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1. Introduction 

Background: Fresh concrete, fly ash and mining slurries are all frictional-visco-plastic fluids. 
Fresh concrete flow in Tremie pipes is used to control concrete flow rate and minimise 
bleeding and dilution when concrete is poured into deep submerged excavations for pile 
foundation construction. Slurries with very fine aggregates are used to backfill underground 
voids and mines to prevent subsidence and surface structural damage. Backfilling and 
injection of granular materials into mining induced voids, separated beddings and cracks, as 
either diluted slurry or concrete paste, is widely used to control subsidence. As a viable 
environmental solution, mine waste and rejected materials from underground coal seams 
are used in both backfilling and injection mine operations. For example, during longwall 
mining the grout slurry is pumped into the separated beds of the fractured rock mass 
through a pipeline connected to a central vertical borehole, which is drilled deep into the 
inter-burden rock strata above the coal mine seam. Either as dilute slurry or thick paste or 
cake, the fill material normally needs to travel a significant longitudinal distance either in a 
channel, a tremie pipe, a long pipeline, or radially in a disk shaped crack in the rock mass. 
An undesirable blockage can occur in the central borehole, in the crack or in the 
transportation channel or pipeline system when the slurry velocity falls below a certain 
critical threshold velocity, indicating a material phase change from cohesive-viscous to 
cohesive-frictional. This chapter presents complete analytical solutions of the required 
pump pressure versus fluid volume rate for such multi-phase fluids, which are categorised 
as frictional Bingham-Herschel-Bulkley fluids. The theory derived can be applied to flow of 
such fluids in pipes, disks and open channels. Furthermore, general analytical solutions 
have been developed for such fluids in terms of velocity and pressure gradients and velocity 
and pressure, as a function of flow length (e.g. pipe length, disk radial distance, or channel 
length) from which special and familiar equations for simpler fluids are derivable by 
mathematical reduction of the general equations. The formulation is distinct in considering 
many new aspects including: variable shear parameters rather than fixed values; inclusion 
of total nonlinear behaviour; and, implementation of a friction function to mimic behaviour 
of the depositing and consolidating stiff slurry or paste, which can cause a significant 
pressure rise as a result of the increased shear resistance.  
Bingham-Herschel-Bulkley fluids: Recent laboratory and field experiments on mine-backfill 
fluids, slurries, cements, pastes and concretes proved their wide range of shear resistance 
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and complex behaviour in response to shearing necessitating development of a general, 
nonlinear, cohesive, viscous, frictional, nonlinear, non-Newtonian model of shear stress 
versus shear strain rate, as an extension to the classical Bingham-Herschel-Bulkley fluid [1-
9]. Viscous plastic behaviour of such fluids are further simplified or idealised as a reduced 
or special case of the general nonlinear case. In practice, and for various engineering 
applications, this generic shear stress function is central in all mathematical formulations to 
describe fluid flow as a function of pressure gradient. Examples of such applications are 
flow of slurry, paste and concrete through pipes and tremie pipes and channels for fluid 
transportation and testing purposes, flow through disks, cracks, joints and rock fractures for 
injection and backfilling purposes. As a first approach, the shear stress vs. strain rate 
relation may be idealised by a simple linear function, the so called viscous-plastic Bingham 
line, which may be derived from a simple linear regression analysis of laboratory 
experimental data [4-5]. The value of the shear strength function at zero shear strain rate, i.e. 
plastic yield strength (also called cohesion), and slope of the linear curve (viscosity) are two 
important parameters of the fluid property in the simple linear idealised case.  
Grouts and slurries: The large cavern created by an underground mine may eventually lead to 
failure of the overburden rock, propagating layer by layer to the surface, resulting in 
substantial ground surface subsidence [10-13], as schematically shown in Figure 1(c). As a 
major potential hazard, mining induced subsidence significantly affects mining costs where 
major surface structures and natural environment need to be protected, e.g. mining under 
river systems, gorges, cliffs, power lines, pipelines, communication cables, major roads and 
bridges, and other significant surface facilities [11]. Remedial measures to manage damage 
caused by subsidence can often be very costly with potentially damaging impacts and 
irreversible consequences. Backfilling and injection of granular materials into the mining 
induced voids, separated beddings and cracks, as either diluted slurry or concrete paste, is 
widely used to control mine subsidence. Grouts and slurries made of mine and power plant 
wastes and rejects are viable environmental backfill solutions to both ground stability and 
mine waste management problems [12]. Like concrete paste, the flowing slurry can be 
categorised as a generally nonlinear viscous cohesive (Bingham Herschel-Bulkley) fluid [5-11]. 
However, in mining applications, to reduce ground surface subsidence and control the 
propagation of the overburden movement to the surface, the solid particles in the injected 
slurry must deposit in the bed separation gaps of the coal seam over-burden strata, e.g. in 
longwall mining the grout slurry is pumped into the separated beds of the rock mass from a 
batching plant source through pipelines connected to a central vertical borehole, which is 
drilled deep into the over-burden rock above the coal seam (Figure 1(c)). Flow blockage can 
occur in the injection system, when the slurry velocity falls below a certain critical threshold 
velocity. The stiffening, consolidating non-flow slurry can generally be categorised as a 
frictional cohesive soil [14]. In other words, a change of material phase from cohesive-viscous 
to cohesive-frictional will occur. Using a smaller scale model, this field injection practice has 
been simulated at the QCAT laboratory of the Commonwealth Scientific & Industrial Research 
Organisation (CSIRO) in Brisbane, Australia, to study the influence of various grout injection 
parameters by pumping slurries through various pipes of different sizes and diameters and for 
different applications (Figures 1-2). As an important industrial application, grout injection into 
the inter-burden strata is used as a modern technology to control and reduce coal mine 
subsidence [10-13]. Slurry mixes of coal mine and power plant waste materials, e.g. fly ash or 
any other coal wash rejects, are injected back into the inter-burden rock strata during longwall 
mining [4-5]. To reduce subsidence and control inter-burden strata movement, the injected 
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slurry solid particles must deposit in the opened strata bed separation gaps or cracks before 
crack closure [10-13]. The mechanics of non-Newtonian fluids flowing between parallel disks 
is a classical fluid mechanics problem that has been studied by a number of researchers in the 
past for their specific problems of interest [3-4].  
 

  

(a) Concrete flow testing     (b) Concrete tremie pipe flow (c) Slurry flow in pipe and strata 

Fig. 1. Various applications of viscous slurry and paste fluids: (a) channel flow for 
workability and consistency testing of concrete; (b) Concrete termie pipe flow into 
submerged foundations; (c) multi-phase slurry flow in pipes and fractured rock strata for 
void backfilling.  

Concrete: Fresh concrete flow through Tremie pipes is used to control concrete flow rate and 
minimise segregation, bleeding and dilution when poured or placed into deep submerged 
excavations for pile foundation construction. Slurries with very fine aggregates are used to 
backfill underground voids and mines to prevent subsidence and surface structural damage. 
Backfilling and injection of granular materials into the mining induced voids, separated 
beddings and cracks, as either diluted slurry or concrete paste, is widely used to control coal 
mine subsidence. As a viable environmental solution, mine waste and rejected materials 
from underground coal seams in the form of either cementitious or non-cementatious grout, 
are used in both backfilling and injection mine operations. For example, during longwall 
mining the grout slurry is pumped into the separated beds of the rock mass through a 
central vertical borehole, which is drilled deep into the inter-burden rock strata above the 
coal seam. Either as dilute slurry or thick paste or cake, the fill material normally needs to 
travel a significant distance in either a long pipeline, or radially in a disk type crack 
formation of the rock mass. An undesirable blockage can occur in the central borehole, in the 
disk gap or in the transportation channel or pipeline system, when the slurry velocity falls 
below a certain critical threshold velocity, indicating a material phase change from cohesive-
viscous to cohesive-frictional. Indirect index measure of concrete viscosity and plastic yield is 
made via an L-box channel measuring workability and flowability of tremie pipe concrete. The 
L-box test, originally developed for super-workable concrete [6-9] is a relatively newly 
introduced concrete test to measure the consistency, workability and flowability of a tremie 
pipe concrete, hence, it is indirectly related to concrete plastic yield and viscosity [6]. Concrete 
is poured in the rectangular vertical chimney part of the L-box and is allowed to flow in the 
horizontal channel part, once a sliding gate is opened. The time and profile of the concrete 
flow in the horizontal channel is measured to compare viscous-plastic behaviour of different 
concretes. The variation of flow velocity with time and position from the time the sliding gate 
is opened until the flow reaches static equilibrium has been simulated and formulated by a 
representative dimensionless partial differential equation (PDE). Mathematically, the resulting 
equation is of the same form as a non-homogeneous heat-conduction equation [6].  
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In this chapter complete analytical solutions of the required pump pressure versus fluid 
volume rate are discussed for such multi-phase fluids, which are categorised as frictional 
Bingham-Herschel-Bulkley fluids. The discussed theory can be applied to flow of such fluids 
in pipes, disks and open channels. Furthermore, general analytical solutions have been 
developed for complex fluids in terms of velocity and pressure gradients and velocity and 
pressure, as a function of flow length (e.g. pipe length, disk radial distance, or channel 
length) from which special and familiar equations for simpler fluids are derivable by 
mathematical reduction of the general equations. The formulation is distinct in considering 
many new aspects including: variable shear parameters rather than fixed values; inclusion 
of total nonlinear behaviour; and, implementation of a friction function to mimic behaviour 
of the depositing and consolidating stiff slurry or paste, which can cause a significant 
pressure rise as a result of the increased shear resistance.  

2. Frictional Bingham-Herschel-Bulkley fluid 

The general constitutive equation, relating fluid shear stress to shear rate for such general 
nonlinear, non-Newtonian, viscous, plastic, frictional fluids, which can be applied to fresh 
concrete, mine backfill slurries and high frictional multiphase fluids, is as follows [4-9]  

 
n

(t, ) (t, )
(t, ) Ǎ(t, ) ǈ(t, ) (t, ) ξ(t, )p(t, )

ˆ ˆ

                
0

u x u xτ x x x τ x x x
x x

 (1) 

In Equation (1)  is shear stress tensor, u is velocity vector,  and  are linear and 

nonlinear viscosities, 0 is plastic yield, p is pipe pressure and  is concrete friction 

coefficient. The last term, involving the friction and pressure terms (p), is a frictional 

resistance term which can be applied only when a pipe blockage occurs due to the 

concrete granular material friction and needs to be reopened by a higher pressure flow, 

otherwise it can be ignored [4-9]. See Figure 2 for a visual definition of the different shear 

terms and parameters involved in Equation (1).  

 

 

Fig. 2. Schematic diagrams showing various shear stress components in Equation (1). 0 is 

the constant uniform plastic yield component, with no viscosity;  is the Newtonian linear 

viscosity coefficient of the linear velocity gradient y with a wall value yh.;  is the non-linear 

viscosity;  is the friction coefficient of the fluid pressure p.  
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Fig. 3. Shear stress vs shear rate (range 0-700/s) for a sample at solid weight concentration 
range 30%-60%. Numbers in legend table show Bingham plastic linear fit model to these 
results in the range of 0-100/s. For instance, for 50% solid concentration in the shear rate 
range of 0-100/s of the sample, the linear viscosity (Bingham slope) is 0.0106 Pa.s and the 
yield (Bingham intercept) is 1.6432 Pa.  

We can measure these parameters by a viscometer-testing device [4-5]. Sometimes for slurries 

of various solid particle concentrations, the viscometer test results can conveniently fit into one 

or two linear models (Bingham plastic) for the whole range of shear strain rate. Figure 3 shows 

examples of multi-linear or bilinear model for slurries of different concentrations for two 

distinct range of shear strain rate 0-100 /s and 100-700 /s. The Bingham models can be 

identified by its two main parameters (yield intercept and viscosity slope.  

3. Governing equations 

Governing equations of most fluid mechanics problems normally start with the general 

basic Reynolds transport theorem of continuum mechanics [15]. This is initially an integral 

relation stating that the sum of the changes of any intensive fluid property, such as mass, 

momentum and energy, defined over a control volume CV, denoted here by symbol , must 

be equal to what is gained or lost through the boundaries of the volume, or control surface 

(CS), plus what is created or consumed by sources and sinks inside the control volume [15].  

 
CV CS CV
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dt
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 
 (2) 

In Equation (2), u


 is fluid velocity vector, n


 is normal vector to the control surface dA, and 

Q is the fluid source or sink. Using integration by parts, the second integral can also be 
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transformed to a volume integral by the divergence theorem. Since the whole grouped 
volume integral must be zero for any arbitrary control volume CV, it implies that the 
integrand itself must be zero. Therefore, our theory can be started with the following 
general basic differential equation: 

 
dǓ

.Ǔ Q 0
dt

  u
 

 (3) 

Applying the general conservation Equation (3) to mass and momentum, the Navier- Stokes 
isothermal equations of continuity and momentum [15] are recovered: 

 .ǒ ǒ 0  u
 

  (4) 

 
D

. ǒ ǒ
Dt

  
uσ g

  
 (5) 

where x    i i/ e
 

is the gradient vector,  is the fluid density, σ


 is the stress tensor and g


is the body acceleration or gravity vector. The stress tensor depends on a mean fluid normal 
stress or pressure ( 1

jj iip ǅ ǔ ) and a deviator stress representing shear stresses ij, which 
depends on fluid viscosity and velocity gradients. 

 ij ij ijǔ pǅ Ǖ    (6) 

As shown by [3-4], the deviatoric shear stress in (6) for cohesive, frictional, viscous, non-
Newtonian slurries depends not only on fluid velocity gradients and yield plastic shear 
strength, but also on fluid pressure causing frictional resistance to flow, particularly during 
a blockage (Q →0). As discussed earlier in Equation (1), on the basis of several laboratory 
experiments on soil like slurries, a general shear stress versus shear strain constitutive 
material law is proposed for viscous, cohesive, frictional, plastic slurries in which the fluid 
shear stress is a nonlinear function of shear rate and longitudinal distance. Equation (1) has 
the following general form when written tensor notation is applied: 

    nij i,j j,i i,j j,i 0ij ijǕ Ǎ u u ǈ u u Ǖ ξpǅ       (7) 

As discussed earlier and also shown in Figure 2, the first term on the right hand side is the 
familiar linear Newtonian component, the second term is the nonlinear pseudo-plastic 
component, the third term is the yield component and the forth term is the pressure 
component, in which  is a coefficient of granular material friction which is the same tangent 
function of the material friction angle [14]. In the theoretical analysis discussed here, it is 
assumed that: 
1. the flow is laminar and the fluid is incompressible, steady state, stationary, and 

isothermal and axisymmetric with no eddies and no gravity effects;  
2. axially symmetric condition implies that the radial flow component (in a pipe) and 

circumferential flow (in a disk) must vanish. In other words ux2 = ux3 = 0; 

3. when there is a full blockage (Q = 0), the friction term p is a dominant term; 
4. the classical term “fluid” has loosely been used interchangeably with “slurry”; to refer 

to a “slurry”, whenever an equivalent “fluid” model can represent the overall, average, 
mechanical behaviour of the “slurry”.  
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We now introduce a new set of independent variables to represent coordinate axes of both 

radial disk and pipe flow systems, namely: x1 axis is always in the direction of the main flow 

direction, i.e. either radial disk flow, or longitudinal pipe or channel flow, x2 is the axis 

normal to the flow direction in the flow cross-section plane, and x3 is the hoop or 

circumferential axis direction identical to hoop angle . 

4. Reduced one dimensional equations 

Consider now the simple problem of fluid flow through either (i) a uniform circular pipe of 

inside diameter 2h, as shown in Figure 4 (left), or (ii) a radial disk of thickness 2h, as in 

Figure 4 (right), or (iii) a channel, as part of an L-Box testing device shown in Figure 1 (a).  

 
 

 

Fig. 4. Non-Newtonian viscous-plastic flow in a pipe (left) and in a radial disk (right) with 
fluid flow parameters 

Fluid flow through a pipe of uniform, circular, cross-section is known as the Hagen–

Poiseuille flow problem [5]. It is assumed that the circular pipe flow is symmetric around 

the pipe longitudinal x-axis, the normal stresses are simply the fluid pressure, p, the fluid is 

incompressible and non-Newtonian in a steady state condition, there is no velocity 

component in the pipe circular cross-sectional plane, i.e. the plane normal to the pipe length 

direction. Similarly, it is assumed that the flow in a disk is also non-Newtonian, steady state, 

incompressible and laminar and the radial disk flow is also cylindrically axi-symmetric [4]. 

Hence, implementing all these assumptions implies that in all flow cases both normal to 

flow velocity components (u2, u3) are zero and there is no variation in velocity or pressure 

with time. In other words, we have 

 1 1 2u u u(x ,x )   (8) 

 2 3 ǉu u u 0    (9) 

 i i i 2 2u / t u / ǉ p/ t p/ ǉ u / x p/ x 0                   (10) 

We now define two separate flow gradient functions [4-5], (a) gradient with respect to x1 

and (b) gradient with respect to x2, viz. 

 1
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 1 1x u    (11b) 

 1
1 1

2

uψ x x '
x

y


    


 (11c) 

Hence, the general, basic equations of continuity (4) and momentum (5) reduce to Equations 
(12) for pipe flow and (13a,b) for radial flow.  

PF (Pipe flow): 
 2

2 2 1

x Ǖ1 p

x x x

 


 
 (12) 

RF (Radial Flow):  2

1 1 2

1 u
0

x x x

 
  

 
 (13a) 

 
1 2

p Ǖ
0

x x

 
 

 
 (13b) 

It should be noticed that gravity effect can be incorporated into the pressure gradient term 

in pipe flow Equation (12), where  is the fluid unit weight and  is the inclination angle of 

the pipe with respect to horizontal axis. In order to consider gravity in a pipe flow, 
p

x




 in 

(12) should be replaced with 
p Ǆsin(ǃ)
x





, as suggested in [2]. The shear stress 1 2Ǖ(x ,x )  in 

(12) and (13) is a 2D version of the general case shown in (7), which is reproduced in 

Equation (14) below [4-5].  

 
n

1 2 1 1 1 1 1Ǖ(x ,x ) Ǎ(x )y ǈ(r)y Ǖ (x ) ξ(x )p(x )     (14) 

No slip boundary conditions, i.e. no velocity at the pipe or disk walls, and a full axial or 

radial symmetry of the flow are assumed. Hence, Equations (11-13) must be solved subject 

to the following boundary conditions: 

 1 2u u u(x h) 0     (15a) 

 2
2

u
(x 0) 0

x


 


 (15b) 

Substituting (14) in (12) and (13) and integrating over x2, will give us the following pressure-

gradient equations  

PF:  n2
1 1 2 1 2 0 1 1 1

1

x dp
(x ) Ǖ Ǎ(x )y(x ) ǈ(x )y (x ) Ǖ (x ) ξ(x )p(x )

2 dx
      (16) 

RF: 2 1 1
1

dp
x (x ) Ǎ(x )y ǈ(r)y

dx
n   (17) 
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The pressure gradient Equations (16) and (17) must be satisfied at all points, including the 

boundary point, h. Therefore, at the wall boundary point (x2=h) we have 

PF: n
1 h 1 h 1 h 0 1 1 1 h

1

h dp
(x )  Ǖ Ǎ(x )y ǈ(x )y Ǖ (x ) ξ(x )p(x ) F(y )

2 dx
       (18) 

RF: 1 h 1 h h 1 h
1 1 1

dp 1 1
h Ǎ(x ) ψ ǈ(x ) ψ f(ψ /x ) f(y )

dx x x

n
   

      
   

 (19) 

where yh, h and h are the boundary values of y,  and , i.e. at the point x2 = h. In other 
words, 

PF:  
2h 2 x h

2

u
y y(x h)

x



   


, h 2Ǖ Ǖ(x h)  , h 2ψ ψ(x h)    (20) 

If yh in (18), or h in (19), are known, the pipe pressure p can be calculated by integrating 

these equations directly. The result can still be in integral forms depending on the 

complexity of the coefficient functions such as: viscosity x or x, plasticity, x or 

friction x 

PF:  
1

0

x

h 1 1

2
p Ǖ (x )dx

h
x

    (21a) 

RF: 
1

0

x

h 1 1

x

1
p f(ψ /x )dx

h
    (21b) 

For example, the pipe pressure can be written in a general integral form (Equation (22)) in 

terms of the integral coefficients A1, B1, C1 [5]. 

   n 1
0 0 1 h 1 h 1p p v A y B y C v     (22) 

In Equation (22), v(x1) is an exponential function of x1 and h and A1, B1, C1 are integral 

coefficients similar to those produced for radial flow [4], viz. 

 
2

 ξdx
hv(x) e

   (23) 

 
0

x

1

x

2
A v(x)Ǎ(x)dx

h
   (24a) 

 
0

x

1

x

2
B v(x)ǈ(x)dx

h
   (24b) 
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0

x

1 0

x

2
C v(x)Ǖ (x)dx

h
   (24c) 

As shown in [4-5], evaluations of these integrals become straight forward and generic, if we 

first find the normalised forms of the dimensional functions, (x), (x), (x) and (x) in the 

shear stress Equations (16) and (17). Using the same symbols, but in Italic fonts, let the italic 

symbols , ,  and be the normalised counterparts of (x), (x), (x) and (x), 

respectively. As discussed in detail in [4-5], all the four functions , , , , can be 

represented by one symbolic generic function, , i.e. (0, s, r, n). The normalised form of 

 is simply 

 ( ) 1 ( 1)n
sr r      (25) 

in which s is the normalised slope and n is the general power factor for any nonlinear 

behaviour. In other words, 

 
0

ǂ
ǂ

  ,
0 0

ǂ r
1 1

ǂ r

n

s






   
    
  

 (26) 

Therefore, the integrals (24) have the following general non-dimensional form which can be 

integrated numerically [4-5]: 

PF: 
1 1

( )
x x

k dx
I x v(x) (x)dx e (x)dx

     (27a) 

RF:    
1

11 1

1 1

1
( ) [1 ( 1) ] 1 1

1 1

x xn
n nnn n ns

s

x
I x x x dx x x n x x dx

n n
 





             

    
   (27b) 

However, for constant properties of slurry, the A1, B1, C1 parameters reduce to either a 

simple exponential function of x=x1, in the presence of a friction coefficient, i.e.  ≠0, or a 

simple linear function in terms of pipe length (L = x-x0), in the absence of friction coefficient, 

i.e. =0. In other words, the values of these coefficients, as described by the integrals (24), 

can be calculated from relations (28) for the case where  =  = 0 = constant, but =0, and 

from relations (29) for the case where   =  = 0 = constant, but  ≠0. 

 
1 1

1 0A 2h Ǎ(x-x ) 2h ǍL   , 1
1B 2h ǈL , 1

1 0C 2h Ǖ L  (28) 

 1 L

Ǎ
A v

ξ
  , 1 L

ǈ
B v

ξ
  , 0

1 L

Ǖ
C v

ξ
  , 

2 ξL
h

Lv e


  (29) 

Figures 5 and 6 show some typical values of the function I for a range of viscosity and 

plasticity parameters in a radial flow, namely n from (0) to (2), n from (0) to (2), s from (0) 

to (2) and normalised r=x from (1) to (100) [4].  
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Fig. 5. Values of integral function I with radial distance r for some values of parameters n, 

n and s, as indicated in Equation (27b)  

 

Fig. 6. Values of integral function I with radial distance r for some values of parameters n, 

n and s, as indicated in Equation (27b)  
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5. Solutions for pipe and radial flow 

The pressure gradient dependency in all Equations (16)-(17) can be removed by dividing 

general functions or Equations (16)-(17) to their corresponding boundary values, i.e. 

Equations (18)-(19). Thus, we have a ratio of two polynomial functions, with a numerator 

that is a function of y, and a denominator that is a function of yh, as shown in Equation (30a, 

b), in which a, b, A, B, C are functions of flow line distance x1 only. 

PF: 

h

n

2 n
h h hh

Ay By C F(y)Ǖ F
x h h h h

Ǖ F(y ) FAy By C

 
   

 
 (30a) 

RF: 
h

n

2 n
h h hh

ay by f(y)Ǖ f
x h h h h

Ǖ f(y ) fay by


   


 (30b) 

To solve (30a) or (30b) for our primary unknowns, either y or , we need another equation 

in terms of the flow rate, Q, which must be conserved at any section normal to x1 direction. 

The results are integral equations relating velocity gradient y, or yh (or , or h in the case of 

radial flow) to the flow rate Q [4-5]. 

PF:  
h

3 3
2 1 2 h h h

A 0

Ǒ
Q u.dA 2Ǒ x u dx h y F G

3
    


 (31a) 

RF:  
h

2 2
2 1 2 h h h

A 0

Q u.dA 2Ǒ x u dx 2Ǒh ψ f g    


 (31b) 

Values of velocity gradient at the wall boundary, yh, or the function h= x1 yh, needs be 

calculated generally by the Newton-Raphson iteration [16]. Hence solutions to (31) take the 

following general forms: 

PF: i

i 1 i

h h h h
h h

h h h

(Q y )G'(y ) G(y )
y y

(Q y )G''(y )

 
 


, h 3

3
Q Q

Ǒh
  (32a) 

RF: i

i 1 i

h h h h
h h

h h h

(Q ψ )g'(ψ ) g(ψ )
ψ ψ

(Q ψ )g''(ψ )

 
 


, h 2

1
Q Q

2 h
  (32b) 

In Equation (31)-(32) f, F, g and G are polynomial functions of the unknown variable y or . 

  
2 2

2 3 2n 1 n 2a b 2ab
g ψ f dψ ψ ψ ψ

3 2n 1 n 2
    

   (33a) 

    2 2 2 2 2n n 1g' ψ f ψ a ψ b ψ 2abψ      (33b) 

   2 2 2n 1 ng'' ψ 2a ψ 2nb ψ 2(n 1)abψ     (33c) 
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   nf ψ aψ bψ   (33d) 

   n 1f' ψ a nbx    (33e) 

 

3 2
3 4 2 3 2 3

3 2 2
3n 1 2n 2 2n 1

2 2
n 3 n 2 n 1

A 3AC
G(y) F dy y A Cy y C y

4 2

B 3AB 3B C
y y y

3n 1 2n 2 2n 1

3A B 6ABC 3BC
y y y

n 3 n 2 n 1

  

  

     

   
  

  
  



 (34a) 

 

3 3 3 2 2 2 3 3 3n 2 2n 1

2 2n 2 n 2 n 1 2 n

G'(y) F A y 3A Cy 3AC y C B y 3AB y

+3B Cy 3A By 6ABCy 3BC y



 

       

  
 (34b) 

 

3 2 2 2 3 3n-1 2 2n

2 2n-1 2 n 1 n 2 n-1

G''(y) 3A y 6A Cy 3AC 3nB y 3(2n 1)AB y

6nB Cy 3(n 2)A By 6(n 1)ABCy 3nBC y

      

     
 (34c) 

 
nF(y) Ǖ Ay By C     (34d) 

 
n 1F'(y) A nBy    (34e) 

Determination of other parameters is rather straight forward. Once, yh or h are determined, 

the wall shear stress, radial pressure gradient and pressure functions can be determined 

directly from Equations (16)-(19). For instance, we can calculate the fluid velocity by direct 

integration of the velocity gradient.  

PF: 
2x 2 n 1

2 2
2 h0

(n 1)Ay 2nByu
u(x ) u(0) dx u(0) h

x 2(n 1)F(y )

 
   

   (35a) 

RF:  
2x 2 n 1

2 2
2 2 h0

u (n 1)aψ 2nbψ
u(x ) u(0) dx u(0)

x 2(n 1)x f(ψ )

  
   

   (35b) 

where u(0) is the maximum velocity at the flow centre line given by 

PF: 

2 n 1
h h

0 max
h

(n 1)Ay 2nBy
u(0) u u h

2(n 1)F

 
  


 (36a) 

RF: 
2 n 1
h h

0 max
2 h

(n 1)aψ 2nbψ
u(0) u u h

2(n 1)x f

 
  


 (36b) 
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Hence, the velocity profile across the flow cross-section is given by  

PF: 

2 n 1

max 2 n 1
h h

(n 1)Ay 2nBy
u u 1

(n 1)Ay 2nBy





  
     

 (37a) 

RF: 
2 n 1

max 2 n 1
h h

(n 1)aψ 2nbψ
u u 1

(n 1)aψ 2nbψ





  
     

 (37b) 

The average flow velocity can also be determined in the usual manner by integrating (36) 
directly, namely 

  
h

2 2 2 max 0h
02 20

1
u u(x )x dx u 1 ǌ

x dx
  


 (38) 

Where 0 is a function of yh, or h (in the case of radial flow [4]).  

PF: 
2

h h h h
0 0 h

2 n 1
h h

y F G Fǌ G (y ) 1
3 3n

Ay By
2 n 1






  




 (39a) 

RF: 

2(n 1)1 n 1 2 2
1 h 2 h

0 0 h 2(n 1)1 n 1 2 2
3 h 4 h

1 n a bψ n a b ψ
ǌ g (x )

3 n a bψ n a b ψ

  

  

 
 

 
 (39b) 

In Equation (39b) ni is a constant depending only on the power factor n, given by  

 1

3n(n 3)
n

(n 1)(n 2)




 
, 

2

2

6n
n

(n 1)(2n 1)


 
, 

3

(3n 1)
n 3

(n 1)





, 4

6n
n

(n 1)



 (39c) 

All the above solutions (e.g. Equations (32)) are also reducible to the classical solutions. For 
example, the average flow velocity becomes half of the maximum flow velocity for pipe 
flow, and 2/3 of the maximum flow velocity in the case of radial flow, for the case of pure 
Newtonian fluid [4-5]. 

Slurry flow may be assumed to stop in the case of a blockage (Q 0), which means the 
values of yh and g(yh) are identically zero. This is due to the effects of the cohesive 

frictional terms ( and 0) introduced in the shear stress Equations (16-17), which now 
become dominant in blocking the slurry flow. In the slurry industry, a critical question 
always arises on what the minimum pump pressure is required for a given slurry flow 
rate either to transport it to a given distance, or be able to reopen a blockage in a specified 
pipe length. The minimum required pump pressure can be calculated from Equation (21), 
which depends on the wall shear resistance in the pipeline or the disk. The wall shear 
stress is a function of the longitudinal distance x and velocity gradient yh. Practically, 
during the field slurry injection, the minimum required pump pressure to transport the 
slurry to a given distance is one of the most important questions that needs to be 
addressed [4-5].  
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6. Tremie pipe concrete flow 

The flow theory developed for general viscous-plastic-frictional fluids can be applied to 
fresh wet concrete pastes and slurries as well. Again, an important question would be the 
relation between the flow rate, Q, and the pressure, p. Similar to the pipe flow discussed 
above, we may assume a fully developed laminar, one dimensional flow, where x2 is the 
radial distance from the tremie pipe’s axis of symmetry (Figure 1, middle) [6-9]. Gravity 
plays a major role as the main driving force for concrete flow in tremie pipes, thus, it cannot 
be ignored. Therefore, equation (12) becomes 

 2
2 c

2 1

(x Ǖ) p
x Ǆ sin(ǉ)

x x

  
  

  
 (40) 

It is assumed that the tremie pipe generally makes an angle  with the horizontal x axis, 
where  = 90 indicates a vertical tremie. In Equation (40), x2 is the coordinate radius or 
radial distance from the pipe’s cross-sectional centre, p is pressure and c is the effective 
concrete unit weight. As a special case, a specific analytical solution from the general 
solution (32a) can be derived for a linear Bingham-plastic model [5]. In this particular 
solution, the tremie pipe flow rate, Q, becomes a 4th order polynomial function of the tremie 
pipe diameter, D. Furthermore, the flow rate is inversely proportional to the viscosity, 
0and (partially) proportional to the differential pressure at the two ends of the tremie pipe 
[6], p, of length Lt. In other words we have: 

  
4 3

c 0
t

ǑD Δp ǑD
Q Ǆ sin ǉ Ǖ

128Ǎ L 24Ǎ
 

   
 

 (41) 

The pressure differential between the two ends of the tremie, p, can in theory accept any 
arbitrary value; from negative to zero and positive numbers. In the case of a zero p, the 
driving pressure is simply the gravity term containing the concrete unit weight, cand 
inclination angle .  

7. Concrete flow in a rectangular channel 

Concrete flow during pouring and flowing in channels, chutes and testing equipment for 
testing purposes are normally not at a steady state situation [6]. General time-dependent 
2D and 3D differential equations governing flow of concrete in rectangular channels and 
chutes can be developed and solved numerically, as shown in [6]. However, for the sake 
of understanding, it is also possible to reduce these equations to a simple 1D form, based 
on an assumption that there is no significant independent variation in any variable or 
function in the normal directions x2 and x3 compared to the longitudinal main flow 
direction x1. In other words, 

 
2 1,x 1 ,x 1 ,t 1Ǖ (t,x ) p (t,x ) ǒu (t,x ) 0    (42) 

which gives a solution in terms of Fourier coefficients [6] 

  
2 2

0

( , ) cos( ) sin( )na t
n n n n

n

u t x e A x B x mx  





    (43) 

www.intechopen.com



 
Fluid Dynamics, Computational Modeling and Applications 166 

In the solution (43)  is an arbitrary constant satisfying both the differential equation and the 

boundary conditions, while An and Bn are Fourier coefficients to be determined from the 

boundary conditions [6]. Figure 7 shows a typical result for various values of n truncating 

the number of Fourier terms. It shows results of the Fourier analysis for the two cases of u(0, 

x) and u(0.5, x), and the increasing effects of the number of Fourier terms, namely from n = 

5, 10 to 120. The second line in the figure corresponds to velocity at time t = 0.5 for different 

profile points along the x line using n = 120. Notice that since continuity and differentiability 

is not a requirement at the end points of a Fourier series analysis, it doesn’t converge to the 

numerical solution at point x = 1, as expected.  
 

 
 

Fig. 7. The function u(0, x) represented by a Fourier series with different number of Fourier 
coefficients (n = 5, 10, 120).  

8. Discussion  

The above general theory is certainly reducible to simpler classical Newtonian and Bingham 
models with appropriate parameter substitutions [4-5]. Classical special cases can be 
derived, e.g. (i) pure, uniform, viscous, Newtonian slurry; (ii) Pure, uniform, cohesive 
(plastic), non-Newtonian slurry; (iii) Linear Bingham viscous plastic slurry. In case (i), (ii) 
and (iii) the shear stress function (1) reduces to either (i) the simplest, classical, linear 
function of the shear strain multiplied by a constant viscosity number, i.e. 1 2 0Ǖ(x ,x ) Ǎ y ; or 
(ii) just a pure plastic material with no viscosity, i.e. 1 2 0Ǖ(x ,x ) Ǖ ; or a linear Bingham visco-
plastic model, i.e. 1 2 0 0Ǖ(x ,x ) Ǎ y Ǖ  . For instance, for a pipe flow in a pure viscous 
Newtonian fluid, we have  
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 rx

u(r,x)Ǖ (r,x) Ǎ(x) Ǎy
r

     
, 0Ǎ(r) Ǎ , ǈ Ǖ ξ n 0     (44a) 

Substituting these values in equations (16-32), we recover the well-known Newtonian 

solutions [15], as expected. It can be seen that for this case the function 0 h

1
g (y )

2
  

confirming the classical result, 
maxr r

1
u (r) u

2
 . Furthermore, we have: 

 
3

40
h h

Ǎ
g y

4
  (44b) 

 0

1
g

2
  (44c) 

 h 3

4Q
y

Ǒh
  (44d) 

 0
hx 3

4Ǎ QǕ
Ǒh

  (44e) 

 0
4

8Ǎ Qdp

dx Ǒh
  (44f) 

 0
0 4

8Ǎ Q
p p L

Ǒ h
   (44g) 

 max 2

2Q
u(0,x) u

Ǒh
   (44h) 

 
2 2

max max2 2
h

y r
u(r,x) u 1 u 1

y h

   
           

 (44i) 

  max 0 max

1
u u 1 g u

2
    (44j) 

Figure 8 shows velocity profiles in normalised form for the “three special cases” discussed 

above. For the general Bingham fluid with constant non-zero values of 0 and 0, the pipe 

velocity profile follows a parabolic curve close to the special pure viscous case (i), when 

fluid viscosity is dominant or the ratio 0/0 is small, and moves towards the uniform 

profile of the special case (ii), when plastic yield or cohesion is dominant or the ratio 0/0 is 

large, as shown in the figure. Figure 9 demonstrates an example of a Bingham plastic 

solution for radial disk flow, where the contribution of each of the two shear parameters is 

separately demonstrated. 
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Fig. 8. Comparisons of normalised velocity profiles for different slurries of various viscosity 

() and plasticity () in a pipe flow 

 

 

Fig. 9. Contribution of viscosity and cohesion to pressure drop for a Bingham plastic slurry 
in a radial disk flow 
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As a numerical pipe flow example, consider a slurry modelled by a linear Bingham plastic 
model, where 0 = 0.1Pa.s and 0 = 0.1Pa. As shown in Table 1, the maximum and average 
velocities in the pipe are 3.54 m/s and 1.76 m/s, respectively. The table also shows a list of 
values for several other variables and parameters used in the present theory.  
 

 

Table 1. Numerical example for cohesive-viscous slurry ( = 0.1 Pa.s,  = 0.1) 

Slurry behaviour is controlled by its two distinct material components, i.e. the solid particles 
and the water. Depending on the velocity of the fluid and the terminal velocity and physical 
characteristics of the suspending solid particles, the slurry behaviour can evolve by two 
distinct characteristics, a uniform viscous fluid or a fluid with separated, submerged, 
sedimentation deposit; where the latter is the favourite mechanism in mining grout 
injection. The solid particle concentration or viscosity is constant in the former case and 
(increasingly) variable in the latter. The more the concentration of the particles, the greater is 
the effect of the frictional viscosity, as observed in our direct viscosity measurements and 
also consistent with the empirical equations.  
When working with slurries made of particulate and granular materials for injection 
operations in the field, it is quite possible to encounter pipe blockage. This is when the last 
term in Equation (7) or (14) becomes non-zero and hence dominates the process due to high 
frictional shear resistance against the slurry flow. Several laboratory blockage tests have 
been carried out to confirm the role and effects of this frictional term in Equation (14). In 
these experiments, initially the pump pressure was reduced gradually during an injection 
process to reduce flow velocity causing settlement and sedimentation of the grains until full 
blockage has occurred. An attempt to reopen the same blockage was made by increasing the 
pump pressure. However, a much higher than the initial pump pressure was required to 
reopen the blockage, confirming the effect of the frictional term in Equation (14). Figure 10 
demonstrates how the pressure can increase rapidly before or behind a blockage, resulting 
in a substantial head loss. This theoretical exponential trend agrees with similar 
experimental measurements reported in the literature [5].  
 

 

Fig. 10. Effect of frictional coefficient on pressure gradient for a given slurry  

yh  (1/s) f(yh) g''(yh) g'(yh) g(yh) -dp/dx (Pa/m) umax (m/s) g0(yh) uave  (m/s) hx (Pa) pmin (Pa)

141.804 14.280 61.179 2912.220 103969.296 571.217 3.504 0.498 1.760 14.280 571217.381
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Fig. 11. Required pipe distance (from x0 to x) is nonlinearly proportional to pressure (p0 to p) 
for a linear uniform pipe. The slope of the relation depends on frictional-cohesive properties 
of the granular materials of the slurry. The higher the friction or cohesion is, the smaller the 
required distance at a given pressure differential is. 

In practice, a blockage is usually reopened by pumping a less viscous fluid (e.g. water) at a 
very high pump pressure and minimum viscous shear resistance. The pump pressure 
required is a function of not only frictional properties of the deposited sediment, but also the 
size distribution of the aggregates (Figure 11).  

9. Conclusions 

On the basis of continuum equations of fluid and soil mechanics, a comprehensive, versatile, 
slurry shear model has been developed for transportation of grout, paste and fill materials 
used in the civil and mining industries, covering a wide range of material characteristics and 
behaviour, namely from the flowing fluid slurries to consolidated solid deposits in 
underground coal mining induced rock fractures. The theory has been specifically tailor 
made for grout flows through uniform pipes, discs and tremies, in order to transport 
material to designated injection or backfill targets. The theory can mimic both flow and 
blockage behaviour of the fill material. The tool can be used to predict variations of pressure 
and velocity and their gradients, as a function of flow rate, in the entire backfill-placement 
system from batching plant to the borehole cracks and foundation excavations.  
The shear theory can mimic shear resistance of both: (i) a cohesive, viscous flow and (ii) a 

stationary, cohesive, pressure-dependent, frictional, plastic soil. The pressure dependent 

frictional term in the shear stress model determines the frictional resistance of the deposited 

fill material during a blockage. Consistent with laboratory and field experiments, the 

theoretical pump pressure required to open a blockage is orders of magnitude greater than 

the amount needed for pumping the same material when it is under a steady state flow. This 

explains why very high pump pressures are often needed to clean blockages compared with 

much lower pressures required during steady state slurry flows.  

Concrete flow and placement into deep foundations is normally performed under several 

harsh environmental conditions of tightness, inaccessibility and deep submergence. 
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Therefore, it must be self compacting, self levelling and maintain its original quality, 

homogeneity and integrity all the way from the tremie pipe to the discharge point and then 

through the narrow paths between heavy reinforcements. Similar to a viscous-plastic slurry 

or paste, shear behaviour of a fresh tremie pipe concrete was explained by a linear Bingham 

plastic model. Traditional slump and spread tests together with the L-box tests are used as 

indirect index tests to measure physical visco-plastic properties of concrete. However, the 

concrete industry needs also to develop a large scale viscometer testing method to measure 

viscosity and plastic yield of tremie pipe concrete directly. Based on the Bingham 

parameters, the governing relation between the steady state concrete flow rate and the 

required pressure gradient was presented. To maintain a successful, uniform, steady state 

flow in the tremie pipe, a balance pressure height must be determined and controlled 

through the entire process of concrete pour or discharge.  

Appendix 

Notation 

In the following derivations, italic symbols are used for normalised parameters, or 

quantities representing their counterparts denoted by the same non-italic symbols. For 

instance, r = r/r0 represents the normalised form of the radial distance variable r with 

respect to a reference distance r0, i.e. the radius of the central vertical pipe.  

Italic symbols indicate normalized, or dimensionless quantities, e.g. the fluid velocity, u = 
u/U0 is the dimensionless form of the dimensional counterpart quantity, u. 

a, b, c  Shear stress function coefficients 

A, B, C  Integral function coefficients 

Ai, Bi, Ci   Constants of Bingham plastic solution 

C  Solid concentration by weight or mass = Cweight = Cvolume (solid/mix) 

f  A polynomial function of fluid velocity gradient ( nf(y) ay by c   ) 

g  A polynomial function of fluid velocity gradient ( 3g(y) f dy  ) 

( )h  Index “h” denoting function value at either pipe or disk boundary walls  

( )0  Index “0” denoting initial or constant value of a variable 

L  Pipe length (L= x –x0) from reference section x0 to any section x. 

n  Shear strain power factor, Function power factor 

n  Normal vector 

p  Fluid pressure 

Q  Flow rate 

h 3

3
Q Q

Ǒh
  A flow rate related constant 

r  Radial distance from pipe centre; polar r coordinate axis, disk radial  

  distance from borehole or disk centre in a radial flow 

r0  Radius of central vertical pipe connected to disk 

x1, x2, x3 Subscripts indicating longitudinal (radial in disk flow), normal to flow  

  cross-section and circumferential coordinates, respectively 

x  Longitudinal distance or coordinate axis along pipe length 

x0  Initial reference point in a pipeline section along x1 direction  
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u = u1  Longitudinal velocity (u1) in both pipe and disk radial flow 
u  Velocity vector with velocity components (u1, u2, u3=u) 
ut  Terminal velocity or free fall, submerged solid particle limit speed 
uD  Deposition velocity or particle speed at minimum pressure gradient 
  Viscosity coefficient (linear term) 
  Volume concentration of solids in slurry mix 
=  ux1 Radial velocity times radial distance function 
’ = yx1  Derivative of  with respect to x2 
D /Dt  Total time derivative  

df/dt f   Local time derivative of a function f 

d /dj  Derivative with respect to a coordinate axis j  
 /j  Partial derivative with respect to a coordinate axis j  




  Gradient vector  
w  Weight concentration of solids in slurry mix 
  -Ratio of disk radial velocity gradient and x2, dY/dx2
Y  -Radial velocity times distance x1, integral of 
  Generic symbol representing either one of functions: , , ,  
u1/x2 Shear strain rate (velocity gradient) 
  Viscosity coefficient (non-linear) 
  Viscosity coefficient (linear) 
  Density, slurry density 
  Volume concentration of solids in slurry mix 
  Circumferential (hoop) coordinate axis
  Shear stress, cohesion (yield stress), stress tensor 
 tan Friction coefficient, friction angle 

Subscripts 

0  Initial value, reference value for normalisation 
  Final far field value of a property
  Value corresponding to property  
  Value corresponding to properties  , respectively 

0x/ xx   Gradient velocity divided by radius, 0 0 r 0 0x r u / h X / h   

0Ǎ/Ǎ   Viscosity coefficient (linear) 

0ǈ/ǈ   Viscosity coefficient (nonlinear) 

0Ǖ/ Ǖ   Shear stress, cohesion 

0ξ/ξ   Friction coefficient  

p   = fluid pressure function 

Q

  

= volume rate or fluid flow rate 

0Ǖ
  

= plastic yield or cohesion intercept in linearised Bingham plastic model 

   = shear stress function of vsicosity, plastic yield and shear strain gradient 
u

  

= fresh concrete or fluid velocity, x-component of velocity in 1D model 

yu

  

= y component of fluid velocity in 2D model 

,y

u
u

y





 

= y gradient of velocity in 1D model, shear strain rate 
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,t

u
u

t



   

= fluid acceleration or velocity rate 

0U   = fresh concrete velocity at L-box entrance (reference velocity) 

u

 

or *u

 

 = dimensionless flow velocity function in L-box test 
k
iu    = finite difference velocity function u at time k and position i 

v

  

= a dimensionless function representing fluid velocity 

W

  

= width of L-box (in out of plane z direction)  
x

  

= x axis and flow direction in tremie pipe and L-box test  

x

 

or *x

  

= flow direction and distance in L-box test 
x

  

= position vector with components x, y, z 
x̂

  

= vector normal to pisition vector for velocity gradient calculations

 0X

  

= maximum concrete flow distance in L-box test (reference length) 

ξ(t, )x   = friction coefficient function when concrete blockage occurs  

y

  

= y-axis coordinate; vertical position in L-box test; pipe flow radial  

  direction 

1y  , 2y

  

= two end coordinates of L-box horizontal open channel 

DY

  

= height drop along L-box horizontal open channel (y1y2) 
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