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1. Introduction  

Pollution of water and soils arises from overburdens of mines, application of fertilizers and 
pesticides, industrial effluents and sewage sludge (Alloway & Ayres, 1997), among others. 
In heavily contaminated soils and water, there is a decrease in the population, growth and 
function of biota. In most cases all biological indices of environmental health (fish, 
invertebrates and algae) decline as pollution intensity increases (Cuffney et al., 2000; Hill et 
al., 2000; Khan, 1990). The identification of plant and animal species with the ability to 
accumulate metals is therefore of interest for the purposes of environmental monitoring 
(Chukwuma, 1998; Manly, 1996).   
Earthworms and periphyton (attached algae) have been utilized as indicators of pollution of 
soils and water with metals (Ireland, 1983; Holan et al., 1993; McCormick & Cairns, 1994; 
Ramelow, 1987; Jin-fen et al., 2000). Despite being very small, experiments unequivocally 
demonstrate that algae sequester heavy metals by complexation to phytochelatins (Gekeler 
et al., 1988), which is an identical mechanism as higher plants. In the context of 
biomonitoring, earthworms act as quantitative monitors of total-soil metal and also 
estimators of ecologically significant soil metal concentration (Morgan & Morgan, 1988). 
Earthworms are important components of the soil system mainly because of their favourable 
effects on soil structure and function which include increasing soil fertility by formation of 
an organic matter layer in topsoil. The most widely studied earthworm species are Eisenia 
fetida, Eisenia Andrei, Lumbricus terrestris and Lumbricus rubellus (Georgescu & Weber, 2007).  
In Malawi, several studies have confirmed the presence of heavy metals in water and soils. 
Kadewa et al. (2001) found levels of copper, cadmium and chromium in soils fertilized by 
sewage sludge from Soche waste water treatment plant in Blantyre to be higher than the 
range for critical concentration for sludge amended soils. Sajidu et al. (2007) found that the 
levels of lead, cadmium, iron, manganese, zinc, chromium and nickel in streams in the city 
of Blantyre were much higher than World Health Organisation (WHO) safe limits for 
drinking water in all sampled streams after they had passed through industrial areas. 
Lakudzala et al. (1999) found that at some points on Mudi, Likhubula and Shire Rivers, the 
iron and lead levels exceeded WHO guideline limits. However, not much has been done on 
the use of biological indicators to assess the state of the environment. In addition, studies 
that assess levels of heavy metals in biota are lacking because they only target either 
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invertebrates or aquatic plants only. Compounds of heavy metals in earthworms may be 
transferred to other species at higher trophic levels and may be lethal to earthworm 
consumers (Hui, 2002; Ireland and Richards, 1977; Ma, 1982; Vyas et al., 2000). Monitoring 
programs, with a well-founded scientific base and defined management outcomes, using 
biological indicators (such as algae, fungi, earthworms and other microorganisms), will 
expand our knowledge of river/aquatic function (Burns & Ryder, 2001; Khosmanesh et al., 
1996). This work reports on the levels of potentially harmful elements in the streams, 
wastewater and stream bank soils. In addition, aspects of metal accumulation in earthworms 
and green algae and their potential for biomontitoring are presented. 

2. Materials and methods 

2.1 Study area 
Malawi is situated in South East Africa (Fig. 1a). This study was conducted in the City of 
Blantyre (Fig. 1b), the commercial and industrial city of Malawi. The City has eight 
designated industrial areas namely Makata, Ginnery corner, Maselema, Limbe, Chirimba, south 
Lunzu, Maone and Chitawira, with south Lunzu still under development (Fig. 1c). All the 
industrial sites are located along the banks of the main streams in the City. Makata industrial 
site lies between Mudi and Nasolo streams, Ginnery corner is along Mudi stream, Maselema is 
along Naperi River and Chirimba is along Chirimba stream (Fig. 1c). The sampling points fell 
into two major categories, which were; streams and wastewater treatment plants (WWTP). 
The waste water treatment plants were included because their effluent is released into the 
streams. Most of these streams pass through the major industrial areas except for 
Namangunda, which passes by a dumpsite and Michiru, which originates from a forest 
reserve and does not pass through the industrial sites (Fig. 1c).  

2.2 Sample collection 
All samples were collected in wet (November - February) and dry (July - October) seasons, 
to capture the effects of seasonal variation, from the selected streams and WWTPs in 
Blantyre City (Fig. 1). A total of eighteen periphyton (algae) samples were collected for each 
season. The samples were collected in 100 mL plastic bottles (Diatoms for Assessing River 
Ecological Status (DARES), 2004). The algae samples were chilled in a refrigerator pending 
analysis (New South Wales (NSW), 2002). The periphyton was identified as Spirogyra 
aequinoctialis. 
Water samples were collected at an area where samples of S. aequinoctialis were collected. A 
total of forty three (43) water samples were collected for each season. Grab sampling method 
was used in the collection of water samples both upstream and downstream of a designated 
industrial area. At each sampling point, water samples were collected in triplicates for 
heavy metal analysis and a single sample for pH analysis. The samples were collected and 
stored in 1 L pre-cleaned new polyethylene bottles. Water samples for determination of 
metal were acidified to pH < 2 by adding concentrated nitric acid (Analytical Reagent (AR)) 
(American Public Health Association (APHA), 2005).  
A total of forty-six (46) earthworm and soil samples were collected in both seasons. The 
earthworms were collected in 400 mL plastic bottles (at least three individuals per sampling 
site) into which a few holes were poked on the lid (Ecological Monitoring and Assessment 
Network (EMAN), 2004). Earthworm casts were used to find possible earthworm locations. 
Soil (stream sediment) samples were collected where earthworms were found using a soil 
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auger. Soil samples were collected within the top soil range (0-20 cm) since most of the 
earthworms were found in this region. Soil horizons could not be distinguished in all these 
sampling points. Five augerings were collected at each site and were mixed in a bucket 
before sub sampling (quartering) (Anderson and Ingram, 1993).  The samples were collected 
in plastic bags. 
 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Maps showing the location of Malawi in Africa, Blantyre city in Malawi and sampling 
points in the City of Blantyre. Sample IDs are explained in Table 1.  

2.3 Analysis of water and wastewater samples 
pH was measured immediately after sampling using Orion Research digital ionalyzer 601A 
and Metrohm 744 pH meters (ISO 10523-1:1994). Water samples were digested using 
concentrated nitric acid (AR). 50 mL of the sample was transferred to a beaker to which 5 
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mL concentrated nitric acid was added and brought to a boil on a hot plate to the lowest 
volume possible (15 to 20 mL). Filtration was done after digestion. The filtrate was then 
diluted to volume with distilled water in a 50 mL volumetric flask (APHA, 2005). Total 
concentrations of Mn, Cd, Cr, Cu, Pb, Ni, Fe, Zn were determined using flame atomic 
absorption spectroscopy (Perkin Elmer, Analyst 700; APHA, 2005). 

2.4 Analysis of soil samples 
The soil samples were air dried, ground in a mortar and passed through a 2 mm sieve. 5.0 g 
of the dry sieved soil sample was heated with 10 mL concentrated nitric acid (AR) for 45 
minutes. The soil samples were then dried, re-dissolved in 5 mL aqua regia (3:1 conc. HCl 
(AR) and conc. nitric acid (AR)) and filtered. Total concentrations of Mn, Cd, Cr, Cu, Pb, Ni, 
Fe, Zn were determined using flame atomic absorption spectroscopy (Perkin Elmer, Analyst 
700 and Buck Scientific AAS model 200A; Bamgbose et al., 2000). The total metal 
concentrations were expressed as mg/kg dry weight of soil (mg/kg dw). 
Soil organic matter was determined using the Walkley – Black method (Walkley and  
Black, 1934). Briefly, the soil samples were ground using a mortar and then passed through 
a 0.5 mm sieve.  1.00 g soil was mixed with 10 mL of 1N potassium dichromate  
(AR) solution and 15 mL concentrated sulphuric acid (AR), whilst shaking. The mixture was 
then shaken for a further one minute and left to stand for thirty minutes. Then 150 mL 
distilled water and 5 mL concentrated phosphoric acid (AR) were added whilst shaking. 
After cooling, the mixture was titrated against 0.5 N ferrous ammonium sulphate (AR) 
solution, with 1 mL diphenylamine indicator. The colour change was from deep blue to dark 
green. Similarly triplicates of blank titrations were carried out. Where the volume of 0.5 N 
ferrous ammonium sulphate (AR) solutions was less than 3 mL, the determinations were 
repeated using 0.5 g soil. The percentage organic matter was calculated using the following 
equation: 

 
( )2 2 7 4 22

K Cr O Fe NH .6H OMe Me
%OM 1.729 x 0.0031 x 100 x  x 

mass (g) of air dried soil
F

− 
=  

  
 (1) 

where, F = Correction factor (1.33) and Me = Normality of solution  × volume (mL) of 
solution used. 
Soil pH was determined using glass electrode pH meters (model 601A Orion Research 
digital ionalyzer and model 744 Metrohm) in a 1:5 (V/V) of soil in water (pH-H2O). 

2.5 Analysis of metals in earthworm samples 
The earthworms were identified as Aporrectodea icteria after being rinsed with distilled 
water. Only reproductively mature earthworms were identified because of presence of a 
clitellum. Then they were placed on moist filter papers and put in glass Petri dishes (one 
individual per dish) and kept at 10o C for 24 hrs in order to purge the soil in the gut. They 
were then rinsed slightly with distilled water and then stored frozen and then freeze-dried. 
Gut contents remaining in some earthworms were removed manually. 3.0g of thawed and 
dried earthworm sample was heated with 2 mL concentrated HNO3 (AR),  filtered and 
made up to 50 mL with distilled water. The metal contents were determined by running 
samples on AAS as for the soil samples. The metal concentrations were expressed as mg/kg 
dry weight of earthworm (mg/kg dw). 

www.intechopen.com



Periphyton and Earthworms as Biological Indicators  
of Metal Pollution in Streams of Blantyre City, Malawi 

 

5 

2.6 Analysis of metals in S. aequinoctialis samples 
Periphyton samples were air dried (Hoffman, 1996). The air dried samples were then dry- 
ashed in a furnace after adding nitric (AR) and hydrochloric acid (AR) (Association  
of Official Analytical Chemists (AOAC), 1990). Thereafter the sample was made up to  
50 mL with distilled water in a volumetric flask. The samples were prepared in  
triplicates and blank and standard samples were used to check accuracy of analysis. The 
concentration of heavy metals was determined by running samples on AAS (Perkin Elmer, 
Analyst 700). 

2.7 Quality control 
To ensure quality control of sampling and analysis, a number of procedures were followed. 
Firstly the sampling devices were carefully chosen so that they should not contaminate the 
samples. If the same apparatus were to be used for the next sampling process, they were 
thoroughly cleaned and rinsed with distilled water. For water samples in which heavy 
metals were to be determined, acidification was done to pH less than 2 to avoid adsorption 
of metals on the sides of the sampling containers.  In the measurement of volume a pipette 
which is more accurate was used rather than measuring cylinders. Soil samples were 
prepared away from the rest of the samples since dust could easily contaminate the other 
samples. All samples for heavy metal analysis were determined in triplicates. Analytical 
reagents were used for all procedures rather than general purpose reagents. In addition, the 
following minimum laboratory quality control measures (United States Environmental 
Protection Agency (US-EPA), 2010) for the instruments used in the analysis and also 
samples were followed; 
a. Initial calibration; This was done prior to analysis of samples (minimum three 

concentration levels for every compound and an instrument blank). 
b. Continuing calibration; This was done once per 10 samples (mid-level standard 

containing all compounds) and a continuing calibration blank. 
c. Method blank; This was done once per digestion or extraction set. 
d. Soil and water samples were preserved at 4oC and analysed within 28 days. 

3. Results  

3.1 Metal concentrations in stream water, wastewater and S. aequinoctialis 
Table 1 provides the levels of determined metals in stream water and wastewater samples. 
The corresponding World Health Organization (WHO) drinking water guidelines (WHO, 
2006) and the Malawi Standard (MS 214) (MBS, 2005) for the parameters are also included in 
Table 1. The levels of metals determined in S. aequinoctialis samples are provided in Table 2. 
In S. aequinoctialis samples, concentrations of manganese, cadmium and copper were 

significantly higher (p < 0.05) in the dry season than in the rainy season. There were, 
however, no significant seasonal differences in the levels of lead, zinc, chromium  
and nickel.   
Chromium and copper were not detected in all samples in the rainy season, but they were 
measured in levels of up to 0.419 mg/L and 0.076 mg/L, respectively, in the dry season 
(Table 1). For both seasons, the determined levels of zinc and copper were below MS 214 
and WHO water quality guidelines, whereas levels of nickel and cadmium were above these 
guidelines (Table 1). 17% of the samples had chromium levels above the MS 214 (0.05-0.1 
mg/L) and WHO (0.05 mg/L) water quality standards. For lead, 44 % and 61 % of the 
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sampled points contained lead levels above MS 214 (0.01 – 0.05 mg/L) and WHO (0.01 
mg/L) drinking water standards in the rainy and dry seasons, respectively. In the case of 
manganese, water quality standards were only exceeded at Mangunda stream, in the  
rainy season. In the dry season, however, 83% and 17% of the sampling points showed 
manganese levels above the MS 214 and WHO drinking water quality guidelines, 
respectively (Table 1).  

3.2 Metal content in soils and A. icteria 
Table 3 and Table 4 provide results of soil and earthworm sample analyses, respectively. 
The metal content in the assessed soil sites is low in comparison to guideline values in 
several European countries. Levels of Cd (rainy season), Pb, Cr, Cu, Zn and Ni (both 
seasons) were below their respective England toxic limits (0.06 mg/kg for Cd, 10 mg/kg 
for Pb, 50 mg/kg for Zn , 20 mg/kg for Cr and 40 mg/kg for Ni; Bohn et al, 1985),  
Swiss guide levels (0.8 mg/kg dry soil for Cd, 50 mg/kg dry soil for Pb; OIS, 1998)  
and the Netherlands target levels (85 mg/kg for Pb, 36 mg/kg for Cu, 140 mg/kg for Zn, 
100 mg/kg for Cr, 35 mg/kg for Ni; Alloway and Ayres, 1997 ). However, for the dry 
season, 33% of the soil samples were above the England toxic level (0.06 mg/kg; Bohn et 
al., 1985).   
The internal concentrations of Cd, Cu, Pb, Zn and Cr were below the levels that show 
significant changes in (sub-) lethal endpoints for earthworms (see e.g. Langdon et al, 2001; 
Spurgeon and Hopkin, 1999; Spurgeon et al, 2000). There were significantly higher 
concentrations of Cd in A. icteria than in the soils, but significantly lower values of Mn, Fe, 
Pb, Cr, Zn and Cu in the earthworm than soils (p < 0.05). There was no significant difference 
in the concentrations of Ni in soils and earthworms (p > 0.05). The effect of seasonality varies 
among the studied metals. In the soils, levels of Mn were significantly higher in dry season 
than the rainy season (p < 0.05), but there were no significant differences between the 
seasons for the values of total soil concentrations of  Cd, Cu, Zn, Pb, Cr and Ni (p > 0.05). pH 
was significantly higher in the rainy season than the dry season (p < 0.05), but there were no 
significant differences in soil OM content between the seasons (p > 0.05). In A. icteria, levels 
of Cd and Cr were significantly higher in dry season than the rainy season (p < 0.05), but 
there were no significant differences between the seasons for the values of concentrations of 
Mn, Cu, Zn, Pb, Ni and Ca (p > 0.05).  

4. Discussion 

4.1 Potential sources of metal pollution  
Pearson correlations were calculated to find empirical inter-relationships between the 
chemical parameters. Correlation between chemical parameters may indicate similar origins 
or conceptual relationships, as well as common governing factors. In the soil samples, 
concentrations of Cr were significantly correlated with Zn, Cu and Pb in the rainy season 
and with Pb in the dry season (Table 5). The strong association of these metals with each 
other indicates their anthropogenic origin. Organic matter content strongly affects the soil 
content of Cd, Zn (rainy season) and Cr (Table 5).  
The presence of heavy metal pollution in the streams of Blanytre City has been reported 
upon by Sajidu et al (2007) and Kuyeli (2007) and both studies pointed at industrial activities 
as the possible sources of pollution.  Kuyeli (2007) reported Cd in effluent from printing 
(0.034 mg/l), textiles (0.034 mg/l), motor oil (0.025 mg/l), battery (0.019 mg/l) and abattoir 
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industry (0.06 mg/l) in the dry season; Cr in effluent from match stick production (41.59 
mg/l in the dry season and 56.12 mg/l in the rainy season); Cu in the range 0.026 mg/l  
(battery manufacturer) to 2.00 mg/l (Paint industry); Zn in effluent from battery 
manufacturer (30.83 mg/l) and match stick production (15.51 mg/l) in the rainy season and 
18.97 mg/l (match stick), 13.9 mg/l (battery) and 14.4 mg/l (fertiliser manufacturer) in the 
dry season; Pb in paint (1.29 mg/l), printing (2.60 mg/l) in the dry season and match stick 
(0.465 mg/l) and printing (0.233 mg/l) in the rainy season. Sajidu et al (2007) reported a 
significant increase in the levels of Pb, Cd, Cr, Fe, Cu, Ni and Mn in the same Blantyre 
streams after passing through an industrial site. The results from this study show 
enrichment of the heavy metals (Zn, Cd, Cr and Pb) in most streams over that of Michiru 
stream, which is in a forest reserve. In Malawi, cadmium is present in coatings on steel and 
also in batteries and potassium dichromate (K2Cr2O7) is used as a raw material for 
producing match-heads. Copper compounds are used in textile, print and paint industry for 
pigmentation whereas Pb is used as a pigment, dispersing and drying agent in the print and 
paint industry. In match stick production lead oxide is used to give the scarlet colour of the 
match. 

4.2 Accumulation of metals in S. aequinoctialis 
Calculated bioconcentration factors (BCF) show that S. aequinoctialis accumulated heavy 

metals in the order Mn> Zn>Cu> Pb (Table 6). S. aequinoctialis had significantly higher (p < 

0.05) levels of lead, copper, zinc and manganese than the corresponding water samples, in 

both seasons. There were no significant differences in levels of chromium between the algae 

samples and water samples whereas the differences were season dependent for the other 

metals. Water samples had high cadmium levels in the rainy season while in the dry season 

the levels were higher in S. aequinoctialis. For nickel, water samples indicated significantly 

higher nickel levels than S. aequinoctialis (p < 0.05), in the rainy season, but there was no 

significant difference in the dry season (p > 0.05).  

There were strong correlations between water and algae metal contents for Cu (r = 0.73; p < 

0.05; Fig. 2a) and Cr (r = 0.65; p < 0.05) in the rainy season. A low correlation for Mn (r = 

0.40; p < 0.05) was also obtained for the dry season. There were no correlations for the other 

metals. There is an established consensus in the literature that brown and green algae are 

capable of biosorption of metals from their environment (Davis et al., 2003; Rajfur et al., 

2010). They have thus been used in biomonitoring of heavy metals mostly in marine 

environments (Filho et al., 1999; Żbikowski et al., 2007; Akcali and Kucuksezgin, 2011).  This 

study is in agreement with these studies and adds to the knowledge of heavy metal 

accumulation of green algae in a fresh water environment. Heavy metal levels in algae 

species are dependent both on environmental parameters (salinity, temperature, pH, light, 

oxygen, nutrient concentrations, complexing agents) and on the structural differences 

among the algae species (Garnharm et al., 1992; Favero et al., 1996). 

4.3 Metal accumulation in A.icteria 
Concentrations of Cu, Zn (rainy season) and Cd (dry season) in the soil were significantly 

correlated with the concentrations in A.icteria (Fig. 2b-d); Table 5). These metals also show 

correlations of varying strength with soil OM content (Table 5). The calculated 

bioconcentration factors (BCF) show that A. icteria accumulated heavy metals in the order 

Cd > Zn = Ni > Pb > Cu = Cr (Table 7), consistent with data from other similar studies (e.g.  
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1Not detected  
2 Malawi Bureau of standards (Standards for drinking water)  
3 World Health Organisation (Standards for drinking water)  
Values are in the form of mean  ± standard deviation  

Table 1. Levels of Ni, Cu, Fe, Pb, Cr, Cd, Mn and Zn in water samples (concentrations are in 
mg/L) 
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ND – not detected (below detection limit) 

Table 2. Levels of heavy metals in S. aequinoctialis (in mg/kg dry weight) 
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x = mean value (n = 3); SD = standard deviation;  ND = not detected (below detection limit) 

Table 3. Metal concentrations in stream sediments soils and soils around WWTPs in the 
study area 
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Table 4. Metal concentrations in A. icteria inhabiting stream- sediments and soils around 
WWTPs in Blantyre City, Malawi  

± ±± ± ± ±±

± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

±± ± ±

±

±±

± ± ± ± ± ± ± ± ± ± ±
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 %OM pH [Cd]s [Cd]w [Pb]s [Pb]w [Mn]s [Mn]w [Cu]s [Cu]w [Zn]s [Zn]w [Cr]s [Cr]w [Ni]s [Ni]w 

%OM 1 -0.39 ND -0.09 0.23 -0.68 0.49 -0.46 0.89** 0.49 0.84** 0.61* 0.69** ND 0.17 0.17 

pH -0.40 1 ND 0.03 -0.25 -0.16 0.36 0.33 -0.25 -0.21 -0.28 0.02 -0.53* ND -0.51 0.016 

[Cd]s 0.25 -0.02 1 ND ND ND ND ND ND ND ND ND ND ND ND ND 

[Cd]w -0.03 0.18 0.63* 1 0.29 -0.29 0.12 -0.11 0.15 0.25 0.21 -0.08 0.16 ND 0.16 -004 

[Pb]s 0.28 0.02 0.20 0.04 1 0.54 -0.32 -0.31 0.33 0.31 0.41 0.53* 0.59* ND 0.46 -0.15 

[Pb]w 0.18 0.10 -0.31 -0.097 -0.23 1 -0.91* -0.045 0.45 -0.82 0.07 0.35 -0.28 ND -0.19 -0.50 

[Mn]s -0.08 -0.09 0.31 0.25 0.03 -0.20 1 -0.012 0.50 0.31 0.31 0.31 0.16 ND -0.08 0.38 

[Mn]w -0.02 -0.17 0.39 0.50 0.000 0.13 0.39 1 -0.17 0.15 -0.41 -0.16 -0.26 ND 0.39 0.35 

[Cu]s 0.35 -0.38 -0.02 -0.30 -0.13 0.23 -0.41 -0.09 1 0.73** 0.85** 0.63* 0.81** ND 0.09 0.21 

[Cu]w 0.26 0.22 0.83** 0.33 0.24 0.12 0.05 0.26 0.18 1 0.42 0.31 0.72** ND 0.007 0.092 

[Zn]s 0.21 0.03 -0.23 0.29 -0.08 0.25 0.36 0.19 -0.23 -0.15 1 0.72** 0.56* ND 0.04 0.23 

[Zn]w 0.47 -0.07 -0.15 -0.25 0.026 0.61* 0.27 -0.007 -0.31 -0.04 0.22 1 0.48 ND -0.08 0.41 

[Cr]s 0.71** -0.15 0.53 -0.09 0.56* -0.24 0.154 -0.17 0.18 0.41 -0.007 0.22 1 ND 0.46 -0.09 

[Cr]w 0.96** -0.23 0.73 0.011 0.33 0.44 0.004 -0.03 0.15 0.50 -0.38 0.73 0.56 1 ND ND 

[Ni]s 0.44 -0.20 0.60 -0.003 0.36 -0.08 -0.236 -0.19 0.09 0.04 -0.21 0.05 0.49 0.86 1 -0.21 

[Ni]w 0.36 0.20 -0.20 0.34 0.46 0.099 -0.04 -0.13 0.28 0.24 0.22 0.16 0.17 0.33 -0.06 1 

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level; ND = not 
determined 

Table 5. Pearson’s correlation coefficients of soil OM, pH-H2O, metal soil and A.icteria metal 
content (Upper panel – rainy season Lower panel – dry season) 

 

        
 

        

Fig. 2. Scatter plots showing relationship between metal content in A.icteria and sediments  
(b –d) and metal content in S. aequinoctialis and stream water (a). Dry season data is used for 
plot (b) and rainy season data is used for the other plots. No significant correlations were 
found for the other combinations of metals.  
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Site Dry season Rainy season 

Mn Ni Cr Cd Pb Cu Zn Mn Ni Cr Cd Pb Cu Zn 

Chirimba at Cori ND 0.07 ND 3.99 5.24 ND 6.05 91.00 1.05 ND 0.49 0.00 12.24 9.59 

Chirimba at Machinjiri ND 1.06 ND 0.74 3.46 ND 0.63 12.28 0.05 ND 0.71 1.22 5.61 9.41 

Mudi at MDI 81.25 ND ND 3.26 18.53 ND 0.84 23.12 0.42 ND 0.00 2.51 15.17 10.00 

Mudi at SRN ND 0.67 ND 2.01 15.19 ND 0.87 10.01 ND 0.85 0.00 2.92 4.96 26.80 

Soche WWTP raw ND 0.19 ND 9.39 18.62 ND 3.70 3.94 ND ND 0.00 1.58 5.75 12.85 

Soche WWTP effluent ND ND ND 1.63 0.72 ND 3.69 1.53 ND ND 0.00 0.00 5.54 16.77 

Blantyre WWTP raw ND 0.06 ND 11.26 3.96 ND 9.18 0.99 ND 1.45 0.00 0.00 10.87 11.66 

Blantyre WWTP effluent ND 0.04 ND 0.54 6.59 ND 2.90 1.61 ND 2.07 0.00 0.00 6.02 9.19 

Nasolo at BNC ND 0.00 ND 5.71 6.13 ND 4.10 4.11 ND 1.12 0.30 7.63 2.97 17.21 

Nasolo at SRN ND 0.14 ND 0.28 0.96 ND 1.83 5.11 ND ND 0.36 20.10 1.91 12.04 

Michiru ND ND ND 4.57 0.00 ND 0.39 68.16 ND ND 0.00 ND ND 1.45 

Mangunda 23.44 1.07 ND 6.51 3.84 ND 1.83 8.11 ND ND 0.22 5.13 2.00 3.93 

Limbe WWTP effluent ND 0.15 ND 10.34 0.00 ND 1.08 1.68 ND ND 0.00 ND ND 9.81 

Limbe WWTP raw ND 0.16 ND 1.03 4.97 ND 0.73 4.42 ND ND 0.00 4.05 7.08 3.55 

Limbe at Mpingwe ND 0.00 ND 1.06 12.30 ND 0.88 73.45 ND ND 0.00 0.00 ND 2.29 

Limbe at Highway ND 0.15 ND 5.94 5.34 ND 2.77 23.51 ND ND 0.00 4.23 5.63 14.16 

Naperi at Rainbow ND 0.00 ND 0.48 41.91 ND 7.50 7.92 ND ND 0.18 6.74 ND 12.41 

Naperi at Moi ND 0.00 ND 1.41 0.97 ND 1.59 4.12 ND ND 0.00 0.00 3.08 1.93 

ND = not determined (because metal content was below detection limit in either water or algae)  

Table 6. Bioconcentration factors (BCF) for rainy and dry seasons for S. aequinoctialis from 
the sampled streams in Blantyre City, Malawi. 

 

Site Dry season Rainy season 

Mn Ni Cr Cd Pb Cu Zn Mn Ni Cr Cd Pb Cu Zn 

Chirimba stream (A) 0.27 0.70 ND 12.07 0.31 0.10 1.36 0.29 ND ND 2.98 0.24 0.100 0.73 

Chirimba stream (B) 0.46 2.10 ND 19.13 0.11 0.09 0.40 0.06 0.19 ND ND 0.08 ND 0.36 

Mudi stream (A) 0.29 0.25 0.0032 2.66 0.01 0.27 0.13 0.17 0.15 ND ND 0.14 0.042 0.29 

Mudi stream (B) 0.28 2.46 ND 2.60 0.11 0.03 8.35 0.62 0.57 ND ND ND 0.211 0.72 

Michiru stream  0.19 0.03 ND ND ND 0.00 0.56 0.19 0.13 ND ND ND ND 0.91 

Naperi stream (A) 0.12 0.41 0.0028 3.38 0.12 0.02 0.32 0.27 0.15 ND ND ND 0.003 0.73 

Naperi stream (B) 0.14 0.06 ND ND ND 0.03 0.47 0.22 0.31 ND ND ND 0.021 0.50 

Blantyre WWTP 0.08 0.21 0.0035 1.27 0.03 0.22 1.33 0.23 0.28 ND ND ND 0.070 0.28 

Nasolo stream (A) 0.24 3.36 ND ND 1.44 0.22 0.30 0.28 0.72 ND ND 0.41 0.068 0.57 

Nasolo stream (B) 0.14 0.67 ND ND 4.44 0.43 0.16 0.19 0.35 ND ND 0.30 0.027 0.25 

Mzedi Stream 0.43 0.11 0.0089 1.84 0.67 0.03 3.56 0.36 ND ND ND ND ND 0.48 

Soche WWTP 0.22 0.30 0.0073 7.83 0.29 0.01 0.28 0.31 1.08 ND ND ND 0.030 0.33 

Limbe WWTP 0.24 0.49 ND 3.08 0.33 0.48 0.65 0.66 0.35 ND ND ND 0.128 0.71 

Limbe stream (A) 0.22 0.03 ND ND 0.03 0.24 0.58 0.74 1.34 ND ND ND 0.074 1.15 

Limbe stream (B) 0.07 32.38 ND 7.83 0.26 0.15 0.74 0.34 0.48 ND ND ND 0.094 0.52 

ND = not determined 

Table 7. Bioconcentration factors (BCF) for rainy and dry seasons for A.icteria from the 
sampled stream-bank soils and soils around WWTPs in Blantyre City, Malawi. 
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Fig. 3. Plots of log BCF against metal concentration in the soil using dry season data.  
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References Species Equation 
#  

Cd Pb Cu Zn 

a b a b a b a b 

Heikens et 
al. (2001) 

Bibliographic 
study 

Lumbricidae 
(mixed) 

1 0.39 1.1 0.62 -0.3 0.17 1.8 0.17 1.8 

Ma et al. 
(2004) 

Field data Lumbricidae 
(mixed) 

2 0.556 1.39 0.556 0.626 0.327 0.776 0.212 2.49 

Neuhauser 
eta al. 
(1995) 

Bibliographic 
studies 

Lumbricidae 
(all species 
mixed) 

3 0.66 1.21 0.74 0.05 0.27 2.09 0.27 2.09 

Wright and 
Stringer 
(1980) 

Soil quantity: 
field study 

Aporrectodea 
caliginosa 

4 0.32 0.33 0.9 -0.8 0.01 0.23 0.01 0.23 

Aporrectodea 
longa 

5 0.3 -0.3 0.5 -0.1 0.1 2.5 0.1 2.5 

Aporrectodea 
rosea 

6 0.5 0.7 0.5 -0.1 0.5 1.1 0.5 1.1 

Table 8. Regression equations, Log Mew = alogMs + b for Lumbricidae, Aporrectodea caliginosa,  
Aporrectodea longa, Aporrectodea rosea and Cd, Cu, Pb and Zn from literature 

 

              
    

            

Fig. 4. Relationships between the internal Cd, Cu, Pb, Zn in earthworms and the total soil 
concentration, in comparison with regressions from the literature. The number on the lines 
corresponds to the number of regression model in Table 8, calculated using the soil data 
from this study. The dots are data from this study (A.icteria) for dry season. 
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Fig. 5. Relationships between the internal Cd, Cu, Pb, Zn in earthworms and the total soil 

concentration, in comparison with regressions from the literature. The number on the lines 

corresponds to the number of regression model in Table 8, calculated using the soil data 

from this study. The dots are data from this study (A.icteria) for wet season. 

Kamitani and Kaneko, 2007; Hsu et al., 2006; Dai et al, 2004; Ireland, 1983; Ma, 1982). The 

solubility of heavy metals in soil (pore) water is important for bioaccumulation by 

earthworms as the main pathways for chemical absorption are the skin (for soluble 

elements), gut transit and digestion (Weltje, 1998). The BCF order also reflects the affinity 

order for the specific adsorption of metal cations in soil: Pb > Cu > Zn > Cd. Cadmium tends 

to be more mobile in soils and therefore more available to earthworms than other heavy 

metals (Ma, 2004). Fig. 3 shows decreasing BCF with soil concentration of the metals 

indicating that bioconcentration depends on the metal concentrations in the soil and is 

greater at low soil concentrations. This implies that A. icteria exhibits metal regulation at 

high exposure rates (Neuhauser et al., 1995).  

There is a significant consensus in the literature that bioaccumulation of heavy metals by 

earthworms is dependent on earthworm species and type of metal (see e.g. van Vliet et al., 

2005, 2006; Vijver, 2007; Kamitani and Kaneko, 2007; Ernst et al., 2008). 

Hence, the accumulation patterns of Cd, Cu, Zn and Pb in A. icteria (this study) were 

compared to those of other lumbricid earthworms, using the regression models from 

literature (Heikens et al., 2001; Neuhauser et al., 1995; Ma, 2004; Wright and Stringer, 1980) 
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(see Table 8). Data for A. icteria is not readily available in the literature for comparison with 

our study. Figs 4 and 5 show that A. icteria (present study) accumulated relatively less Cu 

than the other species at the same soil concentration. However, similar accumulation levels 

were observed for Pb and Zn with A. caliginosa and for Cd with A. longa (Figs 4 and 5), even 

at our very low exposure levels.  For all species, there is a metal dependent increase in body 

concentration with increasing soil concentration, following the order: Pb > Cd > Cu = Zn 

(Figs. 4 and 5). Cu and Zn are essential metals and are physiologically regulated by 

earthworms, resulting in a relatively constant body concentration with respect to soil metal 

concentrations (Panda et al., 1999; Heikens, et al., 2001; Morgan and Morgan, 1988; Lukkari, 

2004). In contrast, Cd and Pb are non-essential metals and are not regulated resulting in 

metal increase with increasing soil concentrations (Spurgeon and Hopkin, 1999). 
The plots in Figs. 4 and 5 also show that the regression models generated for all species of 
lumbricid earthworms would overestimate the amount of heavy metals in A. icteria living in 
the stream bank soils and soils around the WWTPs in Blantyre City. This result supports the 
general consensus that the degrees of heavy metal accumulation in earthworms show 
different, metal- and species-specific patterns. The observed differences in accumulation 
patterns are usually attributed to differences in metal kinetics of the earthworms, exposure 
route and food preference. In addition, it seems that the accuracy of the regression models is 
lost when they are generalised at family level but may be possible to relate accumulation 
patterns within the same genera. However, it should be noted that the comparison should 
be made with caution because metal availability is dependent on several environmental 
factors such as soil pH, cation exchange capacity, OM and Ca2+ (Christensen, 1989,  Ma, 
1982; Corp and Morgan, 1991; Peijnenburg et al., 1999a, 1999b). These factors may differ 
between studied field soils. 

5. Conclusions 

The study obtained concentrations of manganese, cadmium and lead in periphyton (S. 
aequinoctialis) in higher levels than in the corresponding water, implying that S. aequinoctialis 
accumulates these heavy metals. The results indicate the potential of periphyton as a 
biological indicator of heavy metal pollution. Heavy metals concentrations therefore 
measured in macroalgae species can give a picture of the quality of our surrounding  
environment. In addition, the levels of most of the heavy metals were higher than 
drinking water standards. It was also found that the general trend was that of high heavy 
metal values for water samples in the dry season than in the rainy season. The relatively 
low heavy metal levels in the rainy season were attributed to dilution. The study also 
showed that A.  icteria can accumulate cadmium, but not lead and manganese.  This work 
supports the published results that metal- and species-specific accumulation patterns of 
non-essential heavy metals in earthworms occur. In addition, the work extends the 
database to even very low exposure levels and therefore generates more information for 
A. icteria. Metal accumulation shows seasonal variations with significant correlations and 
multiple regression models between soil and internal metal content being more apparent 
in the rainy season. Similar accumulation levels observed between A. icteria and A. 
caliginosa for Pb and Zn and A. longa for Cd point to a possibility to relate accumulation 
patterns within the same genera, albeit metal specific. Further, it seems that the accuracy 
of regression models is lost when they are generalised at family level, making 
generalisations at that level difficult. 
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