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1. Introduction 

Osteoarthritis (OA), a degenerative joint disease, increases in prevalence with age, and 

affects majority of individuals over the age of 65.  OA frequently affects several joints 

including the hands, knees, hips and spine, and is a leading cause of impaired mobility in 

the elderly.  The major clinical symptoms include chronic pain, joint instability, stiffness and 

radiographic joint space narrowing (Felson, 2006; Goldring & Goldring, 2007).   

During OA development, articular chondrocytes undergo hypertrophy leading to 

extracellular matrix degradation, articular cartilage breakdown and osteophyte formation in 

the margins of the articular cartilage (Felson, 2006; Goldring & Goldrig, 2007).  The precise 

signaling pathways which are involved in the degradation of cartilage matrix and 

development of OA are poorly understood and there are currently no effective interventions 

to decelerate the progression of OA or retard the irreversible degradation of cartilage except 

for total joint replacement surgery (Krasnokutsky et al., 2007).  In this chapter, we will 

summarize important molecular mechanisms related to OA pathogenesis and provide new 

insights into potential molecular targets for the prevention and treatment of OA. 

2. Characteristics of articular cartilage 

The skeleton is an organ composed of two distinct tissues: bone and cartilage.  Bones are rigid 
mineralized organs formed in a variety of shapes.  Normal articular cartilage, emerging during 
the postnatal stage as a permanent tissue distinct from the growth plate cartilage, is an 
extremely smooth, hard and white tissue that lines the surface of all the diathrodial joints.  
Articular cartilage facilitates interactions between two bones in a joint with a low coefficient of 
friction.  Water, type II collagen (Col2), and proteoglycans are the principle components of 
articular cartilage.  Of the wet mass, 65%~80% of cartilage is water, 10%~20% is Col2, and 
4%~7% is aggrecan.  Other collagens and proteoglycans such as types V, VI, IX, X, XI, XII, XIV 
collagens (Eyre et al., 2002) and decorin, biglycan, fibromodulin, lumican, epiphycan, and 
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perlecan (Knudson & Knudson, 2001) also contribute a small part (less than 5%) of the normal 
cartilage composition.  The articular chondrocyte is the only cell type in articular cartilage and 
as such is the major player in cartilage development and maintenance. 
During articular cartilage development, articular chondrocytes establish the cartilage matrix 
by synthesizing and depositing collagens and proteoglycans.  The collagen/proteoglycan 
matrix consists of a highly dense meshwork of collagen fibrils including the major collagen 
type II (Col2) and minor collagen types IX, and XI embedded in gel-like negatively-charged 
proteoglycans (Kannu et al., 2009).  This hydrated architecture of the matrix provides the 
articular cartilage with tensile and resilient strength which allows joints to maintain proper 
biomechanical function (Iozzo, 2000).  
As articular cartilage matures, articular chondrocytes maintain the cartilage by synthesizing 
matrix components (Col2 and proteoglycans) and matrix degrading enzymes with minimal 
turnover of cells and matrix.  The existing collagen network becomes cross-linked, and 
articular cartilage matures into a permanent tissue with the ability to absorb and respond to 
mechanical stress (Verzijl et al., 2000).  Under normal conditions, articular chondrocytes 
become arrested at a pre-hypertrophic stage of differentiation, thereby persisting 
throughout postnatal life to maintain normal articular cartilage structure (Pacifici et al., 
2005). 

3. Progression of osteoarthritis 

Articular cartilage can be damaged by normal wear and tear or pathological processes such 
as abnormal mechanical loading or injury.  Because articular cartilage is an avascular tissue, 
and chondrocytes possess little regenerative capacity and are arrested before terminal 
hypertrophic differentiation, articular cartilage has very limited capacity to repair after 
damage. 
During the early stages of OA, the cartilage surface is still intact.  The molecular 
composition and organization of the extracellular matrix is altered first (Glodring & 
Glodring, 2010).  The articular chondrocytes, which possess little regenerative capacity and 
have a low metabolic activity in normal joints, exhibit a transient proliferative response and 
increase  matrix synthesis (Col2, aggrecan etc.) attempting to initiate repair caused by 
pathological stimulation.  This response is characterized by chondrocyte cloning to form 
clusters and hypertrophic differentiation, including expression of hypertrophic markers 
such as Runx2, ColX, and Mmp13.  Changes in the composition and structure of the articular 
cartilage further stimulate chondrocytes to produce more catabolic factors involved in 
cartilage degradation.  As proteoglycans and then the collagen network break down (Mort 
& Billington, 2001), cartilage integrity is disrupted.  The articular chondrocytes will then 
undergo apoptosis and the articular cartilage will eventually be completely lost.  The 
reduced joint space resulting from total loss of cartilage will cause friction between bones, 
leading to pain and limited joint mobility.  Other signs of OA, including subchondral 
sclerosis, bone eburnation, osteophyte formation, as well as loosening and weakness of 
muscles and tendons will also appear. 

4. Genetic contribution to osteoarthritis 

The etiology of OA is multi-factorial, including obesity, joint mal-alignment, and prior joint 
injury or surgery.  These factors can be segregated into categories such as mechanical 
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influences, the effects of aging and genetic factors.  Meniscal injuries are among the most 
common causes of OA in younger populations.  The meniscus is a C-shaped structure that 
functions as shock-absorbing, load bearing, stability enhancing, and lubricating cushion in 
the knee joint.  Studies show that loss of intact meniscus function leads to OA in humans 
due to joint instability and abnormal mechanical loading (Ding et al., 2007; Hunter et al., 
2006).  Recently, the meniscal-ligamentous injury (MLI) induced-OA model is becoming a 
well-established mouse model which mimics clinical situation allowing us to study the 
development and progression of trauma-induced OA on defined genetic backgrounds 
(Clements et al., 2003; Sampson et al., 2011).  In this model, the ligation of the medial 
collateral ligament coupled with disruption of the meniscus from its anterior-medial 
attachment can reproducibly induce OA over a 3 month time period. 
There are rare cases of OA involving mutations of types II, IX and XI collagen (Li et al., 2007; 
Kannu et al., 2009).  In addition, OA progression is also affected by pro-inflammatory factors 
such as prostaglandins, TNF-┙, interleukin-1, interleukin-6 and nitric oxide.  However, there 
is no evidence supporting a critical role for these factors in the development of severe OA 
(Kawaguchi, 2009).  As articular chondrocytes inappropriately undergo endochondral 
ossification-like maturation in the context of OA, however, several genetic mouse models 
have been developed and demonstrated potential roles of affected genes in OA 
pathogenesis. 

4.1 TGF-β signaling 
Chondrocyte differentiation and maturation during endochondral ossification are tightly 

regulated by several key growth factors and transcription factors, including members of the 

transforming growth factor ┚ (TGF-┚) super family, fibroblast growth factors (FGFs), indian 

hedgehog (Ihh), parathyroid hormone-related protein (PTHrP), and Wnt signaling proteins 

(Blaney Davidson et al., 2007; Kolpakova & Olsen, 2005; Komori, 2003; Kronenberg, 2003; 

Ornitz, 2005).  The inhibition of TGF-┚ signaling represents a potential mechanism in the 

development of OA because TGF-┚ inhibits chondrocyte hypertrophy and maturation 

(Blaney Davidson et al., 2007).  There are three isoforms of TGF-┚, TGF-┚1, 2 and 3, which 

can bind to the type II receptor to activate the canonical TGF-┚/Smad signaling cascade.  In 

the canonical pathway, TGF-┚ binds to the type II receptor which then phosphorylates type I 

transmembrane serine/threonine kinase receptors.  The type I receptor subsequently 

phosphorylates Smads 2 and 3 (R-Smad) at a conserved SSXS motif at the C-terminus of 

Smads 2 and 3.  The activated R-Smads thus dissociate from the receptor complex and form 

a heteromeric complex with the common Smad, Smad4.  This heteromeric Smad complex 

then enters the nucleus and associates with other DNA binding proteins to regulate target 

gene transcription (Miyazawa et al., 2002). 

Deletion of any TGF-┚ isoform gene could result in embryonic lethality and loss of TGF-┚2 
or TGF-┚3 results in defects in bone development affecting the forelimbs, hindlimbs and 
craniofacial bones, suggesting that TGF-┚ plays an important role in skeletogenesis (Nicole 
& kerstin, 2000). Recent genetic manipulation of TGF-┚ signaling members also 
demonstrated that TGF-┚ signaling plays a critical role during OA development.  Transgenic 
mice that over-express the dominant-negative type II TGF-┚ receptor (dnTgfbr2) in skeletal 
tissue exhibit articular chondrocyte hypertrophy with increased type X collagen expression, 
cartilage disorganization and progressive degradation (Serra et al., 1997).  Consistent with 
these findings, Smad3 knockout mice show progressive articular cartilage degradation 
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resembling human OA (Yang et al., 2001).  In order to overcome embryonic lethality and 
redundancy, we generated chondrocyte-specific Tgfbr2 conditional knockout mice (Tgfbr2 
cKO or Tgfbr2Col2CreER mice) in which deletion of the Tgfbr2 gene is mediated by Cre 
recombinase driven by the chondrocyte-specific Col2a1 promoter in a tamoxifen (TM)-
inducible manner (Chen et al, 2007; Zhu et al, 2008, 2009).  These mice exhibit typical clinical 
features of OA, including cell cloning, chondrocyte hypertrophy, cartilage surface 
fibrillation, vertical clefts and severe articular cartilage damage as well as the formation of 
chondrophytes and osteophytes (Shen et al., unpublished data).  In addition, the 
relationship between TGF-┚ signaling and OA is strengthened by the discovery that a single 
nucleotide polymorphism (SNP) in the human Smad3 gene is linked to the incidence of hip 
and knee OA in a 527 patient cohort (Valdes et al., 2010). 

4.2 Wnt/β-catenin signaling 
The canonical Wnt/┚-catenin signaling pathway, which controls multiple developmental 

processes in skeletal and joint patterning, may also be involved in the progression of OA.  In 

vitro studies show that over-expression of constitutively active ┚-catenin leads to loss of the 

chondrocyte phenotype including reduced Sox9 and Col2 expression in chick chondrocytes 

(Yang, 2003).  When Wnt binds its receptor Frizzled and the co-receptor protein LRP5/6, the 

signaling protein Dishevelled (Dsh) is activated, leading to inactivation of the 

serine/threonine kinase GSK-3┚, thus inhibiting the ubiquitination and degradation of ┚-

catenin.  ┚-catenin then accumulates in the nucleus and binds LEF-1/TCF to regulate the 

expression of Wnt target genes.  In the absence of the Wnt ligand, cytosolic ┚-catenin binds 

the APC-Axin-GSK-3┚ degradation complex, and GSK-3┚ in this complex phosphorylates ┚-

catenin to induce its proteosomal degradation.  The degradation of ┚-catenin represses the 

expression of Wnt responsive genes, allowing binding of the corepressor Groucho to the 

transcription factors LEF-1/TCF. 

Genome-wide scans, candidate gene association analyses and single nucleotide 

polymorphism (SNP) studies have demonstrated the association of hip OA with the 

Arg324Gly substitution mutation in the sFRP3 protein that antagonizes the binding of Wnt 

ligands to the Frizzled receptors.  The mutation of sFRP3 causes increased levels of active ┚-

catenin, promoting aberrant articular chondrocyte hypertrophy and thereby leading to hip 

and knee OA in patients (Loughlin et al., 2004; Lane et al., 2006; Loughlin et al., 2000; Min et 

al., 2005).  Consistent with this finding, Frzb knockout mice are more sensitive to chemical-

induced OA (Lories et al., 2007).   

Since human genetic association studies suggest that Wnt/┚-catenin signaling may play a 
critical role in the pathogenesis of OA, we have generated chondrocyte-specific β-catenin 
conditional activation (cAct) mice.  These mice show high expression of ┚-catenin in 
articular chondrocytes leading to abnormal articular chondrocyte maturation and 
progressive loss of the articular cartilage surface in 5- and 8-month old mice (Zhu et al., 
2009).  The role of Wnt/┚-catenin signaling in cartilage degeneration is further 
demonstrated in other animal models.  Chondrocyte-specific Col2a1-Smurf2 transgenic mice 
develop an OA-like phenotype due to up-regulation of ┚-catenin caused by Smurf2-induced 
ubiquitination and degradation of GSK-3┚ (Wu et al., 2009).  Furthermore, over-expression 
of Wnt-induced signaling protein 1 (WISP-1) in the mouse knee joint also leads to cartilage 
destruction (Blom et al., 2009).  Consistent with these findings, it has been reported that a 
panel of Wnt signaling-related genes, including WISP-1 and ┚-catenin, were significantly 
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up-regulated in knee joints and disc samples from patients with OA and disc degenerative 
disease (DDD) (Blom et al., 2009; Tang et al., unpublished data). 

4.3 Indian hedgehog (Ihh) signaling 
The Indian hedgehog (Ihh)/parathyroid hormone-related protein (PTHrP) negative-feedback 

loop is critical for chondrocyte differentiation during endochondral bone formation.  Articular 

chondrocytes undergo cellular changes reminiscent of terminal growth plate chondrocyte 

differentiation during OA (Kronenberg, 2003).  These observations suggest a pivotal role for 

Ihh signaling in OA development.  Ihh is a major Hh ligand in chondrocytes, which binds with 

the Patched-1 (PTCH1) receptor to release its inhibition on Smoothened (SMO).  SMO can then 

activate the glioma-associated oncogene homolog (Gli) family of transcription factors to 

initiate transcription of specific downstream target genes, including Hh signaling pathway 

members Gli1, Ptch1 and hedgehog-interacting protein (HHIP).   

Immunohistochemical studies demonstrated that Ihh signaling activation positively 

correlates with the severity of OA in human OA knee joint tissues and high expression of 

GLI1, PTCH and HHIP was found in surgically induced murine OA articular cartilage.  

Activation of Ihh signaling in mice with chondrocyte-specific over-expression of the Gli2 or 

Smo genes induced a spontaneous OA-like phenotype with high MMP-13, ADAMTS5 and 

ColX expression.  In contrast, deletion of the Smo gene or treatment with a pharmacological 

inhibitor of Ihh attenuated the severity of OA induced by MLI injury (Lin et al., 2009). 

4.4 HIF-2α 
The HIF proteins, including HIF-1, 2 and 3, are the basic helix-loop-helix transcription 
factors which function differently under normoxic and hypoxic conditions (Semenza, 2000; 
Lando et al., 2002; Bracken et al., 2003; Schofield and Ratcliffe, 2004).  HIF-1┙, in the articular 
cartilage, acts as an anabolic signal by stimulating specific extracellular matrix synthesis 
(Pfander et al., 2003; Duval et al., 2009).  In contrast, HIF-2┙ (encoded by EPAS1) is a 
potential catabolic regulator of articular cartilage and induces articular cartilage 
degeneration (Saito et al., 2010; Yang et al., 2010).  Promoter assays suggest that NF-κB 
signaling could significantly induce HIF-2┙ expression and then HIF-2┙ specifically regulate 
transcription of several catabolic genes such as Mmp13 (Saito et al., 2010).  Genetic screen 
using the human osteoarhritic cartilage UniGene library suggests that HIF-2┙ is a potential 
catabolic regulator of articular cartilage (Yang et al., 2010).  Based on the Japanese 
population ROAD study, a functional SNP in human EPAS1 proximal promoter region was 
associated with knee osteoarthritis in a 397 patient cohort (Muraki et al., 2009; Saito et al., 
2010).  Consistent with this finding, , HIF-2┙ expression was markedly increased in OA 
patients with degenerative cartilage (Saito et al., 2010; Yang et al., 2010).  Chondrocyte-
specific Epas1 transgenic mice could spontaneously develop osteoarthritis phenotype with 
increased MMP-13 and ColX expression in articular cartilage.  In addition, Epas1 
heteozygous deficient mice showed resistance to cartilage degeneration induced by 
meniscus surgery (Saito et al., 2010; Yang et al., 2010).  Therefore, HIF-2┙ may be a critical 
transcription factor that targets several genes for osteoarthritis development. 

4.5 Insulin-like growth factor (IGF) 
The progressive nature of OA is charactized by a growing imbalance between anabolism 
and catabolism in articular cartilage.  The three above-mentioned signaling pathways are 
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mainly involved in regulation of articular chondrocyte catabolism.  In contrast, insulin-like 
growth factor (IGF) is the most likely candidate affecting cartilage matrix synthesis 
(Guenther et al., 1982; McQuillan et al., 1986).  The most important ligand in IGF signaling is 
IGF-1 which interacts with specific IGF membrane receptors as well as with the insulin 
receptor to activate their cytoplasmic tyrosine kinase domains and initiate the MAPK 
cascade and promote cell proliferation and differentiation.  The action of IGF signaling on 
cellular anabolism is governed at different levels, including IGF ligand, receptors and IGF 
binding proteins (IGFBP) which modify the interaction of IGF with its receptor (Martel-
Pelletier et al., 1998).  In cartilage, IGF-1 is believed to stimulate synthesis of extracellular 
matrix proteins in chondrocytes (Schoenle et al., 1982; Trippel et al., 1989).  The local 
production of IGF-1 is significantly increased in human OA synovial fluid, due to 
attempting to repair the damaged cartilage.  However, the diseased cells are hypo-
responsive to IGF-1 stimulation since highly-expressed IGFBP3 on the cell membrane 
interferes with the binding of IGF-1 to its receptor (Doré et al., 1994; Tardif et al., 1996).  
Moreover, the highly expressed IGF-1 may contribute to the subchondral bone sclerosis and 
osteophyte formation (Martel-Pelletier et al., 1998).  

5. Cartilage degradation during OA 

Articular chondrocytes, the only cell type in cartilage, are sensitive to altered mechanical 

loading pattern induced by obesity, injury and aging (Goldring & Goldring, 2007).  

Chondrocytes have receptors responding to mechanical stimulation, including integrins 

which serve as receptors for extracelluar matrix components such as fibronectin (FN) and 

type II collagen fragments (Millward-Sadler & Salter, 2004).  In addition to these receptors, 

several signaling pathways mentioned above are mechano-responsive in chondrocytes as 

well, including TGF-┚, Wnt and Ihh signaling (Blaney Davidson et al., 2006; Komm & Bex, 

2006; Ng et al., 2006; Robinson et al., 2009).  Activation of these signaling pathways induces 

the expression of matrix-degrading proteinases.  Studies of large scale gene expression 

profiling from tissue samples of OA patients revealed two principle enzyme families 

responsible for cartilage degeneration during OA development: the matrix 

metalloproteinase (MMP) family members which target collagens and a disintegrin and 

metalloproteinase with thrombospondin motifs (ADAMTS) family members which mediate 

aggrecan degeneration (Aigner et al., 2006). 

5.1 Collagenase: Matrix metalloproteinase 
MMP-13 is a substrate-specific enzyme that targets collagen for degradation.  Compared to 

other MMPs, MMP-13 expression is more restricted to connective tissues (Borden & Heller, 

1997; Mengshol et al., 2000; Vincenti et al., 1998; Vincenti, 2001).  MMP-13 preferentially 

cleaves Col2, which is most abundant in articular cartilage and in the nucleus pulposus, 

inner anulus fibrosus and cartilage endplate of the intervertebral disc.  It also targets the 

degradation of other proteins in cartilage, such as aggrecan, types IV and IX collagen, 

gelatin, osteonectin and perlecan (Shiomi et al., 2010).  MMP-13 has a much higher catalytic 

velocity rate compared with other MMPs over Col2 and gelatin, making it the most potent 

peptidolytic enzyme among collagenases (Knäuper et al., 1996; Reboul et al., 1996).  

Clinical investigations revealed that patients with articular cartilage destruction had high 
MMP-13 expression (Roach et al., 2005), suggesting increased MMP-13 may be the cause of 
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cartilage degradation.  Mmp13 deficient mice show no gross phenotypic abnormalities, and 
the only alteration is in growth plate architecture during early cartilage development (Inada 
et al., 2004; Stickens et al., 2004).  However, transgenic mice with cartilage-specific Mmp13- 
overexpression develop spontaneous articular cartilage destruction characterized by 
excessive cleavage of Col2 and loss of aggrecan (Neuhold et al., 2001).  In the above-
mentioned Tgfbr2 cKO and β-catenin cAct mouse models, MMP-13 expression is significantly 
increased (Shen et al., unpublished data; Zhu et al., 2009).  These findings suggest that 
MMP-13 deficiency does not affect articular cartilage function during the postnatal and 
adult stages but abnormal up-regulation of MMP-13 can lead to cartilage destruction.  
Moreover, deletion of the Mmp13 gene prevents articular cartilage erosion induced by 
meniscal injury (Little et al., 2009).  Deletion of the Mmp13 gene at least partially rescues the 
OA-like phenotype observed in Tgfbr2 cKO and β-catenin cAct mice (Shen et al., unpublished 
data; Wang et al., unpublished data), suggesting that TGF-┚/Smad3 and Wnt/┚-catenin 
signaling play a critical role in the development of OA through up-regulation of MMP-13 
expression. 

5.2 Aggrecanse: ADAMTS 
The ADAMTS family consists of large family members and they share several distinct 

protein modules as well.  Studies show that ADAMTS4 and 5 expression levels are 

significantly increased during OA development.  Single knockout of the Adamts5 gene or 

double knockout of the Adamts4 and Adamts5 genes prevents cartilage degradation in 

surgery-induced and chemical-induced murine knee OA models (Glasson et al., 2005; 

Majumdar et al., 2007; Stanton et al., 2005).  Interestingly, in Tgfbr2 cKO, β-catenin and Ihh 

activation mouse models, ADAMTS5 was significantly increased in articular cartilage tissue, 

suggesting that maintaining proper ADAMTS5 levels are essential for normal articular 

cartilage function.  Taken together, these findings indicate that catabolic enzymes play a 

significant role in OA progression and targeting these enzymes may be a viable therapeutic 

strategy to decelerate articular cartilage degradation. 

6. Potential therapeutic approches 

MMP-13 and ADAMTS5 are two potentially attractive targets for OA therapy.  The 

inhibition of these enzymes and their regulatory mechanisms have been extensively studied.  

Tissue inhibitors of metalloproteinases (TIMP) are specific inhibitors which directly bind 

MMPs and ADAMTS in chondrocytes to prevent the destruction of articular cartilage 

(Stetler-Stevenson & Seo, 2005).  A specific small molecule MMP-13 inhibitor can attenuate 

the severity of OA in the MLI-induced injury model as well (Wang et al., unpublished data).   

In addition to proteinase inhibitors, the transcription factor Runt domain factor-2 (Runx2) 
appears to be another potential target to regulate MMP-13 and ADAMTS5 in vivo.  DNA 
sequence analysis of Mmp13 and Adamts5 promoters identified putative Runx2 binding sites 
in the promoter regions of these genes.  In addition, Runx2 has an overlapping expression 
pattern with MMP-13 and ADAMTS5, almost exclusively in the developing cartilage and 
bone, suggesting that Runx2 may be an important transcription factor regulating tissue-
specific expression of Mmp13 and Adamts5 in articular chondrocytes (Ducy et al., 1997; 
Enomoto et al., 2000; Inada et al., 1999; Komori et al., 1997).  In vitro studies confirmed that 
MMP-13 and ADAMTS5 expression dramatically increase after alterations in TGF-┚/Smad3, 
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Wnt/┚-catenin and Ihh signaling pathways and concomitant up-regulation of Runx2 
expression (Lin et al., 2009; Shen et al., unpublished data; Wang et al., unpublished data).  
Thus, manipulation of Runx2 expression in vivo could be an effective therapeutic strategy.  
During bone development, the temporal and spatial expression patterns of Runx2 are 
regulated by cytokines and growth factors including TGF-┚, BMP, and FGF (Kim et al., 2003; 
Takamoto et al., 2003; Tou et al., 2001; Zhou et al., 2000).  In addition to gene expression, 
Runx2 protein levels are also regulated through post-translational mechanisms involving 
phosphorylation, ubiquitination and acetylation (Zhao et al., 2003, 2004; Jeon et al., 2006; 
Jonason et al., 2009; Shen et al., 2006a, 2006b; Shui et al., 2003; Zhang et al., 2009).  We have 
recently found that cyclin D1 induces Runx2 ubiquitination and degradation in a 
phosphorylation-dependent manner leading to the inhibition of Runx2 transcriptional 
activity (Shen et al., 2006b).  MicroRNA regulation is another important regulatory 
mechanism for protein translation.  MicroRNA-140 (miR-140) is the first microRNA 
demonstrated to be involved in the pathogenesis of OA at least partially through regulation 
of ADAMTS5 mRNA expression.  MiR-140 knockout mice are susceptible to age-related OA 
progression and conversely, over-expression of miR-140 in chondrocytes protects mice from 
OA development (Akhtar et al., 2010; Miyaki et al., 2009; Yamasaki et al., 2009). 

7. Summary 

Articular chondrocyte is the sensor of articular cartilage homeostasis, and plays a critical 
role in maintaining the normal physiological structure and function of articular cartilage.   
Recent studies demonstrate that articular chondrocyte homeostasis can be disrupted by 
multiple factors, including abnormal mechanical loading, and aging.  Additionally, genetic 
alterations in TGF-┚/Smad, Wnt/┚-catenin and Ihh signaling pathways can disrupt the 
balance between anabolic and catabolic activity in articular cartilage and result in 
irreversible degradation of the extracellular matrix.  Thus far, most of the mouse models of 
osteoarthritis converge at the up-regulation of catabolic enzymes, such as MMP-13 and 
ADAMTS5, suggesting that these enzymes may serve as potential therapeutic targets in 
regulation of the progression of OA.  In addition, manipulation of the above-mentioned 
signaling pathways in articular chondrocytes could also play a role in articular cartilage 
regeneration. 
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