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1. Introduction 

Measles virus (MV) is a highly contagious respiratory pathogen that causes systemic 
disease; most individuals recover with lifelong immunity to MV. Enormous progress 
toward measles elimination has been made worldwide, in large part due to the availability 
of a safe and effective vaccine (CDC, 2000; WHO, 2005; 2009; 2010). However, measles 
infections still cause 500,000 deaths annually, mostly due to subsequent opportunistic 
infections associated with MV induced immune-suppression (Wild, 1999). Prior to the 
introduction of vaccines and a global eradication programme coordinated by the World 
Health Organisation (WHO) (Wild, 1999), global death rates were as high as 7–8 million 
children annually. The introduction of a live measles vaccine has significantly reduced the 
incidence of acute measles in industrialized countries. In developing countries however, 
measles is still an important health problem and the major viral killer of children.  

2. The disease  

General symptoms of an acute MV infection consist of a maculopapular rash, dry cough, 
coryza, fever, conjunctivitis and photophobia, usually preceded by characteristic spots on 
the mucosal surface of the mouth, called Koplik spots. Complications consist of diarrroea, 
pneumonia, laryngotracheobronchitis, otitis media and stomatitis. In developing countries, 
increased case fatality is associated with age at infection and nutritional status. Around 0.1% 
of measles cases develop acute measles encephalitis during or shortly after acute measles 
with a mortality rate of 10-30%; maybe as a consequence of MV induced autoimmune 
reaction against brain antigens (Moench et al., 1988). The most serious complications of MV 
infection occur within the central nervous system (CNS); three most common are acute 
disseminated encephalomyelitis (ADEM) (Liebert, 1997; Rima & Duprex, 2006), subacute 
sclerosing panencephalitis (SSPE) and, in immunocompromised individuals, measles 
inclusion body encephalitis (MIBE) (Chadwick et al., 1982; Moench et al., 1988).   
ADEM occurs 5–6 days after the initial rash in about 1/1000 infected children (Leake et al., 
2004; Menge et al., 2005). It is less common in vaccinees and children under 2 years of age 
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(Menge et al., 2005; Nasr et al., 2000; Rima & Duprex, 2006). Symptoms occur once the initial 
rash has disappeared and consist of a sudden recurrence of fever, decreased consciousness, 
seizures and multifocal neurological signs.  
SSPE and MIBE are rare late complications of measles (Chadwick et al., 1982; Moench et al., 
1988) and can occur months or even years after acute infection and are invariably fatal 
(Liebert, 1997; Rima & Duprex, 2006; Sips et al., 2007). These fatal diseases exhibit virological 
and immunological features quite different from those seen in acute measles or measles 
encephalitis. Both diseases have their basis in a persistent MV infection in brain cells, where 
neurons, glial cells and endothelial cells can be infected. However, giant cell formation and 
budding virus particles as typically found in measles infection are virtually absent in SSPE 
and MIBE, indicating defective MV replication in CNS tissue. This is supported by the 
observation that MV cannot be isolated by standard procedures from diseased CNS tissue, 
and only occasionally by co-cultivation methods. 

2.1 Clinical epidemiology  

Immunization has altered the epidemiology of measles by reducing the susceptible 
individuals in the population, causing an increase in the average age at infection and 
resulting in a lengthening of the inter-epidemic period (Cutts & Markowitz, 1994). Very 
young infants are protected from measles by maternal antibody. In countries with poor 
immunization, the majority of measles patients are children because the older populations 
have gained immunity by natural infection. However, in countries with high rates of 
immunization, as elevated herd immunity reduces transmission and indirectly protects 
children from infection, the average age for measles patients has increased (Black, 1982). 
Therefore, when outbreaks occur in areas of sustained high vaccine coverage, an 
increasingly large portion of the cases may be in older individuals who are susceptible 
because of primary or secondary vaccine failure. For example in 1973, persons 20 years of 
age and older accounted for only 3% of cases. In 1994, adults accounted for 24%, and in 
2001, for 48% of all reported cases.  

2.1.1 Countries with no endemic measles virus 

Measles is very rare in countries and regions of the world that are able to sustain high 
vaccination coverage. In North and South America, Finland, among others, endemic measles 
transmission has been interrupted through vaccination (see Figure 1A). In Europe, 
Australia, Mongolia, New Zealand, Philippines, the Pacific Island Nations and the Arab 
Gulf States, measles transmission has been interrupted or is at very low levels (WHO, 1995). 
The importance of maintaining high vaccine coverage even after eradication has been 
achieved, is exemplified by the United States (USA) experience. During the 1980s, measles 
was very rare in USA, but from 1989 through 1991 a dramatic increase in cases occurred. A 
total of 27,786 cases were reported in 1990, of whom 64 died, the largest annual number of 
deaths from measles since 1971. The most important cause of the measles resurgence of 
1989–1991 was low vaccine coverage (Lee et al., 2004). After intensive efforts to vaccinate 
preschool-aged children, reported cases of measles declined rapidly. Since 1993, fewer than 
500 cases have been reported annually, falling to <200 cases per year since 1997 (Papania et 
al., 2004). A record low annual total of 37 cases were reported in 2004. There are still 
sporadic cases of measles in USA due to importation by visitors from other countries or US 
citizens travelling abroad becoming infected during travel and spreading the infection to 
unvaccinated or unprotected individuals (CDC, 2005).  
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2.1.2 Countries with endemic transmission of measles virus 

Despite significant progress in Africa and Asia in reduction of measles-related mortality, 
countries like the Democratic Republic of Congo, Ethiopia, Niger, Nigeria (CDC, 2009), 
India and Pakistan (CDC, 2007) continue to sustain large numbers of measles-related deaths. 
In 2003 India reported more than 47,000 measles cases; the reported 115 measles-related 
deaths are likely to be an underestimate (Singh et al., 1994; Sivasankaran et al., 2006; WHO, 
2008) (see Figure 1A). Reported vaccine coverage has been consistently high (>80%), but the 
estimated coverage is much lower (40–70%), and varies between states (WHO, 2008). 
Similarly Niger still reports large outbreaks (CDC, 2009); from November 2003 to June 2004, 

 

 

 

Fig. 1. Incidence of measles virus infection in the world and in China. 
A. Regional map of the world, colour coded to show the incidence of measles per 100,000 
population in any one year. Guide to the various colours used is shown on the left. 
B. Average incidence of measles infection in China (2004-2007) Map of China showing various 
states, with colour coding to highlight areas of high (>100 cases per 100,000 population), mid 
(20-100) and low (<20) incidence. Guide to the colours used is shown on the left 

www.intechopen.com



 
Immunosuppression – Role in Health and Diseases 

 

228 

11,073 cases were reported with 75% of cases and 86% of deaths being in children under 
five (WHO, 2008). Unacceptably high mortality related to measles epidemics in Niger, 
Nigeria, and Chad were reported during 2003-2005, with the overall case fatality ratios 
(CFRs) of 3.9%, 7.0% and 2.8%, respectively; CFR among under-fives were 4.6%, 10.8% 
and 4.0% (Grais et al., 2007). The continuing high burden of preventable measles mortality 
during these epidemics results from poor access to appropriate treatment and the 
incomplete implementation of the WHO/UNICEF measles mortality–reduction strategy 
(Grais et al., 2007). 

3. Global vaccine initiative 

In 2001, WHO and United Nations Children’s Fund (UNICEF) developed a 5-year strategic 

plan to reduce global measles mortality by 50% in the year 2005, compared to 1999 levels 

(WHO/UNICEF, 2001). In regions with established measles elimination goals, the objective 

was to achieve and maintain interruption of indigenous measles transmission. 

WHO estimates that measles is responsible for 4% of the 6 million annual deaths in children 

<5 years of age. Ninety-eight percent of these deaths occur in developing countries 

(Organization, 2005). In 2004, WHO reported an estimated 76% coverage of measles 

containing vaccines (MCV) world-wide (WHO, 2006). With 30 million estimated annual 

cases (WHO-UNICEF, 2001), most of them in unvaccinated individuals, MCV is still under-

utilized. Of 23.3 million infants in 2007 who missed receiving their first dose of measles 

vaccine by the age of 12 months, 15.3 million (65%) reside in 8 highly populated countries 

(WHO, 2008). 

3.1 Current status of measles eradication in the WHO Western Pacific region 

In the WHO Western Pacific region (excluding China), reported confirmed measles cases 

decreased by 86% between 2000 and 2008 and measles mortality dropped by 92% 

(WHO/UNICEF, 2009). Progress has been made, and 24 of the 37 countries in this region 

have either achieved or nearly achieved elimination (WHO/UNICEF, 2009). However, 

China reported 109,023 measles cases in 2007 and 131,441 cases in 2008. A large measles 

outbreak in Japan resulted in >18,000 reported cases in 2007 and 11,015 cases in 2008. 

Intensified efforts to eliminate measles by Member States, particularly in China and Japan, 

are needed to achieve the WHO goal of measles elimination in the Western Pacific by 2012. 

China and Japan account for 82% of the region’s population and >97% of its confirmed 

measles cases (WHO, 2009). 

3.1.1 Current challenges in China 

Prior to widespread use of measles vaccine,  2000 to 15000 cases per million population were 

reported each year in China (Wu, 2000). Monovalent measles vaccine was first used in China 

in 1965 and came into widespread use in 1978 when the China Expanded Program on 

Immunization (EPI) was established, covering all provinces in 1983 (Wang et al., 2003; Ze, 

2002). In 1986, the national 2-dose regimen was implemented (Wang et al., 2003). To 

support continued progress in measles control, the Ministry of Health issued the Plan for 

Acceleration of Measles Control in China (CMOH, 1997b) and National Strategic Plan for 

Measles Surveillance in 1997 (CMOH, 1997a). These efforts enabled significant progress in 

measles control. 
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Measles prevalence varies significantly across the 31 provinces of China. The developed 
provinces of Eastern China have lower disease incidence with higher number of adult 
patients and more cases who have a history of immunisation but are susceptible because of 
primary or secondary vaccine failure. The resource-limited provinces located in Western 
China have a high measles prevalence with majority of patients being under 14 years of age 
with no measles vaccination history (CMOH, 1997a) (Figure 1B).  
Although the developed Eastern provinces have moved ved from outbreak prevention to 

measles elimination, measles outbreaks still occur. A dramatic increase in measles cases in 

Zhejiang (see Figure 1B) was observed in 2005, with an incidence rate higher than 350 per 

million population (Zuo et al., 2006). 51.4% of the total reported patients were migrant 

workers from other regions of China, of whom only 21.4% reported a vaccination history, in 

contrast to 33.5% of all patients who were permanent residents (Zuo et al., 2006). In 

Shanghai, 2,838 measles cases were reported in 2005 (He et al., 2006) compared with 415 in 

the previous year (Hu et al., 2005). Migrant workers accounted for 68.1% of the total 

reported measles cases from 2000 to 2004 of whom, only 6.5% had a vaccination history (He 

et al., 2006). Additional to the high measles incidence among hard to reach migrant workers, 

the Eastern provinces also face increased adult measles incidence. About 53.3% of measles 

patients were older than 20 years of age in Shanghai from 2000 to 2004 (He et al., 2006), 

while 49.1% of the reported patients were older than 15 years in Zhejiang (Zuo et al., 2006).  

Different disease patterns were found in the less developed Western provinces including 

Qinghai, Tibet, Guizhou, and Xinjiang (Figure 1B). Measles epidemics occur every 3-4 years 

in these provinces. A dramatic increase in measles incidence was reported in 2004 in 

Xinjiang (301 cases per million population); 85% cases were younger than 14 years, and 32% 

of the patients had a vaccination history (Yu et al., 2007b). Later in the same year, an 

effective measles mass vaccination campaign was implemented covering all children 

between 8 months and 14 years of age; only 259 measles cases (0.14 cases per million 

population) were reported in 2005 (Yu et al., 2006). Similarly, in Guizhou, the measles 

incidence was 500 cases per million population in 2004; following a mass vaccination 

campaign, it decreased to 14.3 and 20.6 per million population respectively in 2005 and 2006 

(Zhu et al., 2008). In contrast to the Eastern provinces, the majority of the cases were children 

(Du et al., 2010). Furthermore, in contrast to the developed provinces, fewer measles cases 

reported a vaccination history, e.g., only 18.1% and 32% of measles cases had measles 

vaccination history in Guizhou in 2008 (Du et al., 2010) and in Xinjiang in 2004 (Yu et al., 

2007b), respectively. Clearly, region specific strategies are needed for control of measles in 

China.  

In recent years, the percentage of pre-vaccination infants with measles has increased in all 

provinces (Zuo et al., 2006). Multiple studies addressing this issue (Li, 2001; Lu et al., 2008; 

Zhou et al., 2003) suggest that the low antibody levels in child-bearing-women are 

insufficient to protect their babies from measles infection. Therefore, child-bearing-

women should be included in the target population during measles mass vaccination 

campaigns.  

Recent studies have found that liver dysfunction and pneumonia are very common in 

hospitalized adult measles patients as seen in outbreaks in Zhejiang and Shanghai (Jiang et 

al., 2007; Kong & Zhang, 2009; Liang et al., 2005; Ma & Song, 2009; Yu et al., 2007a). 

Interestingly, the clinical manifestation of measles infection in hospitalized children is quite 

different, with almost no liver dysfunction being reported, while pneumonia is the most 
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common complication (Kong & Zhang, 2009; Wang et al., 2010; Yu et al., 2009). The 

difference in the disease symptoms is not due to differing vaccination histories; most adult 

patients did not know their vaccination history (Liang et al., 2005; Yu et al., 2007a) and the 

majority of hospitalized children were infants <2 years of age without previous measles 

vaccination (Wang et al., 2010; Yu et al., 2009).  

4. Infectious cycle of MV and clinical progression 

MV has an incubation period of around 14 days and the infected person is contagious for 

around 2 to 4 days before the rash appears and then 2 to 5 days after the rash appears. So, in 

total the infected person can spread the disease to others for 4 to 9 days. 

Initial infection is established in the respiratory tract with virus replication in tracheal and 

bronchial epithelial cells and pulmonary macrophages (Sakaguchi et al., 1986). From the 

respiratory tract, spread extends to local lymphatic tissues. The MV infection runs its course 

for around 2 weeks usually without causing any complications (Griffin, 2006). Amplification 

of virus in regional lymph nodes results in viremia and spread of virus through the blood to 

infect a variety of organs including the skin, conjunctivae, kidney, lung, gastrointestinal 

tract, respiratory mucosa, genital mucosa, and liver (Esolen et al., 1995; Esolen et al., 1993; 

Forthal et al., 1992; Peebles, 1967; Takahashi et al., 1996). Viremia and systemic infection 

inevitably occur before host defence mechanisms control viral replication and clear infected 

cells (McChesney et al., 1997). Lymphoid organs and tissues (e.g., thymus, spleen, lymph 

nodes, appendix, and tonsils) are prominent sites of virus replication (Sakaguchi et al., 1986). 

4.1 Clinical symptoms of measles 

After an incubation period of 8–12 days, measles begins with increasing fever (to 39–40.5 °C) 

cough, coryza, and conjunctivitis (Robbins, 1962). Symptoms intensify over the next 2–4 

days before the onset of rash and peak on the first day of rash. The rash is usually first noted 

on the face and neck, appearing as discrete erythematous lesions. The lesions increase in 

number for 2 or 3 days, especially on the trunk and the face, where they frequently become 

confluent. Discrete lesions are usually seen on the distal extremities, and with careful 

observation, small numbers of lesions can be found on the palms of 25%–50% of those 

infected (Robbins, 1962). The rash lasts for 3–7 days and then fades in the same manner as it 

appeared. An exaggerated desquamation is commonly seen in malnourished children 

(Morley, 1974; Robbins, 1962; Scheifele & Forbes, 1972). Fever usually persists for 2 or 3 days 

after the onset of the rash, and the cough may persist for as many as 10 days (Robbins, 1962). 

Koplik’s spots appearing as discrete, tiny, gray-white papules on a dull-red base on the 

buccal mucosa, usually appear 1 day before the onset of rash and persist for 2 or 3 days 

(Suringa et al., 1970). Koplik’s spots have been reported in 60%–70% of patients with measles 

but are probably present in most persons who develop measles (Babbott & Gordon, 1954). 

Photophobia from iridocyclitis, sore throat, headache, abdominal pain, and generalized mild 

lymphadenopathy are also common.  

Milder forms of measles occur in children and adults with pre-existing partial immunity. 

Infants who have low levels of passively acquired maternal antibody and persons who 

receive blood products that contain antibody often have subclinical infections or minimal 

symptoms that may not be diagnosed as measles (Cherry et al., 1972; Edmonson et al., 1990). 

Vaccination protects 90% of recipients against disease, but after exposure to natural 
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measles, some vaccinees develop enhanced antibody response associated with mild 

symptoms and may have rash with little or no fever (Chen et al., 1990; Smith et al., 1982; 

Whittle et al., 1999).  

Atypical measles has been reported in children who received formalin inactivated (killed) 

measles vaccine that was in use in the USA from 1963 to 1968 (Fulginiti et al., 1967). These 

children developed high fever, a rash that was most prominent on the extremities, often 

included petechiae and a high rate of pneumonitis (Fulginiti et al., 1967; Rauh & Schmidt, 

1965). Recent studies in monkeys indicate that this illness was caused by antigen-antibody 

immune complexes resulting from incomplete maturation of the antibody response to the 

vaccine (Polack et al., 1999). 

4.2 Disease progression 

MV initially infects epithelial cells of the respiratory tract as well as pulmonary 

macrophages. MV subsequently infects regional lymph nodes, maybe disseminated via 

infected macrophages, and eventually establishes a systemic infection. The primary immune 

cell infected in blood is the monocyte, but T cells and B cells can be infected in vitro and 

probably in vivo as well (Grivel et al., 2005; McChesney et al., 1989). As MV infects immune 

cells, host innate immune response is inevitably activated to control viral replication and 

clear infected cells evidenced by up-regulated proinflammatory cytokines such as Interferon 

(IFN)-γ, Interleukin (IL)-2, etc.  MV then spreads to the skin and conjunctivae leading to 

inflammation of the upper respiratory tract and conjunctivitis.  

The lower respiratory tract and lungs are infected when MV spreads to lungs and leads to 

pneumonia. The infection of dermal endothelial cells can be accompanied by vascular 

dilatation, increased vascular permeability, mononuclear cell infiltration, and infection of 

surrounding tissue (Kimura et al., 1975); infection of keratinocytes in the stratum 

granulosum of the overlying epidermis leads to focal keratosis and edema (Takahashi et al., 

1996) which displays as skin rash. Koplik's spots found on the oral mucosa are 

pathologically similar and involve the submucous glands. The rash and Koplik's spots occur 

about 2 weeks after infection marking the onset of a strong immune response which is 

effective in clearing virus and establishing long-term immunity (Roscic-Mrkic et al., 2001). 

However, at this time numerous  abnormalities of immune responses, such as MV-induced 

suppression of the immune system are also detected, which result in a greatly increased 

susceptibility to opportunistic bacterial infections that are largely responsible for the 

morbidity and mortality associated with measles (Borrow & Oldstone, 1995).  

4.2.1 MV infection of CNS 

Around 0.1% of measles cases develop acute measles encephalitis during or shortly after 

acute measles, with a mortality rate of 10-30%, maybe as a consequence of MV induced 

autoimmune reaction against brain antigens (Moench et al., 1988).  

4.2.1.1 Acute disseminated encephalomyelitis 

ADEM occurs about 5–6 days after the initial rash in about 1/1000 infected children (Menge, 

et al., 2005; Leake et al., 2004; Nasr et al., 2000; Sips et al., 2007). Symptoms occur once the 

initial rash has disappeared and consist of a sudden recurrence of fever, decreased 

consciousness, seizures and multifocal neurological signs. The disease has an abrupt onset, 

often reaching its peak within the first 24 h with 20% mortality (Johnson, 1994). The 
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cerebrospinal fluid usually shows a mild elevation of protein and mononuclear cells, but is 

normal in about one-third of patients (Menge, et al., 2005; Leake et al., 2004). The pathology 

of ADEM consists of a pattern of widespread perivascular demyelination and infiltration of 

mononuclear cells. Histologically, the pattern of demyelination resembles that observed in 

experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis 

(Wegner, 2005). The exact pathological mechanism of this demyelination remains unclear. 

An autoimmune reaction has been suggested, but at present there is no consensus about the 

exact aetio-pathology of ADEM. 

4.2.1.2 Measles inclusion body encephalitis 

MIBE usually occurs between 2 and 6 months after MV infection in immunocompromised 

patients (Menge et al., 2005; Nasr et al., 2000; Rima & Duprex, 2006) and can follow both 

wild-type virus infection and vaccination (Aicardi et al., 1977; Bitnun et al., 1999; Mustafa et 

al., 1993; Rima & Duprex, 2006; Valmari et al., 1987). Prognosis is poor with a 76% mortality 

rate and all survivors retain a persistent neurological disorder (Mustafa et al., 1993). 

Characteristic neuropathologic changes are glial cell proliferation and focal necrosis, with 

varying degrees of perivascular inflammation. Intranuclear and/or intracytoplasmic 

inclusion bodies are often present (Mustafa et al., 1993). The diagnosis of MIBE can only be 

confirmed post mortem, by RT-PCR for MV RNA or by immunohistochemistry. A few cases 

have been described in which MIBE followed vaccination and here 

dysgammaglobulinaemia or a pre-existing undiagnosed immune abnormality was 

suggested to be a predisposing factor (Bitnun et al., 1999; Valmari et al., 1987). The 

mechanism of viral spread and persistence in the brain in MIBE patients is not well 

understood. 

4.2.1.3 Subacute sclerosing panencephalitis 

SSPE is thought to complicate about 1/1,000,000 cases of MV infection (Johnson, 1994; Rima 

& Duprex, 2006). SSPE occurs approximately 5 - 10 years after initial MV infection, with 

infection under the age of 2 being a risk factor (Jabbour et al., 1972; Modlin et al., 1979). In the 

early stage, children present with loss of attention span and neurological symptoms, 

typically stereotyped myoclonic jerks. As the disease progresses, they gradually slide into a 

vegetative state and eventually die from the infection (Ishikawa et al., 1981). SSPE is an 

example of a chronic defective CNS infection (Connolly et al., 1967). The factors that turn an 

acute MV infection into a chronic one are as yet unknown, although various mechanisms 

have been postulated over the years. Geographic clustering of SSPE occurs in several 

countries, and there is an increased incidence in children residing in rural areas (Halsey et 

al., 1980). These data suggest that as-yet-undefined environmental factors, most likely 

another infectious agent, contribute to this disease.  

4.2.2 Molecular basis of CNS disease 

MV is an enveloped virus with a negative sense, single stranded RNA genome and belongs 

to the genus Paramyxovirus, within the Paramyxoviridae family, order Mononegavirales. Its 

genome is composed of six genes encoding the structural proteins, three of which form the 

viral envelope and three the ribonucleoprotein core (Figure 2A). The nucleoprotein (N) is 

the major component of the ribonucleoprotein core, the other two being the large (L) 

polymerase and the polymerase cofactor, phosphoprotein (P). The L polymerase catalyses  
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the transcription and replication of the viral genome. The envelope is made up of the matrix 
protein (M), haemagglutinin protein (H), and fusion protein (F) (Griffin, 2006) (Figure 2A). 
The P gene also codes for two non-structural proteins, the C protein via an internal initiation 
site for translation and V via the insertion of a non-templated G nucleotide during 
transcription that results in a frameshift (see Figure 2B); C and V are implicated in inhibition 
of the host response. 
 

 

Fig. 2. Schematic diagram of the genome organisation of measles virus. 
A. Schematic diagram showing the various genes. Gradient of transcription is indicated 
below the diagram. Conserved sequence within N gene that is used for molecular 
epidemiological studies to identify measles virus infection is shown. 
B. The three gene products encoded by the P gene and the mechanism used to derive them. 
P protein is the full length gene product; C protein is translated from an internal open 
reading frame; V protein arises by the insertion of a non-templated G at position 751, 
resulting in a frameshift and a protein with a C-terminal high in cysteines 

Early on it was recognised that the hyperimmune response in SSPE to MV antigens was 

directed against all MV proteins except the matrix (M) protein. The M gene of SSPE strains 

seems particularly vulnerable to mutations, affecting transcription, translation, stability, 

antigenicity, or function of M protein (Ayata et al., 1989; Cattaneo et al., 1988; Cattaneo et al., 

1986). cDNA cloning and sequencing of the entire M coding region established that one of 

the point mutations leads to a stop codon at triplet 12 of the M reading frame. It is unknown 

whether this defect, explaining by itself the lack of M protein, is related also to the block of 

M mRNA formation (Cattaneo et al., 1986). Moreover, in a case of MIBE, 80% of the 

mutations affecting the viral M gene turned out to be uridine (U) to cytidine (C) transitions 

(Cattaneo et al., 1988). The biased hypermutation is responsible for all but one of the 

missense mutations affecting the Biken M protein (a defective virus isolated from a patient 

with SSPE), which has a much shorter half-life in vivo than the M protein of the vaccine 

Edmonston strain. An extrinsic RNA mutational activity might alter MV RNA and gene 
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expression in CNS infections (Wong et al., 1989). The structural alterations and instability of 

the protein were attributed to multiple mutations in the amino and carboxyl regions. In 

primary neuron cultures, the mutated M protein prevents colocalization of the viral N with 

membrane glycoproteins, and is associated with accumulation of nucleocapsids in cell 

cytoplasm and nucleus. Defects in the levels of M protein are mediated by a number of 

mechanisms and mutations which affect the start codon making the protein unstable, 

enhance proteolytic degradation or lead to the generation of nonsense mutations (Cattaneo 

et al., 1989; Hirano et al., 1993). In some cases, translation of the M protein is complicated by 

a transcriptional defect that leads to an almost exclusive synthesis of dicistronic P-M mRNA 

(Ayata et al., 1998; Cattaneo et al., 1987; Cattaneo et al., 1986; Seto et al., 1999), due to a single 

mutation at the P gene end (Ayata et al., 2002). Some SSPE strains have mutations in the F 

gene that variously result in an elongated or a shortened cytoplasmic domain (Billeter et al., 

1994; Ning et al., 2002). A single amino acid substitution in the F protein transformed the 

non neuropathogenic wild-type MV IC323 strain into a lethal virus similar to the SSPE 

Osaka-2 strain in hamsters (Ayata et al., 2010). 

The demyelination observed in SSPE could be the result of several mechanisms. One 

possible mechanism involves CSF antibodies, which are produced in an unusually high 

level in SSPE and have been shown to be capable of lysing brain cells cultured from SSPE 

patients in vitro (Fujinami & Oldstone, 1980; Oldstone et al., 1975). In addition, in vivo 

studies in rat models demonstrate that anti-measles antibodies not only promote viral 

persistence (Rammohan et al., 1981) but possibly even decrease viral replication at the 

transcriptional level (Liebert et al., 1990). Other theories propose that during latency, viral 

products accumulate in neurons and oligodendroglia and eventually lead to cell death and 

demyelination (Ikeda et al., 1995). Furthermore, infiltration by CD4+ and CD8+ T cells and 

the release of inflammatory cytokines such as IFN-γ and TNF-α has been demonstrated, 

suggesting that cell-mediated damage to infected cells may also play a role (Hofman et al., 

1991). 

5. Opportunistic infections  

One major side-effect of MV induced immune-suppression (discussed below) is the plethora 

of opportunistic infections that follow. Multiple complications occur, such as diarrroea, 

pneumonia, laryngotracheobronchitis, otitis media, stomatitis and even encephalitis when 

measles virus spreads to the corresponding organ. More than half of measles cases in 

children aged under 5 years experienced acute respiratory infection and/or diarrhoea in the 

30 days following rash onset in sub-Saharan Africa (Grais et al., 2007). Measles related 

blindness is of multifactorial aetiology. While acute measles triggers corneal ulceration 

through viral proliferation in the cornea, nutritional keratomalacia is often the cause of 

blindness in the post-measles period. Although timely use of local antibiotic therapy to 

the eyes and administration of vitamin A supplements offer protection to the child who 

already has measles, vaccination is the best way to reduce the incidence of MV related eye 

disease. Live attenuated measles vaccine has been found to be safe and effective in 

malnourished children (Bhaskaram, 1995). The most common secondary infections 

following measles are caused by Klebsiella pneumoniae, Streptococcus pneumoniae, Candida 

albicans, Haemophilus influenzae, Escherichia coli, Enterobacter cloacae, and Acinetobacter 

baumannii (Yu et al., 2009).  

www.intechopen.com



 
Measles Virus Infection: Mechanisms of Immune Suppression 

 

235 

6. MV induced immune suppression 

Measles is a major cause of childhood mortality in developing countries which is mainly 

attributed to the ability of MV to suppress general immune responses (Moss et al., 2004). In 

most individuals, virus-specific immunity is efficiently induced and the immune response is 

successful, which eventually leads to clearance of MV from the host and confers long-lasting 

protection against re-infection. However, infection is also associated with persistence of viral 

RNA and development of immune-suppression, which can last up to 6 months after an 

acute infection (Kerdiles et al., 2006b). Paradoxically, the induction of intense immune 

response in measles does occurs simultaneously with clinically relevant immune-

suppression, a phenomenon that is not yet clearly understood. MV related immune-

suppression includes loss of of delayed type hypersensitivity (DTH) responses (Garenne & 

Aaby, 1990; Katz, 1995) in immune individuals for several weeks following the rash, 

impaired proliferation of peripheral blood lymphocytes (Hirsch et al., 1984) and allospecific 

cytotoxicity, which increases susceptibility to secondary infections while immune responses 

towards other pathogens are strongly impaired. This transient MV-induced immune-

suppression is of important clinical significance, as it permits opportunistic infections to 

develop in infected children, leading to high infant morbidity and mortality (Kerdiles et al., 

2006b). The molecular basis for MV-induced immune-suppression is not completely 

understood. MV related severe immune-suppression includes both innate and adaptive 

immune responses and is probably caused via multiple mechanisms (Karp, 1999; 

Schneider-Schaulies et al., 1995; Schneider-Schaulies & ter Meulen, 2002). Suppression of 

mitogen-induced lymphocyte proliferation can be induced by MV infection of 

lymphocytes or by lymphocyte exposure to a complex of the H and F surface 

glycoproteins without infection. Dendritic cells (DCs) are susceptible to MV infection and 

can transmit infection to lymphocytes. Apart from its direct effects on the immune system, 

MV also has indirect, longer-lasting effects on the immune system, in which the 

interaction between several viral proteins and the human host seems to play a role 

(Kerdiles et al., 2006a; Kerdiles et al., 2006b). MV-infected DCs are unable to stimulate a 

mixed lymphocyte reaction and can induce lymphocyte non-responsiveness through 

expression of MV glycoproteins. 

Evidence of a role for many of these mechanisms was obtained in vitro, however, much has 

still to be learned about MV tissue tropism and its interactions with particular host cells 

such as DCs in vivo (Schneider-Schaulies et al., 2001). Thus, multiple factors may contribute 

both to measles-induced immune-suppression and to the establishment of durable 

protective immunity. The mechanisms which contribute to the loss of the allostimulatory 

function of DCs include both virus release and active suppression mediated by MV-infected 

DCs, independent of virus production. Data from several studies suggest that carriage of 

MV by DCs may facilitate virus spreading to secondary lymphoid organs and that MV 

replication in DCs may play a central role in the general immune-suppression observed 

during measles. Therefore, contributions of measles virus to immune-suppression are likely 

multifactorial and include reduced DTH responses, T lymphocyte functional deficits, altered 

cytokine levels, inhibition of DC function, reduced immunoglobulin production, and 

inhibition of IFN-γ up-regulation of MHC-II molecules (Kerdiles et al., 2006a). 

Leopardi et al (Leopardi et al., 1993) showed that in measles-infected monocytes, there 

was a 10-fold increase in the expression of MHC class II molecules. However, they 
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showed that MV inhibited the IFN-γ-induced effect on HLA-DR expression in a human 

monocytic cell line. They also showed that MV affects presentation of exogenous antigen. 

Thus like HIV and influenza virus, MV interferes with class II processing by suppressing 

the production of class II molecules or impeding antigen trafficking (Peters & Sperber, 

1999). 

6.1 Lymphopenia 

MV immune-suppression is associated with a pronounced lymphopenia as well as decreases 

in neutrophils and monocytes (Okada et al., 2000). Measles is associated with suppression of 

mitogen-induced proliferative responses and lymphocyte response to monocyte signals is 

suboptimal (Griffin et al., 1987) in measles infection in children (Esolen et al., 1993; Griffin et 

al., 1986), and in animal models (Hahm et al., 2003; Niewiesk et al., 2000). Monocytes 

persistently infected with MV exhibit suppression of NFκB activation, which represents a 

potential strategy of escape from the host immune system by MV via induced 

immunological silencing (Indoh et al., 2007).  

6.1.1 T lymphocytes 

It is reported that MV infection results in remarkable lymphopenia in all measles cases with 

reduction in cell numbers of CD4+ T cells, CD8+ T cells, B cells, neutrophils, and monocytes 

in circulation, increased lymphocyte activation, and increased susceptibility to cell death of 

lymphocytes in children (Ryon et al., 2002), in young adults (Okada et al., 2000; Vinante et al., 

1999), in cultured peripheral blood mononuclear cells (PBMC) (Salonen et al., 1989), and in 

animal models (Hahm et al., 2003). Interestingly, in Chinese adult measles patients with no 

vaccination history, a general decrease in CD4+ and CD8+ T cells was not observed, 

although there was a trend toward lower levels compared with healthy donors (Yu et al., 

2008). An increase in the total CD3+T cells in PBMCs of Chinese adult measles patients was 

reported, possibly due to expansion of a CD3+CD4-CD8- T cell subset that defines a double 

negative Treg phenotype (Chen et al., 2004), and can inhibit immune responses by directly 

killing effector T cells in an Ag-specific fashion, and produce IFN-γ and TNF-α in addition to 

other cytokines. The lymphopenia results primarily from depletion of infected and 

noninfected B and T lymphocytes. Profound lymphoid depletion may also occur in the 

thymus, lymph nodes, and spleen. With CD4+ T cell counts dropping, host defences may be 

bolstered by a compensatory increase in natural killer (NK) cell activity (Okada et al., 2000). 

Similar to other immunosuppressive viruses, MV is lymphotropic and viral nucleic acid and 

proteins are detectable in PBMCs. It is considered central to MV-induced immune-

suppression that PBMC isolated from patients largely fail to proliferate in response to 

antigen specific and polyclonal stimulation. The low abundance of MV-infected PBMC 

suggests that MV-induced immune-suppression is not directly caused by infection-mediated 

cell loss or fusion, but rather by indirect mechanisms such as deregulation of cytokines or 

surface contact-mediated signalling which may lead to apoptosis or impair the proliferative 

response of uninfected PBMC. In classical measles cases, infected lymphocytes detected as a 

minor population during the incubation period disappeared soon after onset of rash, 

whereas in the cases of serious illness, the infected cells persisted longer after the rash, 

correlating with reduction in cell numbers of CD4+ T cells, CD8+ T cells, B cells, 

neutrophils, and monocytes.  
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6.1.2 B lymphocytes 

Mc-Chesney et al. found that MV infection of B cells leads to decreased antibody production 

when B cells are stimulated by mitogen (Casali et al., 1984; McChesney et al., 1986). More 

recently, Ravanel et al. have shown that the N protein of MV can bind to B cells through the 

Fcγ receptor and inhibit immunoglobulin (Ig) synthesis (Ravanel et al., 1997). In contrast, 

MV-infected T cells still have the ability to produce cytokines required to help uninfected B 

cells differentiate into plasma cells and secrete Ig (McChesney et al., 1987). Lack of HLA 

diversity may limit the range of peptides that can be presented to T helper or T cytotoxic 

lymphocytes, resulting in a decreased immune response to viral infections, as in children 

with a cumulative effect of increasing HLA homozygosity, in which homozygosity at 

increasing numbers of loci results in progressively lower measles-specific antibody levels 

(Jacobson et al., 2003).  

Significant lymphopenia due to apoptosis of uninfected cells is one of the principal causes 

for immune-suppression induced by MV infection, and is correlated with age-dependent 

severity of the disease (Okada et al., 2000). 

6.2 Modulation of T cell response 

The initial T-cell response includes CD8+ and Th1 CD4+ T cells important for control of 
infectious virus. As viral RNA persists, there is a shift to a Th2 CD4+ T-cell response that 
likely promotes B-cell maturation and durable antibody responses but may suppress 
macrophage activation and Th1 responses to new infections. Type 2 polarisation of cytokine 
responses with an increase in the production of interleukin 4 (IL-4) and decrease in IL-2 and 

IFN-γ occurs during late stages of measles (Griffin & Ward, 1993). Production of the pro-
inflammatory cytokine IL-12 is markedly suppressed in measles, providing a unifying 
mechanism for many of the immunological abnormalities associated with measles infection 
(Atabani et al., 2001). 

The principal players in the early nonspecific immune response are interferon α/β (IFN-α/β) 
induction, complement activation, natural killer cell (NK) and macrophage activation, and 

IFN-γ and interleukin-12 (IL-12) production. Although MV infection of cell lines in vitro has 
been shown to induce IFN (Volckaert-Vervliet & Billiau, 1977), the results with wild-type 

MV infection in vivo are conflicting and inconclusive. Active IFN-α/β has been documented 
in vivo after natural infection by MV in one study and shown to be absent in another (Crespi 
et al., 1988; Shiozawa et al., 1988; Tilles et al., 1987). Levels of serum IFN and of the IFN-
inducible oligoadenylate-synthetase (2-5OAS) gene transcript have been shown to rise after 
MV immunization with the live attenuated vaccine (Tilles et al., 1987). With regard to other 
innate defence mechanisms, MV does not appear to hamper either complement activation in 

vitro or IFN-γ production in vivo (Patrick Sissons et al., 1979). However, MV has been shown 
to depress IL-12 synthesis in vitro and to dampen NK cell activity in vivo (Griffin et al., 1990b; 

Karp et al., 1996). In addition to their antiviral function, IFN-α/β have potent effects in 
regulating specific immune response. They are thought to enhance differentiation of 
dendritic antigen-presenting cells and to contribute to prolonging T-lymphocyte lifespan 
(Luft et al., 1998; Marrack et al., 1999).  
Viruses have evolved mechanisms to counter the antiviral effects of IFN or, in some cases, to 
suppress its production. Resistance to the antiviral effects of IFN is mediated by active 
inhibition of IFN-inducible gene function. IFN-resistant and -sensitive strains of MV can be 
isolated by cell culture, and it has been suggested that IFN-resistant strains of MV can 
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contribute to the establishment of persistent infection of the CNS (Carrigan & Knox, 1990). 
This is relevant to the rare cases of persistent MV infection of the CNS giving rise to SSPE. It 
is not known which MV products contribute to IFN resistance, but studies in the closely 
related Sendai virus have shown that the nonstructural C protein counteracts the IFN-
mediated antiviral state (Garcin et al., 1999). MV infection in vitro has been shown to depress 
IL-12 production in both macrophages and DCs (Fugier-Vivier et al., 1997). Macrophages, 

DCs, epithelial cells, and NK cells provide the initial sources of IFN-α/β, IL-12, and IFN-γ. 
MV may have established a redundancy of mechanisms to slow the innate immune response 
to allow early dissemination. 

6.3 Cytokines in measles 

Despite chemokines directing the migration of T cells to infected neurons, chemokine 
neutralization revealed that migration is not required for viral clearance, suggesting a 

cytokine-mediated antiviral mechanism. An increase in IFN-γ in MV-infected children 
compared with healthy controls has been observed in other studies and it may serve to 
inhibit viral growth and limit the spread of infection (Griffin et al., 1990a). Children with 

measles display a transient increase in both IL-2 and IFN-γ, lasting for a few days following 
rash (Griffin & Ward, 1993; Ryon et al., 2002), followed by sustained IL-4 production (Ryon 
et al., 2002). A similar response was observed when a clinical isolate of MV was used to 
infect PBMCs (Dhiman et al., 2005b). In contrast, adult patients demonstrate a sustained 

increase of IFN-γ and poor IL-4 secretion; an early IL-4 gene induction that was not reflected 
in protein secretion may be due to uptake of secreted IL-4 by cells, and does not necessarily 
reflect lack of protein production. Similar findings have been reported in a study where 
PBMCs from previously immunized adults were infected with MV. All subjects produced 

IFN-γ, and in subjects who produced both IFN-γ and IL-4, maximal IFN-γ production in vitro 
always greatly exceeded that of IL-4 (Dhiman et al., 2005b). In Zambian children plasma IL-5 
levels were lower in patients compared with controls (Ryon et al., 2002). In contrast, a 
significant upregulation of IL-5 mRNA has been reported among seropositive adult donors 
after vaccination (Li et al., 2001). The role of IL-5 in MV infection is not clear and data may 
be complicated by the underlying allergic status of the subjects.  
Sustained high levels of IL-10 during convalescence suggest a role for this 
immunoregulatory cytokine in MV-induced immune-suppression. Plasma levels of IL-10 
remain elevated for weeks in children with MV infection (Ryon et al., 2002). The increased 
IL-10 levels may also be implicated in the decrease in IL-5 expression, because IL-10 is 
known to inhibit IL-5 production by T cells and in mouse models of allergic disease (Staples 
et al., 2000). IL-10 has been shown to display a range of immune suppressive effects, 
including inhibition of APC function, induction of anergy, differentiation of Treg, and 
control of the expansion of other T cell populations (Kingsley et al., 2002), and may be key to 
the observed decrease in monocyte/macrophages and innate immune responses observed 
in MV infection. 

In brain tissue, IFN-γ is both necessary and sufficient to clear MV. Secretion of IFN-γ is 
stimulated by IL-12 in the brain, as neutralization of IL-12 results in loss of antiviral activity 
and stimulation of leukocytes with IL-12/IL-18 enhances their immune effector function of 

viral clearance. The IFN-γ signal is transduced within brain explants tissue by the Jak/STAT 
signalling pathway, as inhibition of Jak kinases results in a loss of antiviral activity driven 

by either brain-derived leukocytes or recombinant IFN-γ. These results reveal that primed T 
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cells directly act to clear MV infection of the brain by using a noncytolytic IL-12- and IFN-γ-
dependent mechanism in the CNS and that this mechanism relies upon Jak/STAT 
signalling. 

6.4 Effects on DC function 

As sensitisers of pathogen encounter and instructors of the adaptive immune response, DCs 

may play a decisive role in the induction and quality of the MV-specific immune activation. 

The ability of MV wild-type strains in particular, to infect DCs in vitro via the receptor 

binding H protein is clearly established. DC maturation is induced early after MV infection 

and is likely to be of crucial importance for the induction of MV-specific immunity. Several 

in vitro studies have demonstrated that MV infection of human DCs affects their phenotype 

and functions. Different types of DCs including Langerhans cells (Grosjean et al., 1997), 

peripheral blood DCs (Schnorr et al., 1997), CD34+-derived DCs (Grosjean et al., 1997) and 

monocyte-derived DCs (Fugier-Vivier et al., 1997) are permissive to MV infection. Viral 

infection induces formation of DC syncytia, followed by the loss of DC capacity to stimulate 

naive CD4+T cells (Fugier-Vivier et al., 1997; Grosjean et al., 1997) and acquisition of an 

active inhibitory function on CD4+ T cell proliferation in response to allogeneic noninfected 

DC (Grosjean et al., 1997) or mitogens (Schnorr et al., 1997). Inhibition of T-cell functions 

could be mediated through either transmission of infectious virus to T cells, leading to a 

block in the cell cycle (Naniche et al., 1999) and/or delivery of inhibitory signals via infected 

DCs (Grosjean et al., 1997). MV infection was shown to enhance apoptosis of DCs and to 

inhibit their CD40 ligand dependent terminal differentiation (Servet-Delprat et al., 2000; 

2000b). In addition, it induced cytotoxic activity by activation of the TNF-related apoptosis-

inducing ligand (TRAIL) synthesis in DC and monocytes (Vidalain et al., 2000). Although the 

infection of DCs is an attractive hypothesis to explain MV-induced immune-suppression, 

direct evidence for the presence of MV-infected DCs in children during measles remains to 

be demonstrated. Analysis of the presence of MV-infection in different cells of the immune 

system during measles suggests that the major mechanism for the induction of immune-

suppression may not be a direct effect of virus replication in these cells. In fact, despite the 

small amount of virus-infected peripheral blood cells during measles (less than 1%), the 

severe suppression of the immune system can last for weeks (Borrow & Oldstone, 1995). 

Moreover, a number of immunological alterations during natural measles also occur to a 

lesser magnitude after vaccination with attenuated MV (Fireman et al., 1969; Hussey et al., 

1996). Therefore, it is likely that MV-induced immune-suppression is induced not only by 

direct viral replication in haematopoıetic cells, but also by indirect immunopathogenic 

mechanisms. Indeed, numerous recent studies indicate that MV proteins are sufficient to 

induce different aspects of MV-induced immune-suppression (Marie et al., 2001; Ravanel et 

al., 1997; Schlender et al., 1996).  

6.5 Type I interferons in measles 

MV infection of cell lines in vitro has been shown to induce IFNα/β (Volckaert-Vervliet & 

Billiau, 1977), the results concerning wild-type MV infection in vivo are conflicting and 

inconclusive. Active IFNα/β have been documented in vivo after natural infection by MV in 

one study and shown to be absent in another (Crespi et al., 1988; Shiozawa et al., 1988; Tilles 

et al., 1987). IFNα/β induction by MV is probably dependant on passage history of the virus 
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and the cell type tested (Naniche et al., 2000; Volckaert-Vervliet & Billiau, 1977; Volckaert-

Vervliet et al., 1978). Recent studies suggest that wild type MV isolates actively inhibit IFN 

synthesis and induce poor production of IFNα/β while the laboratory adapted and vaccine 

strains are potent stimulators (Yu, et al., 2008). Recombinant MV with defective V protein 

can grow in cell lines that do not produce IFN (Niewiesk et al., 1997), in vivo studies 

demonstrate an important role of the V proteins as virulence factors (Patterson, 2000), and 

analysis of thymic xenografts revealed that V-deficient virus replication was delayed 

compared to that of wild-type or V-over-producing viruses (Valsamakis, 1998). MV V 

protein is capable of inducing cytokine inhibition by causing a defective IFN-induced STAT 

nuclear accumulation and nuclear redistribution, probably linking innate immune evasion 

to adaptive immune suppression by MV (Palosaari, 2003). MV C protein has also been 

shown to be a virulence factor (Escoffier et al., 1999; Mrkic et al., 2000; Patterson, 2000; 

Valsamakis, 1998) and to bind to the IFNα/β receptor (Yokota et al., 2003); MV C protein 

inhibited the production of IFNα/β and IFNα/β signalling (Shaffer et al., 2003). IFN-resistant 

and -sensitive strains of MV can be isolated by cell culture, and it has been suggested that 

IFN-resistant strains of MV may contribute to the establishment of persistent infection of the 

CNS (Carrigan & Knox, 1990). Systemic dissemination of C- and V-defective MVs is strongly 

impaired and upon intra- cerebral inoculation these viruses cause lethal disease less often 

than the parental strain. The attenuated candidate recombinant MV vaccine strains, which 

include C- and V-protein-defective viruses still replicate in animals at levels that are high 

enough to efficiently induce immunity and IFNα/β (Radecke and Billeter, 1996). 

Furthermore, robust production of IFNα in human myeloid DCs and epithelial cells was 

associated with increase in the level of virus-specific defective interfering RNA (DI RNA), 

subviral replicons originating from the viral genome associated with many RNA viruses 

(Lazzarini et al., 1981). Wild type MV isolates contain undetectable levels of DI RNA and 

induce significantly lower production of IFN in mDCs. 

6.6 Suppression of IL-12 

IL-12 production by antigen-presenting cells is central to the orchestration of both innate 

and acquired cell-mediated immune responses to many pathogens.  However, MV has been 

shown to depress IL-12 synthesis in vitro and to dampen NK cell activity in vivo (Griffin et 

al., 1990b; Karp et al., 1996). Production of IL-12 from DCs is also suppressed by MV (Karp et 

al., 1998). The ability of MV to specifically ablate monocyte/macrophage and DC secretion 

of IL-12 provides a potentially unifying mechanism for many of the immunological 

abnormalities associated with MV infection. Specifically, (a) ablation of IL-12 activity, by 

antibodies or genetic deletion, compromises the ability to respond to a variety of infections; 

(b) DTH responses depend upon IL-12 production; (c) IL-12 stimulates NK activity; and (d) 

IL-12 is essential for the development as well as the expression of most Th1 responses. IL-12 

failure may thus explain the propensity for developing superinfection, the absence of 

DTH reactivity, the meager NK cell activity, and the Th2 deviation in cytokine profiles 

seen in the aftermath of measles. IL-12 suppression would not explain 

lymphoproliferative defects, however. Although IL-12 is co-mitogenic for activated T and 

NK cells, it is not necessary for the proliferation of such cells. Interestingly, cytotoxic T 

cell and overall antibody responses develop normally in IL-12 knockout mice indicating 

that IL-12 suppression need not hinder the development of an effective anti-MV response. 
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Importantly, IL-12 production is significantly suppressed during natural infection of 

children with MV, with suppression lasting for weeks after acute presentation with 

measles (Karp & Wills-Karp, 2001).  

The degree to which IFN-α/β induction and IL-12 synthesis are disrupted by MV may 

determine the virulence of a particular strain. Such virulent measles strains could thus 

replicate more efficiently and gain access more rapidly to the bone marrow and, on rare 

occasions, to the CNS. These hypotheses are based on in vitro studies and further studies 

in existing monkey models (Auwaerter et al., 1999; McChesney et al., 1997) are needed to 

determine if the pathogenesis of infection in vivo mirrors the in vitro observations 

presented.  

7. Implications for treatment 

Vitamin A treatment for children with measles in developing countries has been 

associated with a marked reduction in morbidity and mortality. The WHO recommends 

vitamin A administration to all children with measles in communities where vitamin A 

deficiency is a recognized problem and where the MV-related mortality rate exceeds 1%. 

Of note, low serum concentrations of vitamin A are found in children with severe measles 

in USA. Thus, supplemental vitamin A in patients aged 6 months to 2 years who are 

hospitalized with measles and its complications (e.g., croup, pneumonia, diarrhoea) 

should be considered (D'Souza & D'Souza, 2002a; b; Hussey & Klein, 1993; Markowitz et 

al., 1989).  

MV is susceptible to ribavirin in vitro. Although ribavirin (either intravenous (IV) or 
aerosolized) has been used to treat severely affected and immunocompromised adults with 

acute measles or SSPE (IV plus intrathecal high-dose IFNα) (Gururangan et al., 1990), no 
controlled trials have been conducted; ribavirin is not approved by the US Food and Drug 
Administration (FDA) for this indication, and such use should be considered experimental.  
For immunocompromised persons, immune globulins (IG) are indicated to prevent measles 

following exposure. If immediate protection against measles is required for 

immunocompromised persons with contraindications to measles vaccination, including 

exposed infants less than 1 year of age, passive immunization with IG, 0.5 mL/kg of body 

weight (maximum dose = 15 mL), should be administered intramuscularly as soon as 

possible after exposure. Exposed symptomatic HIV-infected and other severely 

immunocompromised persons should receive IG regardless of their previous vaccination 

status (recommended dose is 0.5 mL/kg of body weight if IG is administered 

intramuscularly; maximum dose = 15 mL), because measles vaccine may not be effective in 

such patients and the disease may be severe. Intramuscular IG may not be necessary if an 

HIV patient is receiving 100-400 mg/kg IGIV at regular intervals and the last dose was 

administered within 3 weeks of exposure to measles. Because the amounts of protein 

administered are similar, high-dose IGIV may be as effective as IG administered 

intramuscularly. However, no data are available concerning the effectiveness of IGIV in 

preventing measles. For immunocompromised persons receiving IG for measles 

prophylaxis, measles vaccination should be delayed for 6 months following IG 

administration. For persons receiving IG for replacement of humoral immune deficiencies 

(320 mg/kg intravenously), measles vaccination should be delayed until 8 months following 

IG administration (CDC, 1993). 
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8. Future perspectives 

Huge strides have been made in reduction of measles incidence in most parts of the world 

following WHO global eradication programme, with several countries having interrupted 

the circulation of endemic virus. Unfortunately, the situation is different in the poorer 

developing and emerging nations, with high measles prevalence, low vaccine coverage and 

500,000 childhood deaths annually. Within the Western Pacific region, of which China and 

Australia are a part, many countries have achieved success in controlling measles infections; 

but China and Japan still report localised outbreaks that seem to differ in frequency and in 

character between the developed and under-developed (poor) regions. A region specific 

vaccination programme is required to achieve control of the endemically circulating MV in 

China. 

Measles infection very often induces characteristic immune-suppression that can extend for 

weeks following the acute disease, resulting in potentially fatal opportunistic infections. 

Despite intense research over the years, the mechanisms of MV induced immune-

suppression are not completely defined; it is probably very complex with several 

mechanisms encompassing both the innate and adaptive responses being involved. The 

situation is further complicated by the fact that the mechanisms that are known are variably 

affected in different populations. The best characterised immunological change is the severe 

lymphopenia following MV infection. Immunosuppressive factors, e.g. IL-10 and 

suppressive cells, e.g. Treg have been shown to be elevated after acute MV infection in 

separate studies and may play major roles in causing immune-suppression. In various 

studies, a role for DCs, IL-12, and type I IFNs has been suggested. To date there is no 

unifying “model” of immune-suppression to connect all the findings. Additionally, as most 

studies have been performed in cell culture, it is not clear how many of the immunological 

findings can be directly co-related to natural infection. Success of the global measles 

vaccination programs has resulted in very rare occurrences of natural measles in developed 

nations. Clearly, investigations in the non-human primate model of measles are needed to 

better elucidate MV induced immune-suppression.  
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