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1. Introduction 
 

With the functions of physical robots now extended beyond academia into factories, 
homes and fields, the interactions between humans and robots have become increasingly 
extensive and ubiquitous (Haegele et al. 2001).  The current state of human interaction 
with robots in comparison to simple “machines” that operate in structured environment, 
such as manufacturing automation, is quite different.  Robots differ from simple machines 
in that they are mobile.  Some may be autonomous and their actions are not predictable in 
advance.  Hence, there is a need to look into different interaction roles between humans 
and robots.  The issue of interaction roles is an emerging research area in robotics namely 
Human-Robot Interaction (HRI) (Murphy and Rogers 2001).  HRI can be broadly defined 
as “the study of the humans, robots, and the ways they influence each other” (Fong et al. 
2001b).  To provide realistic experimental settings, researchers working in this area need to 
develop Human-Robot System (HRS) to facilitate the study of HRI (Murphy and Rogers 
2001).  Here, HRS is defined as a “mixed system in which both human and physical robot 
interact, each as a cooperative intelligent entity” (Hancock 1992). 
In the context of HRI, an important concern is how human and robot cooperate in a HRS 
(Sheridan 1992; Murphy and Rogers 2001).  In remote operation applications such as space 
explorations, military operations, automated security, search and rescue, etc., the human 
does not have direct visual awareness of the environment to perform the required tasks. In 
these applications, a tight interaction between the human and the robot is required for 
effective cooperation and coordination.  This raises an interaction dilemma: on one hand 
the robot operating in the remote environment can be expected in a “better position” to 
advise/inform the human regarding navigation issues (i.e. react locally to the remote 
environment) and refuses consent to dangerous human commands (e.g. running into 
obstacles); on the other hand, due to its limited ontologies, the robot requires human 
assistance on tasks such as object recognition, decision-making, and so forth.  Here, 
limited ontology means that the robot is not able to use constraints either from its 
knowledge-base or from the environment to control its unspecified parameters. 
To overcome the above dilemma, adapting to appropriate roles that exploit the capabilities 
of both human and robot as well as crafting natural and effective modes of interaction are 
important to create a cooperative HRS.  To this end, innovative paradigms have been 
proposed over the years to redefine the roles of human and robot from the traditional 
master-slave relationship (Hancock 1992; Sheridan 1992), such as to model the human as 
cooperator (e.g. Lee 1993; Bourhis and Agostini 1998; Fong et al. 2001b; Hoppenot and 
Colle 2002; Bruemmer 2003) rather than just as the master controller of the robot.  On the 
other hand, the slave robot is modelled in such a way that it becomes an active assistant 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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(e.g. Bourhis and Agostini 1998; Hoppenot and Colle 2002) or partner (e.g. Fong et al. 
2001b; Lee 1993; Bruemmer 2003) of the human, supporting perception and cooperative 
task execution.  To design a cooperative HRS based on the above paradigms, a basic 
research issue is to consider how to achieve cooperation via appropriate degrees of 
sharing and trading between human and robot which constitutes the main focus of this 
paper. 
 
1.1 Definition of Sharing and Trading 
 

It might be useful to first provide a working definition of sharing and trading as a basis for 
further discussion.  In Webster’s dictionary (Agnes 2003), “sharing” and “trading” are 
defined as: “to join with another or others in use of some (thing)” and “to exchange one 
(thing) for another” respectively.  Here, “to join” means that both the human and the robot 
work together through the use of some “thing” to ensure the success of task performance; 
and “to exchange” means that both the human and robot give and receive an equivalent of 
“thing” which they own while working together.  In the context of sharing and trading, 
the tasks are the actions both the human and robot undertakes to achieve their goals.  
Human, needs to be able to see those tasks, adjust them and add to them if necessary 
during sharing and trading.  On the other hand, the robot needs to be equipped with the 
capability to scale its own degree of autonomy to meet with whatever level of input from 
the human.  To facilitate this, both human and robot must adopt the same ontologies so as 
to prevent miscommunication when they share and trade. 
 
1.2 Why Sharing and Trading? 
 

Within the discipline of robotics, the concept of sharing and trading is widely used for 
incorporating the strengths of human and robot.  The aim is to achieve mutual 
compensation of both the human’s and the robot’s individual weakness (Sheridan 1992; 
Hirzinger 1993; Lee 1993; Bourhis and Agostini 1998;; Fong et al. 2001b; Hoppenot and 
Colle 2002; Bruemmer 2003).   
For instance, sharing of control and sharing of autonomy has often been described in both 
the literature of telemanipulation (Sheridan 1992; Hirzinger 1993; Lee 1993) and 
teleoperation of mobile robot (Bourhis and Agostini 1998; Fong et al. 2001b; Hoppenot and 
Colle 2002; Bruemmer 2003).  In telemanipulation, an example of sharing is the 
manipulation of a task where the compliance control is done by the robot automatically 
while position control is achieved by human’s manual control (Hirzinger 1993; Lee 1993).  
In mobile robot teleoperation, an example of sharing of control is described as follows: the 
human directly controls the robot on board pan-tilt-zoom camera to provide a movement 
direction, i.e. to provide perceptual guidance; and the robot will respond to the human 
command by scaling its autonomy to drive the mobile platform according in the direction 
of the gaze (Hoppenot and Colle 2002).  In both cases, trading is normally used in 
conjunction with sharing to let human and robot assist each other via the exchange of 
control and task information when both have problem performing the assigned task 
(Sheridan 1992; Lee 1993; Kortenkamp et al. 1997; Bourhis and Agostini 1998; Fong et al. 
2001b; Bruemmer 2003). 
The basic questions in sharing and trading are as follows (Sheridan 1992): In sharing – 
“Which tasks should be assigned to human and which to the robot?”  In trading – “Which 
aspects of the tasks to trade, and when should control be handed over and when should it 
resume control during task execution?”  As a consequence, researchers from the domains 
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of telemanipulation (e.g. Hirzinger 1993; Lee 1993) and mobile robot teleoperation (e.g. 
Bourhis and Agostini 1998; Fong et al. 2001b; Bruemmer 2003) have developed various 
novel robotics control architectures to address these questions.  Although their solutions 
are application specific, the fundamental principles are similar, that is, to facilitate 
interactive task allocation and cooperative decision-making between human and robot.  
The purpose of interactive task allocation is to spatially/temporally distribute the task to 
the human and/or robot, based on their intellectual capabilities and performance during 
task execution.  The purpose of cooperative decision-making is to provide for 
arbitration/fusion of task commands from the human and the robot. 
Although the concept of sharing and trading has been widely adopted and studied, it is 
far from fully developed.  This is due to the progressive introduction of more intelligent 
and autonomous robots equipped with powerful and versatile mechanisms for interacting 
with humans.   
The nature of the above problems provides a wide range of “interaction” space to consider 
how human and robot might share and trade to achieve cooperation.  In particular, it is 
important to address the role of sharing and trading in accordance to humans’ interacting 
with current state of autonomous robots.  To understand how human and robot share and 
trade in a HRS, it is important to first identify the basic requirements which constitute 
sharing and trading.  The aim is to present the classifications in a framework to assist in 
the design and development of a cooperative HRS. 
This paper is structured as follows.  Section 2 discusses the current HRS and what 
essential requirements constitute in the design and development of a HRS.  The purpose is 
to serve as a basis for the discussion of sharing and trading in the following sections.  
Based on the concept of task allocation, Section 3 describes the concept of sharing and 
trading in designing HRS.  Here, sharing and trading are eminent to explain the 
cooperation between human and robot.  Subsequently, to illustrate the concept of sharing 
and trading on the design and development of a HRS, a case study is presented in Section 
4. 
 

2. Human-Robot System 
 

Current HRS takes many forms.  This can range from manually controlled system, such as 
teleoperation (Sheridan 1992) to autonomous robotics system that employ artificial 
intelligence, machine perception, and advanced control (Giralt et al. 1993). A simple 
illustration of this spectrum is presented in Table 1. 
Six types of HRS and their applications are depicted in Table 1, presented in order of 
increasing robot autonomy/intelligence.  Type 1 represents traditional master-slave 
teleoperation system.  Type 2 represents teleoperation system that employs video 
technology, computer technology and force feedback.  This facilitates a finer-gain of 
control (as compared to Type 1) for performing more complex/intrinsic tasks.  Type 3 
represents an advanced form of teleoperation, called telerobotics.  As compared to Type 1 
and 2, the robot is not directly teleoperated throughout the whole work cycles, but can 
operate in autonomous or semi-autonomous modes depending on the situation context.  
Type 4 is another form of Type 3 configuration with an important difference: the human 
located on the robot mobile base (e.g. the wheelchair), has direct visual awareness of the 
robot environment. Type 5 represents a highly autonomous and intelligent robotics system 
that has the capability to work cooperatively with humans.  Finally, Type 6 represents 
fully autonomous robotic system that can operate without any human guidance and 
control. 
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Human-
Robot System 

Descriptions Possible 
Applications 

Type 1: 

Teleoperation 

System 

(not computer-

aided) 

 

The human is located 

remotely from the robot 

via the use of electric 

cable.  However, the 

robot is directly 

controlled by human 

supervisor’s own visual 

senses (line of sight).  The 

robot extends the 

human’s manipulation 

capability to a remote 

location so that he can 

work safely from the 

hazardous environment. 

Underwater 

cleaning of reactor 

vessels, pipe 

inspection, etc. in 

nuclear power 

industry (Roman 

1993). 

Type 2: 

Teleoperation 

System 

(computer-

aided) 

 

 

 

 

An extension of Type 1, 

but the human controls 

the robot through 

artificial sensing, 

computer, and displays.  

The robot extends both 

the human sensing and 

manipulation capabilities. 

Robotics Surgery ( 

e.g. the Da Vinci™ 

Surgical System, 

Thieme 2002), 

underwater 

operation (Roman 

1993), etc. 

Type 3: 

Telerobotics 

System 

(an advance 

form of 

teleoperation 

system) 

 

 

 

 

 

An extension of Type 2, 

but the human and the 

robot are separated by a 

barrier (environment, 

distance, time, etc.) that 

prevents direct 

interaction.  The robot is 

normally equipped with 

high level of intelligence 

(such as safe navigation, 

path planning, etc.) while 

receiving higher-level 

instructions from the 

human instead of 

exercising continuous 

manual control as in Type 

1 and 2. 

Space exploration 

(Pedersen 2003), 

military operation 

(Gage 1995), 

automated security 

(Gage and Hower 

1994), search and 

rescue (Casper and 

Murphy 2003), etc. 

Type 4: 

Intelligent 

Mobility 

System 

 

 

 

A variant of Type 3, but 

the human and the robot 

are located closed 

together. 

Rehabilitation, such 

as intelligent 

wheelchair (Bourhis 

and Agostini 1998) 

or mobility support 

system (Wasson 

and Gunderson 

2001) 

Type 5: 

Work Partner 

 

 

 

Robot is equipped with 

powerful and versatile 

mechanisms to 

communicate, interact 

and cooperate with 

human in a natural and 

intuitive way. 

Robot as work 

assistants in 

factories, caretaker 

in home, etc. 

(Haegele et al. 

2001) 

Type 6: 

Autonomous 

Robot 

 

 

Robot replaces the human 

and performs the desired 

tasks autonomously. 

iRobot Roomba 

Intelligent vacuum 

cleaner, tour guide, 

etc. (Burgard 1998) 

 
Table 1. Different types of Human-Robot Systems 

 
To deploy robotics technology effectively in a HRS, it is necessary to have a thorough 
understanding of the work environment and the tasks to be performed by the robot as 
well as to understand the nature of interactions between the human and the robotics 
system. Depending on the application settings, the work environment can be designed and 
engineered to facilitate the interactions between human and robot. For example, in the 
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application of surgery (Thieme 2002), both the human and robot perform the tasks in a 
structured environment. On the other hand, in planetary surface explorations (Pedersen 
2003), the work environment is unstructured (i.e. partially or entirely unknown 
beforehand). In unstructured environments, it is not feasible to preprogram the tasks of 
the robot because the environment is only known after the actual execution of the task 
(Giralt et al. 1993). This poses a great difficulty to the interactions between human and 
robot when performing the task.   
Here, in order to facilitate HRI, the following requirements are considered: 
 
̌ - Methods of Control: This determines how the robot is being commanded and controlled 

in a HRS from the perspective of human interacting with the robot (Sheridan 1992; 
Murphy and Rogers 2001). This is discussed in Section 2.1. 

̌ Robot Autonomy: This determines the required degree of robot autonomy in a HRS 
from the perspective of robot interacting with the human (Jackson et al. 1991; Giralt et 
al. 1993). This consideration is directly related to the degree of human intervention (i.e. 
degree of control) required for the robot to perform a desired task.  This is discussed in 
Section 2.2. 

̌ Human-Robot Communication: This determines how human and robot communicate 
(Zhai and Milgram 1992; Klingspor et al. 1997; Fong et al 2001b; Green and Eklundh 
2003).  This consideration is discussed in Section 2.3. 

 
2.1 Methods of Control 
 

The roles of human in a HRS are application-specific (Sheridan 1992; Murphy and Rogers 
2001).  For example, the use of human’s adaptive characteristics as a controller has a long 
history of providing a cost-effective method of increasing system reliability.  The key 
question, over the last few decades, has been the role of human in the control of a system.  
Should he be an active, serial element in the control loop or should he be a supervisor 
monitoring the progress of the system (Curry and Ephrath 1976)?  As a human is a 
necessary system element in the control loop, effective control method is important to 
determine how the human and robot interact to increase the system performance.  HRI 
practitioners and researchers normally adopt certain models to guide the development of 
the system.   
Their modelling approach can be described by certain metaphors that characterise the 
roles of humans and that of the robots in the system.  All of these models are important, 
since each stresses a different aspect of HRI.  An understanding of the nature of 
interactions of these models can lead to the identification and classification of different 
control methods.  The roles and relationships of human and robot in the different types of 
HRS depicted in Table 1 are classified in Table 2. 
In Table 2, between the extremes of master-slave relationship to that of a fully autonomous 
robot, there is a spectrum of control options involving humans as supervisors, partners 
and teachers of the robots.  This is because, rather than wait for the results of research in 
achieving fully competent and autonomous intelligent systems, one way is to make use of 
the semi-autonomous control schemes (Sheridan 1992; Giralt et al. 1993) for humans to 
assist robots and to some extent robots to assist human (Bourhis and Agostini 1998; Fong 
2001; Wasson and Gunderson 2001).  The term “Semi-Autonomous Control” normally 
refers to an autonomous robot which can interact intelligently with a human, who might 
command, modify, or override its behaviour (Sheridan 1992; Giralt et al. 1993). 
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Classification of Roles and Relationships Descriptions 

Master-Slave (Type 1 and 2) This describes the traditional teleoperation 

system (Sheridan 1992).  The master-slave 

operation is the most basic form of 

control, where the human must always 

remain continuously in the control loop.  

The operating principle is simple; that is, 

human (master) has full control of the 

robot (slave), e.g. all the control decisions 

will depend on the human. When human 

stops, control stops. 

Supervisor-Subordinate  

(Type 3 and 4) 

Here, the robot does not simply mimic the 

human’s movements as in the Master-

Slave role.  Instead, the worker robot has 

the capability to plan and execute all the 

necessary intermediate steps, taking into 

account all events and situations with 

minimum human intervention.  On the 

other hand, the human as a supervisor 

divides a problem into a sequence of 

tasks, which the robot performs on its own 

(Sheridan 1992).  If a problem occurs, the 

human supervisor is responsible for 

finding a solution and devising a new task 

plan. 

Partner-Partner  

(Type 3-5) 

Here, robot is viewed as the human’s 

work partner and is able to work 

interactively with the human.  Both the 

human and robot are able to take 

advantage of each other skills and to 

benefit from each other’s advice and 

expertise (Bourhis and Agostini 1998; 

Fong 2001; Wasson and Gunderson 

2001).  As compared to the Supervisor-

Subordinate, if a problem occurs, the 

robot may provide the necessary 

assistance to find a solution (Fong 2001). 

Teacher-Learner  

(Type 3-6) 

This assigns the human a primary role of 

teacher or demonstrator and assumes that 

the learning robot possesses sufficient 

intelligence to learn from him (Nicolescu 

and Mataric 2001).  Once the robot is able 

to handle the task, it can replace the 

human completely or work together with 

the human depending on the context of the 

application. 

Fully Autonomous (Type 6) Here, the aim is to develop robotics 

system that has the capabilities to operate 

without any human intervention once the 

control is delegated to the robot (Giralt et 

al. 1993; Burgard 1998).  This implies that 

the human can only monitor but not 

influence the robot operation.  The only 

intervention is to stop the robot operation 

when a potentially serious error occurs. 

 
Table 2. Different roles and relationships of human and robot 

 
2.1.1 Semi-Autonomous Control 
 

The solution for the concept of semi-autonomous control comes from two main stems 
(Murphy and Rogers 1996): the teleoperation concept (Sheridan 1992) and the autonomous 
robot concept (Giralt et al. 1993).  According to Giralt et al. (1993), in the teleoperation 
concept, both human and machine interacts at the human operator station level.  On the 
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other hand, in the autonomous robot concept, the focus is to have on-board, in-built 
intelligence at machine level so that the robot can adapt its actions autonomously to the 
task conditions during HRI.  Although the semi-autonomous control concept may emerge 
from the two mentioned stems, the basic objective remains the same.  That is, in order to 
advance beyond simple human control of a robot there is a need to provide the robot basic 
competence and degree of autonomy (see Section 2.2).  This leads to a reduction in the 
degree of supervision by the human (Sheridan 1992; Giralt et al. 1993). 
Based on the roles and relationships shown in Table 2, Fig. 1 presents a hardware 
framework to illustrate the nature of the interactions between human and robot under 
different control modes in performing a task.  The human cannot perform the task 
directly, but must perform the task via two main interaction loops.  One loop defines the 
interaction between the human and the robot via an interface.  The second loop defines the 
interaction between the robot and the task via its sensors and actuators.  The 
“intermediary” that facilitates the interaction between these two loops is the control mode.  
Here, each control mode is viewed as a “task interaction mode” for human to interact with 
the robot in performing a task.  Fig. 1(a) represents traditional master-slave manual control 
system (Type 1).  Fig. 1 (b) represents indirect (i.e. with computer-aided) master-slave 
manual control system (Type 2).  Fig. 1(f) represents autonomous control for fully 
autonomous robot (Type 6).  Fig. 1(c) to 1(d) represents semi-autonomous control system 
(Type 3-5). 
Semi-autonomous control can be further classified into parallel type, serial type or a 
combination of both parallel and serial types (Yoerger and Slotine 1987).  In parallel type 
(Fig. 1(c)), both manual control and autonomous control operate at the same time.  The 
parallel type is normally referred to as Shared Control, an approach to incorporate the 
strength of the human and robot by letting them control different aspects of the system 
simultaneously in situations that required teamwork (Arkin 1991; Papanikolopoulos and 
Khosla 1992; Sheridan 1992; Hirzinger 1993; Lee 1993; Krotkov et al. 1996; Bourhis and 
Agostini 1998; Fong et al. 2001a; Wasson and Gunderson 2001; Hoppenot and Colle 2002; 
Bruemmer et al. 2003).  It is normally used in situations where the task is too difficult to be 
achieved by either the human (via manual control) or the robot (via autonomous control) 
alone.  
Shared control has been studied in different forms in both the domain of telemanipulation 
and teleoperation of mobile robot. The examples include position-compliance control 
(Hirzinger 1993; Lee 1993), vision-based perceptual guidance control (Papanikolopoulos 
and Khosla 1992; Hoppenot and Colle 2002), safeguarding control (Krotkov et al. 1996; 
Fong et al. 2001a; Wasson and Gunderson 2001) and behavioural control (Arkin 1991; 
Bourhis and Agostini 1998; Bruemmer et al. 2003).   
In one way or another, all approaches have been based upon some form of 
coordination/fusion strategy with respect to the human inputs and the robot own 
assessment of the environmental task.  As compared to manual control, shared control 
frees the human’s attention from directly controlling nominal activities while allowing 
direct control during more perceptually intensive activities such as manipulation of parts 
(e.g. Hirzinger 1993; Lee 1993) and navigation in cluttered area (e.g. Bourhis and Agostini 
1998; Bruemmer et al. 2003). 
In serial type (Fig. 1(d)), either manual control or autonomous control can be selected as 
the operating mode at any one time. The serial type is normally referred to as Traded 
Control, a mutually exclusive approach for human and robot to exchange control on some 
basis (Papanikolopoulos and Khosla 1992; Sheridan 1992; Lee 1993; Kortenkamp 1997; 
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Bourhis and Agostini 1998; Bruemmer et al. 2003).  The human and the robot can exchange 
control based on the demand of the task and the constraints of the environment due to 
goal derivations, addition/deletion of goals, modifications to the importance of 
goals/constraints, task completion, incompetence in performing the task and to veto 
dangerous commands/actions.   
Basically, there are two perspectives on how control can be traded between human and 
robot in this context. In performing a navigation task (Bourhis and Agostini 1998; 
Bruemmer et al. 2003), the human may intervene and take the control from the robot (e.g. 
to give a new movement direction) if it moves in the wrong direction. On the other hand, 
the robot may override undesired commands (e.g. decelerates or stops) from the human, if 
the commands issue by the human may cause damage to itself.  From this perspective, this 
control mode may allow both human and robot to “assist” each other in a partner-partner 
like manner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A spectrum of control modes ((Fig. (a), (b), (e) & (f) are adapted and modified from Sheridan (1992) 
and (Fig. (c) & (d)) are adapted and modified from Yasuyoshi et al. (1993)) 

 
In the combined configuration (Fig. 1(e)), both serial and parallel types interact to an 
extent, where the subtasks within each mode may also be shared and traded (Sheridan 
1992).  A classical example is the sharing and trading of control in the aircraft autopilot 
system (Billings 1997).  During the cruise phase, in order to engage the autopilot system, 
the pilot trades the control over to the controller.   
While the autopilot system holds the altitude, the pilot may adjust the heading, thereby 
sharing control at the same time. A classical example of the combine type is the 
Supervisory Control (SC) based on the Supervisor-Subordinate role by Sheridan (1992).  
Another recent example is the Collaborative Control (CC), an extension of SC based on the 
Partner-Partner model by Fong (2001) for the teleoperation of mobile robot.  According to 
Fong (2001), the essential difference between CC and SC; is it can adjust its method of 
operation based on situational needs so as to enable “fine-grained sharing and trading of 
control”.  Specifically, in a situation where the robot does not know what to do or is 
performing poorly, it has the option to give control (e.g., for decision making) to the 
human in that situation.  In other words, CC may enable work to be dynamically allocated 
to the robot or the human throughout the task performance.  A summary of the different 
types of control discussed above is presented in Fig. 2. 
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Figure 2. A classification of different types of control in a Human-Robot System 

 
2.1.2 Control Modes 
 

To facilitate varying degree of sharing and trading of control in a HRS, an approach is to 
develop a control architecture that provide a fine range of control modes (i.e. from the 
continuum of manual control to autonomous control presented in Fig. 1) for the human to 
interact with the robot.  The purpose of each control modes can be viewed as a strategy to 
realise particular operations (i.e. basic actions).   
Adoption of a certain control strategy is required for adequate interaction and appropriate 
intervention.  A control strategy can range from using abstract goal-oriented commands 
(i.e. high-level commands) to detail descriptions of the task.  The choice of which control 
strategy to use is related to the type of communication format used (see Section 2.3.2), 
communication bandwidth available (see Section 2.3.3) and the complexity of the task.  
One reason for using abstract goal-oriented control strategy is to reduce the 
communication content in situations when the communication delay is high.  Here, task is 
specified in a sufficiently high-level form (i.e. in terms of goals and constraints) where the 
robot performs the task on its own without constantly requesting guidance/assistance.  
Examples of high-level abstract goal-oriented commands are: follow the target, grasp the 
target, etc.   
Clearly, to perform the task specified in this manner, the robot must have the required 
autonomy (see Section 2.2) to respond to unseen circumstances.  In complex task, detailed 
descriptions of the task can be specified in a hierarchy manner based on the desired goal, 
e.g. by describing the robot direction, movement, traveling distance and so forth, in a 
stepwise manner. 
Basically, most of the proposed control modes in the literature (e.g. Hirzinger 1993; Lee 
1993; Kortenkamp et al. 1997; Bourhis and Agostini 1998; Bruemmer et al. 2003) have two 
important features: complementary and redundant.  The control modes are 
complementary in order to let both the human and the robot contribute according to their 
expertise.  The aim is to envisage a tighter cooperation, where the interactions are more 
mixed initiative to let both assist each other.  On the other hand, the control modes are also 
redundant so as to provide more options for the human to develop strategies (i.e. via a 
sequences of control modes) to perform the task.  
According to Callantine (1996), control modes have four basic characteristics: (1) 
Engagement Conditions – dictate when the mode will engage and encompass target 
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values that must be set so the mode can attain and/or maintain them, and the modes that 
are currently in use; (2) Disengagement Conditions - that govern when the mode 
disengages.  A mode may disengage when another mode is engaged, or when critical 
target value information no longer applies; (3) Operation Modifications – dictate the 
allowable modifications to operation that human or robot can make while the mode is 
engaged; (4) Control Properties – which include the specific set of parameters (e.g. speed, 
direction, etc.) that the mode controls, and the manner in which the mode controls them. 
 
2.1.3 Control Mode Transitions 
 

The characteristics of each control modes give rise to specific relationships between 
modes. Each control modes may have its own set of sub-modes, therefore the sub-modes 
of a given control modes can interact with the control modes of another.  Hence, an 
important facet of control modes is mode transition.  It determines when a particular 
control mode/sub-modes should be engaged or disengaged.  According to Degani et al. 
(1995), a mode transition can result from three types of input: human initiated, robot 
initiated, or mixed initiated (i.e. from both human and robot). 
An effective control mode transition will involve two important attributes, that is, 
monitoring and intervention.   
Monitoring can be viewed as a precondition for intervention (Sheridan 1992).  For 
example, once a task is delegated to the robot, the human must monitor the robot 
operation to obtain adequate feedback on its task performance so as to ensure that it is 
done properly.  Adequate feedback can be achieved via observation to inspection, such as 
checking the robot agenda, reasoning, plan, etc.  The observation can either be by direct 
viewing or mediated via a sensing device (see Section 2.3.1).  If the robot encounters 
problems during execution, the human monitoring the situation will step in to update the 
commands or provide guidance to the robot.  In cases where the errors cannot be 
recovered, the human may trade the control over, by stopping the operation and repairing 
the robot actions, e.g. via programming of new behaviours that are necessary to 
accomplish the task.  
To classify the different levels of intervention, the three-level paradigm proposed by 
Rasmussen (1983), namely skill-based, rule-based and knowledge-based, is adopted.  This 
paradigm is adopted because it is able to characterise both human and robot behaviours 
(Bourhis and Agostini 1998).  For example, when a problem arises, the human or robot 
may simply use its sensory-motor actions (i.e. the skill-based behaviour) to react to the 
situation, or in known situation, standard operation/reaction procedure may be applied 
(i.e. the rule-based behaviour).  On the other hand, if the situation is unknown to the 
human, he can use all his knowledge to evaluate the situation and make a decision from 
various goals (Sheridan 1992).   
This can also be used to describe robot intervention behaviour.  A good example is the 
application of remote operations where the robot situated at the remote environment is in 
a better position to give indication to the human if he executes the wrong commands 
(Bourhis and Agostini 1998; Fong et al. 2001b; Bruemmer et al. 2003).  Another instance is 
the robot may trade the control over and execute autonomously in situation such as loss of 
communication.   
Depending on the context of the situation, the intervention frequency can range from low 
to high. A problem in mode transition is the robot may not be able to keep up with the 
state of the world or of the task when the human intervenes and takes control over from 
the robot (i.e. during trading of control).  This can make it difficult and dangerous for the 
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robot to resume its operation once the task is delegated back to the robot by the human.  
This is because the robot’s model of the world and of the task is inconsistent with the real 
state of the world (Kortenkamp et al. 1999).  In addition, it is also difficult to know when 
control should be handed over to the robot and when it should be taken back (Sheridan 
1992).  To overcome this, the human and the robot must share some knowledge of the 
robot activities during task execution (Jackson et al. 1991).  The human must understand 
the behaviours and the intention of the robot, if he wants to intervene to modify/change 
the mode (Bruemmer et al. 2003).   
On the other hand, the robot must have the knowledge to interpret the human commands 
so as to respond to the control mode changes (see Section 2.2).  In addition it must 
constantly update its knowledge-base so as to keep up with the real state of the world 
(Kortenkamp et al. 1999).  This implies that it is important for both human/robot to 
develop a model of the interaction process based upon readily available interaction cues 
from each other so as to prevent mode confusion.  Mode confusion (Bredereke and 
Lankenau 2002) arises when the mental model of the human does not match the model of 
the robot during HRI. 
 
2.2 Robot Autonomy 
 

To respond to the range of control modes and facilitate mode transitions, the robot must 
have the required autonomy to interact with the human.  Here, the term autonomy is 
defined as “the ability of an agent (in this case, a robot) to act efficiently without any 
human’s intervention” (Braynov and Hexmoor 2002).  By stating that a robot is 
autonomous, it does not mean that the robot is thoroughly self-governing and capable of 
completing self-planning and self-control.  However it can operate with some known (to 
the human) level of capability in the absence of human supervision/management for a 
defined period of time (Jackson et al. 1991). 
Robot autonomy encompasses two basic attributes (Giralt et al. 1993): operating autonomy 
and decisional autonomy.  Operating autonomy refers to the basic operational capability 
(i.e. the technological considerations) of a physical robot.  For instance, to be 
“operational”, a mobile robot must be equipped with the following basic components: 
Adequate sensors for navigation (e.g. range sensors for obstacles avoidance, detection, and 
location sensors to determine its own location), communication transceivers to interface 
with the human interface via a communication link, embedded computation and program 
storage for local control systems (e.g. to interpret commands from the human interface 
and translate these into signals for actuation).  
Decisional autonomy refers to the level of intelligence imbued in a robot.  This includes an 
internal representation of the world and of the task, and the capabilities to act reasonably 
in an unstructured/semi-structured environment.  This encompasses the ability to reason 
about its own action, learn, and adapt to some extent on the basis of human feedback or 
from its own environment over a given period of time. 
 
2.2.1 Robot Autonomy versus Human Control Involvement 
 

Fig. 3 presents another view of describing the control modes in Fig. 1.  The basic idea is to 
set up a discrete scale of robot autonomy, which enables the human to interact with the 
robot with different degrees of human control involvement.  The horizontal axis 
represents the degree of robot autonomy, while the vertical axis corresponds to the degree 
of human control involvement. 
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Figure 3. Control modes based on robot autonomy and human control involvement in accordance with 
varying nested ranges of action of robot 

 
As shown in Fig. 3, the robot autonomy axis is inversely proportional to the human control 
involvement axis.  Within these two axes, the manual control mode is situated at the 
bottom-left extreme, while the autonomous control mode is located at the top-right 
extreme.  Between these two extremes is the continuum of semi-autonomous control.  
Within this continuum, varying degrees of sharing and trading control can be achieved 
based on varying nested ranges of action as proposed by Bradshaw et al. (2002a).  They 
are: possible actions, independently achievable actions, achievable actions, permitted 
actions and obligated actions and are described in Table 3.  Based on these five actions, 
constraints can be imposed so as to govern the robot autonomy within each level of 
control modes. 
 

Ranges of Actions Descriptions 
Possible Actions This refers to the theoretical 

maximum possible actions a robot can 

act with its given operating and 

decisional autonomy. 

Independently Achievable 

Actions 

This refers to a subset of possible 

actions that the robot could be 

expected to achieve independently 

with minimum human intervention. 

Achievable Actions This refers to a larger set of actions 

nested within the range of possible 

actions that could be achieved by the 

robot if it is able to work interactively 

with the human. 

Permitted Actions This refers to the actions nested 

within the range of possible actions 

that the robot is allowed to act (i.e. 

permitted by the human). 

Obligated Actions This refers to a subset of permitted 

actions that the robot is compelled to 

act. 

 
Table 3. Degrees of autonomy based on varying nested ranges of action (adapted from Bradshaw et al. 
2002a) 
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Another perspective of relating the degree of robot autonomy to human control is based 
on Sheridan’s (1987) ten-level formulation of robot autonomy presented in Table 4.  This 
formulation views the robot as a highly intelligent system that is capable of performing a 
whole task by itself in a given context.  Here, the degree of robot autonomy is scaled 
accordingly based on human “decision” and “approval” when performing the task.  
Through this, a fine-grained presentation of a continuum of control between the robot and 
the human can be achieved. 
 

1. Robot offers no assistance: the 

human perform the whole task 

2. Robot may assists by determining 

the multiple options of performing 

the task 

3. Robot assists by narrowing down 

the options to a few, which human 

need not follow 

4. Robot selects one action and the 

human may or may not approve 

5. Robot selects action and 

implements it if the human approves 

6. Robot informs and allows the 

human some time to veto task 

execution 

7. Robot performs the task and 

necessarily informs the human what 

it did 

8. Robot performs the task and 

informs the human what it did only if 

human explicitly requests 

9. Robot performs the task and 

informs the human what it did, if it 

decides human should be informed 

 

10. Robot does whole task 

autonomously 

 

 
Table 4. Ten-level formulation of robot autonomy (adapted from Sheridan 1987) 

 
2.3. Human-Robot Communication 
 

To ensure that the robot responds to the correct control mode when varying its own 
degree of autonomy, issues pertaining to Human-Robot Communication (HRC) is 
important.  In Human-Human communication, humans communicate with each other 
easily through the same language.  They can communicate effectively through electronic 
communication devices or face-to-face.  However, in the case of HRC, it is not that straight 
forward, because the human cannot communicate with the robot directly.  A well-defined 
communication channel is required to address the different modes of interactions between 
the human and the robot.  Some of the basic considerations in HRC are: methods of 
communication, communication format, communication bandwidth and the purpose of 
communication as discussed in the following sections. 
 
2.3.1. Methods of Communication 
 

This relates to how information is transferred from the human to the robot (or vice versa).  
This issue is controversial because the current state of HRC encompasses a spectrum of 
methods, such as Personal Computer (PC) based control interfaces, Personal Digital 
Assistant (PDA) as interface devices (Fong et al. 2001b) and haptic interface which enables 
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“drive-by-feel” (Fong et al. 2000) capability.  In addition, methods such as speech and 
gesture (vision), that is analogous to human form of communication, are also widely used 
(Fong et al. 2000).  The use of these methods is problem-specific or application-specific.  
However, regardless of the method used, effective communication exchange between the 
human and robot is paramount. 
 
2.3.2 Communication Format 
 

This pertains to the communication language used for information trading between the 
human and the robot.  Zhai and Milgram (1992) proposed the notion of “continuous” and 
“discrete” languages as two different coding mechanisms to describe human-robot 
information trading.   
According to Zhai and Milgram (1992), continuous language is used to represent 
information that is distributed continuously in quantitative or qualitative form, either 
along a spatial or a temporal dimension.  In the context of robot communicating with 
human, examples include sending of raw sensors data, video images, etc. (i.e. perceived by 
the human).   
In the context of human communicating with robot, examples include sending of 
continuous signal (e.g. via input devices such as joystick) to control the robot. On the other 
hand, discrete language is used to represent information which consists of separate or 
distinct elements.   
Examples of discrete language are signs, symbols, written text, etc. used for 
communicating with the robot.  As compared to continuous language, discrete language is 
normally used when the available information bandwidth is low or the communication 
delay is high.  However, this implies that the robot must have sufficient autonomy (see 
Section 2.2) to perform the task. 
A good example of using discrete language for HRC is through the use of dialog.  The 
concept of using dialogue has recently received considerable research attention.  Emerging 
from the research of mixed initiative artificial intelligent systems, it was subsequently 
adapted for HRC (e.g. Fong et al 2001b; Green and Eklundh 2003).   
An example of dialogue adapted from (Green and Eklundh 2003) in defining a task during 
human intervention is as follows: 
 
Human: Robot! 
Robot: What is the task? 
Human: Patrol Area A 
Robot: Patrol Area A? 
Human: Yes 
Robot: Going to Area A 
 
The idea of using dialogue is natural as it is very similar to human-human conversation.  
The purpose of confirming the human question (e.g. Patrol Area A?) is to ensure that the 
human has given the right command.  If a wrong command is given, the human has a 
chance to correct his mistake. Using “confirmation” helps to prevent errors (i.e. giving 
wrong commands) and allows the robot to assist the human to learn from the mistake.  
Although this method is intuitive, it is difficult to decide how and when the robot should 
provide assistance or request for help.  This issue is task specific and can only validate 
using human subject experiments. 
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2.3.3 Communication Bandwidth 
 

This relates to the amount of HRC required to perform a given task.  A good 
communication system is two-way (full duplex) with high data rate so that command data 
can be transferred from the human to the robot, and at the same time information of the 
robot can be conveyed back from the robot to the human.   
The amount of communication can be quantified by the information quantity, measured in 
bits, and the information transfer bandwidth, measured in bits per second, of the messages 
that must be communicated between the human and the robot (Jackson et al. 1991).  For 
instance, high communication bandwidth is normally required in manual control (such as 
teleoperation), because the human must control each movable function of the robot in real 
time. On the other hand, lower communication bandwidth is required in semi-
autonomous control because continuous control of the robot is not required (see Section 
2.1.1). 
 
2.3.4 Purposes of Communication 
 

This pertains to what type of information is shared and traded between human and robot 
during communication and what is the purpose of this information sharing and trading 
(Klingspor et al. 1997).  In performing a task, the human must provide the robot with 
accurate information about the task to be performed.   
On the other hand, the robot should communicate to the human any information 
regarding its state and provide a feedback of the current status of the task to allow him to 
evaluate the robot task’s successes and faults. In addition, it is important for the robot to 
convey any difficulty its encounters during the task (therefore needs human’s assistance).  
A simple illustration of information sharing and trading between a human and a robot in a 
fetch-and-carry task is conveyed in Fig. 4. 
The types of information presented in Fig. 4 are classified as follows (Scholtz 2002): task 
information, environment information and robot state information. In the context of 
human communicating with the robot, task information is the knowledge of the task as 
specified and described by the human to be performed by the robot (Fig. 4(a) & (e)). Task 
information is shared between the human and robot as follows: in Fig. 4(a) and (e), the 
human performs a communicative act ‘r’ (e.g. via any one of the communication method 
introduced in Section 2.3.1), addressed to the robot.   
Through this, the following information is accessible to the human and the robot: ‘r’ means 
task specification (in this case the object to be handled, its location and destination), which 
are necessary for the task execution. By describing the task, the human provides the 
necessary instructions to the robot, about how to specify the task.  Hence, the task 
information specified by ‘r’ is shared. 
In the context of robot communicating with the human, task information is the knowledge 
of the robot with respect to the overall task defined by the human during task execution.  
This includes the robot’s knowledge of its current location, its destination (Fig. 4(b)) and 
its next task execution decision (Fig. 4(d)).   
Environment information consists of information in the robot’s working environment (Fig. 
4(c)). Examples of environment information are the objects (static or dynamic) in the 
environment and the robot’s location relative to these objects.  Robot state information is 
the information pertained to robot’s status (e.g. speed, sensors status, health, etc.) and 
configurations (e.g. maximum sensing distance, available behaviours, etc.).  In Fig. 4(b) – 
(d), information is shared between the human and robot via monitoring the execution of 
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the tasks by the robot. Fig. 4(f) presents a scenario where information is shared and traded 
between the human and the robot. 

 
Figure 4. An illustration of information sharing and trading between a human and a robot in a fetch-and-
carry task 

 
In this scenario, the robot takes the initiative to inform the human about its problem by 
performing a communicative act ‘n’, and the human responds to this communicative act 
by performing a communicative act ‘o’.  Through this, the following information is 
exchanged between the robot and the human: ‘n’ means robot status (low fuel) and ‘o’ 
means “advises” (recharge and task specification).  Hence, the meanings of ‘r’ (from the 
robot) and ‘o’ (from the human) is shared and traded.  In fact, the robot may engage the 
human in communication at multiple task execution points to resolve differences in an 
entirely dialogue manner (see Section 2.3.2). 
 

3. Towards Sharing and Trading in a Human-Robot System 
 

It is proposed that a systematic approach to the design of a HRS can be based upon task 
allocation.  That is “the assignment of various tasks either to humans or robots that are 
capable of doing those tasks” (Sheridan 1997).  This perspective is based upon Fitts (1951) 
and is regarded by many as an essential component in systems engineering process 
(Sheridan 1997).  In this quantitative approach, the attempt is made to identify which 
comparable capabilities are humans and machines “better at”, and subsequently analyse 
(e.g. “matching”) their best capabilities with aspects of the overall task at hand.  This has 
come to be known as the “Fitts’ Men-are-better-at - Machines-are-better-at (MABA-
MABA) List”.  This list is often referred to as the first well-known basis for task allocation 
in the human factors literature (Hancock 1992; Sheridan 1997).  Although this approach 
has gone though a sequence of different instantiations, e.g. published by Bekey (1970) and 
Meister (1982), the fundamental principle does not vary (Hancock 1992; Sheridan 1997).  
That is, the input for this approach is typically a list of abstract functions the HRS needs to 
achieve and the output is typically the same list categorised in terms of whether the 
human, robot, or some combination should implement the function (Hancock 1992; 
Sheridan 1997). 
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3.1 A Cooperative Human-Robot System 
 

Although the MABA-MABA approach provides a formal and rational way for making 
allocation decisions, it has been criticised by many researchers (Hancock 1992; Sheridan 
1997).  The main concern is that there are large number of possible interactions between 
humans and robots for consideration, not simply just “human versus robots” (Bradshaw et 
al. 2002b; Hancock 1992; Jordan 1963; Sheridan 1997; Woods 2002).  To develop a 
cooperative HRS, human and robot should be seen as the unit of concern rather than 
dichotomising them into separate unit (Jordan 1963; Hancock 1992; Sheridan 1997; 
Bradshaw et al. 2002b; Woods 2002).  Jordan (1963) suggested that allocations of tasks 
between human and machines would only become useful if humans and robots were 
looked at as complementary, rather than comparable as in the MABA-MABA approach.  
He argued that this view is the key to optimise tasks allocation between human and robot.  
Sheridan (1989) shared the same view and stated that: “to cast the problem in terms of 
humans versus robots is simplistic, unproductive and self-defeating.  We should be 
concerned with how they can cooperate”.  Bradshaw et al. (2002b) purport that the point is 
not to think so much about which tasks are best performed by humans and robots but 
rather how tasks can best be shared and traded by both humans and robots working 
together. 
 
3.1.1 A Complementary View of Task Allocation 
 

To provide a complementary view of how task can be allocated between human and 
robot, Woods (2002) proposed another perspective that does not concentrate on human 
shortcomings, called “Un-Fitts List”.  This is presented in Table 5 as summarised by 
Hoffman et al. (2002). 

Robots 

Are constrained in that: Need Human to: 

i Sensitivity to context is 

low and is ontology-

limited 

i Keep them aligned to 

context 

ii Sensitivity to change is 

low and recognition of 

anomaly is ontology-

limited 

ii Keep them stable given 

the variability and 

change inherent in the 

world 

iii Adaptability to change is 

low and is ontology-

limited 

iii Repair their ontologies 

iv They are not “aware” of 

the fact that the model of 

the world is itself in the 

world 

iv Keep the model aligned 

with the world 

Humans 

Are not limited in that: Yet they create robots to: 

v Sensitivity to context is 

high and is knowledge-

and attention-driven 

v Help them stay informed 

of ongoing events 

vi Sensitivity to change is 

high and is driven by the 

recognition of anomaly 

vi Help them align and 

repair their perceptions 

because they rely on 

mediated stimuli 

vii Adaptability to change is 

high and is goal driven 
vii Effect positive change 

following situation 

change 

viii They are aware of the 

fact that the model of the 

world is itself in the 

world 

viii Computationally 

instantiate their models 

of the world 

 

Table 5. Woods’ Un-Fitts List (adapted from Hoffman et al. 2002) 
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From the “Un-Fitts List”, the important themes are the issue of sensitivity to limited 
ontologies and changing context, and how human can alleviate these deficiencies in 
robots; and also the emphasis on how robot can extend the capabilities of human and 
relieves the human load/task through appropriate task sharing (Bradshaw et al. 2002b).  
In other words, it looks into the possibilities of letting “human assist robot” (depicted in 
Table 5: i. to iv.) and “robot assist human” (depicted in Table 5: v. to viii.), which are 
important for understanding what can be shared and traded between human and robot in 
a HRS. From the “Un-Fitts List”, the important themes are the issue of sensitivity to 
limited ontologies and changing context, and how human can alleviate these deficiencies 
in robots; and also the emphasis on how robot can extend the capabilities of human and 
relieves the human load/task through appropriate task sharing (Bradshaw et al. 2002b).  
In other words, it looks into the possibilities of letting “human assist robot” (depicted in 
Table 5: i. to iv.) and “robot assist human” (depicted in Table 5: v. to viii.), which are 
important for understanding what can be shared and traded between human and robot in 
a HRS. 
 
3.1.1.1 Role of Ontology in Sharing and Trading 
 

The “Un-Fitts List” shows that to allow human and robot share and trade effectively, they 
must adopt/share common ontologies.  This implies that to establish what will be 
communicated during sharing and trading, they must share the same representation of the 
knowledge domain.  There exist different kinds of ontology definitions in the literature, 
depending on the academic background of the researchers, e.g. from the field of 
philosophy, AI, knowledge engineering and so forth.  In philosophy, ontology refers to the 
study of the kinds of things that exist.  In AI, ontology refers to “the way in which a 
system conceives of the world external to itself, the internal representation of what is and 
what happens in the world” (Messina et al. 2001).  In this field, it is used as basic construct 
in planning, learning, problem-solving, decision-making and communicating.  A primary 
goal is to make knowledge sharable, by encoding domain knowledge using a standard 
vocabulary based on the ontology (Chandrasekaran et al. 1999). 
A good reference that provides a vigorous analysis of the term “ontology” is from Guarino 
and Giaretta (1995).  Here, the following definition for ontology is adopted: an explicit 
account or representation of some part of a conceptualisation (adapted from Guarino and 
Giaretta 1995).  Generally, a conceptualisation is a world view/model corresponding to 
the working domain.  In the context of sharing and trading between human and robot in a 
HRS, ontology is viewed virtually as the manifestation of a same perception while 
performing a task (e.g. same world view/model) that is agreed between the human and 
robot.  Such “agreement” facilitates accurate and effective communication of task, 
environment and robot state information (see Section 2.3.4), which in turn facilitates the 
process of sharing and trading. 
 
3.1.2 Task Sharing and Trading 
 

An important observation from Section 3.1.1 is the trend of task allocation to task sharing 
and trading.  This raises the next concern that is how to achieve cooperation via task 
sharing and trading.  A good perspective of understanding this is from Sheridan (1992).  
He invoked the concepts of sharing and trading as distinct modes for task interaction 
between human and robot.  These are further broken down into the sub-categories of 
extend, relieve, replace and backup and are conveyed in Fig. 5. 
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Figure 5. The notions of sharing and trading between human and robot.  H the human, R the robot and L is 
the load or task (adapted and modified from Sheridan (1992)) 

 
Sheridan (1992) states: In sharing - “The robot can extend the human’s capabilities beyond 
what he can achieve alone or it can partially relieve the human, making his job easier”; 
and in trading – “both the human and the robot can backup each other in cases where they 
fails, or the robot can replace him completely.”  These four simple interactive modes 
(extend, relieve, backup and replace) position the human and the robot in a number of 
situations where the division of task can be decided and deliberated.  Hence, sharing 
involves extending the human capabilities and/or relieving the human, while trading 
involves letting both the human and the robot backup each other and/or letting the robot 
replace the human. The cooperation of human and robot can adopt different relative 
situations based on the above task interaction modes for them to share and trade 
control/autonomy (see Section 2.1.1 and 2.2.1); running from manual control (i.e. human 
replace robot) to autonomous control (i.e. robot replace human).  Here, “control” and 
“autonomy” are placed within the context of a task representation.   
 
 
 
 
 
 
 
 
 
 
Figure 6. A taxonomy of task sharing and trading 

 
They are the basic elements that human and robot can share and trade with each other 
respectively to achieve task sharing and trading.  If the robot takes the initiative to 
share/trade its autonomy, it is called an implicit task sharing and trading.   
On the other hand, if the human takes the initiative to share/trade control, it is called an 
explicit task sharing and trading.  However, there are also some instances where the 
human takes the initiative to share/trade control and the robot aid in selecting the desired 
control mode, in this case it is called assisted explicit task sharing and trading.  If the roles 
are reversed, it is called assisted implicit task sharing and trading.  The above discussion is 
summarised in Fig.6. 
 
3.2 Defining Sharing and Trading in a Human-Robot System 
 

Given Section 3.1, the basic activities within a HRS may consist of: 
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• Desired task as input task, IT 

• Task allocated to the human, TH  

• Task allocated to the robot, TR 

• Output performance of both the human and robot, Op 

• Task sharing and trading between human and robot, TS&T 
These basic activities may be related as shown in Fig. 7. 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 7. Activities within a Human-Robot System 

 
In Fig. 7, it is suggested that there are three main paths to describe the activities within a 
HRS.  The first path defines the input tasks (IT) allocated to either the human (TH) or the 
robot (TR).  The second path represents the reallocation of task based on the output of the 
human-robot performance (OP).  The reallocation can be based on the detection of ‘off 
normal’ or unexpected events.  The third path, which is the focus of this paper, defines 
task sharing and trading (TS&T) between human and robot.  That is, sharing and trading 
are based on current changing skills, intellectual capabilities and performance of both 
human and robot.  This path is classified into sharing and trading of control, autonomy 
and information respectively to depict what can be shared and traded between the human 
and robot during TS&T. Here, it is defined that for human to perform TS&T with the 
robot, he must select the right control mode (see Section 2.1.2) to share and trade control 
with the robot.  On the other hand, for robot to perform TS&T with the human, it must 
adjust to the right degree of autonomy (see Section 2.2.1) so as to respond to the selected 
control mode (i.e. sharing and trading its autonomy with the human).  In both cases, to 
perform the appropriate actions (i.e. changes in control and robot autonomy), it invariably 
involves sharing of information (see Section 2.3.4).  If the human and robot have different 
perceptions regarding the shared information, they must trade information to clarify any 
doubt before actual actions can be performed (see Section 2.3.4).  In short, information 
sharing and trading is to find out what the other party is doing, what the intention of the 
other party might be and to resolve any conflict if it arises during task execution.  To 
provide a clear roadmap, a classification of the above basic elements (i.e. control, 
autonomy and information) is presented in Table 6.  They are classified in accordance to 
their associated attributes and features based on the discussion in Section 2. 
Identifying what can be shared and traded above provides the basic construct for looking 
into the possible types of sharing and trading strategies to be implemented in a HRS.  The 
basic approach adopted here is based on the perspective of how to let human and robot 
assist each other as depicted in Section 3.1.2.  A good guide to envisage this perspective is 
the Un-Fitts List (see Section 3.1.1, Table 5).  To understand how human and robot share 
and trade based on this perspective, it might be useful to understand the interactions or 
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consequences of the human-robot team actions.  In teamwork (Bradshaw et al. 2002b), 
where there is a collective responsibility, it is important to understand the team’s collective 
actions.  This then boils down to cooperation activities between team members.  For 
human-robot team, the considerations are no longer just on robotic development but 
rather more complex interactive development in which both the human and robot exist as 
a cohesive team.  To achieve such configuration, the role of the robot should be seen as an 
assistance or partner (see Section 2.1, Table 2).  In the context of HRI, if the robot is merely 
envisaged as an autonomous entity (merely as a tool) capable of replacing a human, then 
the role of the human will only be to serve the need of the robot and to compensate its 
inadequacies.  As compared to the latter case, the former is potentially much richer for the 
study of sharing and trading in HRI as it is aimed to develop “cooperative robot” to work 
closely with human, i.e. a paradigm of human assists robot – robot assists human. 
 
 

Element Attribute Feature 
manual-control … autonomous 

control 

complementary and redundant Mode 

(see Section 2.1.1) Characteristics: engagement 

conditions, disengagement 

conditions, operation modifications 

and control properties 

Strategy 

(see Section 2.1.2) 

abstract description … detail 

description 

Transitions 

(see Section 2.1.3) 

Human initiated, robot initiated, 

mixed initiated 

Monitoring 

(see Section 2.1.3) 

observing … inspecting 

Purpose: commands … guidance … 

repair … stop 

Level: skills, rules-based and 

knowledge-based 

 

Intervention 

(see Section 2.1.3) 
Frequency (situation-dependent): 

low … high  

Type  

(see Section 2.2.2) 

operating autonomy and decisional 

autonomy 

Variability  

(see Section 2.3.2) 

fixed autonomy … adjustable 

autonomy 

Based on varying 

nested ranges of 

actions  

(see Table 3) 

possible actions, independently 

achievable actions, achievable 

actions, permitted actions and 

obligated actions  

 

Degree 

 

human maximum autonomy … 

robot maximum autonomy (e.g. 

Sheridan’s ten-level formulation of 

autonomy, Table 4) 

continuous … discrete 

quantitative … qualitative 

Source  

(see Section 2.3.2) 

Spatial … temporal 

Transfer  

(see Section 2.3.3) 

Bandwidth: low … high 

 

Type  

(see Section 2.3.4) 

Task information, environment 

information and robot state 

information 

 
Table 6. A classification of the basic elements in TS&T 

 
3.2.1 A Paradigm of Human Assists Robot – Robot Assists Human 
 

A basic consideration of this paradigm is that both the human and robot need to be aware 
of and understand one another’s actions and intentions in order to assist each other.  Here, 
we assume that both the human and robot share a common ontology (see Section 3.1.1.1) 
in HRC.  To enable the robot to assist human, the robot needs to develop a model of the 
interaction process based upon readily available interaction cues from the human.  This is 
to prevent any confusion during mode transition (see Section 2.1.3).  Just as robots need to 
build a model to ensure effective interaction, it is also important for human to develop a 
mental model regarding the overall operation of a HRS (e.g. the operation 
procedures/process, robot capabilities, limitations, etc.), to operate the system smoothly.  
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A good guide in ensuring that the human is in effective command within a scope of 
responsibility is the principles from Billings (1997, pp. 39-48): the human must be involved 
in the interaction process, he must be informed of the ongoing events (to provide as much 
information as the human needs from the robot to operate the system optimally), he must 
be able to monitor the robot or alternatively, other automated processes (i.e. information 
concerning the status and activities of the whole system) must be able to track/know the 
intent of the robot in the system.   
A good way to let the human know the intention of the robot is to ensure that, the 
feedback from the robot to the human indicates the “reason” for the invocation or 
initiation action during HRC (see Section 2.3.4, Fig. 4(f)). This implies that if the robot 
wants to override the human commands, the robot must provide clear indication for the 
human to know its intention to prevent any ambiguities.  For example, during manual 
teleoperation, when the robot senses that it is in danger (e.g. colliding into an obstacle), the 
robot may stop the operation and send a feedback to warn the human in the form of a 
simple dialog as depicted in Fig. 8 (Ong et al. 2004). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. PDA dialog feedback (adapted from Ong et al. 2004) 

 
3.2.2  Sharing and Trading Strategies 
 

An intuitive approach of adopting the human assists robot – robot assists human 
paradigm for implementing sharing and trading strategies is based on the invocation of 
specific task events.  It is possible to envisage a range of invocation events in accordance to 
the application tasks and invoke them based on the available information in the HRS.  An 
advantage of this approach is that it directly addresses when sharing and trading occurs.  
From the extreme of initial task delegation to task completion, a spectrum of events can 
occur during task execution.   
Within this spectrum, three types of events to invoke or initiate a TS&T process are 
distinguished.  The first is termed goal deviations where the TS&T process would be 
invoked by human intervention.  This highlights how human assists robot.  The notion of 
goal here does not necessarily refer only to the goal of achieving a specific task, but also to 
the goal of attaining the overall task of the HRS.  The word deviation refers to the 
departure from normal interactions between the robot and its task environment resulting 
in the robot being unable to achieve the goal.  This also includes abnormalities arising 
during task execution.  This may be due to either unforeseen changes in the working 
environment that cannot be managed by the robot or the robot itself; where an undesirable 

 

Robot stops the operation and sends a 

feedback to warn the human.
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functional mapping from perception to action causes the robot to “misbehave” (e.g. due to 
sensing failures). 
The second event is evolving situation in which the TS&T process would be invoked by 
the robot to veto human commands.  This highlights how robot assists human.  The types 
of robot veto actions can be loosely classified into prevention and automatic correction.  
Prevention implies that the robot will only impede the human actions but make no 
changes to it.   
The human is responsible for correcting his own actions.  An example is when the robot 
simply stops its operation in a dangerous situation and provides the necessary feedback to 
the human to rectify his commands.  On the other hand, automatic correction 
encompasses prevention and rectification of human commands simultaneously.  
Depending on the task situation, the robot may or may not inform the human how to 
correct his actions.   
For example, to prevent the human from driving into the side wall when teleoperating 
through a narrow corridor, the mobile robot maintains its orientation and constantly 
corrects the side distance with respect to the wall to align with it.  In this case, the human 
may not be aware of this correction action and is able to drive seamlessly through the 
corridor.  Based on Sheridan’s ten-level formulation of robot autonomy (see Section 2.2.1, 
Table 3), both prevention and automatic correction are positioned at level seven or higher.  
This is because it is the robot that judges whether the situation is safe or unsafe, as the 
human is unable to judge.  
Finally, the third event is when both human and robot explicitly request assistance from 
each other.  In such an event, the TS&T process between the two is mixed initiated, where 
each one strives to facilitate the individual activities in accordance to the task situation. 
 

4. Discussion and Conclusion 
 

To exemplify the concept of sharing and trading discussed in the preceding sections, a 
case study based on the application of security is presented to illustrate its working 
principles on the design and development of a HRS. 
 
4.1 Application Case Study: An Automated Security HRS 
 

Security has always been the fundamental issue in our present society to ensure the safety 
of our assets.  In a typical security system, surveillance and intrusion are two essential 
elements.  Normally, a range of different physical security devices and electronics 
surveillance systems are combined to automate surveillance and intrusion detection.  
Physical protection is provided by human security guards, security containers, locks, 
vaults and structural barriers such as multiple layers-fences, walls, and doors.  Electronics 
surveillance is provided by interior and exterior intrusion detection sensors, access 
controls, closed circuit television (CCTV), alarm systems, lighting system and monitoring 
system.  The key to a good physical security system is to have the above devices and 
systems tightly integrated and provide sufficient security controls and operating 
procedures to ensure safety of the assets. Although most of the security tasks, such as 
surveillance and intrusion detection, have been automated, human security guards are still 
required to perform physical security tasks such as patrolling and inspection in areas that 
cannot be covered by the security system.  Using human security guards is not as efficient 
as most security tasks are very mundane most of the time hence automating them is highly 
desirable. For example, human security guards are required to be under constant alert 
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while patrolling to look out for any intrusion or anomalous conditions such as fires.  This 
tiring nature of the job is highly undesirable as it will cause fatigue and boredom.  The 
current trend for job allocation in our present knowledge-based economy is to allocate 
high-level tasks such as unstructured decision-making to the humans while assigning 
automated machines to handle the low-level tasks that are repetitive and dangerous.  This 
current trend is also applicable to the security system if it is automated.  Therefore, one 
possible way to enhance the current security system is to automate the undesirable 
security tasks by replacing the human security guards with mobile robots (Gage and 
Hower 1994). 
 
4.1.1 Task Allocation 
 

The incorporation of mobile robots will change the operating principles of the 
conventional security system.  Security tasks (i.e. IT) such as physical patrol and 
inspection in large premises originally performed by humans will be replaced by mobile 
robots (i.e. TR).  From the control station, a human supervisor monitors, plans and 
supervises the operations of the mobile robots remotely (i.e. TH).  A comparatively smaller 
number of human agents (i.e. human security guards) will render appropriate support to 
the robot agents at the remote site when necessary (i.e. TH).  This scenario is reflected in 
Fig. 9; a testbed developed in our Robotics Research Centre (RRC) for studying HRI in a 
working environment that comprise of both humans and robots working together under 
human supervision (Ong et al. 2004).  In accordance to the classification in Table 1, this 
testbed is a Type 3 HRS.  The detail implementation of the testbed is discussed in Ong et 
al. (2004).  For the purpose of this study, only the integration aspect between the human 
and robot is discussed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Block diagram of the HRI testbed (adapted from Ong et al. 2004) 

 
4.1.2 Integration of Human and Robot 
 

The process of integrating human and robot requires careful considerations from multiple 
perspectives.  Possible considerations to this are the three basic requirements and issues 
pertaining to HRI as depicted in Section 2.  They are method of control, robot autonomy 
and HRC that were discussed in Section 2.1, 2.2 and 2.3 respectively.  Here, the primary 
approach of integrating human and robot is to consider how they shared and traded based 
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Figure 10. Examples of a range of interaction modes in the HRI testbed 

on the paradigm of human assists robot – robot assists human as discussed in Section 3.  
Possible implementations of the sharing and trading strategies can be based on the 
guidelines and methods outlined in Section 3.1 and Section 3.2 respectively.  The following 
section discusses these topics in more details. 
 
4.1.1.1 TS&T between Human and Robot 
 

The security task, e.g. “patrol area A”, implies that the mobile robots must have the 
capabilities to perform the followings sub-tasks: navigation (including localisation), path 
planning, and intruder detection, to name a few.  The main consideration is to achieve 
TS&T between human and robot.  To support TS&T, the approach required is to develop a 
range of interaction modes from manual to autonomous for different situations (see 
Section 2.1).  This is depicted in Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

As shown in Fig. 10, within the continuum of sharing and trading modes, two primary 
modes are defined.  They are exclusive shared and traded modes to let human assist robot 
and robot assist human respectively.  An important facet of these two modes is the ability 
of the robot to inform the human in situations where adherence to guidance would 
interfere with the pursuit of current goals, rather than blindly following the human’s 
direction.  Within these two modes, there exists a range of sub-modes using a combination 
of both arbitration and command fusion techniques for providing a finer gain of TS&T. 
How and when these sub-modes are triggered is based on the TS&T strategies outlined in 
Section 3.2.2. 
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Figure 11. An application-driven framework for the design and development of a HRS 

4.2 Conclusion 
 

Sharing and trading is important as it is an ubiquitous phenomenon in most robotics 
applications.  As long as there are humans and robots working together within an 
application, there will always exists some form of sharing and trading among them.  
Therefore, this concept is adopted to address the issues of HRI in a Human-Robot System 
(HRS).  Based on the discussion in the preceding sections, a framework is presented in Fig. 
11 to conclude our approach of using the concept of sharing and trading for the design 
and development of a HRS.  One of the major properties of our framework is to take into 
account the requirements of the human (Section 2.1), robot (Section 2.2), and the 
interactions between them (Section 2.3). This framework comprises of three phases: 
application requirements and analysis phase, human and robot integration phase, and the 
implementation and evaluation phase. The two main components in the application 
requirements and analysis phase, human and robot are discussed in Section 2.1 and 2.2 
respectively, which are essential inputs to understand how human and robot share and 
trade.  The essential inputs are the characteristics of human and robot.  This encompasses 
the human and robot roles, responsibilities, robot functional requirements and their roles 
interactions in accordance to the task specifications.  For the human and robot integration 
phase, the analysis of sharing and trading between human and robot are discussed in 
Section 2.3 and 3, which are in turn provides essential guidelines and methods for the 
design and development of a target HRS. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reason of for outlining the framework in this way is to highlight the difficulties 
involved in this area.  For example, to conduct research in this area, researchers need to 
deal with technical challenges such as achieving intelligent control, mobility and other 
special requirements of the robot while providing a seamless interaction between the 
human and the robot to enable useful communication exchanges in an effective and 
efficient way on a variety of levels.  As discussed in Section 2, the recent advances in 
robotics, AI, and other disciplines have made robots more applicable to our current society 
thereby increasing the opportunities for humans and robots to work together in various 
ways.  Hence, it is important that the design and development of a target HRS is followed 
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by a contemporary in-depth understanding and knowledge of the related consequences 
and implications (i.e. scientific, technical, social and economic implications).  In 
accordance with the approach and the conceptual framework outlined in this paper, the 
concept of sharing and trading may be able to shed some light on some of the related 
consequences and implications for addressing the fundamental issues pertaining to HRI in 
a holistic manner. 
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