, 1997; Góźdź A & Dȩbicki, 2007; Kijowski, 1997; Kobe et al., 1994;
Kocha’nski & Wo’dkievicz, 1999; Leo’n, 1997; Muga et al., 1999; Srinivas & Vijayalakshmi,
1981; Toller, 1999; Wang & Xiong, 2007) and especially in (Egusquiza & Muga, 1999; Muga et
al., 1999). These papers stated that a generalized decomposition of unity (or “POV measure”)
could be obtained from selfadjoint extensions of the time operator inside an extended Hilbert

22 Measurements in Quantum Mechanics
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Time as Quantum Observable, Canonical Conjugated to Energy 7

space (for instance, adding the negative values of the energy, too), by exploiting the Naimark
dilation-theorem(Naimark, 1943): But such a program has been realized till now only in the
simple cases of one-dimensional particle free motion.
By contrast, our approach is based on a different Naimark’s theorem(Naimark, 1940), which,
as already mentioned above, allows a much more direct, simple and general –and at
the same time non less rigorous– introduction of a quantum operator for Time. More
precisely, our approach is based on the so-called Carleman theorem(Carleman, 1923), utilized
in Ref.(Naimark, 1940), about approximating a hermitian operator by suitable successions of
“bounded” selfadjoint operators: That is, of selfadjoint operators whose spectral functions
do weakly converge to the non-orthogonal spectral function of the considered hemitian
operator. And our approach is applicable to a large family of three-dimensional (3D)
particle collisions, with all possible Hamiltonians. Actually, our approach was proposed in
the early Refs. (Olkhovsky & Recami, 1968; 1969; 1970; Olkhovsky, 1973; Olkhovsky et al.,
1974; Olkhovsky, 1984; Recami, 1976; 1977) and in the first one of Ref. (Olkhovsky & Recami,
1992; Olkhovsky et al., 1995), and applied therein for the time analyzis of quantum collisions,
nuclear reactions and tunnelling processes.

2.2 On the momentum representation of the Time operator

In the continuous spectrum case, instead of the E-representation, with 0 < E < +∞, in
eqs.(1)–(4) one can also use the k-representation(Holevo, 1978; 1982), with the advantage that
−∞ < k < +∞:

Ψ (x, t) =

+∞
∫

−∞

g(k) ϕ(x, k) exp(−iEt/h̄) dk (11)

with E = h̄2k2/ 2µ, and k 	= 0.
For the extension of the momentum representation to the case of 〈tn〉, with n > 1, we confine
ourselves here to refer the reader to the papers (Olkhovsky & Recami, 2007; 2008).

2.3 An alternative weight for time averages (in the cases of particle dwelling inside a certain

spatial region)

We recall that the weight (2) [as well as its modifications (3)] has the meaning of a probability
for the considered particle to pass through point x during the time interval (t, t + dt). Let
us follow the procedure presented in Refs. (Olkhovsky & Recami, 1992; Olkhovsky et al.,
1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004; Olkhovsky & Recami, 2007) and
refs. therein, and analyze the consequences of the equality

+∞
∫

−∞

j (x, t) dt =

+∞
∫

−∞

∣

∣ Ψ(x, t)
∣

∣

2
dx (12)

obtained from the 1D continuity equation. One can easily realize that a second, alternative
weight can be adopted:

d P(x, t) ≡ Z (x, t) dx =

∣

∣Ψ(x, t)
∣

∣

2
dx

+∞
∫

−∞

∣

∣ Ψ(x, t)
∣

∣

2
dx

(13)

2.3 An alternative weight for time averages (in the cases of particle dwelling inside a 
certain spatial region) 

23Time as Quantum Observable, Canonical Conjugated to Energy
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8 Will-be-set-by-IN-TECH

which possesses the meaning of probability for the particle to be located (or to sojourn, i. e.,
to dwell) inside the infinitesimal space region (x, x + dx) at the instant t, independently of its
motion properties. Then, the quantity

P(x1, x2, t) =

x2
∫

x1

∣

∣Ψ(x, t)
∣

∣

2
dx

+∞
∫

−∞

∣

∣ Ψ(x, t)
∣

∣

2
dx

(14)

will have the meaning of probability for the particle to dwell inside the spatial interval (x1, x2)
at the instant t.
As it is known (see, for instance, Refs.(Olkhovsky & Recami, 1992; Olkhovsky et al., 1995;
2004; Olkhovsky & Recami, 2007) and refs. therein), the mean dwell time can be written in the
two equivalent forms:

〈τ(xi, x f )〉 =

+∞
∫

−∞

dt

x f
∫

xi

|Ψ(x, t)|2 dx

+∞
∫

−∞

jin(xi, t) dt

(15)

and

〈τ(xi , x f )〉 =

+∞
∫

−∞

t j(x f , t) dt −
+∞
∫

−∞

t j(xi, t) dt

+∞
∫

−∞

jin(xi, t) dt

, (16)

where it has been taken account, in particular, of relation (12), which follows — as already
said — from the continuity equation.
Thus, in correspondence with the two measures (2) and (13), when integrating over time one
gets two different kinds of time distributions (mean values, variances...), which refer to the
particle traversal time in the case of measure (2), and to the particle dwelling in the case of
measure (13). Some examples for 1D tunneling are contained in Refs.(Olkhovsky & Recami,
1992; Olkhovsky et al., 1995; 2004; Olkhovsky & Recami, 2007).

2.4 Extension of the notion of Time as a quantum-theoretical observable for the case of

photons

As is known (see, for instance, Refs. (Akhiezer & Berestezky, 1959; Olkhovsky et al., 2004;
Schweber, 1961)), in first quantization the single-photon wave function can be probabilistically
described in the 1D case by the wave-packet4

A(r, t) =
∫

k0

d3k

k0
χ(k) ϕ(k, r) exp(−ik0t) , (17)

4 The gauge condition divA = 0 is assumed.

2.4 Extension of the notion of Time as a quantum-theoretical observable for the case 
of photons 
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Time as Quantum Observable, Canonical Conjugated to Energy 9

where, as usual, A(r, t) is the electromagnetic vector potential, while r = {x, y, z}, k =
{kx , ky, kz}, k0 ≡ w/c = ε/ h̄c, and k ≡ |k| = k0. The axis x has been chosen as the
propagation direction. Let us notice that χ(k) = ∑

i=y,z
χi(k) ei(k), with eiej = δij, and

xi , xj = y, z, while χi(k) is the probability amplitude for the photon to have momentum k and
polarization ej along xj. Moreover, it is ϕ(k, r) = exp(ikxx) in the case of plane waves, while
ϕ(k, r) is a linear combination of evanescent (decreasing) and anti-evanescent (increasing)
waves in the case of “photon barriers” (i.e., band-gap filters, or even undersized segments
of waveguides for microwaves, or frustrated total-internal-reflection regions for light, and so
on). Although it is not easy to localize a photon in the direction of its polarization(Akhiezer
& Berestezky, 1959; Schweber, 1961), nevertheless for 1D propagations it is possible to use the
space-time probabilistic interpretation of eq. (17), and define the quantity

ρem(x, t) dx =
S0 dx
∫

S0 dx
, S0 =

∫ ∫

s0 dy dz (18)

(s0 = [E∗ · E + H∗ · H]/ 4π being the energy density, with the electromagnetic field H =
rot A, and E = −1/c ∂A/∂t), which represents the probability density of a photon to be found
(localized) in the spatial interval (x, x + dx) along the x-axis at the instant t; and the quantity

jem(x, t) dt =
Sx dt

∫

Sx(x, t) dt
, Sx(x, t) =

∫ ∫

sx dy dz (19)

(sx = c ℜ[E∗ ∧ H]x / 8π being the energy flux density), which represents the flux probability
density of a photon to pass through point x in the time interval (t, t + dt): in full analogy with the
probabilistic quantities for non-relativistic particles. The justification and convenience of such
definitions is self-evident, when the wave-packet group velocity coincides with the velocity of
the energy transport; in particular: (i) the wave-packet (17) is quite similar to wave-packets
for non-relativistic particles, and (ii) in analogy with conventional non-relativistic quantum
mechanics, one can define the “mean time instant” for a photon (i.e., an electromagnetic
wave-packet) to pass through point x, as follows

〈t(x)〉 =
+∞
∫

−∞

t Jem, x dt =

+∞
∫

−∞

t Sx(x, t) dt

+∞
∫

−∞

Sx(x, t) dt

.

As a consequence [in the same way as in the case of equations (1)–(2)], the form (1) for the
time operator in the energy representation is valid also for photons, with the same boundary
conditions adopted in the case of particles, that is, with χi (0) = χi (∞) and with E = h̄ c k0.
The energy density s0 and energy flux density sx satisfy the relevant continuity equation

∂s0

∂t
+

∂sx

∂x
= 0 (20)

which is Lorentz-invariant for 1D spatial propagation(Olkhovsky et al., 2004; Olkhovsky &
Recami, 2007) processes.
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2.5 Introducing the analogue of the “Hamiltonian” for the case of the Time operator: A new

hamiltonian approach

In non-relativistic quantum theory, the Energy operator acquires (cf., e.g., Refs. (Olkhovsky,

1990; 1992; 1998; Olkhovsky & Recami, 2007)) the two forms: (i) ih̄
∂

∂t
in the t-representation,

and (ii) Ĥ ( p̂x , x̂, . . .) in the hamiltonianian formalism. The “duality” of these two forms can

be easily inferred from the Schröedinger equation itself, ĤΨ = ih̄
∂Ψ

∂t
. One can introduce in

quantum mechanics a similar duality for the case of Time: Besides the general form (1) for
the Time operator in the energy representation, which is valid for any physical systems in
the region of continuous energy spectra, one can express the time operator also in a “hamiltonian
form”, i.e., in terms of the coordinate and momentum operators, by having recourse to their
commutation relations. Thus, by the replacements

Ê → Ĥ ( p̂x , x̂, . . .),

t̂ → T̂ ( p̂x , x̂, . . .),
(21)

and on using the commutation relation [similar to eq. (3)]

[Ĥ, T̂] = ih̄ , (22)

one can obtain(Rosenbaum, 1969), given a specific ordinary Hamiltonian, the corresponding
explicit expression for T̂ ( p̂x , x̂, . . .).
Indeed, this procedure can be adopted for any physical system with a known Hamiltonian
Ĥ ( p̂x, x̂, . . .), and we are going to see a concrete example. By going on from the coordinate
to the momentum representation, one realizes that the formal expressions of both the
hamiltonian-type operators Ĥ ( p̂x, x̂, . . .) and T̂ ( p̂x, x̂, . . .) do not change, except for an obvious
change of sign in the case of operator T̂ ( p̂x , x̂, . . .).
As an explicit example, let us address the simple case of a free particle whose Hamiltonian is

Ĥ =

⎧

⎨

⎩

p̂2
x/ 2µ, p̂x = −ih̄

∂

∂x
, in the coordinate representation (a)

p2
x/ 2µ . in the momentum representation (a)

(23)

Correspondingly, the Hamilton-type time operator, in its symmetrized form, will write

T̂ =

⎧

⎪

⎨

⎪

⎩

µ

2

(

p̂−1
x x + xp̂−1

x + ih̄ ; p̂−2
x

)

, in the coordinate representation (a)

−µ

2

(

p−1
x x̂ + x̂p−1

x + ih̄/p2
x

)

, in the momentum representation (b)
(24)

where

p̂−1
x =

i

h̄

∫

dx . . . , x̂ = ih̄
∂

∂px
.

Incidentally, operator (24b) is equivalent to −ih̄ ∂
∂E , since E = p2

x/ 2µ; and therefore it is also

a (maximal) hermitian operator. Indeed, by applying the operator T̂ ( p̂x , x̂, . . .), for instance, to
a plane-wave of the type exp(ikx), we obtain the same result in both the coordinate and the
momentum representations:

T̂ exp(ikx) =
x

v
exp(ikx) (25)

2.5 Introducing the analogue of the “Hamiltonian” for the case of the Time operator: A new 
hamiltonian approach 
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quantity x/v being the free-motion time (for a particle with velocity v ) for traveling the
distance x.
On the basis of what precedes, it is possible to show that the wave function Ψ(x, t) of a
quantum system satisfies the two (dual) equations

Ĥ Ψ = ih̄
∂Ψ

∂t
and T̂ Ψ = t Ψ . (26)

In the energy representation, and in the stationary case, we obtain again two (dual) equations

Ĥ ϕε = ε ϕε and T̂ ϕε = −ih̄
∂ϕε

∂ε
, (27)

quantity ϕε being the Fourier-transform of Ψ:

ϕε =
1

2πh̄

+∞
∫

−∞

Ψ(x, t) eiεt/h̄ dt . (28)

It might be interesting to apply the two pairs of the last dual equations also for
investigating tunnelling processes through the quantum gravitational barrier, which appears
during inflation, or at the beginning of the big-bang expansion, whenever a quasi-linear
Schrödinger-type equation does approximately show up.

2.6 Time as an observable (and the time-energy uncertainty relation), for

quantum-mechanical systems with discrete energy spectra

For describing the time evolution of non-relativistic quantum systems endowed with a purely
discrete (or a continuous and discrete) spectrum, let us now introduce wave-packets of the
form (Olkhovsky, 1990; 1992; 1998; Olkhovsky & Recami, 2007; 2008):

ψ (x, t) = ∑
n=0

gn ϕn(x) exp[−i(εn − ε0)t/h̄] , (29)

where ϕn(x) are orthogonal and normalized bound states which satisfy the equation
Ĥ ϕn(x) = εn ϕn(x), quantity Ĥ being the Hamiltonian of the system; while the coefficients
gn are normalized: ∑

n=0
|gn|2 = 1. We omitted the non-significant phase factor exp(−iε0t/h̄)

of the fundamental state.
Let us first consider the systems whose energy levels are separated by intervals admitting a
maximum common divisor D (for ex., harmonic oscillator, particle in a rigid box, and spherical
spinning top), so that the wave packet (29) is a periodic function of time possessing as period
the Poincaré cycle time T = 2πh̄/D. For such systems it is possible (Olkhovsky, 1990; 1992;
1998; Olkhovsky & Recami, 2007; 2008) to construct a selfadjoint time operator with the form
(in the time representation) of a saw-function of t, choosing t = 0 as the initial time instant:

t̂ = t − T
∞

∑
n=0

Θ(t − [2n + 1]T/2) + T
∞

∑
n=0

Θ(−t − [2n + 1]T/2 . (30)

This periodic function for the time operator is a linear (increasing) function of time t within
each Poincarè cycle: see Fig.2.

2.6 Time as an observable (and the time-energy uncertainty relation), for quantum-
mechanical systems with discrete energy spectra 
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Fig. 2. The periodic saw-tooth function for the time operator in the case of quantum
mechanical systems with discrete energy spectra: Namely, for the case of eq. (30).

The commutation relations of the Energy and Time operators, now both selfajoint, acquires in
the case of discrete energies and of a periodic Time operator the form

[Ê, t̂] = ih̄

{

1 − T
∞

∑
n=0

δ(t − [2n + 1]T)

}

, (31)

wherefrom the uncertainty relation follows in the new form

(∆E)2 (∆t)2 = h̄2

⎡

⎣1 − T|ψ(T/2 + γ)|2
∫ T/2
−T/2 |ψ(t)|2dt

⎤

⎦ , (32)

where it has been introduced a parameter γ, with −T/2 < γ < T/2, in order to assure that
the r.h.s. integral is single-valued(Olkhovsky & Recami, 2007; 2008).
When ∆E → 0 (that is, when |gn| → δnn′ ), the r.h.s. of eq. (32) tends to zero too, since
|ψ(t)|2 tends to a constant value. In such a case, the distribution of the time instants at which
the wave-packet passes through point x becomes flat within each Poincaré cycle. When, by

contrast, ∆E >> D and |ψ(T + γ)|2 << (
∫ T/2
−T/2 |ψ(t)|2dt)/T, the periodicity condition

may become inessential whenever ∆t << t. In other words, our uncertainty relation (32)
transforms into the ordinary uncertainty relation for systems with continuous spectra.
In more general cases, for excited states of nuclei, atoms and molecules, the energy-level
intervals, for discrete and quasi-discrete (resonance) spectra, are not multiples of a maximum common
divisor, and hence the Poincaré cycle is not well-defined for such systems. Nevertheless, even
for those systems one can introduce an approximate description (sometimes, with any desired
degree of accuracy) in terms of Poincaré quasi-cycles and a quasi-periodical evolution; so that
for sufficiently long time intervals the behavior of the wave-packets can be associated with a a
periodical motion (oscillation), sometimes — e.g., for very narrow resonances — with any desired
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accuracy. For them, when choosing an approximate Poincaré-cycle time, one can include in
one cycle as many quasi-cycles as it is necessary for the demanded accuracy. Then, with the
chosen accuracy, a quasi-selfadjoint time operator can be introduced.

3. Multiple internal reflections approach in description of tunneling

3.1 Tunneling in consideration of multiple internal reflections of waves between internal

boundaries

An approach for description of one-dimensional motion of a non-relativistic particle above a
barrier on the basis of multiple internal reflections of stationary waves relatively boundaries
has been studied in number of papers and is known (see (Anderson, 1989; Fermor, 1966;
McVoy et al., 1967) and references therein). Tunneling of the particle under the barrier
was described successfully on the basis of multiple internal reflections of the wave packets
relatively boundaries (approach was called as method of multiple internal reflections or method
MIR, see Refs. (Maydanyuk et al., 2002a;b; Maydanyuk, 2003; Olkhovsky, 2000)). In such
approach it succeeded in connecting: 1) continuous transition of solutions for packets
after each reflection, total packets between the above-barrier motion and the under-barrier
tunneling; 2) coincidence of transmitted and reflected amplitudes of stationary wave function
in each spatial region obtained by approach MIR with the corresponding amplitudes obtained
by standard method of quantum mechanics; 3) all non-stationary fluxes in each step, are
non-zero that confirms propagation of packets under the barrier (i. e. their “tunneling”).
In frameworks of such a method, non-stationary tunneling obtained own interpretation,
allowing to study this process at interesting time moment or space point. In calculation
of phase times this method turns out to be enough simple and convenient (Cardone et al.,
2006). It has been adapted for scattering of the particle on nucleus and α-decay in the
spherically symmetric approximation with the simplest radial barriers (Maydanyuk et al.,
2002a; Maydanyuk, 2003; Olkhovsky, 2000) and for tunneling of photons (Cardone et al.,
2006; Maydanyuk et al., 2002a). However, further realization of the MIR approach meets with
three questions. 1) Question on effectiveness. The multiple reflections have been proved for the
motion above one rectangular barrier and for tunneling under it (Anderson, 1989; Cardone
et al., 2006; Maydanyuk et al., 2002a). However, after addition of the second step it becomes
unclear how to separate the needed reflected waves from all their variety in calculation of
all needed amplitudes. After obtaining exact solutions of the stationary amplitudes for two
arbitrary rectangular barriers (Maydanyuk, 2003; Olkhovsky, 2000), it becomes unclear how to
generalize such approach for barriers with arbitrary complicate shape. So, we come to a serious
unresolved problem of realization of the approach of multiple reflections in real quantum systems with
complicated barriers, and clear algorithms of calculation of amplitudes should be constructed.
2) Question on correctness. Whether is interference between packets formed relatively different
boundaries appeared? Whether does this come to principally different results of the approach
of multiple internal reflections and direct methods of quantum mechanics? Note that such
interference cannot be appeared in tunneling through one rectangular barrier and, therefore,
it could not visible in the previous papers.
3) Question on uncertainty in radial problem. Calculations of half-lives of different types of
decays based on the semiclassical approach are prevailing today. For example, in Ref. (Buck
et al., 1993) agreement between experimental data of α-decay half-lives and ones calculated
by theory is demonstrated in a wide region of nuclei from 106Te up to nucleus with Ad =
266 and Zd = 109 (see Ref. (Denisov & Ikezoe, 2005) for some improved approaches).
In review (Sobiczewski & Pomorski, 2007) methodology of calculation of half-lives for

3. Multiple internal reflections approach in description of tunneling 

3.1 Tunneling in consideration of multiple internal reflections of waves between 
internal boundaries 
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spontaneous-fission is presented (see eqs. (21)–(24) in p. 321). Let us consider proton-decay
of nucleus where proton penetrates from the internal region outside with its tunneling
through the barrier. At the same boundary condition, reflected and incident waves turn
out to be defined with uncertainty. How to determine them? The semiclassical approach
gives such answer: according to theory, in construction of well known formula for probability we
neglect completely by the second (increasing) item of the wave function inside tunneling region (see
Ref. (Landau & Lifshitz, 1989), eq. (50.2), p. 221). In result, equality T2 + R2 = 1 has no any
sense (where T and R are coefficients of penetrability and reflection). Condition of continuity
for the wave function and for total flux is broken at turning point. So, we do not find reflection
R. We do not suppose on possible interference between incident and reflected waves which
can be non zero. The penetrability is determined by the barrier shape inside tunneling region,
while internal and external parts do not take influence on it. The penetrability does not
dependent on depth of the internal well (while the simplest rectangular well and barrier give
another exact result). But, the semiclassical approach is so prevailing that one can suppose
that it has enough well approximation of the penetrability estimated. It turns out that if in
fully quantum approach to determine the penetrability through the barrier (constructed on the
basis of realistic potential of interaction between proton and daughter nucleus) then one can
obtain answer “no”. Fully quantum penetrability is a function of new additional independent
parameters, it can achieve essential difference from semiclassical one (at the same boundary
condition imposed on the wave function). This will be demonstrated below.

3.2 Tunneling of packet through one-dimensional rectangular step

Let us consider a problem of tunneling of a particle in a positive x-direction through an
one-dimensional rectangular potential barrier (see Fig. 3). Let us label a region I for x < 0, a
region II for 0 < x < a and a region III for x > a, accordingly. In standard approach, with

Fig. 3. Tunneling of the particle through one-dimensional rectangular barrier

energy less than the barrier height the tunneling evolution of the particle is described using a
non-stationary propagation of WP

ψ(x, t) =

+∞
∫

0

g(E − Ē)ϕ(k, x)e−iEt/h̄dE, (33)
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where stationary WF is:

ϕ(x) =

⎧

⎨

⎩

eikx + ARe−ikx, for x < 0;

αeξx + βe−ξx, for 0 < x < a;

ATeikx, for x > a;

(34)

and k = 1
h̄

√
2mE, ξ = 1

h̄

√

2m(V1 − E), E and m are the total energy and mass of the particle,
accordingly. The weight amplitude g(E − Ē) can be written in a form of gaussian and satisfies
to a requirement of the normalization

∫

|g(E − Ē)|2dE = 1, value Ē is an average energy of
the particle. One can calculate coefficients AT, AR, α and β analytically, using a requirements
of a continuity of WF ϕ(x) and its derivative on each boundary of the barrier. Substituting
in eq. (33) instead of ϕ(k, x) the incident ϕinc(k, x), transmitted ϕtr(k, x) or reflected part
of WF ϕre f (k, x), defined by eq. (34), we receive the incident, transmitted or reflected WP,
accordingly.
We assume, that a time, for which the WP tunnels through the barrier, is enough small. So,
the time necessary for a tunneling of proton through a barrier of decay in proton-decay of a
nucleus, is about 10−21 seconds. We consider, that one can neglect a spreading of the WP for
this time. And a breadth of the WP appears essentially more narrow on a comparison with a
barrier breadth. Considering only sub-barrier processes, we exclude a component of waves
for above-barrier energies, having included the additional transformation

g(E − Ē) → g(E − Ē)θ(V1 − E), (35)

where θ-function satisfies to the requirement

θ(η) =

{

0, for η < 0;
1, for η > 0.

The method of multiple internal reflections considers the propagation process of the WP
describing a motion of the particle, sequentially on steps of its penetration in relation to each
boundary of the barrier (Anderson, 1989; Fermor, 1966; McVoy et al., 1967). Using this method,
we find expressions for the transmitted and reflected WP in relation to the barrier. At the first
step we consider the WP in the region I, which is incident upon the first (initial) boundary of
the barrier. Let us assume, that this package transforms into the WP, transmitted through
this boundary and tunneling further in the region II, and into the WP, reflected from the
boundary and propagating back in the region I. Thus we consider, that the WP, tunneling in
the region II, is not reached the second (final) boundary of the barrier because of a terminating
velocity of its propagation, and consequently at this step we consider only two regions I and
II. Because of physical reasons to construct an expression for this packet, we consider, that
its amplitude should decrease in a positive x-direction. We use only one item β exp(−ξx)
in eq. (34), throwing the second increasing item α exp(ξx) (in an opposite case we break a
requirement of a finiteness of the WF for an indefinitely wide barrier). In result, in the region
II we obtain:

ψ1
tr(x, t) =

+∞
∫

0

g(E − Ē)θ(V1 − E)β0e−ξx−iEt/h̄dE, for 0 < x < a. (36)

Thus the WF in the barrier region constructed by such way, is an analytic continuation of
a relevant expression for the WF, corresponding to a similar problem with above-barrier
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energies, where as a stationary expression we select the wave exp(ik2x), propagated to the
right.
Let us consider the first step further. One can write expressions for the incident and the
reflected WP in relation to the first boundary as follows

ψinc(x, t) =
+∞
∫

0

g(E − Ē)θ(V1 − E)eikx−iEt/h̄dE, for x < 0,

ψ1
re f (x, t) =

+∞
∫

0

g(E − Ē)θ(V1 − E)A0
Re−ikx−iEt/h̄dE, for x < 0.

(37)

A sum of these expressions represents the complete WF in the region I, which is dependent
on a time. Let us require, that this WF and its derivative continuously transform into the
WF (36) and its derivative at point x = 0 (we assume, that the weight amplitude g(E − Ē)
differs weakly at transmitting and reflecting of the WP in relation to the barrier boundaries).
In result, we obtain two equations, in which one can pass from the time-dependent WP to the
corresponding stationary WF and obtain the unknown coefficients β0 and A0

R.
At the second step we consider the WP, tunneling in the region II and incident upon the second
boundary of the barrier at point x = a. It transforms into the WP, transmitted through this
boundary and propagated in the region III, and into the WP, reflected from the boundary and
tunneled back in the region II. For a determination of these packets one can use eq. (33) with
account eq. (35), where as the stationary WF we use:

ϕ2
inc(k, x) = ϕ1

tr(k, x) = β0e−ξx, for 0 < x < a,

ϕ2
tr(k, x) = A0

Teikx, for x > a,

ϕ2
re f (k, x) = α0eξx, for 0 < x < a.

(38)

Here, for forming an expression for the WP reflected from the boundary, we select an
increasing part of the stationary solution α0 exp(ξx) only. Imposing a condition of continuity
on the time-dependent WF and its derivative at point x = a, we obtain 2 new equations, from
which we find the unknowns coefficients A0

T and α0.
At the third step the WP, tunneling in the region II, is incident upon the first boundary of the
barrier. Then it transforms into the WP, transmitted through this boundary and propagated
further in the region I, and into the WP, reflected from boundary and tunneled back in the
region II. For a determination of these packets one can use eq. (33) with account eq. (35),
where as the stationary WF we use:

ϕ3
inc(k, x) = ϕ2

re f (k, x), for 0 < x < a,

ϕ3
tr(k, x) = A1

Re−ikx, for x < 0,

ϕ3
re f (k, x) = β1e−ξx, for 0 < x < a.

(39)

Using a conditions of continuity for the time-dependent WF and its derivative at point x = 0,
we obtain the unknowns coefficients A1

R and β1.
Analyzing further possible processes of the transmission (and the reflection) of the WP
through the boundaries of the barrier, we come to a deduction, that any of following steps
can be reduced to one of 2 considered above. For the unknown coefficients αn , βn,An

T and
An

R, used in expressions for the WP, forming in result of some internal reflections from the
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boundaries, one can obtain the recurrence relations:

β0 =
2k

k + iξ
, αn = βn iξ − k

iξ + k
e−2ξa, βn+1 = αn iξ − k

iξ + k
,

A0
R =

k − iξ

k + iξ
, An

T = βn 2iξ

iξ + k
e−ξa−ika, An+1

R = αn 2iξ

iξ + k
.

(40)

Considering the propagation of the WP by such way, we obtain expressions for the WF on
each region which can be written through series of multiple WP. Using eq. (33) with account
eq. (35), we determine resultant expressions for the incident, transmitted and reflected WP in
relation to the barrier, where one can need to use following expressions for the stationary WF:

ϕinc(k, x) = eikx, for x < 0,

ϕtr(k, x) =
+∞

∑
n=0

An
Teikx, for x > a,

ϕre f (k, x) =
+∞

∑
n=0

An
Re−ikx, for x < 0.

(41)

Now we consider the WP formed in result of sequential n reflections from the boundaries of
the barrier and incident upon one of these boundaries at point x = 0 (i = 1) or at point x = a
(i = 2). In result, this WP transforms into the WP ψi

tr(x, t), transmitted through boundary

with number i, and into the WP ψi
re f (x, t), reflected from this boundary. For an independent

on x parts of the stationary WF one can write:

ϕ1
tr

exp(−ξx)
= T+

1

ϕ1
inc

exp(ikx)
,

ϕ1
re f

exp(−ikx)
= R+

1

ϕ1
inc

exp(ikx)
,

ϕ2
tr

exp(ikx)
= T+

2

ϕ2
inc

exp(−ξx)
,

ϕ2
re f

exp(ξx)
= R+

2

ϕ2
inc

exp(−ξx)
,

ϕ1
tr

exp(−ikx)
= T−

1

ϕ1
inc

exp(ξx)
,

ϕ1
re f

exp(−ξx)
= R−

1

ϕ1
inc

exp(ξx)
,

(42)

where the sign “+” (or “-”) corresponds to the WP, tunneling (or propagating) in a positive (or
negative) x-direction and incident upon the boundary with number i. Using T±

i and R±
i , one

can precisely describe an arbitrary WP which has formed in result of n-multiple reflections, if
to know a “path” of its propagation along the barrier. Using the recurrence relations eq. (40),
the coefficients T±

i and R±
i can be obtained.

T+
1 = β0, T+

2 =
An

T

βn , T−
1 =

An+1
R

αn ,

R+
1 = A0

R, R+
2 =

αn

βn , R−
1 =

βn+1

αn .

(43)

Using the recurrence relations, one can find series of coefficients αn, βn, An
T and An

R. However,

these series can be calculated easier, using coefficients T±
i and R±

i . Analyzing all possible
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“paths” of the WP propagations along the barrier, we receive:

+∞

∑
n=0

An
T = T+

2 T−
1

(

1 +
+∞

∑
n=1

(R+
2 R−

1 )n

)

=
i4kξe−ξa−ika

Fsub
,

+∞

∑
n=0

An
R = R+

1 + T+
1 R+

2 T−
1

(

1 +
+∞

∑
n=1

(R+
2 R−

1 )n

)

=
k2

0D−
Fsub

,

+∞

∑
n=0

αn = α0

(

1 +
+∞

∑
n=1

(R+
2 R−

1 )n

)

=
2k(iξ − k)e−2ξa

Fsub
,

+∞

∑
n=0

βn = β0

(

1 +
+∞

∑
i=1

(R+
2 R−

1 )n

)

=
2k(iξ + k)

Fsub
,

(44)

where
Fsub = (k2 − ξ2)D− + 2ikξD+ ,

D± = 1 ± e−2ξa,

k2
0 = k2 + ξ2 =

2mV1

h̄2
.

(45)

All series ∑ αn, ∑ βn, ∑ An
T and ∑ An

R, obtained using the method of multiple internal
reflections, coincide with the corresponding coefficients α, β, AT and AR of the eq. (34),
calculated by a stationary methods. Using the following substitution

iξ → k2, (46)

where k2 = 1
h̄

√

2m(E − V1) is a wave number for a case of above-barrier energies, expression
for the coefficients αn, βn, An

T and An
R for each step, expressions for the WF for each step,

the total eqs. (44) and (45) transform into the corresponding expressions for a problem
of the particle propagation above this barrier. At the transformation of the WP and the
time-dependent WF one can need to change a sign of argument at θ-function. Besides the
following property is fulfilled:

∣

∣

∣

∣

+∞

∑
n=0

An
T

∣

∣

∣

∣

2

+

∣

∣

∣

∣

+∞

∑
n=0

An
R

∣

∣

∣

∣

2

= 1. (47)

3.3 Exact solutions for wave function for tunneling through radial barrier composed from

arbitrary number of potential steps

Now we shall come to radial problem (Maydanyuk & Belchikov, 2011). Let us assume that
starting from some time moment before decay the nucleus could be considered as system
composite from daughter nucleus and fragment emitted. Its decay is described by a particle
with reduced mass m which moves in radial direction inside a radial potential with a barrier.
We shall be interesting in the radial barrier of arbitrary shape, which has successfully been
approximated by finite number N of rectangular steps:

V(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V1, at Rmin < r ≤ r1 (region 1),
V2, at r1 ≤ r ≤ r2 (region 2),
. . . . . . . . .
VN , at rN−1 ≤ r ≤ Rmax (region N),

(48)

where Vi are constants (i = 1 . . . N). We define the first region 1 starting from point Rmin,
assuming that the fragment is formed here and then it moves outside. We shall be interesting

3.3 Exact solutions for wave function for tunneling through radial barrier composed from 
arbitrary number of potential steps 
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in solutions for above barrier energies while the solution for tunneling could be obtained after
by change i ξi → ki. A general solution of the wave function (up to its normalization) has the
following form:

ψ(r, θ, ϕ) =
χ(r)

r
Ylm(θ, ϕ), (49)

χ(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

eik1r + AR e−ik1r , at Rmin < r ≤ r1 (region 1),

α2 eik2r + β2 e−ik2r, at r1 ≤ r ≤ r2 (region 2),
. . . . . . . . .

αn−1 eikN−1r + βN−1 e−ikN−1r, at rN−2 ≤ r ≤ rN−1 (region N − 1),

AT eikNr, at rN−1 ≤ r ≤ Rmax (region N),

(50)

where αj and βj are unknown amplitudes, AT and AR are unknown amplitudes of

transmission and reflection, Ylm(θ, ϕ) is spherical function, ki =
1
h̄

√

2m(E − Vi) are complex
wave numbers. We shall be looking for solution for such problem in approach of multiple
internal reflections (we restrict ourselves by a case of orbital moment l = 0 while its non-zero
generalization changes the barrier shape which was used as arbitrary before in development
of formalism MIR and, so, is absolutely non principal).
According to the method of multiple internal reflections, scattering of the particle on the
barrier is considered on the basis of wave packet consequently by steps of its propagation
relatively to each boundary of the barrier (the most clearly idea of such approach can be
understood in the problem of tunneling through the simplest rectangular barrier, see (Cardone
et al., 2006; Maydanyuk et al., 2002a; Maydanyuk, 2003) where one can find proof of this
fully quantum exactly solvable method, one can analyze its properties). Each step in such
consideration of propagation of the packet will be similar to one from the first 2N − 1
steps, independent between themselves. From analysis of these steps recurrent relations are

found for calculation of unknown amplitudes A(n), S(n), α(n) and β(n) for arbitrary step
n, summation of these amplitudes are calculated. We shall be looking for the unknown
amplitudes, requiring wave function and its derivative to be continuous at each boundary.
We shall consider the coefficients T±

1 , T±
2 , T±

3 . . . and R±
1 , R±

2 , R±
3 . . . as additional factors to

amplitudes e±i k x. Here, bottom index denotes number of the boundary, upper (top) signs
“+” and “−” denote directions of the wave to the right or to the left, correspondingly. At the
first, we calculate T±

1 , T±
2 . . . T±

N−1 and R±
1 , R±

2 . . . R±
N−1:

T+
j =

2kj

kj + kj+1
ei(k j−k j+1)rj , T−

j =
2kj+1

kj + kj+1
ei(k j−k j+1)rj ,

R+
j =

kj − kj+1

kj + kj+1
e2ik jrj , R−

j =
kj+1 − kj

kj + kj+1
e−2ik j+1rj .

(51)

Using recurrent relations:

R̃+
j−1 = R+

j−1 + T+
j−1R̃+

j T−
j−1

(

1 +
+∞

∑
m=1

(R̃+
j R−

j−1)
m
)

= R+
j−1 +

T+
j−1R̃+

j T−
j−1

1 − R̃+
j R−

j−1

,

R̃−
j+1 = R−

j+1 + T−
j+1R̃−

j T+
j+1

(

1 +
+∞

∑
m=1

(R+
j+1R̃−

j )
m
)

= R−
j+1 +

T−
j+1R̃−

j T+
j+1

1 − R+
j+1R̃−

j

,

T̃+
j+1 = T̃+

j T+
j+1

(

1 +
+∞

∑
m=1

(R+
j+1R̃−

j )
m
)

=
T̃+

j T+
j+1

1 − R+
j+1R̃−

j

,

(52)
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and selecting as starting the following values:

R̃+
N−1 = R+

N−1, R̃−
1 = R−

1 , T̃+
1 = T+

1 , (53)

we calculate successively coefficients R̃+
N−2 . . . R̃+

1 , R̃−
2 . . . R̃−

N−1 and T̃+
2 . . . T̃+

N−1. At finishing,
we determine coefficients βj :

βj = T̃+
j−1

(

1 +
+∞

∑
m=1

(R̃+
j R̃−

j−1)
m
)

=
T̃+

j−1

1 − R̃+
j R̃−

j−1

, (54)

the amplitudes of transmission and reflection:

AT = T̃+
N−1, AR = R̃+

1 (55)

and corresponding coefficients of penetrability T and reflection R:

TMIR =
kn

k1

∣

∣AT

∣

∣

2
, RMIR =

∣

∣AR

∣

∣

2
. (56)

We check the property:

kn

k1
|AT |2 + |AR|2 = 1 or TMIR + RMIR = 1, (57)

which should be the test, whether the method MIR gives us proper solution for wave function.
Now if energy of the particle is located below then height of one step with number m, then for
description of transition of this particle through such barrier with its tunneling it shall need to
use the following change:

km → i ξm. (58)

For the potential from two rectangular steps (with different choice of their sizes) after
comparison between the all amplitudes obtained by method of MIR and the corresponding
amplitudes obtained by standard approach of quantum mechanics, we obtain coincidence up
to first 15 digits. Increasing of number of steps up to some thousands keeps such accuracy
and fulfillment of the property (57). This is important test which confirms reliability of the
method MIR. So, we have obtained full coincidence between all amplitudes, calculated by
method MIR and by standard approach of quantum mechanics, and that is way we generalize
the method MIR for description of tunneling of the particle through potential, consisting from
arbitrary number of rectangular barriers and wells of arbitrary shape.

3.4 Analysis of the proton-decay for 157
73 Ta, 161

75 Re, 167
77 Ir and 185

83 Bi
Today, there are a lot of modern methods able to calculate half-lives, which have been studied
experimentally well. So, we have a rich theoretical and experimental material for analysis.
We shall use these nuclei: 157

73 Ta, 161
75 Re, 167

77 Ir for l = 0, and 109
53 I, 112

55 Cm, 147
69 Tm for l 	= 0.

Such a choice we explain by that they have small coefficient of quadruple deformation β2

and at good approximation can be considered as spherical. We shall study proton-decay on
the basis of leaving of the particle with reduced mass from the internal region outside with
its tunneling through the barrier. This particle is supposed to start from Rmin ≤ r ≤ r1 and
move outside (r1 is defined in eq. (1)). Using technique of the T±

j and R±
j coefficients in

eqs. (51)–(53), we calculate total amplitudes of transmission AT and reflection AR by eqs. (55),
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the penetrability coefficient TMIR by eqs. (56). We check the found amplitudes, coefficients
TMIR and RMIR comparing them with corresponding amplitudes and coefficients calculated
by standard approach of quantum mechanics. We restrict ourselves by eq. (50) for F1 and find
width Γ by eq. (48) and half-live τMIR by eq. (52). We define the penetrability TWKB by eq. (49),
calculate Γ-width and half-live τWKB by eqs. (48) and (52).

3.4.1 Dependence of the penetrability on the starting point

The first interesting result which we have obtained is essential dependence of penetrability on
the position of the first region where we localize the wave incidenting on the barrier. In particular,
we have analyzed how much the internal boundary Rmin takes influence on the penetrability.
Taking into account that width of each interval is 0.01 fm, we consider left boundary Rmin

of the first interval as a starting point (with error up to 0.01 fm), from here proton begins
to move outside and is incident on the internal part of the barrier in the first stage of the
proton decay. In the Fig. 4 [left panel] one can see that half-live of the proton decay of 157

73 Ta
is changed essentially at displacement of Rmin. So, we establish essential dependence of the
penetrability on the starting point Rstart, where the proton starts to move outside by approach MIR. At

Fig. 4. Proton-decay for the 157
73 Ta nucleus: the left panel is for dependence of the half-life

τMIR on the starting point Rmin, the right panel is for dependence of the half-live τMIR on
Rmax (here, we use Rform = 7.2127 fm where calculated τMIR at Rmax = 250 fm coincides
with experimental data τexp for this nucleus). In all calculations factor F is the same.

Rform = 7.2127 fm this dependence allows us to achieve very close coincidence between the
half-live calculated by the approach MIR and experimental data.

3.4.2 Dependence of the penetrability on the external region

The region of the barrier located between turning points R2 and R3 is main part of the
potential used in calculation of the penetrability in the semiclassical approach (up to the
second correction), while the internal and external parts of this potential do not take influence
on it. Let us analyze whether convergence exists in calculations of the penetrability in the
approach MIR if to increase the external boundary Rmax (Rmax > R3). Keeping width of
each interval (step) to be the same, we shall increase Rmax (through increasing number of
intervals in the external region), starting from the external turning point R3, and calculate the
corresponding penetrability TMIR. In Fig. 4 [central panel] one can see how the penetrability
is changed for 157

73 Ta with increasing Rmax. Dependence of the half-life τMIR on Rmax is shown
in the next figure 4 [right panel]. One can see that the method MIR gives convergent values for
the penetrability and half-life at increasing of Rmax. From such figures we find that inclusion
of the external region into calculations changes the half-life up to 1.5 times (τmin = 0.20 sec is the
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Parent nucleus Half-live-values, sec

Nucleus Q, MeV Orbit Sth
p τ̃WKB τ̃MIR τexp

157
73 Ta84 0.947 2s1/2 0.66 2.813 · 10−1 2.789 · 10−1 3.0 · 10−1

161
75 Re84 1.214 2s1/2 0.59 2.720 · 10−4 2.673 · 10−4 3.7 · 10−4

167
77 Ir90 1.086 2s1/2 0.51 5.85 · 10−2 5.84 · 10−2 1.1 · 10−2

109
53 I56 0.829 1d5/2 0.76 3.937 · 10−6 3.992 · 10−6 1.0 · 10−4

112
55 Cm57 0.823 1d5/2 0.59 3.526 · 10−5 3.539 · 10−5 5.0 · 10−4

147
69 Tm78 1.132 1d5/2 0.79 7.911 · 10−5 7.796 · 10−5 3.6 · 10−4

Table 1. Experimental and calculated half-lives of some proton emitters. Here, Sth
p is

theoretical spectroscopic factor, τWKB is half-life calculated by in the semiclassical approach,
τMIR is half-life calculated by in the approach MIR, τ̃WKB = τWKB/ Sth

p , τ̃MIR = τMIR/Sth
p ,

τexp is experimental data. Values for Sth
p , τexp are used from Table IV in Ref. (Aberg et al.,

1997) (see p. 1770); in calculations for each nucleus we use: Rmin = 0.11 fm, Rmax = 250 fm;
number of intervals in region from Rmin to maximum of the barrier is 10000, from maximum
of the barrier to Rmax is 10000.

minimal half-life calculated at R3 ≤ Rmax ≤ 250 fm, τas = 0.30 sec is the half-life calculated
at Rmax = 250 fm, error = τas/τmin ≈ 1.5 or 50 percents). So, error in determination of the
penetrability in the semiclassical approach (if to take the external region into account) is expected to be
the same as a minimum on such a basis.

3.4.3 Results of calculations of half-lives in our and semiclassical approaches

As we have demonstrated above, the fully quantum calculations of the penetrability of the
barrier for the proton decay give us its essential dependence on the starting point. In order
to give power of predictions of half-lives calculated by the approach MIR, we need to find
recipe able to resolve such uncertainty in calculations of the half-lives. So, we shall introduce
the following hypothesis: we shall assume that in the first stage of the proton decay proton starts
to move outside the most probably at the coordinate of minimum of the internal well. If such a point
is located in the minimum of the well, the penetrability turns out to be maximal and half-life
minimal. So, as criterion we could use minimum of half-live for the given potential, which
has stable basis. We should take into account that the half-lives obtained before are for the
proton occupied ground state while it needs to take into account probability that this state is
empty in the daughter nucleus. In order to obtain proper values for the half-lives we should
divide them on the spectroscopic factor S (which we take from (Aberg et al., 1997)), and then
to compare them with experimental data. Results of such calculations and experimental data
for some proton emitters are presented in Table 1. To complete a picture, we add half-lives
calculated by the semiclassical approach to these data.

4. On four-position operators in quantum field theory, in terms of bilinear

operators

In this Section we approach the relativistic case, taking into consideration — therefore — the
space-time (four-dimensional) “position” operator, starting however with an analysis of the
3-dimensional (spatial) position operator in the simple relativistic case of the Klein-Gordon
equation. Actually, this analysis will lead us to tackle already with non-hermitian operators.

4. On four-position operators in quantum field theory, in terms of bilinear 
operators 
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Moreover, while performing it, we shall meet the opportunity of introducing bilinear
operators, which will be used even more in the next case of the full 4-position operator.
Let us recall that in Sect.2.1 we mentioned that the boundary condition E 	= 0, therein imposed
to guarantee (maximal) hermiticity of the time operator, can be dispensed with just by having
recourse to bilinear forms. Namely, by considering the bilinear hermitian operator(Recami,

1976; 1977; Recami et al., 1983) t̂ = (−ih̄
↔
∂ /∂E)/2, where the sign ↔ is defined through the

accompanying equality ( f , t̂ g) =
(

f , − ih
2

∂
∂E g

)

+
(

− ih
2

∂
∂E f , g

)

.

4.1 The Klein-Gordon case: Three-position operators

The standard position operators, being hermitian and moreover selfadjoint, are known to
possess real eigenvalues: i.e., they yield a point-like localization. J. M. Jauch showed, however,
that a point-like localization would be in contrast with “unimodularity”. In the relativistic
case, moreover, phenomena so as the pair production forbid a localization with precision
better than one Compton wave-length. The eigenvalues of a realistic position operator ẑ are
therefore expected to represent space regions, rather than points. This can be obtained only
by having recourse to non-hermitian (and therefore non-selfadjoint) position operators ẑ (a
priori, one can have recourse either to non-normal operators with commuting components,
or to normal operators with non-commuting components). Following, e.g., the ideas in
Ref. (Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967),
we are going to show that the mean values of the hermitian (selfadjoint) part of ẑ will yield a
mean (point-like) position (Baldo & Recami, 1969; Recami, 1970), while the mean values of the
anti-hermitian (anti-selfadjoint) part of ẑ will yield the sizes of the localization region(Olkhovsky
& Recami, 1968; 1969).
Let us consider, e.g., the case of relativistic spin-zero particles, in natural units and with metric
(+ − −−). The position operator i ∇p, is known to be actually non-hermitian, and may be
in itself a good candidate for an extended-type position operator. To show this, we want to
split (Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967) it
into its hermitian and anti-hermitian (or skew-hermitian) parts.
Consider, then, a vector space V of complex differentiable functions on a 3-dimensional
phase-space(Recami et al., 1983) equipped with an inner product defined by

(Ψ, Φ) =
∫

d3 p

p0
Ψ∗(p)Φ(p) (59)

quantity p0 being
√

p2 + m2
0. Let the functions in V satisfy moreover the condition

lim
R→∞

∫

SR

dS

p0
Ψ∗(p) Φ(p) = 0 (60)

where the integral is taken over the surface of a sphere of radius R. If U : V → V is a
differential operator of degree one, condition (60) allows a definition of the transpose UT by

(UTΨ, Φ) = (Ψ, U Φ) for all Ψ, Φ ∈ V , (61)

where U is changed into UT, or vice-versa, by means of integration by parts.
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This allows, further, to introduce a dual representation(Recami et al., 1983) (U1, U2) of a single
operator UT

1 + U2 by

(U1Ψ, Φ) + (Ψ, U2Φ) = (Ψ, (UT
1 + U2) Φ). (62)

With such a dual representation, it is easy to split any operator into its hermitian and
anti-hermitian parts

(Ψ, UΦ) =
1

2

(

(Ψ, UΦ) + (U∗Ψ, Φ)
)

+
1

2

(

(Ψ, UΦ)− (U∗Ψ, Φ)
)

. (63)

Here the pair
1

2
(U∗, U) ≡

↔
Uh , (64)

corresponding to (1/2) (U + U∗T), represents the hermitian part, while

1

2
(−U∗, U) ≡

↔
Ua (65)

represents the anti-hermitian part.
Let us apply what precedes to the case of the Klein-Gordon position-operator ẑ = i ∇p. When

U = i
∂

∂pj
(66)

we have(Olkhovsky & Recami, 1968; 1969)

1

2
(U∗, U) =

1

2

(

−i
∂

∂pj
, i

∂

∂pj

)

≡ i

2

↔
∂

∂pj
, (a)

1

2
(−U∗, U) =

1

2

(

i
∂

∂pj
, i

∂

∂pj

)

≡ i

2

↔
∂ +

∂pj
. (b)

(67)

And the corresponding single operators turn out to be

1

2
(U + U∗T) = i

∂

∂pj
− i

2

pj

p2 + m2
0

, (a)

1

2
(U − U∗T) =

i

2

pj

p2 + m2
0

. (b)

(68)

It is noteworthy(Olkhovsky & Recami, 1968; 1969) that, as we are going to see, operator (68a)
is nothing but the usual Newton-Wigner operator, while (68b) can be interpreted (Gallardo
et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Olkhovsky &
Recami, 1968; 1969; Toller, 1999) as yielding the sizes of the localization-region (an ellipsoid)
via its average values over the considered wave-packet.
Let us underline that the previous formalism justifies from the mathematical point of view the
treatment presented in papers like (Baldo & Recami, 1969; Gallardo et al., 1967b;c; Ka’lnay,
1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Recami, 1970). We can split(Olkhovsky
& Recami, 1968; 1969) the operator ẑ into two bilinear parts, as follows:

ẑ = i ∇p =
i

2

↔
∇p +

i

2

↔
∇

(+)

p (69)
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where Ψ∗ ↔
∇p Φ ≡ Ψ∗∇pΦ − Φ∇pΨ∗ and Ψ∗ ↔

∇
(+)

p Φ ≡ Ψ∗∇pΦ + Φ∇pΨ∗ , and where
we always referred to a suitable (Baldo & Recami, 1969; Gallardo et al., 1967b;c; Ka’lnay, 1966;
Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Recami, 1970; 1976; 1977; Recami et al., 1983)
space of wave packets. Its hermitian part (Baldo & Recami, 1969; Gallardo et al., 1967b;c;
Ka’lnay, 1966; Ka’lnay & Toledo, 1967; Olkhovsky et al., 1967; Recami, 1970)

x̂ =
i

2

↔
∇p , (70)

which was expected to yield an (ordinary) point-like localization, has been derived also by
writing explicitly

(Ψ, x̂ Φ) = i
∫

d3 p

p0
Ψ∗(p)∇p Φ(p) (71)

and imposing hermiticity, i.e., imposing the reality of the diagonal elements. The calculations
yield

ℜ
(

Φ, x̂ Φ
)

= i
∫

d3 p

p0
Φ∗(p)

↔
∇p Φ(p) , (72)

suggesting to adopt just the Lorentz-invariant quantity (70) as a bilinear hermitian position
operator. Then, on integrating by parts (and due to the vanishing of the surface integral), we
verify that eq. (70) is equivalent to the ordinary Newton-Wigner operator:

x̂h ≡ i

2

↔
∇p ≡ i ∇p −

i

2

p

p2 + m2
≡ N − W . (73)

We are left with the (bilinear) anti-hermitian part

ŷ =
i

2

↔
∇

(+)

p (74)

whose average values over the considered state (wave-packet) can be regarded as
yielding (Baldo & Recami, 1969; Gallardo et al., 1967b;c; Ka’lnay, 1966; Ka’lnay & Toledo, 1967;
Olkhovsky et al., 1967; Recami, 1970; 1976; 1977; Recami et al., 1983)the sizes of an ellipsoidal
localization-region.
After the digression associated with eqs.(69)–(74), let us go back to the present formalism, as
expressed by eqs.(59)–(68).
In general, the extended-type position operator ẑ will yeld

〈Ψ| ẑ |Ψ〉 = (α + ∆α) + i (β + ∆β) , (75)

where ∆α and ∆β are the mean-errors encountered when measuring the point-like position
and the sizes of the localization region, respectively. It is interesting to evaluate the
commutators (i, j = 1, 2, 3):

(

i

2

↔
∂

∂pi
,

i

2

↔
∂ (+)

∂pj

)

=
i

2 p2
0

(

δij −
2 pi pj

p2
0

)

, (76)

wherefrom the noticeable “uncertainty correlations” follow:

∆αi ∆βj ≥
1

4

∣

∣

∣

∣

〈

1

p2
0

(

δij −
2 pi pj

p2
0

)〉
∣

∣

∣

∣

. (77)
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4.2 Four-position operators

It is tempting to propose as four-position operator the quantity ẑµ = x̂µ + i ŷµ, whose hermitian
(Lorentz-covariant) part can be written

x̂µ = − i

2

↔
∂

∂pµ
, (78)

to be associated with its corresponding “operator” in four-momentum space

p̂
µ
h = +

i

2

↔
∂

∂xµ
. (79)

Let us recall the proportionality between the 4-momentum operator and the 4-current density
operator in the chronotopical space, and then underline the canonical correspondence (in the
4-position and 4-momentum spaces, respectively) between the “operators” (cf. the previous
subsection):

m0 ρ̂ ≡ p̂0 =
i

2

↔
∂
∂t

(a)

m0 ĵ ≡ p̂ = − i

2

↔
∂
∂r

, (b)

(80)

and the operators

t̂ ≡ − i

2

↔
∂

∂p0
(a)

x̂ ≡ i

2

↔
∂

∂p
, (b)

(81)

where the four-position “operator” (81) can be considered as a 4-current density operator in
the energy-impulse space. Analogous considerations can be carried on for the anti-hermitian
parts (see the last one of Refs.(Olkhovsky & Recami, 1968; 1969)).
Finally, by recalling the properties of the time operator as a maximal hermitian operator in
the non-relativistic case (Sec.2.1), one can see that the relativistic time operator (81a) (for the
Klein-Gordon case) is also a selfadjoint bilinear operator for the case of continuous energy
spectra, and a (maximal) hermitian linear operator for free particles [due to the presence of
the lower limit zero for the kinetic energy, or m0 for the total energy].

5. Decoherence (without instantaneous wave-function collapse5)

In this paper we want to show, within the density matrix formalism, that a simple way to get
decoherence is through the introduction of a “quantum” of time (or rather of a chronon): thus
replacing the differential Liouville–von Neumann equation with a finite-difference version of
it. In this way, one is given the possibility of using a very simple quantum equation to describe
the decoherence effects due to dissipation, and of partially solving the measurement-problem
in quantum mechanics (avoiding any recourse to the wave-function collapse). Namely,
the mere introduction (not of a “time-lattice”, but simply) of the “chronon” allows us to
go on from differential to finite-difference equations; and in particular to write down the

5 This section is developed by Erasmo Recami.
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Schröedinger equation (as well as the Liouville–von Neumann equation) in three different
ways: “retarded”, “symmetrical”, and “advanced”. One of such three formulations — the
retarded one — describes in an elementary way a system which is exchanging (and losing)
energy with the environment. In its density-matrix version, indeed, it can be easily shown
that all non-diagonal terms go to zero very rapidly.
Let us refer, in particular, to the theory of the chronon as proposed by P. Caldirola. Let us
recall that such an interesting “finite difference” theory, forwards — at the classical level —
a solution for the motion of a particle endowed with a non-negligible charge in an external
electromagnetic field, overcoming all the known difficulties met by Abraham-Lorentz’s and
Dirac’s approaches (and even allowing a clear answer to the question whether a free falling
charged particle does or does not emit radiation), and — at the quantum level — yields a
remarkable mass spectrum for leptons.
It is easy to compare one another the new representations of Quantum Mechanics (QM)
resulting from it, in the Schröedinger, Heisenberg and densityŰoperator (Liouville–von
Neumann) pictures, respectively.
For each representation, three (retarded, symmetric and advanced) formulations are possible,
which refer either to times t and t − τ0, or to times t − τ0/2 and t + τ0/2, or to times t and
t+ τ0, respectively. It is interesting to notice that, when the chronon tends to zero, the ordinary
QM is obtained as the limiting case of the “symmetric” formulation only; while the “retarded”
one does naturally appear to describe QM with friction, i. e., to describe dissipative quantum
systems (like a particle moving in an absorbing medium).
In this sense, discretized QM is much richer than the ordinary one. Here, we want to pay
attention to the fact that, when applying the density matrix formalism to the solution of the
measurement problem in QM, interesting results are met, as, for instance, a natural explication
of the “decoherence” due to dissipation: which seem to reveal the power of dicretized (in
particular, retarded) QM.

5.1 On discretized Quantum Mechanics

Let us approach our eventual application of the discretization procedures for a possible
solution of the measurement problem in Quantum Mechanics, without having to make
recourse to the reduction (wave-packet instantaneous collapse) postulate. Namely, let us focus
our attention, now, on the consequences for QM of the introduction of a chronon. In QM, time
will still be a continuous variable, but the evolution of the system along its world line will be
regarded as discontinuous. In analogy with the electron theory in the non-relativistic limit, one
has to substitute the corresponding finite-difference expression for the time derivatives; e. g.:

d f (t)

dt
=

f (t)− f (t − ∆t)

∆t
, (82)

where proper time is now replaced by the local time t. The chronon procedure can then be
applied to obtain the finite-difference form of the Schröedinger equation. As for the electron
case, there are three different ways to perform the discretization, and three “Schröedinger
equations” can be obtained:

i
h̄

τ
[Ψ(x, t)− Ψ(x, t − τ)] = Ĥ Ψ(x, t), (83)

i
h̄

2τ
[Ψ(x, t + τ)− Ψ(x, t − τ)] = Ĥ Ψ(x, t), (84)
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i
h̄

τ
[Ψ(x, t + τ)− Ψ(x, t)] = Ĥ Ψ(x, t), (85)

which are, respectively, the retarded, symmetric and advanced Schröedinger equations, all of
them transforming into the (same) continuous equation when the fundamental interval of
time (that can now be called just τ) goes to zero.
Since the equations are different, the solutions they provide are also fundamentally different.
In the classical theory of the electron the symmetric equation represented a non-radiating
motion, providing only an approximate description of the motion (without taking into account
the effects due to the self fields of the electron). However, in the quantum theory it plays a
fundamental role. In the discrete formalism too, the symmetrical equation constitutes the only
way to describe a bound non-radiating particle.
However, the solutions of the retarded (and advanced) equations show a completely different
behaviour. For a Hamiltonian explicitly independent of time, the solutions have a general
form given by

Ψ(x, t) =
[

1 + i
τ

h̄
Ĥ
]−t/τ

f (x) (86)

and, expanding f (x) in terms of the eigenfunctions of Ĥ:

Ĥ un(x) = Wn un(x), (87)

that is, writing f (x) = ∑
n

cn un(x), with ∑
n
|cn|2 = 1, one can obtain that

Ψ(x, t) = ∑
n

cn

[

1 + i
τ

h̄
Wn

]−t/τ
un(x). (88)

The norm of this solution is given by

|Ψ(x, t)|2 = ∑
n
|cn|2 exp (−γnt) (89)

with

γn =
1

τ
ln

(

1 +
τ2

h̄2
W2

n

)

=
W2

n

h̄2
τ + O (τ3), (90)

where it is apparent that the damping factor depends critically on the value τ of the chronon.
This dissipative behaviour originates from the character of the retarded equation; in the case of
the electron, the retarded equation possesses intrinsically dissipative solutions, representing
a radiating system. The Hamiltonian has the same status as in the ordinary (continuous) case:
It is an observable, since it is a hermitian operator and its eigenvectors form a basis of the state
space. However, as we have seen, the norm of the state vector is not constant any longer, due
to the damping factor. An opposite behaviour is observed for the solutions of the advanced
equation, in the sense that they increase exponentially.

5.2 Discretized (retarded) Liouville equation, and a solution of the measurement problem:

Decoherence from dissipation

Suppose we want to measure the dynamical variable R of a (microscopic) object O, by utilizing
a (macroscopic) measuring apparatus A.
In the discrete case the interaction is embedded in the Hamiltonian Ĥ, with the following
consequences. Let us consider the energy representation, where |n〉 are the states with defined

5.2 Discretized (retarded) Liouville equation, and a solution of the measurement 
problem: Decoherence from dissipation 
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energy: H|n〉 = En|n〉. Since the time evolution operator is a function of the Hamiltonian, and
commutes with it, the basis of the energy eigenstates will be a basis also for this operator.
The discretized (retarded) Liouville-von Neumann equation is

ρ(t)− ρ(t − τ)

τ
= −iL ρ(t), (91)

which reduces to the LvN equation when τ → 0. The essential point is that, following e.g. a
procedure similar to Bonifacio’s, one gets in this case a non-unitary time-evolution operator:

V(t, 0) =
[

1 +
iτL

h̄

]−t/τ
, (92)

which, as all non-unitary operators, does not preserve the probabilities associated with each
of the energy eigenstates (that make up the expansion of the initial state in such a basis of
eigenstates). We are interested in the time instants t = kτ, with k an integer.
Thus, the time-evolution operator (92) takes the initial density operator ρin to a final state for
which the non-diagonal terms decay exponentially with time; namely, to

ρfin
rs = 〈r|V(t, 0)|s〉 = ρin

rs

[

1 + iwrsτ
]−t/τ

, (93)

where

wrs ≡
1

h̄
(Er − Es) ≡

1

h̄
(∆E)rs. (94)

Expression (93) can be written

ρrs(t) = ρrs(0) e−γrst e−iνrst, (95)

with

γrs ≡
1

2τ
ln
(

1 + w2
rsτ2

)

, (96)

νrs ≡
1

τ
tan−1(wrsτ). (97)

One can observe, indeed, that the non-diagonal terms tend to zero with time, and that the
larger the value of τ, the faster the decay becomes. Actually, the chronon τ is now an interval
of time related no longer to a single electron, but to the whole system O+A. If one imagines
the time interval τ to be linked to the possibility of distinguishing two successive, different
states of the system, then τ can be significantly larger than 10−23 sec, implying an extremely
faster damping of the non-diagonal terms of the density operator.
Thus, the reduction to the diagonal form occurs, provided that τ possesses a finite value, no
matter how small, and provided that wnmτ, for every n, m, is not much smaller than 1; where

wnm = (En − Em)/h̄ (98)

are the transition frequencies between the different energy eigenstates (the last condition being
always satisfied, e. g., for non-bounded systems).
It is essential to notice that decoherence has been obtained above, without having recourse to any
statistical approach, and in particular without assuming any “coarse graining” of time. The reduction
to the diagonal form illustrated by us is a consequence of the discrete (retarded) LiouvilleŰvon
Neumann equation only, once the inequality wnmτ ≪ 1 is not verified.
Moreover, the measurement problem is still controversial even with regard to its mathematical
approach: In the simplified formalization introduced above, however, we have not included
any consideration beyond those common to the quantum formalism, allowing an as clear as
possible recognition of the effects of the introduction of a chronon.
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6. Non-hermitian Hamiltonians and microscopic quantum dissipation

Various different approached are known, aimed at getting dissipation — and possibly
decoherence — within quantum mechanics. First of all, the simple introduction of a
“chronon” (see, e.g., Refs. (Caldirola et al., 1978; Caldirola, 1979; Caldirola & Montaldi, 1979;
Caldirola & Lugiato, 1982; Caldirola, 1983; Farias & Recami, 2007)) allows one to go on
from differential to finite-difference equations, and in particular to write down the quantum
theoretical equations (Schrödinger’s, Liouville-von Neumann’s, etc.) in three different ways:
symmetrical, retarded, and advanced. The retarded “Schrödinger” equation describes in a
rather simple and natural way a dissipative system, which exchanges (loses) energy with the
environment. The corresponding non-unitary time-evolution operator obeys a semigroup law
and refers to irreversible processes. The retarded approach furnishes, moreover, an interesting
way for solving the “measurement problem” in quantum mechanics, without any need for
a wave-function collapse: see Refs.(Bonifacio, 1983; Bonifacio & Caldirola, 1983; Farias &
Recami, 2007; Ghirardi & Weber, 1984; Recami & Farias, 2002). The chronon theory can be
regarded as a peculiar “coarse grained” description of the time evolution.
Let us stress that it has been shown that the mentioned discrete approach can be replaced
with a continuous one, at the price of introducing a non-hermitian Hamiltonian: see, e.g.,
Ref.(Casagrande & Montaldi, 1977).
Further relevant work can be found, for instance, in papers like (Caldirola, 1941; Janussis et
al., 1980; 1981a;b; 1982a;b;c; 1984; 1991; 1995; Mignani, 1983) and refs. therein.
Let us add, at this point, that much work is still needed for the description of time
irreversibility at the microscopic level. Indeed, various approaches have been proposed,
in which new parameters are introduced (regulation or dissipation) into the microscopic
dynamics (building a bridge, in a sense, between microscopic structure and macroscopic
characteristics). Besides the Caldirola-Kanai(Caldirola, 1941; Kanai, 1948) Hamiltonian

ĤCK(t) = − h̄2

2m

∂2

∂x2
e−γt + V(x) eγt (99)

(which has been used, e.g., in Ref.(Angelopoulon et al., 1995)), other rather simple approaches,
based of course on the Schrödinger equation

ih̄
∂

∂t
Ψ(x, t) = Ĥ Ψ(x, t) , (100)

and adopting a microscopic dissipation defined via a coefficient of extinction γ, are for
instance the following ones:
A) Non-linear (non-hermitian) Hamiltonians

Ĥnl = − h̄2

2m

∂2

∂x2
+ V(x) + Ŵ , (101)

with “potential” operators Ŵ of the type:

1. Kostin’s operator (see Ref.(Kostin, 1972)):

ŴK = − ih̄

2m

{

ln Ψ

Ψ∗ −
〈

ln Ψ

Ψ∗

〉}

; (102)
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2. Albrecht’s operator (see Ref.(Albrecht, 1975)):

ŴA(x) = 〈p 〉 (x − 〈x〉) , (103)

where 〈 〉 is the averaging produced over |Ψ(x)|2;

3. Ref.(Hasse, 1975):

ŴH(x) =
1

4

[

x − 〈x〉, p + 〈p 〉
]

+
, (104)

where [A, B]+ is the anticommutator: [A, B]+ = AB + BA.

B) Linear (non-hermitian) Hamiltonians:

1. Ref.(Gisin, 1982):
ĤG = (1 − iγ) Ĥ + iγ〈Ĥ〉 ; (105)

2. Ref.(Exner, 1983):
ĤE = Ĥ + i Ŵ(x)− i 〈Ŵ(x) 〉 . (106)

One might recall also the important, so-called “microscopic models”(Caldeira & Leggett,
1983), even if they are not based on the Schröedinger equation.
All such proposals are to be further investigated, and completed, since they have not been
apparently exploited enough, till now. Let us remark, just as an example, that it would be
desirable to take into deeper consideration other related phenomena, like the ones associated
with the “Hartman effect” (and “generalized Hartman effect”) (Aharonov, 2002; Olkhovsky &
Recami, 1992; Olkhovsky et al., 1995; 2002; 2004; 2005; Recami, 2004), in the case of tunneling
with dissipation: a topic faced in few papers, like (Nimtz et al., 1994; Raciti & Salesi, 1994).
As a small contribution of ours, in the Appendix we present a scheme of iterations (successive
approximations) as a possible tool for explicit calculations of wave-functions in the presence
of dissipation, by using as an example the simple Albreht’s potential. Our scheme may be
useful, in any case, for the investigation of possible violations of the Hartman effect, as well
as for analyzing a few irreversible phenomena. See the Appendix.
At last, let us incidentally recall that two generalized Schröedinger equations, introduced
by Caldirola (Caldirola, 1941; 1976a;b; 1977) in order to describe two different dissipative
processes (behavior of open systems, and the radiation of a charged particle) have been
shown — see, e.g., Ref.(Mignani, 1983)) — to possess the same algebraic structure of the
Lie-admissible type(Santilli, 1983).

7. Some conclusions

1. We have shown that the Time operator (1), hermitian even if non-selfadjoint, works for any
quantum collisions or motions, in the case of a continuum energy spectrum, in non-relativistic
quantum mechanics and in one-dimensional quantum electrodynamics. The uniqueness
of the (maximal) hermitian time operator (1) directly follows from the uniqueness of the
Fourier-transformations from the time to the energy representation. The time operator (1)
has been fruitfully used in the case, for instance, of tunnelling times (see Refs. (Olkhovsky
& Recami, 1992; Olkhovsky et al., 1995; Olkhovsky & Agresti, 1997; Olkhovsky et al., 2004;
Olkhovsky & Recami, 2007)), and of nuclear reactions and decays (see Refs. (Olkhovsky, 1984;
1990; 1992; 1998) and also Ref. (Olkhovsky et al., 2006)). We have discussed the advantages
of such an approach with respect to POVM’s, which is not applicable for three-dimensional
particle collisions, within a wide class of Hamiltonians.
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The mathematical properties of the present Time operator have actually demonstrated
— without introducing any new physical postulates — that time can be regarded as a
quantum-mechanical observable, at the same degree of other physical quantities (energy,
momentum, spatial coordinates,...).
The commutation relations (eqs. (8), (22), (31)) here analyzed, and the uncertainty relations
(9), result to be analogous to those known for other pairs of canonically conjugate observables
(as for coordinate x̂ and momentum p̂x, in the case of eq. (9)). Of course, our new relations do
not replace, but merely extend the meaning of the classic time and energy uncertainties, given
e.g. in Ref. (Olkhovsky & Recami, 2008). In subsection 2.6, we have studied the properties of
Time, as an observable, for quantum-mechanical systems with discrete energy spectra.
2. Let us recall that the Time operator (1), and relations (2), (3), (4), (15), (16), have been used
for the temporal analysis of nuclear reactions and decays in Refs. (Olkhovsky, 1984; 1990;
1992; 1998); as well as of new phenomena, about time delays-advances in nuclear physics and
about time resonances or explosions of highly excited compound nuclei, in Refs. (D’Arrigo
et al., 1992; 1993; Olkhovsky & Doroshko, 1992; Olkhovsky et al., 2006). Let us also recall
that, besides the time operator, other quantities, to which (maximal) hermitian operators
correspond, can be analogously regarded as quantum-physical observables: For example,
von Neumann himself (Recami, 1976; 1977; Von Neumann, 1955)) considered the case of the
momentum operator −i∂/∂x in a semi-space with a rigid wall orthogonal to the x-axis at
x = 0, or of the radial momentum −i∂/∂r, even if both act on packets defined only over the
positive x or r axis, respectively.
Subsection 2.5 has been devoted to a new “hamiltonian approach”: namely, to the introduction
of the analogue of the “Hamiltonian” for the case of the Time operator.
3. In Section 3, we have proposed a suitable generalization for the Time operator (or, rather, for
a Space-Time operator) in relativistic quantum mechanics. For instance, for the Klein-Gordon
case, we have shown that the hermitian part of the three-position operator x̂ is nothing but the
Newton-Wigner operator, and corresponds to a point-like position; while its anti-hermitian
part can be regarded as yielding the sizes of an extended-type (ellipsoidal) localization.
When dealing with a 4-position operator, one finds that the Time operator is selfadjoint for
unbounded energy spectra, while it is a (maximal) hermitian operator when the kinetic energy,
and the total energy, are bounded from below, as for a free particle. We have extensively made
recourse, in the latter case, to bilinear forms, which dispense with the necessity of eliminating
the lower point — corresponding to zero velocity — of the spectra. It would be interesting
to proceed to further generalizations of the 3- and 4-position operator for other relativistic
cases, and analyze the localization problems associated with Dirac particles, or in 2D and
3D quantum electrodynamics, etc. Work is in progress on time analyses in 2D quantum
electrodynamic, for application, e.g., to frustrated (almost total) internal reflections. Further
work has still to be done also about the joint consideration of particles and antiparticles.
4. Section 4 has been devoted to the association of unstable states (decaying ”resonances”)
with the eigenvectors of quasi-hermitian (Agodi et al., 1973; Olkhovsky et al., 2006; Recami et
al., 1983) Hamiltonians.
5. Non-hermitian Hamiltonians, and non-unitary time-evolution operators, can play an
important role also in microscopic quantum dissipation (Bonifacio, 1983; Bonifacio &
Caldirola, 1983; Caldirola, 1941; Caldirola et al., 1978; Caldirola, 1979; Caldirola & Montaldi,
1979; Caldirola & Lugiato, 1982; Caldirola, 1983; Casagrande & Montaldi, 1977; Farias &
Recami, 2007; Ghirardi & Weber, 1984; Janussis et al., 1980; 1981a;b; 1982a;b;c; 1984; 1991; 1995;
Mignani, 1983; Recami & Farias, 2002): namely, in getting decoherence through interaction
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with the environment (Farias & Recami, 2007; Recami & Farias, 2002). This topic is touched in
Section 5; together with questions related with collisions in absorbing media. In particular, in
Sec.5 we mention also the case of the optical model in nuclear physics; without forgetting
that non-hermitian operators show up even in the case of tunnelling — e. g., in fission
phenomena — with quantum dissipation, and of quantum friction. As to the former topic
of microscopic quantum dissipation, among the many approaches to quantum irreversibility
we have discussed in Sec. 5.2 a possible solution of the quantum measurement problem (via
interaction with the environment) by the introduction of finite-difference equations (e. g., in
terms of a “chronon”).
6. Let us eventually observe that the “dual equations” (26) and (27) seem to be promising
also for the study the initial stage of our cosmos, when tunnellings can take place through
the barriers which appear in quantum gravity in the limiting case of quasi-Schröedinger
equations.
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9. Appendix

Time-dependent Schrödinger equation with dissipative terms
9.1 Introduction

Let’s consider the time-dependent Schrödinger equation:

i
∂

∂t
Ψ(x, t) =

(

− ∂2

∂x2
+ V(x, t)

)

Ψ(x, t), (107)

where we put h̄ = 1. Let us rewrite the time-dependent wave function (WF), Ψ(x, t) (which
can be considered as a wave-packet (WP)), in the form of a Fourier integral:

Ψ(x, t) =

E0
∫

0

g(E) e−iEt ϕ(E, x) dE , (108)

where ϕ(E, x) is the WF component independent of time, and g(E) is a weight factor. One can
choose the function g(E) to be, e.g., a Gaussian:

g(E) = A e−a2(k−k̄)2
. (109)

Here, A and a are constants, and k̄ is the selected value for the impulse, constituting the center
of the WP. We substitute the Fourier-expansion (108) of WF into eq. (107). Thus, the l.h.s. of
this equation transforms into

i
∂

∂t
Ψ(x, t) =

E0
∫

0

g(E) e−iEt ϕ(E, x) EdE . (110)
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Afterwards, the r.h.s. of eq. (107) gets transformed into

(

− ∂2

∂x2
+ V(x, t)

)

Ψ(x, t) = −
E0
∫

0

g(E)e−iEt ∂2 ϕ(E, x)

∂x2
dE +

E0
∫

0

g(E)V(x, Ē, t)e−iEt ϕ(E, x) dE.

(111)
Therefore, the whole equation (107) has been transformed into

E0
∫

0

g(E) e−iEt ϕ(E, x) EdE = −
E0
∫

0

g(E) e−iEt ∂2 ϕ(E, x)

∂x2
dE +

E0
∫

0

g(E)V(x, Ē, t) e−iEt ϕ(E, x) dE.

(112)
Let us now apply the inverse Fourier-transformation to this equation. Its left part becomes

1

2π

∫

dt eiE′t
E0
∫

0

g(E) e−iEt ϕ(E, x) EdE =
1

2π

E0
∫

0

dE E g(E) ϕ(E, x)
∫

ei(E′−E)tdt =

=

E0
∫

0

g(E) ϕ(E, x)δ(E′ − E) EdE = g(E′) E′ ϕ(E′, x) ;

(113)

while its right part becomes

− 1

2π

∫

dt eiE′ t
E0
∫

0

g(E) e−iEt ∂2 ϕ(E, x)

∂x2
dE +

1

2π

∫

dt eiE′t
E0
∫

0

g(E)V(x, Ē, t) e−iEt ϕ(E, x) dE =

= − 1

2π

E0
∫

0

dE g(E)
∂2 ϕ(E, x)

∂x2

∫

ei(E′−E)t dt +
1

2π

E0
∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E′−E)−t dt =

= −g(E′)
∂2 ϕ(E′, x)

∂x2
+

1

2π

E0
∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E′−E)t dt.

(114)
As a result, we obtain eq. (112) in the form

g(E′) E′ ϕ(E′, x) = −g(E′)
∂2 ϕ(E′, x)

∂x2
+

1

2π

E0
∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E′−E)t dt. (115)

9.2 The case of the simple Albreht’s potential

Just as an example of a possible potential V(x, t), let us choose

V(x, t) = V0(x) + γ WA(x) . (116)

where WA(x) is the simple Albreht’s dissipation term. Here, γ is a constant, V0(x) is the usual
stationary component of V(x), and the dissipative component of V(x) has the form

WA(x) =< p > (x− < x >), (117)
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where the averages are fulfilled by integrating over x by means of the functions Ψ∗(x, t) and
Ψ(x, t). For the right part of eq. (117) one gets

< p > = −i
∫

dx

E0
∫

0

dE1

E0
∫

0

dE2 g(E1) g(E2) ei(E1−E2)t ϕ∗(E1, x)
∂ϕ(E2, x)

∂x
,

< x > =
∫

dx

E0
∫

0

dE3

E0
∫

0

dE4 g(E3) g(E4) ei(E3−E4)t x ϕ∗(E3, x) ϕ(E4, x) ;

(118)

so that the total potential V(x, t) becomes

V(x, t) = V0(x)− iγ
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4 g(E1) g(E2) g(E3) g(E4)

× ei(E1−E2+E3−E4)t
(

x − x2

)

ϕ∗(E1, x1)
∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2).

(119)

Taking into account this, we find the second term, in the r.h.s. of eq. (115), to be:

1

2π

E0
∫

0

dE g(E) ϕ(E, x)
∫

V(x, Ē, t) ei(E′−E)t dt =

=

E0
∫

0

dE g(E) ϕ(E, x) V0(x) δ(E′ − E)−

− iγ

E0
∫

0

dE g(E) ϕ(E, x)
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4 g(E1) g(E2) g(E3) g(E4)

×
(

x − x2

)

ϕ∗(E1, x1)
∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) δ(E′ − E + E1 − E2 + E3 − E4) =

= g(E′) ϕ(E′, x)V0(x)−

− iγ
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4 g(E1) g(E2) g(E3) g(E4) g(E′′)

×
(

x − x2

)

ϕ∗(E1, x1)
∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E′′, x),

(120)
where

E′′ = E′ + E1 − E2 + E3 − E4. (121)

As a consequence, the whole eq. (115) gets transformed into

g(E′) E′ ϕ(E′, x) = −g(E′)
∂2 ϕ(E′, x)

∂x2
+ g(E′) ϕ(E′, x)V0(x)

− iγ
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4 g(E1) g(E2) g(E3) g(E4) g(E′′)

×
(

x − x2

)

ϕ∗(E1, x1)
∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E′′, x)
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or (with the change of variables E′ → E)

(

− ∂2

∂x2
+ V0(x)− E

)

ϕ(E, x) =

= iγ
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E′′)

g(E)

×
(

x − x2

)

ϕ∗(E1, x1)
∂ϕ(E2, x1)

∂x1
ϕ∗(E3, x2) ϕ(E4, x2) ϕ(E′′, x) .

(122)

We have thus obtained for this case the time-independent Schröedinger equation, by taking
however into account dissipation via the parameter γ. Of course, when γ tends to zero, one
goes back to the stationary Schrödinger equation.

9.3 Method of the successive approximations

Assuming the coefficient γ to be small, one can find the unknown function ϕ(x) in the
simplified form

ϕ(x) = ϕ0(x) + γ ϕ1(x), (123)

where as function ϕ0(x) it has been used the standard WF of the time-independent
Schrödinger equation with potential V0(x) and energy E0:

(

− ∂2

∂x2
+ V0(x)

)

ϕ0(x) = E0 ϕ0(x). (124)

Substituting solution (123) into eq. (124), we obtain a new equation containing all the powers
n of γ, namely, the γn. Let us confine ourselves, however, to write down this equation with
accuracy up to γ1 only:

(

− ∂2

∂x2
+ V0(x)− E

)

(

ϕ0(E, x) + γϕ1(E, x)
)

=

= iγ
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E′′)

g(E)

×
(

x − x2

)

ϕ∗
0(E1, x1)

∂ϕ0(E2, x1)

∂x1
ϕ∗

0(E3, x2) ϕ0(E4, x2) ϕ0(E
′′, x) ,

(125)

where the unknown ϕ1(x) does not appear any longer, of course,into the r.h.s. of this equation.
Taking E = E0, we can rewrite in eq. (125), separately, the various terms with different powers
of γ. When limiting ourselves to n = 0, 1, we obtain

γ0 :

(

− ∂2

∂x2
+ V0(x)− E0

)

ϕ0(E0, x) = 0,

γ1 :

(

− ∂2

∂x2
+ V0(x)− E0

)

ϕ1(E0, x) =

= iγ
∫

dx1

∫

dx2

E0
∫

0

dE1

E0
∫

0

dE2

E0
∫

0

dE3

E0
∫

0

dE4
g(E1) g(E2) g(E3) g(E4) g(E′′)

g(E0)

×
(

x − x2

)

ϕ∗
0(E1, x1)

∂ϕ0(E2, x1)

∂x1
ϕ∗

0(E3, x2) ϕ0(E4, x2) ϕ0(E
′′, x),

(126)
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where
E′′ = E0 + E1 − E2 + E3 − E4. (127)

The first equation holds when dissipation is absent. The second equation determines the
unknown function ϕ1 in terms of the given ϕ0: It results to be an ordinary differential equation
of the second order, that can be solved by the ordinary numerical methods.

10. References

Aberg, S., Semmes, P. B. & Nazarewicz, W. (1997). Phys. Rev. Vol. C56: 1762–1773.
Agodi, A. & Eberle, E. (1960). Nuovo Cimento Vol. 18: 718.
Agodi, A., Catara, F. & Di Toro, M. (1968). Annals of Physics Vol. 49: 445.
Agodi, A. (1969). Theory of Nuclear Structures (Trieste Lectures): p. 879.
Agodi, A., Baldo, M. & Recami, E. (1973). Annals of Physics Vol. 77: 157.
Aharonov, Y. & Bohm, D. (1961). Phys. Rev. Vol. A122: 1649.
Aharonov, Y., Oppenhem, J., Popescu, S., Reznik, B. & Unruh, W. (1998). Phys. Rev. Vol. A57:

4130.
Aharonov, Y., Erez, N. & Resnik, B. (2002). Phys. Rev. Vol. A65: 052124.
Akhiezer, N. I. & Glazman, I. M. (1981). The Theory of Linear Operators in Hilbert Space (Boston:

Pitman, Mass.).
Akhiezer, A. I. & Berestezky, V. B. (1959). Quantum Electrodynamics [in Russian] (Moscow:

Fizmatgiz).
Albrecht, K. (1975). Phys. Lett. Vol. B56: 127.
Anderson, A. (1989). Multiple scattering approach to one-dimensional potential problems,

Am. Journ. Phys. Vol. Vol. 57 (No. 3): 230–235.
Angelopoulon, P., et al. (1995). Int. J. Mod. Phys. Vol. B9: 2083.
Atmanspacher, H. & Amann, A. (1998). Internat. J. Theor. Phys. Vol. 37: 629.
Baldo, M. & Recami, E. (1969). Lett. Nuovo Cim. Vol. 2: 613.
Blanchard, P. & Jadczyk, A. (1996). Helv. Phys. Acta Vol. 69: 613.
Bonifacio, R. (1983). Lett. N. Cim. Vol. 37: 481.
Bonifacio, R., & Caldirola, P., (1983). Lett. N. Cim. Vol. 38: 615.
Buck, B., Merchant, A. C. & Perez, S. M. (1993). Half-lives of favored alpha decays from nuclear

ground states, At. Dat. Nucl. Dat. Tabl. Vol. Vol. 54 (No. 1): 53–74.
Busch, P., Grabowski, M. & Lahti, P. J. (1994). Phys. Lett. Vol. A191: 357.
Caldeira, A. & Leggett, A. (1983). Annals of Physics Vol. 149: 374.
Caldirola, P. (1941). Nuovo Cimento Vol. 18: 393.
Caldirola, P. (1976). Lett. N. Cim. Vol. 16: 151.
Caldirola, P. (1976). Lett. N. Cim. Vol. 17: 461.
Caldirola, P. (1977). Lett. N. Cim. Vol. 18: 465.
Caldirola, P., Casati, G. & Prosperetti, A. (1978). Nuovo Cimento Vol. A43: 127.
Caldirola, P. (1979). Rivista N. Cim. Vol. 2: issue no. 13.
Caldirola, P. & Montaldi, E. (1979). Nuovo Cimento Vol. B53: 291.
Caldirola, P. & Lugiato, L. (1982). Physica Vol. A116: 248.
Caldirola, P. (1983). Dissipation in quantum theory (40 years of research), Hadronic Journal

Vol. 6: 1400–1433.
Cardone, F., Maidanyuk, S. P., Mignani, R. & Olkhovsky, V. S. (2006). Multiple internal

reflections during particle and photon tunneling, Found. Phys. Lett. Vol. Vol. 19
(No. 5): 441–457.

Carleman, T. (1923). Sur les Equations Integrales Anoyau Rèel et Symètrique (Uppsala).

53Time as Quantum Observable, Canonical Conjugated to Energy

www.intechopen.com



38 Will-be-set-by-IN-TECH

Casagrande, F. & Montaldi, E. (1977). Nuovo Cimento Vol. A40: 369.
D’Arrigo, A., Doroshko, N. L., Eremin, N. V., Olkhovsky, V. S. et al. (1992). Nucl. Phys.

Vol. A549: 375–386.
D’Arrigo, A., Doroshko, N. L., Eremin, N. V., Olkhovsky, V. S. et al. (1993). Nucl. Phys.

Vol. A564: 217–226.
D ter Haar (1971). Elements of Hamiltonian Mechanics (Oxford).
Delgado, V. (1999). Phys. Rev. Vol. A59: 1010.
Denisov, V. Yu. & Ikezoe, H. (2005). Alpha-nucleus potential for alpha-decay and sub-barrier

fusion, Phys. Rev. Vol. C72: 064613. URL: nucl-th/0510082.
Egusquiza, I. L. & Muga, J. G. (1999). Phys. Rev. Vol. A61: 012104.
Exner, P. (1983). J. Math. Phys. Vol. 24: 1129.
Farias, A. R. H. & Recami, E. (2007). Introduction of a quantum of time (“chronon”) & its

consequences for quantum mechanics, URL: quant-ph/97060509v3.
Fermor, J. H. (1966). Quantum-mechanical tunneling, Am. Journ. Phys. Vol. Vol. 34: 1168–1170.
Feshbach, H., Porter, C. E. & Weisskopf, V. F. (1954). Phys. Rev. Vol. 96: 448.
Galitsky, V. M. & Migdal, A. B. (1958). Sov. Phys. JETP Vol. 34: 96.
Gallardo, J. A., Ka’lnay, A. J., Stec, B. A. & Toledo, B. P. (1967). Nuovo Cimento Vol. A48: 1008.
Gallardo, J. A., Ka’lnay, A. J., Stec, B. A. & Toledo, B. P. (1967). Nuovo Cimento Vol. A49: 393.
Gallardo, J. A., Ka’lnay, A. J. & Risenberg, S. H. (1967). Phys. Rev. Vol. 158: 1484.
Ghirardi, G. C. & Weber, T. (1984). Lett. N. Cim. Vol. 39: 157.
Giannitrapani, R. (1997). Int. J. Theor. Phys. Vol. 36: 1575.
Gisin, N. (1982). Physica Vol. A111: 364.
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