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1. Introduction  

Polysaccharides are the most abundant materials occurring in organism. In addition, the 
increasing biological importance of saccharides is difficult to detect because their lack an 
ionization natural and low sensitivity in mass spectrometry than other biomass (Zaia 2010; 
Chang et al., 2011a; Harvey, 2011; Mischnick 2011). The development of methods for mass 
spectrometry of isolated glycan from glycoconjugates and polysaccharides are commonly 
used chemical operation to form the tagged or/and permethylated glycan for mass 
determination and structural analysis (Fig. 1). Because of most the hydrophobic aldo-
derivatives gives a higher signals than the native glycan in instrumental determination so in 
recent years, matrix-assisted laser desorption/ionization (MALDI) and electrospray 
ionization (ESI) MS with tandem mass instrument has become a powerful tool for the 
structural determination of the non-derivatived/derivatived glycans.  
MS is capable of providing structural information for oligosaccharides, although complete 
structural determination typically required several analytical technologies including tandem 
mass, GC/MS linkage analysis, exo-/endo-glycosidase digestions, and NMR (Yoo & Yoon 
2005; Kim et al., 2006; Kukushkin et al., 2011; Yang et al., 2011). MS methods are used to 
have molecular weights and fragment ions information producing with tiny sample loading, 
on the other hand, MS provides a higher sensitivity than other glycan analytic methods. 
Combinations of chemical labeling, tandem mass spectrometry may be used to build signals 
to define the structures of glycans present from biological sources. Here we introduce four 
commonly used labeling methods for glycan. One is reductive amination labeling (Harvey 
2011), a number of regents are commercially available for reductive amination reaction such 
as 2AB, 2AA and AP tags. Second is a new glycan tagging method with NAIM tag (Lin et 
al., 2008; Lin et al., 2010a; Chang et al., 2011; Lin et al., 2011). Aromatic otho-diamines are 
used to label reducing end of glycan presence with catalytic amount of iodine to form a 
serial of glycan-NAIM derivatives. These glycan-NAIMs provide superiority in 
enhancement ionization of saccharides base on their size, molecular weight and linkage 
since saccharide-NAIM derivatives exhibit a stronger mass intensity than native sugar in 
MALDI time-of-flight (TOF) MS analysis. The third is 1-phenyl-3-methyl-5-pyrazolone 
(PMP) derivation (Taga et al., 2001; Kodama et al., 2006), which condensd PMP with some 
monosaccharides to form aldo-(PMP)2 derivatives, and these derivatives were resolved by 
micellar electrokinetic chromatography (MEKC) using (S)- or (R)-dodecoxycarbonylvaline 
as the chiral selector for enantiomeric analysis. The last is permethylation of glycan 
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(Hakamori 1964) results in the conversion of all hydrogen atoms that are bound to oxygen 
and nitrogen atoms to methyl groups and serves to render glycans hydrophobic. 
Permethylated carbohydrates are considerably more stable than native glycans and produce 
more information on tandem mass spectra. Tandem MS with MALDI and ESI applied 
permethylated polysaccharides in glycan mixtures is powerful tool for saccharides’ linkage 
analysis. In this context we described mass based approaches for chemical derivatized 
glycans such as tagged and permethylated oligo-/poly-saccharides. And also these linkages 
information of permethylated glycans can be elucidated by tandem mass for structural 
determination. 
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Fig. 1. The strategy for the mass determination of the glycans. 

2. Mass ion production and ionization methods  

Mass spectrometric ionization of carbohydrates has been reviewed recently (Zaia, 2008; 

Havery, 2011). Therefore, this section will provide a brief description of two main ionization 

methods, MALDI and ESI, and highlight some specific requirements for glycan sample 

preparation that improve overall efficiency of the MS ionization process. The analysis of 

complex polysaccharides by mass spectrometry is limited by the phenomenon of ion 

suppression. MALDI entails mixing analyte molecules with an organic matrix, such as 2,5-

dihydroxybenzoic acid (2,5-DHB) and 2’,4’,6’-trihydroxyacetophenone (THAP). 

Singly charged ions predominate in MALDI-TOF determination is common. It is typically 

used for analysis of neutral or charged saccharides. MALDI MS has the advantage of sample 

preparation and a relatively high tolerance to salts and other contaminants. However, acidic 

carbohydrates (such as phosphorylated, sulfated, or sialylated glycans) are quite different 

during MALDI ionization and may be in various ionization models and mechanism.  

ESI entails spraying a solution containing the analyte appropriately charged droplets move 
toward the mass spectrometer orifice while undergoing solvent evaporation. This process 
results in the formation of multiple charged gas phase ions that are analyzed in the mass 
spectrometer. ESI is used with many types of mass spectrometers and is well suited to the 
analysis of methylated saccharides. ESI produces inherently better resolved peaks for 
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glycans due to the absence of matrix adduct peaks and provides better sugar-ring 
fragmentation ability than MALDI (Harvey 2000). In addition, permethylation protects all 
the hydroxyl groups on glycans to provide superior ionization than native glucans due to 
the low volatility of hydroxyl groups for ionization during the MALDI and ESI process. 

2.1 MALDI mass spectrometry of polysaccharides  

The MALDI-TOF ionization efficiency for neutral carbohydrates oligomers has been 
reported (Harvey et al., 1996; Zaia, 2004), where the ionization efficiency decreases with an 
increasing molecular weight. Therefore, chemical or enzymatic degradation and purification 
are essential prior to MALDI-TOF MS analysis for subsequent identification and structure 
elucidation. Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF 
mass spectrometry is common manipulation. The clean-up profiles of native and 
permethylated oligosaccharides for an efficient MALDI-TOF MS analysis have been 
described (Morelle et al., 2007; Zaia, 2010). 
There are less of native polysaccharides giving MALDI-TOF MS analysis without 
degradation and derivation. For examples, Sturiale1 et al. (2005) resolved and identified of 
Gram-negative bacteria through MALDI-MS of native R-type LPSs. The simples can be 
successfully and systematically adopted for the analysis of these complex biomolecules 
without prior chemical degradation. This is quite important since a bacterial R-type LPS is 
actually a mixture of similar molecules and a MALDI mass spectrum provides the relative 
intensities among the different species. Structure determination of ǃ-glucans from 
Ganoderma lucidum with MALDI mass spectrometry also reported (Hung et al., 2008). The 
mass range of detectable polysaccharides is 2000 Da in average.  
Pullulans are polysaccharides produced from different strains of the fungus Aureobasidium 
pullulans. Pullulans play an important role in analytical chemistry since they are commonly 
used as calibration standards in aqueous SEC. Masses below 5 kDa are detectable by mass 
spectrometry as an alternative method providing direct data on the molar masses. NanoESI-
MS analysis of pullulans was successfully carried out with a sample of weights average 
molar mass of approximately 5900 Da (Bahr et al., 1997). It was possible to obtain a more or 
less uniform charge state by addition of three sodium ions per molecule. For samples with 
higher masses it is increasingly difficult to get such simple spectra. However, the MALDI 
process is known to produce predominately singly charged ions. Different matrices have 
been used for the analysis of pullulans, like 2,5-dihydroxybenzoic acid (Stahl et al., 1991; 
Garozzo et al., 2000), 2,4,6-trihydroxyacetophenone (Hsu et al., 2007) and nor-harmane 
(Fukuyama et al., 2005). The use of the ionic liquid matrix like 2,5-dihydroxybenzoic acid 
butylamine (DHBB) turned out to be well suited for the analysis of pullulan samples in 
terms of signal intensities of very high mass polymers (Chang et al., 2011b). 
In recent years, MALDI MS has become a powerful tool for the determination of the 
characteristic molecular weights of polymers. Other techniques like electrospray ionization 
are known to generate multiple charged ions and provide complex spectra due to a 
superposition of mass and charge distribution. Due to the huge mass range of polymers 
with broad distributions the commonly used combination of MALDI ion source with TOF 
that is well suited for the determination of molar mass distributions. Moreover, TOF 
instruments have a nearly unlimited mass range if the polysaccharides can be departed with 
matrix by laser beams. There are some further effects that influence mass like the voltage 
parameters of the MALDI-TOF instrument, the laser power, the choice of the matrix and 
ionizing agent and the nature of the analytes are also involved.  
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Some polysaccharides containing charges are easier to determine than neutral glycans. For 
examples, the characterization of polysialic acids by a high diversity mass based method 
allows a rapid, highly sensitive, and unambiguous identification of native polysialic acid as 
well as fluorescently labeled sialic acid polymers without the need of standard substances 
due to exact mass determination (Galuska et al., 2007). In addition, some tandem mass 
spectrometry for structural determination of permethylated sialic acid oligosaccharides are 
also reported (Wheeler & Harvey, 2000; Yoo & Yoon, 2005; Pabst & Altmann, 2008) in recent 
years. 

2.2 Effect of matrix in MALDI MS for polysaccharides determination 

The first investigation of non-derivatized oligosaccharides by MALDI with 3-amino-4-

hydroxybenzoic acid as matrix was reported by Mock et al. (1991). Stahl et al. (1991) 

subsequently discovered that 2,5-DHB yielded better reproducibility and higher signal-to-

noise ratio than 3-amino-4-hydroxybenzoic acid. Since then, DHB has become the primary 

choice of matrix for oligosaccharides. Improvements in sensitivity with a concomitant 

improvement in resolution were achieved with the addition of 10% 2-hydroxy-5-

methoxybenzoic acids to DHB (Wang et al., 1993) and these co-matrices were referred as 

‘super-DHB’. 1-Hydroxyisoquinoline (Mohr et al., 1995) was also found to be an effective 

additive to DHB to produce more homogeneous samples for MALDI detection. DHB with or 

without additives has been broadly used as matrix on MALDI for neutral saccharides. 

Several other matrices have also been reported (Nonami et al., 1998; Harvey, 1999; Mirza et 

al., 2004). Recently, Hsu et al. (2007) reported THAP as matrix for MALDI of neutral 

polysaccharides with molecular weight up to approximately 5,000 Da. For example, a linear 

neutral polysaccharide with m/z higher than 47,000 was readily detected by MALDI using 

THAP. Use of THAP as matrix always yielded high quality spectra with good 

reproducibility in their study. 

In addition, positive-/negative-ion MALDI MS of saccharides such as dextran 8,000 Da with 

2,5-DHB as matrix (Hao, et al., 1998). The matrix-to-analyte mole ratio was about 10,000. The 

matrix plays a more important role in the ionization process for oligosaccharides, while in 

the desorption process for polysaccharides (Chang et al., 2007). There have been only a few 

matrices reported for detection of polysaccharides with molecular weight higher than 3,000 

daltons by MALDI mass spectrometry (Hao, et al., 1998; Hsu et al., 2007). Large 

polysaccharides, dextrans, glycoproteins and polysialic acids are still under challenge to 

detect by MALDI MS with various matrices.  

2.3 Ionic liquid-assisted electrospray ionization of polysaccharides 

Ionic liquids are organic or semiorganic salts with a low vapor pressure. Due to their ability 
to dissolve a wide range of analytes they have been used in a number of analytical 
techniques (Schnöll-Bitai, et al., 2008). In 2001, ionic liquids were introduced as matrices in 
MALDI MS for the analysis of biomolecules and synthetic polymers (Tholey & Heinzle, 
2006). The first ionic liquid matrices (ILMs) were synthesized of the commonly used matrix 
substances sinapinic acid (SA) and ǂ-cyano-4-hydroxycinnamic acid (CHCA) combined 
with a variety of cations based on amine structures (Armstrong et al., 2001). An example of 
spectroscopic application is the determination of pullulans. The combination of 2,5-DHB 
with butylamine (DHBB) turned out to be well suited for the analysis of oligosaccharides 
and glycolipids (Mank et al., 2004; Laremore et al., 2006, 2007). The same ILM was used for 
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the determination of the molecular mass distribution of polysaccharides (pullulans) which 
are used as calibration standards in aqueous size-exclusion chromatography (Schnöll-Bitai 
et al., 2008). In most cases the ionization process in ILMs led to protonated species of the 
analytes, very similar to solid matrices. However, the analysis of large glycans by ILMs 
seems to be impeded by the fact that these molecules tend to form complexes with the 
cations or anions of the matrix. 
Recently, ionic liquid-assisted ESI (ILA-ESI) mass spectrometry has been improved for 

detection of large neutral polysaccharides (Chang et al., 2011). Detection sensitivity of 

polysaccharides by adding various ionic liquid compounds into samples was improved by 

ESI or MALDI-TOF mass spectra. Mass spectra obtained were greatly simplified and 

appeared to be similar to spectra from MALDI due to the narrow charge number 

distribution. 

2.4 ESI mass spectrometry of saccharides 

Electrospray ionization techniques for saccharides determination are used in the large 

amount of published work from 1980 era (Whitehouse et al., 1985; Meng et al., 1988; Zaia, 

2007). Conventional ESI-MS (Meng et al., 1988; Fenn et al., 1990) involves the pumping of a 

solution into the ion source, and has been observed to produce relatively weak ion signals 

for native oligosaccharides compared to those for peptides and proteins (Burlingame et al., 

1994; Reinhold et al., 1994; 1995). ESI produces ion signals that are comparable between the 

peptide and carbohydrate compound classes. Therefore, it appears that the hydrophilicity of 

oligosaccharides limits the surface activity in ESI droplets and their sensitivity is 

significantly enhanced. The sensitivity increase observed when oligosaccharides are 

derivatized cause by reducing their hydrophilicity that increased their volatility in the 

surface (Karas et al., 2000). In fact the ESI of carbohydrates appears to be less effective upon 

the nano grams than MALDI-TOF for glycans. Interfaces for on-line ESI LC/MS typically 

produce droplet sizes to those produced by the use of MALDI for neutral oligosaccharide 

analysis, particularly for applications that involve the profiling of mixtures released from 

glycoproteins. Although fragmentation allows the analysis of carbohydrate ions, which is 

caused by the higher internal energies imparted to the ions for structural analysis using ESI 

method, however, ESI is low efficiency in its ionization process in native oligo-

/polysaccharides. 

2.5 LC-MS/MS spectrometry of glycoproteins 

Mass spectrometry evolved as a key technique in the analysis of proteins and their post 
translational modifications. N-linked oligosaccharide provides a relative chromatographic 
quantification via HPLC and subsequent identification via MS. The procedure demonstrates 
that the glycan hydrolysis, derivitization, and chromatographic separation. Subsequent 
analysis of the chromatographic peaks via LC/MS or LC/MS/MS will yield additional data 
to confirm the identity of the glycan, and allow deconstruction of the glycan for additional 
information on its branch and sub-unit structure. Some of peptide mapping methods will 
give glycosylation sites, identification of the glycan and its structures. The information may 
provide insights into the heterogeneity of the glycosylation. Sequence-based peptide 
analysis by LC-ESI-MS/MS is most often applied for identification or quantification of 
proteins in typical “proteomics” projects. Careful evaluation of the peptide-mass 
fingerprinting data allows determining the glycan composition at individual glycosylation 
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sites. A precious side product is the possibility of confirming the protein termini and of 
eventually revealing other post-translational modifications. Both MALDI-TOF MS and LC-
ESI-MS can generate such data but LC-ESI generally provides higher sequence coverage. 
The multiple charged ions formed by ESI also facilitate MS/MS experiments, which 
substantiate any conclusions on the nature of presumed glycopeptides.  
Recently, Wang et al. (2011) describled consists of 2D HPLC fractionation of intact proteins 
and liquid chromatography multistage tandem mass spectrometry (LC-MS/MSn) analysis of 
digested protein fractions. A digital ion trap mass spectrometer with a wide mass range is 
then used for LC-MS/MSn analysis of intact glycopeptides from the 2D HPLC fractions. The 
standard approach for peptide-based glycoprotein analysis starts with bands of Coomassie-
stained polyacrylamide gel. After S-alkylation and digestion with trypsin the resulting 
mixture of peptides and glycopeptides is separated by capillary reversed-phase HPLC and 
analyzed by ESI-MS and/or ESI-MS/MS. The free glycan analysis from isolated cells or 
from whole tissues are preferred by MALDI-TOF MS especially in the case of neutral 
glycans, e.g. from plant, fungi or bacteria cell wall polysaccharides. LC-ESI-MS is chose for 
sialylated oligomers or mixtures of sialylated and neutral glycans especially when structural 
information is desirable. 
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Fig. 2. A general overview of the procedure for profiling glycoproteins. Sample is subjected 
to an immuno-depletion chromatography followed by 2D HPLC fractionation. The digested 
2D HPLC fractions are then analyzed by LC-MS/MS (Wang, et al., 2011). Abbreviation: 
DDA represents data dependent acquisition, DIT represents digital ion trap, LTQ-FT 
represents linear trap quadrupole Fourier transformation, and RPLC represents reversed 
phase liquid chromatography. 
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3. Strategy for the mass determination of glycans  

Tandem MS of native and tagged glycans may be acquired using either positive or negative 
ions. Commonly, positive ion model of tandem MS is abundant glycosidic bond product 
ions that occur adjacent to HexNAc, sialic acid, and Fuc particularly abundant (Zaia, 2010; 
Harvey 2011). In summary, tandem MS produces the greatest structural detail on 
permethylated glycans. Negative ion tandem MS is effective for producing useful structural 
information on native and tagged glycans, such as sialic acid containing, sulfated and 
phosphorylated glycan and those classes are commonly not compatible with permethylated 
glycans (Wheeler & Harvey, 2000; Larsen et al., 2006; Miller et al., 2006; Mechref et al., 2006; 
Lei et al., 2009; Yu et al., 2009; Barnes et al., 2011). For tagged glycans the mass shift varies 
according to the glycan’s derivatives. The differentially labeled samples are combined prior 
to MALDI MS analysis to minimize sample-to-sample variation in peak abundances and 
maximize the ability to perform the comparison of two samples. Thus, it is possible to 
analyze the mixtures directly in the MS mode, or to select the nominal masses for 
subsequent tandem mass spectrometric analysis of glycoform mixtures. 
Stable labels are used commonly in saccharide analysis to improve determination of glycans 
in the sample. Chemical derivatized saccharides increase volatility and stability for MS 
analysis and helpful to purify them in chromatography when they were labeled. Depending 
on the sample and extent of the information needed, several different labels can be used as 
described in subsections below. 

3.1 Tagged polysaccharide with reductive amination labeling 

Reductive amination derivatization is very useful tool for mass spectral analysis of 
glycans. A number of reductive amination reagents are commercially available (Yuan et 
al., 2005; Hitchcock et al., 2006; Zaia, 2008). During the derivatization, an aromatic amine 
forms a Schiff base at the acyclic reducing sugar residue. The resulting Schiff bass is then 
chemically reduced by sodium cyanoborohydride (NaBH3CN) to form a stable labeled 
glycan. Both steps of the derivatization can be performed in a single reaction (Klapoetke 
et al., 2010). Nevertheless, glycan tagging has higher ionization efficiency than native 
glucans. A recent review for derivatization of carbohydrates for analysis by 
chromatography and mass spectrometry was published by Harvey (2011). The most 
approach is labeling the reducing end of the glycans with reductive amination to generate 
fluorescence for glycan profile by LC-fluorescence and by MS for glycan identification. In 
this approach, glycan profiles were readily obtained due to high fluorescent sensitivity 
imparted by the labeling agent. 

3.2 Tagged polysaccharide with aldo-NAIM labeling 

An alternative method for the conversion of native aldose to aldo-naphthimidazole (aldo-
NAIM) has been developed (Lin et al., 2008; Lin et al., 2010a; Lin et al., 2010b; Lin et al., 
2011). Using iodine as a catalyst in acetic acid solution, a series of mono-, oligo-, and 
polysaccharides, including those containing carboxyl and acetamido groups, progresses an 
oxidative condensation reaction with aromatic vicinal diamines at room temperature to give 
the corresponding aldo-NAIM products in high yields (Fig. 3). In addition, a series of aldo-
NAIMs was determined by MALDI–TOF MS to analyze molecular weight and ion intensity. 
For instance, 2,3-naphthalene diamine-labeled Ling-zhi polysaccharides showed enhanced 
signals in MALDI–TOF MS (Fig. 4; Lin et al., 2010b).  
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Fig. 3. The preparative method for the conversion of native aldose to aldo-NAIM. 

 

MALDI-MS spectra of ling-zhi polysaccharides (a) 

glucan-NAIM, ﹡, at m/z 2449.0 (b) glucan-2AB, ※, 

at m/z 2430.8 and (c) glucan, ＃, at m/z 2308.1, at 4 

ng/uL with 2,5-DHB as matrix.

 

Fig. 4. The corresponding naphthimidazole derivative of Ling-zhi polysaccharides showed 
the enhanced signals property in the MALDI–MS spectrum. 

These aldo-tagged derivatives give a higher sensitivity than the native glycan in common. 
Not only mono-/disaccharides but also oligo-/polysaccharides were labelled in straightway 
method. For example, pullulan (molecular mass distribution 2,500~6,000) was tagged with 
2,3-naphthalene diamine to obtain pullulan-NAIM derivatives for MALDI-TOF mass 
spectrometry analysis (Fig. 5). Because this pullulan sample is a polydispersable natural 
polysaccharide with 15–40 DP (degree of polymerization), pullulan-NAIM displayed their 
mass signals with a difference of 162.1 Da between neighboring peaks. For instance, the 
characteristic signals [pullulan-NAIM (DP = 18 + Na]+ at m/z 3096 and [pullulan (DP = 36) + 
Na] + at m/z 6012 are shown in Fig. 5, respectively. Even with as little amount of analyte the 
signal is still measurable. 
 

 

Fig. 5. The corresponding NAIM derivative of pullulan polysaccharides in the MALDI–MS.  
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3.3 Tagged saccharide with PMP and indole 

Glycan labeling strategies are useful in identification and quantification of saccharides. 

(Ruhaak et al., 2010). Honda have reported the condensation derivatives of some 

monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) in Fig. 6, which were 

resolved by micellar electrokinetic chromatography (MEKC) using (S)- or (R)-

dodecoxycarbonylvaline as the chiral selector (Honda et al., 1997; Taga et al., 2006). The 

racemic monosaccharides such as PMP-D-/L-Man, PMP-D-/L-Gal, and PMP-D-/L-Fuc 

were enantioseparated by ligand-exchange capillary electrophoresis (Kodama et al., 2001). 

Kuo et al. (2011) reported a series of aldo-bis-indole (aldo-BIN) derivatives (Fig. 6) was 

prepared by aromatic C-alkylation reaction to condense aldose with two molecular 

indoles in water/acetic acid solution for enantioseparation of racemic monosaccharides. 

Common monosaccharides were derivatized smoothly to form the UV absorbable aldo-

BINs. However, both tagging reagents failed in polysaccharide labeling due to the low 

reactivity. 
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Fig. 6. The chemical structures of aldo-(PMP)2 and aldo-BIN. 

3.4 Permethylation labeling of polysaccharides 

Permethylation and reductive amination derivatization is most common tool for mass 

spectral analysis of glycans. Permethylation approach required methylation of all hydroxyl 

groups on saccharides. Permethylation improves MS sensitivity and stabilizes saccharides as 

well as glycuronic acids and sialic acids by converting the carboxylic groups into methyl 

esters. However, permethylation involves complicated sample preparation and clean up 

with liquid-liquid extraction. In brief, the desiccated samples were dissolved in dimethyl 

sulfoxide (DMSO) suspension, which was prepared by vortexing DMSO and powdered 

sodium hydroxide (NaOH) or sodium hydride (NaH) at room temperature, excess of methyl 

iodide (MeI) was added, and the solution was kept for hours at room temperature with 

occasional vortexing (Ciucanu & Kerek, 1984). After finished reaction, the sample was 

partitioned by adding chloroform, the suspension was extracted times with diluted acetic 

acid aqueous solution, and the chloroform layer was concentrated. The sample was stored at 

-20 °C prior to analysis. An example of this labeling approach is demonstrated using a 

comparative glycoform mapping method (C-GlycoMAP), developed based on differential 

stable isotope labeling (Kang et al., 2007). The differentially isotope labeled samples are 

combined prior to MALDI-TOF MS analysis to minimize sample-to-sample variation in 
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peak abundances and maximize the ability to perform the comparison of samples. However, 

to purify permethylated glycans (no chromophore) is quite difficult, so for smaller amounts 

of samples, they were analyzed directly after extraction and washed with aqueous dilute 

bicarbonate solutions. 
Permethylation is also reported to be particularly useful for in-depth analysis of glycans as it 
provides information on linkage and branching. So, methylation is a traditional method that 
provides GC/MS and tandem mass for structural determination of glycans. Strategies for 
acquisition and interpretation of multistage MS have been most fully developed for 
permethylated glycans (Ashline et al., 2005). For example, Hung et al. (2008) measured 
permethylated G. lucidum glucans using 2,5-DHB as a matrix. The G. lucidum glucans were 
observed as sodium attached ions and molecular masses were calculated as 219.13 (a 
terminal sugar) + (204.13)n + 22.99 Da and 219.13 + (204.13)n + 31.02 (mass of reducing end 
residue) + 22.99 Da, respectively (Fig. 7).  
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Fig. 7. MALDI-TOF mass spectrum of permethylated G. lucidum glucans with 2,5-DHB as 
matrix. A peak-to-peak mass difference of 204.1 Da is observed. The molecular masses were 
measured as sodium attached ions at 681.4; 855.6; 1089.7; 1293.8; 1497.9; 1702.1; 1906.2; 
2110.3; 2314.5; 2518.6; 2722.8; 2927.0; 3131.2; 3335.4; 3539.6 and 3727.8 (DP = 3~18), 
respectively. 

In addition, permethylated xylans were observed as sodium attached ions with peak-to-
peak mass difference of 160.1 Da (Fig. 8). One of polysaccharides from alginic acid, which is 
a kind of polysaccharide mixture of hexose and aldouronic acid was derivatived by 
NaH/MeI in DMSO to get permethylated alginic acids and following determined by 
MALDI-TOF MS. The peak-to-peak mass difference was observed in two series 204.1 Da 
(Hex) and 218.2 Da (HexA), respectively (Fig. 9). 
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Fig. 8. MALDI-TOF mass spectrum of permethylated xylans with 2,5-DHB as matrix. A 
peak-to-peak mass difference of 160.1 Da is observed. 

 

 

Fig. 9. MALDI-TOF mass spectrum of permethylated alginic acids with 2,5-DHB as matrix. 
The peak-to-peak mass difference of two series is 204.1 Da and 218.2 Da, respectively. 

The advantage to this approach is that tandem mass spectrometric dissociation of a 

glycosidic bond leaves a site that lacks a methyl group that is clearly indicated by mass. 

Thus, the linkage position is indicated by the mass of crossring cleavage ions (A- or X-

types). It is possible to differentiate some types of positional isomers based on the formation 

of specific product ion types. Tandem MS of permethylated glycans produces more 

structural detail than does that of native and reductively aminated glycans. 

4. Tandem mass of methylated polysaccharides for structural determination  

The challenges to polysaccharides determination are that the glycan-moiety has different 
chemical properties than proteins or nucleic acids (Forsberg et al., 2000; Faber et al., 2001; 
Lattová et al., 2005; Mischnick et al., 2005; Nielsen et al., 2010) and most of them are 
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insoluble that makes problems in chemical manipulation such as permethylation and 
reducing end labeling. Since tandem MS for polysaccharide hasn’t been reviewed in 
detailed, only a few of methodology and reports have been described. However the key 
aspects of fragmentation procedures are same with those glycoproteomics studies on 
oligosaccharides and may applied for further study on other source of polysaccharides. 
Here we introduce and review some results on tagged and permethylated polysaccharides 
by tandem mass spectrometry. 
Tandem MS with MALDI and ESI used permethylated polysaccharides is powerful tool for 
saccharides’ linkage analysis. The use of tandem MS is driven by the need to produce 
structural information on glycans (Harvey, 1999; Zaia, 2004). The tandem MS experiment is 
to analyze a mixture of positional isomers directly. Sequential stages of tandem MS are 
performed in series and the stages of MS are abbreviated MSn. The masses of the product 
ions of glycan substructures may be selected for dissociation in further stages. In addition, 
tandem mass analysis of permethylated glucan can be refered to GC/MS on their 
methylated acetyled alditols and in comparison with the spectra of synthetic standards for 
structural analysis of polysaccharides. Most glycan tandem mass spectra are produced by 
collisional induced dissociation (CAD), a technique in which selected precursor ions are 
dissociated by collision with gas atoms in a collision cell. Typically, the weakest bonds 
rupture to produce the most abundant product ions. It is possible to dissociate 
permethylated glycans using high energy CAD that uses a MALDI TOF/TOF or ESI MS 
instrument, under which conditions bond rupture is kinetically controlled and cross-ring 
cleavage ions are more abundant for structural analysis. 

4.1 Nomenclature for tandem mass spectrometric ions of glycans 

The nomenclature for glycan and glycoconjugate product ions (Domon & Costello, 1988) is 
shown in Fig. 10 and will be used throughout this section. Product ions containing a non-
reducing terminus are labeled as A, B, C, and those containing the reducing end are labeled 
X, Y, Z. Cleavages across residue rings (A-and X-type ions) are particularly useful for 
determining linkages. 
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Fig. 10. Nomenclature of tandem mass spectromic ions of glycans and glycoconjugates 
(Domon & Costello, 1988). 

4.2 Characterization of N-, O-linked glycans from glycoproteins 

Recently, Zaia (2010) has reported tandem MS of isomeric glycan mixtures. For 
glycoconjugates tandem mass spectrometric ions are cleavaged glycan occurs by rupture of 
glycosidic bonds (B, C, X, Y types) or across rings (A and X types) based on defined by 
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Domon & Costello (1988). Product ions containing the original nonreducing oligosaccharide 
end are A, B, and C types, and those containing the original reducing end or aglycon are X, 
Y, and Z types. Permethylation of glycans has particular advantages for tandem mass 
spectrometric structural analysis because all glycan OH and NH groups are derivatized. As 
a result, glycan bond scission occurring during tandem MS creates unmodified sites, which 
indicate which bond has been cleaved. The linkage position for a given monosaccharide is 
therefore indicated by the masses of the crossring cleavage ions (A or X types). The crossring 
cleavage ion masses are useful for determining the linkages and masses of substituents. 
These principles have been developed into a strategy for determination of glycan linkage 
and branching structure (Ashline et al., 2005). Tandem mass spectra of native and 
reductively aminated glycans produce less definitive structural information because the 
glycosidic bonds cleaved during dissociation do not leave a mass of ring fragments. Thus, it 
is only possible to determine residue linkage sites when a crossring cleavage is observed to 
that residue in which the substituents remain intact. 

For example, in positive ion mode, native and reductively aminated glycans form abundant 

product ions from cleavages adjacent to labile NeuAc, HexNAc, and Fuc residues. Crossring 

cleavages to branching residues are typically low in abundances. Such linkages may also be 

differentiated in the negative mode using MS2 of deprotonated ions in which an ion 

corresponding to A ions correlates with an -2,6 isomer (Wheeler & Harvey, 2000). In 

addition, an MSn series may be used to differentiate glycan linkages by dissociation of C- or 

D-ions in sialic acid linkage isomers (Deguchi et al., 2007; Ito et al., 2007). For permethylated 

glycans, the masses of specific A-type ions occurring to the saccharide residues. These 

fragment ions have been used to differentiate sialic acid linkages using modern MALDI-

TOF instruments (Mechref et al., 2006). The determination of the glycan branching 

structures using tandem MS entails the observation of crossring cleavage ions occurring 

about the branching residues. Native or reductively aminated glycans observed as sodiated 

precursor ions dissociate to form A-type ions to the core branching mannose residue of N-

glycans that may be used to determine the compositions of the three and six branches 

(Harvey, 2000). Such ions are often observed in increasing abundances for deprotonated 

precursor ions in the negative mode, as has been observed for branched milk 

oligosaccharides (Chai et al., 2002) and N-glycans (Harvey, 2005).  
The formation of the D-ion is particularly useful since it occurs only for three-linked 

residues. Electron detachment dissociation (EDD) of native glycans has been shown to 

produce tandem mass spectrometric patterns that are particularly useful for deriving 

structural information (Adamson & Hakansson, 2007). On the other hand, a single stage of 

dissociation gives rise to B- and Y- type ions. Single-stage MS of permethylated glycans is 

a well-established approach for determining molecular weights. A-type crossring 

cleavages are often abundant, and serve to define the compositions of antenna when they 

occur to branching residues. Tandem MS of permethylated glycans carries the advantage 

that ions formed from cleavage of glycosidic bonds have a unique mass value that 

distinguishes an internal fragment from a single bond cleavage. Multistage dissociation of 

permethylated glycans has been used to determine detailed linkage information for 

saccharide units formed by gas phase disassembly of the glycans (Zhang et al., 2005; Prien 

et al., 2008, 2009; Jiao et al., 2011). The key to multistage dissociation of glycans is the 

selection of a series of precursor ions that isolate structural branches for subsequent 
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stages. Subsequent dissociation of B-type ions yields crossring cleavages that are useful 

for determining linkage.  

4.3 Characterization of plant glycans 

Naturally occurring plant saccharides are huge and comprise mixtures of various 
conjugated polymers. More recently ESI and MALDI combined with tandem mass 
spectrometry has been shown to provide valuable structural information for plant 
polysaccharides. For instance, three D-xylan type per-O-methylated saccharides with 
various types of linkages between the D-xylopyranose units were examined by mass 
spectrometry (Bagag et al., 2008). In addition, polysaccharides are the principal components 
of the plant cell wall from its main structural framework. In high plants the three main 
polysaccharides of the cell wall are cellulose, pectin and hemicellulose. Fernández et al. 
(2003) has reported the structural characterization of arabinoxylans from wheat by MALDI-
TOF and ESI-Q-TOF MS. An arabinoxylan sample digested with endoxylanase was 
analyzed, the resulting in identification of molecular ions for saccharide residues with up to 
22 DP. The permethylated arabinoxylan was also performed to obtain structural information 
regarding arabinose branching and xylose backbone.  

4.4 Characterization of fungi glycans from Ganoderma lucidum  

Ganoderma lucidum (a medicinal fungi in Asia) has been used for a long time to prevent and 
treat various human diseases (Lin et al., 2006; Cheng et al., 2007; Hua et al., 2007; Ji et al., 
2007; Zhu et al., 2007; Chuang et al., 2009; Chen et al., 2010; Lai et al., 2010). The mainly 
components of G. lucidum polysaccharides are (1→3) and (1→6)-ǃ-D-glucan. Beta-D-glucan 
is a carbohydrate polymer with chains of glucose molecules linked together by ǃ-glycosidic 
linkages (Sone et al., 1985; Usui et al., 1983; Wang et al., 2002). Beta-glucan isolated from G. 
lucidum having quite huge of molecular weights and is challenge for studies using the 
MALDI-MS method. Hung et al. (2008) have analyzed non-derivatized and through 
permethylated derivatized G. lucidum polysaccharides. The permethylated G. lucidum 
glucan was measured, which is derived from acidic degradation (Fig. 11 up). And its 
tandem mass MS2 at m/z = 1293.7 of this permethylated G. lucidum hexasaccharide was 
dominated by peaks resulting from cleavage at glycosidic bonds, giving the C/Y ion series 
and a less intense series of B/Z ions (Fig. 11 middle), which are same as the observation in 
the curdlan (one of fungi polysaccharide with ǃ-1→3-D-glucan). The MS2 spectrum of 
permethylated G. lucidum glucan B5 ion at m/z 1058.8 is shown in Fig. 11 bottom. The major 
fragment ions are the Y and C ions (1277.1, 1075.5, 871.3, 667.2, 463.1 m/z), respectively. 
However, the B5 ions differ between the permethylated G. lucidum hexasaccharide and other 
linkaged permethylated hexasaccharide such as malto- or dextro-hexaose. The fragmented 
ions from m/z at 1058.8 ~ 871.3 are 940.7 (0,3A5), 928.7 (1,3A5/2,4A5), 912.3 (0,4A5), 898.7 (1,5X5) 
and 883.1 (2,3A5), respectively. For the ions with m/z at 912.3 (0,4A5) and 898.7 (4,5A5), it 
indicates that G. lucidum glucan has 1→6 linkage and 883.1 (2,3A5) indicates out the presence 
of 1→3 linkage. Based on A and X ions in Fig. 11 bottom, we confirm that this methylated 
glucan has 1→3 and 1→6 linkage between glycosidic bonds.  
The aforementioned example of the utility of multistage fragmentation of B-ions generated 

from permethylated G. lucidum glycan. A retro-Diels-Alder reaction in a 1,3-linked B5-type 

pentaose shows formation of fragment ions. The generic cross ring cleavages that may be 

formed from B-type ions of various linkages. 
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Fig. 11. MALDI-TOF MS/MS of permethylated G. lucidum glucans. The ion of 
permethylated G. lucidum hexasaccharide (m/z = 1293.7, [M + Na]+) shown in up panel. MS2 
at the hexasaccharide ion ([M + Na]+, m/z = 1293.8) shown in middle panel and MS2 at the B5 
sodiated fragment ion (m/z = 1058.8) shown in bottom panel. The major cross-ring fragment 
ions at B5~C4 region are 940.7 (0,3A5), 928.7 (1,3A5/2,4A5), 912.3 (0,4A5), 898.7 (1,5X5/4,5A5) and 
883.1 (2,3A5), respectively. 

5. Conclusion 

This review introduced mass spectrometry of tagged glycans and the uses tandem mass 
spectrometry for permethylated glycans. These chemical derivatives are useful for the 
structural analysis of glycans and have been used to study the glycosylation of isolated 
complex glycoconjugates or polysaccharides in medicinal herbs or fungi. The structural 
information obtained from tandem mass studies is complicate but useful for glycan linkage 
information. The glycan in tandem mass also compatible with the derivatization conditions, 
permethylation remains the alternative choice. Using permethylation, ionization responses 
are increased over those of underivatized glycans, and the chemical stability improved. 
Multistage tandem mass spectrometric dissociation of permethylated glycans produces the 
greatest level of detail possible when using mass spectral techniques. Glycan classes 
modified with sulfate or other fragile substituents are not compatible with permethylation, 
but may use reductive amination method to label glycan in tandem mass determination. A 
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number of LC/MS and CE/MS approaches have been incorporated into comprehensive 
analysis for tagged and permethylated glycans. Biological important biomass glycans and 
glycoconjugates may be analyzed using tandem mass a combination of various electron 
dissociation methods. 
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