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1. Introduction  

Microbial diversity is commonly represented by genotypic frequency of the whole gene pool 
(metagenomes) of a microbial community. The biological community structure is 
determined by the environment, species competition, and the evolutionary histories of the 
species living in the community (Aravalli et al., 1998). Because microorganisms are highly 
sensitive to environmental changes, they can be used as indicators of the properties of their 
environment (Aravalli et al., 1998). Therefore, the demographic history of a microbial 
population may indicate changes that have occurred in the local habitat. 

Traditionally, the 16S ribosomal RNA genes (16S rRNA) are widely used as genetic barcodes 
for identifying and recording the microbial organisms of a specific “microbial community” 
(waters, soils, digestive tracts, etc.) (Liao et al., 2007; Kulakov et al., 2011). Characteristic of the 
16S rRNA gene in species differentiation provides as good genetic tool for ecological survey. 
The comparison of the genome data of two Prochlorococcus ecotypes revealed a genetic 
differentiation in niches which is also reflected in the 16S rRNA differentiation (Rocap et al., 
2003). Recently, the advanced (meta)-genomic survey provides more novel insights into the 
microbial ecology and niche differentiation (Rocap et al., 2003; Shanks et al., 2006; Staley, 2006; 
Avarre et al., 2007; Biddle et al., 2008; Kalia et al., 2008; Banfield et al., 2010; Benson et al., 2010; 
Wang et al., 2010; Morales & Holben, 2011). However, the price for the metagenomic survey 
even by the next-generation sequencing technologies (e.g. the 4 (Chistoserdova, 2010). 
Therefore, studies for the goals of microbial diversity of a community are still favoring the 16S 
rRNA genes as genetic barcodes. 

In the past decades, the rapid development of the population genetic and phylogeographic 
analyses based on the coalescent theory leads advancement of the field of molecular 
evolution in eukaryotes (Avise, 2009; Hickerson et al., 2010). Until recently, the coalescent 
theory is found to be used for testing the microbial spatiotemporal hypothesis (Gray et al., 
2011). The coalescence theory that was firstly proposed by Kingman (1982) provides a 
practical framework to model genetic variation in a population. This involves tracing 
backward through time in order to identify events that occurred since the most recent 
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common ancestor (MRCA) of the samples (Fu & Li, 1999; Kingman, 2000). This theory is 
sample-based and the speculation of evolutionary processes is more relevant than the 
classical population genetics theory that describes the properties of the entire population (Fu 
& Li, 1999). Three essential concepts comprise the coalescent process (Kingman, 2000): (1) 
the idea of identity-by-descent (Nagylaki, 1989), (2) selective neutrality and a constrained 
population size (Ewens, 1972, 1972), and (3) independent mutations of genealogy (Kingman, 
1980). Along with advanced molecular techniques, approaches developed from the 
coalescence model can provide a sketch of the demographic history of microorganisms 
(Perez-Losada et al., 2007). Studies in this field have increasingly supported the reliability of 
molecular dating by microbial genetic analyses, such as estimating the TMRCA and the 
radiating time of bacteria and archaea by comparing 16S rRNA gene sequences (Sheridan et 
al., 2003) and exploring the early evolutionary history of phototrophy and methanogenesis 
in prokaryotes by the use of a relaxed molecular clock (Battistuzzi et al., 2004). There have 
also been reports of the successful use of DNA viruses to track recent and ancient local 
human histories (Pavesi, 2003, 2004, 2005; Kitchen et al., 2008).  

2. The problematic definition of species in microbial diversity 

Although the genetic diversity inferred by 16S rRNA gene or by genome data well display 

the entire microbial diversity of a community, the degree of biodiversity that just considers 

the appearance (birth) and the extinction (death) of “lineages” in phylogeny, i.e. the 

diversification rate, and ignores the concept of “species diversity” is still difficult to be 

accepted by traditional biologists. Therefore, species definition (species concept) of 

microorganisms, especially in prokaryotes, is still perplexed many microbial ecologists and 

environmental microbiologists, although some of them usually skirt this knotty problem.  

However, the use of coalescent theory cannot prevent to discuss this knotty issue because 

the “monophyletic” species is necessary to be defined firstly (due to the assumption of 

identity-by-descent) to confirm the accurate coalescent inferences. Several papers discussed 

the species concept of prokaryotes in different points of view but most of them adopted a 

concept of “genetic similarity” as the principle (Ward, 1998; Vellai et al., 1999; Rossello-Mora 

& Amann, 2001; Cohan, 2006; Konstantinidis et al., 2006; Staley, 2006; Wilkins, 2006; Ward et 

al., 2008; Zimmer, 2008; Doolittle & Zhaxybayeva, 2009; Ereshefsky, 2010; Klenk et al., 2010) 

rather than the concept of monophyly. Achtman and Wagner (Achtman & Wagner, 2008) 

summarized five categories of species concepts in microbiology in which none of each has 

been generally accepted: 

1. Monophyletic and genomically coherent cluster of organisms showing a high degree of 
overall similarity (Rossello-Mora & Amann, 2001) 

2. An irreducible cluster of organisms of a common ancestor (Staley, 2006) 
3. Having much greater degree of lateral gene transfer between each other than between 

other groups (Wilkins, 2006; Doolittle & Zhaxybayeva, 2009; Ereshefsky, 2010) 
4. Forming a natural cluster (Nesbø et al., 2006) 
5. Metapopulation lineages (Ereshefsky, 2010) 

The first concept for delimiting species by monophyly should be used for the application of 

coalescent theory, such as inferring the demographic history (Fu & Li, 1999; Rosenberg & 

Nordborg, 2002; Rosenberg, 2003). In addition, the degree of genetic similarity is also a key 
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factor to determine the length of coalescent time. In other words, lineages of a clade with 

shorter genetic distance reflect relatively recent coalescent history (of this clade). In contrast, 

the clade composed of lineages with long genetic distance can reflect relatively long-

historical demography but with wider variance and larger inaccuracy.  

In general, the genetic similarity of microbes ≤98.7% estimated by 16S rRNA genes are 

considered as different species but the opposite is not necessary true, i.e. the genetic 

similarity ≥98.7% might not be the same species (Stackebrandt & Ebers, 2006; Achtman & 

Wagner, 2008). This value matches to the threshold of 70% reassociation value in DNA-

DNA hybridization (Stackebrandt & Ebers, 2006). The value <98.7% (or to round off <99%) 

identity in 16S rRNA gene overturns the old threshold of <97% identity for delineating 

species of microorganisms. Therefore the definition of “a species” in microbiology, for the 

purpose for phylogeographic or demographic inferences by the coalescent theory, is 

concluded as an integration of monophyly and genetic distance lower than 1%. 

3. A case study: Simple microbial composition of a volcanic pond and a 
demographic association of demographic history of microbes with 
geographic history 

In this case study, the microbial composition of an acidic sulfidic lake located in the 

northern Taiwan is exampled by genetic barcodes to represent the microbial diversity of a 

community and the microevolution of the dominant bacteria is further explored by the 

application of the coalescent theory. The sulfate lake is a special water type, since only 

certain chemical autotrophic microbes are able to utilize sulfides or sulfates as energy 

source (Moreira & Amils, 1997). Our study site, the “Niunai (Milky) Lake”, is a small 

crater pond composed of sulfate substrates, located in a volcanic mountain, Mt. Datun, in 

the Yangmingshan National Park (YMSNP) in the northern part of Taipei County in 

Taiwan (Fig. 1). The source of the water is a mineral spring and the abundant rainfall from 

the northeast monsoon in North Taiwan (4526.4 mm per year on average at Chutzuhu 

Station in YMSNP, Table 1). This lake has never dried up since records have been kept. 

Due to the neutralization by rainfall, the water is mildly acidic (approximate pH 6–7) and 

the water temperature is approximately 38–40ºC. The crater took shape during a volcanic 

eruption in the Quaternary Period and two major eruptions have made the recent 

topography of the Datun Volcano Groups. The first eruption was 2.8 to 2.5 mega annual 

before present (Ma BP) and the last time a Datun volcano erupted was approximately 0.8–

0.2 Ma BP. The volcanoes have been reposed since. Similar to Yellowstone National Park, 

sulfur is rich in the nearby soil, rocks, and waters in the Datun Volcanoes. It has been 

reported that the endolithic microbes preserved the geological history of Yellowstone 

National Park (Walker et al., 2005). Very few natural microbial communities, especially 

those in extreme environments like the Datun Volcanoes, have been reported in Taiwan, 

which is a young island that took shape less than 5 Ma BP (Shen, 1996). Therefore, the 

sulfate-rich pool, Niunai Lake, serves as an excellent template to explore the microbial 

community structure and the evolutionary history of the dominant species in the volcanic 

mountains of Taiwan. Through the analyses of the phylogenetic community structure, 

which can assess the community assemblages (Kraft et al., 2007), and the population 

genetic structure, we present   
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Fig. 1. Picture and map of the Niunai Lake. (A) The panorama of the Niunai Lake; (B) the 
location of the Niunai Lake in the northern Taiwan; (C) the contour map of the 
Yangmingshan National Park where the Niunai Lake located. 

here the microbial community and population structures of a sulfur-rich environment. 

Several well-known studies that were based on culture-independent approaches (because 

less than 1% of microbial species are cultivable) have indicated that several unknown and 

unexpected taxa were discovered in the microbial communities (Giovannoni & Stingl, 2005). 

For example, 37% of the clones isolated from an extremely acidic (~pH 1) endolithic 

microhabitat in the Yellowstone geothermal environment were identified as Mycobacterium 

spp., which are pathogens of humans. (Walker et al., 2005). Additionally, while the long-

considered dominant cyanobacteria comprised less than 5% of the clones isolated from the 

microbial community of the stromatolites of Hamelin Pool in Shark Bay, Western Australia, 

unknown proteobacteria comprised 28% of the clones. (Papineau et al., 2005). These studies 

suggest an unknown field of environmental microbiology that requires further 

investigation. According to the model proposed by Stackebrandt and Ebers (2006) and 

Acinas et al. (2004), 16S rRNA sequences of microorganisms that were more than 98.7% ~ 

99% similar could be treated as an operational taxonomic unit (OTU). These OTUs, as 

defined by Stackebrandt and Ebers (2006) and Acinas et al. (2004), are ‘microdiverse 

ribotype clusters’ and are considered an important differentiation unit in natural bacterial 
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communities. In other words, 99% similarity delineates different microbial species in nature. 

Therefore we assumed that the observed ribotypes may represent the species or the 

categories of the microorganisms in the collected samples and that their colony frequencies 

are indicative of the composition of the microbial species. As such, instead of using 

microbial culture methods, we used culture-independent techniques (Perez-Losada et al., 

2007) to examine the composition of the microbial community in Niunai Lake.  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

Accumulated 
precipitation (mm) 

269.3 277.3 240.3 207.8 275.3 294.7 248.3 446 588.1 837.3 521.9 320.1 377.2 

Precipitation days 20 18 18 15 16 14 10 13 15 19 21 20 16.6 
Mean temp. (ºC) 11.7 12.2 14.6 18.1 20.9 23.5 24.8 24.5 22.7 19.8 16.4 13.3 18.5 
Maximum temp. 
(ºC) 

15.3 15.8 18.8 22.4 24.9 27.5 29.4 29 26.9 23.4 19.7 16.8 22.5 

Minimum temp. 
(ºC) 

9.2 9.6 11.7 15.1 18.2 20.9 21.9 21.8 20.3 17.7 14.2 10.9 16 

Relative humidity 
(%) 

88 89 88 87 87 87 84 84 85 87 88 88 86 

Table 1. Statistical records (1971 ~ 2000) of weather at the Chutzuhu Station in YMSNP, 
sources from Central Weather Bureau, Taiwan (http://www.cwb.gov.tw/). 

In this case study, we report the results of our study examining the composition of the 

microbial community in Niunai Lake using a 16S rRNA gene library. In addition, the long-

term demographic history of the dominant taxon (Thiomonas sp.) of this community and the 

factors that influenced it are presented. We try to make a connection between the geological 

and demographic history of microbes in terms of molecular ecology and this should be 

helpful in understanding the relationship between environmental factors and the microbial 

composition. 

3.1 Methods 

3.1.1 Sampling and molecular techniques 

The water samples were collected one meter below the water surface from Niunai Lake 

(25°10’00”N, 121°33’52”E) in the Datun Volcano Group in Yangmingshan National Park 

(YMSNP) in Taipei, Taiwan. The weather records in YMSNP are listed in Table 1. The 

Niunai Lake is a sulfate-rich (20–40% sulfide) pond at an altitude of 700 m. Water samples 

were collected in sterile bottles and immediately incubated on ice until filtration and 

metagenomic DNA extraction.  

DNA extraction was immediately carried out in order to prevent a bias from the foraging of 

microfauna. The DNA extraction protocols have been previously described (Liao et al., 

2001). The water samples were pre-filtered through Nuclepore PE filters with pore size of 11 

μm. The filtered water was then passed through 0.22 μm filters and these filters were cut 

into pieces, soaked in the extraction buffer (200 mM Tris-Cl pH 7.5, 250 mM NaCl, 25 mM 

EDTA, and 0.5% SDS), and shaken for homogenization. The metagenomic DNA was 

extracted with phenol-chloroform-isoamyl alcohol buffer and the total extracted DNA was 

dissolved in ddH2O for subsequent analysis. 
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16S rRNA gene fragments were selectively amplified from the genomic DNA using the 

following two PCR primers (Field et al., 1997): forward primer 27F (5'-

AGAGTTTGATCMTGGCTCAG-3', nucleotides 8-27 relative to the Escherichia coli 16S rRNA 

gene) and reverse primer 1522R (5'-AAGGAGGTGATCCANCCRCA-3', nucleotides 1522-

1541 relative to E. coli). This primer set is universal in amplifying most bacterial 16S rRNA 

genes. The PCR reactions (50 μL) contained 0.4 μL of extracted DNA sample, 1 μM each 

primer, 0.1 mM each deoxynucleoside triphosphate, 20 μg BSA, and 2.5 U of Super Taq 

polymerase (Violet) in 10X PCR buffer (Violet). The Super Taq polymerase was used for 

enlarging the yields of PCR product and decreasing the rate of PCR error. PCR parameters 

were as follows: an initial denaturation at 94°C for 5 min, followed by 35 cycles of 

denaturation (94°C for 60 sec), annealing (55°C for 60 sec), and extension (72°C for 90 sec), 

with a final extension step (72°C for 7 min). The PCR products were resolved in an ethidium 

bromide-stained 1% agarose gel in TBE. DNA fragments of the expected size were purified 

from the gel using the Gel Extraction System Kit (Viogene). 

The 16S rRNA gene library was constructed by cloning the amplified PCR products into the 

yT&A vector (Yeastern Biotech). Competent DH5ǂ cells (E. coli) were transformed with the 

vector by heat shock transformation at 42° for 45 sec. The transformed cells were spread onto 

LB agar plates containing ampicillin, 5-bromo-4-chloro-3-indolyl-ǃ-D-galactopyranoside, and 

isopropyl-ǃ-D-thiogalactopyranoside (LB Ampicillin/X-gal/IPTG). Positive clones (which 

contained 16S rRNA gene PCR inserts) were confirmed using the M13F and M13R primers 

and were picked for further sequence analysis. Both directional sequencing was done at 

Genomics BioScience & Tech Co., Ltd. The sequences obtained in this study were deposited 

in GenBank under the accession numbers DQ145964-DQ146147. 

3.1.2 Data analyses 

The 16S rRNA gene sequences obtained in the study and those of known microorganisms in 

the NCBI database were aligned using the program Clustal X (Thompson et al., 1997), and 

then manually edited with the program BioEdit (Hall, 1999). All sequences were tested for 

possible chimeric artifacts using the Bellerophon software (Kelly et al., 2007). Putative 

chimeras were excluded from further analyses. Phylogenetic analysis (neighbor-joining (NJ) 

method) of the aligned data sets was then performed using TOPALi version 2.17 (Milne et 

al., 2004). The substitution model and rate model used for constructing the NJ tree were F84 

(transition/transversion = 1.10) and gamma distribution (alpha = 0.69), respectively. The 

bootstrap analysis was conducted with 1,000 replications. From the analysis of the 

phylogenetic tree, the 16S rRNA gene clones of Niunai Lake were classified and the relative 

frequencies of taxa were counted. The species affinity of the 16S rRNA gene clones were 

identified through comparison with the Ribosomal Database Project (http:/ 

/rdp.cme.msu.edu/). 

After barcoding with the molecular characteristics by phylogenetic method (Liao et al., 
2007), the number of microbial species in the Niunai Lake was estimated using the definition 
of microbial species proposed by Acinas et al. (2004) and Stackebrandt & Ebers (2006). 
Additionally, the “expected” richness was estimated using the SChao1 index (Chao, 1984) and 
the rarefaction was estimated using the Rarefaction Calculator (http://www2.biology. 
ualberta.ca/jbrzusto/rarefact.php). The SChao1 index is a nonparametric estimator of species 
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richness (Chao, 1984). In addition, the genetic polymorphisms of the dominant microbial 
species, Thiomonas sp. in the Niunai Lake were calculated. The haplotype diversity (Hd) and 
the π (i.e., the average number of pairwise nucleotide differences) and θ (θ =4Nμ, where N is 
the effective population size and μ is the mutation rate estimated by the total number of 
mutations) indices of nucleotide diversity (Nei, 1987) were calculated in order to understand 
the style of genetic variation in this microorganism.  

In order to infer the demographic history, the mismatch distribution of the 16S rDNA of 
Thiomonas sp. was calculated using DnaSP 4.0 (Rozas et al., 2003). The Tajima’s D (Tajima, 
1989) and Fu’s Fs (Fu, 1997) tests were used to assess the effect of demographic changes and 
were calculated using Arlequin 3.11 (Excoffier et al., 2005). Generally speaking, these tests 
are based on the frequency distributions of variations. With the exception of these tests, the 
demographic inferences were carried out using the Bayesian skyline plot (BSP) analysis 
(Drummond et al., 2005) and the software BEAST 1.4.8 (Drummond & Rambaut, 2007) in 
order to estimate fluctuations in the effective population size. This method estimates a 
posterior distribution of effective population sizes backward through time until the most 
recent common ancestor using MCMC procedures. The constant population size coalescent 
model was the basic assumption used for this approach. The model developed by Jukes and 
Cantor (Jukes & Cantor, 1969) was used for distance matrix correction. A uniform rate 
across all branches (strict molecular clock) and the general time reversible substitution 
model were used for this calculation. In order to obtain the correct parameters and a higher 
effective sample size for BSP analysis, six pre-runs were performed and the parameters were 
modified according to the suggestions of the runs. Markov chains were run for 1×107 
generations for pre-runs and 3×107 generations for the final run and were sampled every 
1,000 generations, with the first 10% of the samples discarded as burn-in. The other 
parameters were set as default. The TRACER v1.4 program (Rambaut & Drummond, 2007) 
was used to visualize the posterior probabilities of the Markov chain statistics and to 
calculate a statistical summary of the genetic parameters. 

3.2 Results 

3.2.1 Phylogenetic assemblage of the microbial community 

A 1625 base pair, after sequence alignment, partial 16S rRNA gene sequence was used in the 
analysis. Among these 1625 sites (characters), 790 were constant, 171 were variable 
characters that were parsimony-uninformative, and the remaining 664 sites were 
parsimony-informative characters. A total of 181 haplotypes (considering gaps) or 148 
haplotypes (not considering gaps) were obtained from the 184 clones in our 16S rRNA gene 
library. The 16S rRNA gene library derived from Niunai Lake samples was analyzed by NJ 
comparisons (Fig. 2) in which 13 species were identified using the species definition 
proposed by Acinas et al. (2004) and Stackebrandt & Ebers (2006). One microbial species 
belonging to the genus Thiomonas (Burkholderiales; 91.85% in abundance), four species 
belonging to the genus Thiobacillus (Burkholderiales; 2.72% in abundance), one species 
belonging to the genus Acidiphilium (Acetobacteraceae; one clone), and one species 
belonging to the genus Escherichia (Enterobacteraceae; one clone) were identified. 
Additionally, eight clones from unknown species were identified (Fig. 3). One of the eight 
unknown taxa belonged to the epsilonproteobacteria and the others were 
betaproteobacteria, based on the grouping of the neighbor-joining tree (Fig. 2).  
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Fig. 2. Phylogenetic analysis of the 16S rRNA genes obtained from the Niunai Lake-derived 
clones and from the NCBI database. The reference sequences from NCBI were obtained by 
BLAST search. The tree was constructed by the neighbor joining method with the F84+G 
model and 1,000 bootstrapping replicates. The paraphyletic grouping is due to the genetic 
similarity of the sequences and cannot be explained as phylogenetic affinity. The lineages 
indicated in squares are sequences obtained in this study. The scale bar is the expected 
substitutions per site. 

 

Fig. 3. Microbial species composition of the Niunai Lake community. The frequencies were 
estimated by the relative frequencies of the colony sizes of the 16S rRNA gene library. 

Even though seven taxa of known genera were identified in the microbial community of 
Niunai Lake, they were all undescribed species. Additionally, although the relative sample 
size of the unknown taxa was small (8/184) compared to the known genera (176/184), 
almost half of the taxa identified in this research were previously unknown (6/13). Acinas et 
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al. (2004) have reported that for microorganisms, there was a 70% decrease in the number of 
OTUs (from 1633 to 520 OTUs), when only 99% sequence identity (as opposed to 100% 
sequence identity) was used as the cut-off. The dramatic decrease in the OTU number using 
the cut-off of 99% 16S rRNA gene sequence similarity may be due to variations within 
species and PCR errors. Based on the definition proposed by Acinas et al. (2004), the number 
of OTUs versus cluster similarity of our findings is shown in Fig. 4. The similarity in genetic 
composition was also demonstrated by a pairwise comparison where most variations fell 
into a 0.02% genetic distance (Fig. 4, inset). This similarity in microbial composition 
indicates that microbial species were selected by the acidic environment of Niunai Lake and 
that the composition of microbial community was simple. 

 

Fig. 4. Cluster-similarity curve of OTUs based on Nei’s (1987) genetic distance. The uplift in 
99% similarity indicates most microbial organisms in Niunai Lake belong to a single species. 
The inner plot indicates the frequency distribution of pairwise distance that demonstrates 
that most haplotypes are similar to each other within 0.02 genetic distances. 

In our 16S rRNA gene library, there could be an inevitable amplification bias due to primer 

specificity. As a result, the unamplified 16S ribotypes would not be seen in this study 

(Moore et al., 1998; Morris et al., 2002). In order to estimate the probable species richness, 

both the SChao1 and species-accumulation-curve methods were used. Both analyses indicated 

a higher number of species than what was detected in the 16S rRNA gene library. The SChao1 

index was 26.5 ± 9.418 species and the species-accumulation curve suggested a maximum 

number of 19.5 species (Fig. 5). Therefore, we could expect a greater microbial richness in 

Niunai Lake, even in such a harsh environment full of acidic, sulfurous, and Thiomonas-rich 

competitive stresses. 

3.2.2 Genetic diversity and demographic history of Thiomonas sp.  

The dominant bacterium Thiomonas sp. had a haplotype diversity (Hd) of 0.993, which 

indicates that most of the clones are different in genetic composition. The pairwise diversity 

(π) and genetic diversity index (θ) estimated from the segregating site (S) are 0.0146 ± 0.0077 

and 0.0340 ± 0.0065, respectively (Table 2). Both Tajima’s D and Fu’s Fs indices, which reflect 

the demography, have significant negatives (D = -2.648, P < 0.00001; Fs = -23.746, P = 0.004,  
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Fig. 5. Cumulative numbers of OTUs (the rarefaction analysis) as a function of the number 
of clones sequenced. The species-accumulation curve (black diamond dots) is not saturated, 
which suggests that the estimated number of microbial species of Niunai Lake is 
underestimated. The curve following the black diamond curve is a simulated curve that 
achieves a maximum number of species of 19.5 at 454 clones. 

respectively) and indicate population expansion events (Table 2). We then used these 
nucleotide differences to calculate the distribution of pairwise differences (mismatch 
distribution). There was a left skew curve in the mismatch distribution plot, which had 
higher observed values than the expected values (Fig. 6). The differences in allelic frequency 
indicate that the observed values of the first four differences are lower than the expected 
values (Fig. 6, inset). In addition, clones of Thiomonas sp. are most pairwise different from 
each other in 5–10 nucleotide differences and illustrate an event of rapid population growth 
in the recent past, but not at the present.  

 

Hd π (×103) 
S.D. 

(×103) 
θ (×103)

S.D. 
(×103) 

Tajima's 
D 

P Fu's Fs P 

0.993 14.617 7.678 33.974 6.463 -2.648 <0.00001 -23.746 0.004 

Table 2. Genetic diversity of Thiomonas sp. in Niunai Lake. Hd: haplotype diversity (Nei, 
1987); π: nucleotide diversity (Nei, 1987); θ: nucleotide diversity estimated by total number 
of mutations (Nei, 1987). 

Except for the mismatch distribution, the BSP analysis was performed to depict the 

demographic history of Thiomonas sp. in Niunai Lake. Initially, the time to MRCA (TMRCA) 

of the Thiomonas sp. of the Niunai Lake was calculated. The strict-molecular-clock mode was 

selected because the known nodes for suitable molecular-dating were not acquired. Thus, 

the commonly used substitution rate of 4.5 × 10-9 per nucleotide site per year for prokaryotic 

SSU rDNA (estimated from Escherichia coli) suggested by Ochman and colleagues (Ochman 

& Wilson, 1987; Ochman et al., 1999) was used for calculating the TMRCA of Thiomonas sp. 

The coalescent time was estimated to be 7 Ma BP (6–9 Ma BP at the 95% confidence interval; 

Table 3), which is shorter than the coalescent time of 12 Ma BP (7.6–16.4 Ma BP at the 95% 

confidence interval) for whole Thiomonas species. In addition to the TMRCA, the demographic 
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Fig. 6. Mismatch-distribution plot of pairwise differences of nucleotides. The right-skewed 
peak from the expected curve indicates a past-population-expansion of Thiomonas sp. in 
Niunai Lake. The diamond-line is the observed allelic frequency from the obtained 
sequences; the straight-line is the expectation by letting θinitial = 8.971 (per seq) and infinite 
θfinal. The inner plot indicates the differences of the observed- and expected-allelic-frequency 
curves. 

 

Fig. 7. Bayesian skyline plot for the population of Thiomonas in Niunai Lake. The plot was 

estimated by using the 16S rRNA sequences and was generated with a mutation rate of 4.5 × 

10-9 per site per year (Ochman et al., 1999). The background effective population size of the 

Thiomonas population before the rapid expansion that occurred approximately 0.18 Ma BP 

was a result of the ancestral polymorphisms of Thiomonas. The x-axis is the time (Ma BP) and 

the y-axis is the scaled effective population size. The black line represents the medium value 

and the 95% confidence interval is shown by the gray lines. The geological time scale is 

presented in the top of graph. The shaded area indicates the eruptions of the Datun 

Volcanoes (Kim et al., 2005). The bars indicated as W, R, M, G, and P on the x-axis represent 

the Pleistocene glacial epochs Würm, Riss, Mindel, Günz, and Pre-Pastonian Stages, 

respectively, named according to the Alps glaciation events. 
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history was estimated by the BSP analysis. A constant population size through time was 

estimated until 0.35 Ma BP. The population size of Thiomonas sp. declined slightly from 0.35 

Ma to 0.18 Ma BP and a rapid population growth followed until approximate 60 millennia 

BP when the growth rate gradually decreased (Fig. 7). The rapid population growth is 

approximate at two orders of magnitude. 

3.3 Discussion 

In this case study, two aspects were discussed: the microbial composition of the Niunai Lake 

community and the demographic history of the dominant bacteria Thiomonas sp. of Niunai 

Lake. We will try to illustrate the interactions between microorganisms and geologic history 

in terms of both of these aspects. 

 

 Likelihood TMRCA 

 Thiomonas sp.
(Niunai Lake)

Thiomonas
(NCBI) 

Thiomonas sp. 
(Niunai Lake) 

Thiomonas 
(NCBI) 

Mean -5329.602 -1902.352 0.0332 (7.38) 0.0537 (11.93) 

Stdev of mean 0.564 0.202 4.96×10-5 (11.03×10-3) 3.80×10-4 (8.45×10-3) 

Median -5329.21 -1901.978 0.0330 (7.33) 0.0522 (11.60) 

95% HPD lower -5347.411 -1911.269 0.0266 (5.91) 0.0343 (7.62) 

95% HPD upper -5312.535 -1894.13 0.0400 (8.89) 0.0737 (16.38) 

Effective sample size 
(ESS) 

253.488 504.472 4821.903  765.687  

Table 3. Summary statistics of maximum likelihood values for Bayesian skyline plot (BSP) 

analysis and the time to most recent common ancestor (TMRCA) estimated by BSP analysis. 

The unit of TMRCA is substitutions per nucleotide site and the parentheses are the dating 

by dividing the substitution rate (unit: Ma BP). 

3.3.1 Microbial composition in the Niunai Lake community 

The species composition in the microbial community was estimated using the phylogenetic 

approach. Even though the genera of most of the microbes were identified, the definite 

species are unknown, similar to other studies using this method (Blank et al., 2002; Walker 

et al., 2005; Omoregie et al., 2008). In spite of this drawback, the phylogenetic approach is 

still reliable for microbial identification and for inferring the microbial composition of the 

sample. In this study, a severe paraphyletic grouping was obtained (Fig. 2). The nucleotide 

compositions of these microbes, especially the rRNA nucleotide composition (Rudi, 2009), 

were not only shaped by heredity but could be affected by the properties of environment 

that they inhabited (Foerstner et al., 2005; Rudi, 2009). This may result in a similar genetic 

composition (e.g., GC content), a close genetic distance of distantly related microbes, and the 

disordered grouping of the phylogenetic tree. 

The species composition of the microbial community of Niunai Lake is simpler than other 
environments (Table 4). Only 13 microbial species were detected in the 16S rDNA library,  
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Site Area Environmental 
properties 

pH Temp. Dominant 
microbes 

Species 
richnessa 

Reference 

Chefren mud 
volcano, Nile 
Deep Sea Fan 

Eastern 
Mediterra
nean 

Iron- and Sulfide-
rich 

- - Candidatus 
Arcobacter 
sulfidicus (24%) in 
white mats; 
neutrophilic Fe(II)-
oxidizing 
betaproteobacteriu
m Leptothrix ochracea
in orange mats 

Very 
diverse 

(Omoregie 
et al., 2008) 

Soap Lake, 
lower Grand 
Coulee in E 
Washington 
State 

USA Saline and 
alkaline 

9.8 7.3º ~ 
16.3ºC 

Proteobacteria 508 (653) (Dirnitriu 
et al., 2008) 

Stromatolites 
of Hamelin 
Pool in Shark 
Bay 

Western 
Australia 

Hypersaline - 17º ~ 
27ºC 

Novel 
proteobacteria 
(28%), 
planctomycetes 
(17%), and 
actinobacteria (14%)

71 (178) of 
surface, 
124 (505) 
of interior, 
and 90 
(566) of 
irregular 
sampling 

(Papineau 
et al., 2005) 

Danshui 
River 
Estuary, 
mangrove 
ecosystem 

Taiwan Salinity 7 ~ 25 
PSU, dissolved 
nitrogen 0.15–
6.59 (2.88 on 
average) mg L-1; 
dissolved 
phosphorus 0.02–
1.53 (0.28 on 
average) mg L-1; 
suspended solid 
42.75 mg L-1 

~7.7 12.9º ~ 
32ºC 
(18ºC 
on 
averag
e) 

Rhodobacteraceae 
(28.65%) 

84 (447) (Liao et al., 
2007) 

Rowley River 
in Plum 
Island Sound 
salt marsh, 
NE 
Massachusett
s 

USA Marsh grass 
Spartina 
alterniflora, 20‰ 
~ 34‰ salinity 

- - Desulfobacteriaceae
, Desulfobulbaceae 
and 
Desulfovibrionaceae 
(46.91%) 

200 (332) (Klepac-
Ceraj et al., 
2004) 

Charca Verde 
pond, the 
forested 
university 
campus of 
Orsay 

France Freshwater 
suboxic pond, 
particles of 
organic material 
rich 

7.07 
~ 
7.8 

7.8º ~ 
9.9ºC 

Candidate division 
OD1 and beta-
Proteobacteria 

100 ~ 120 
(170 ~ 198) 

(Briée et 
al., 2007) 

Volcanic lake 
in Deception 
Island in 

Antarctica 140.1 S cm-1 of 
conductivity, low 
soluble reactive 

6.7 
~ 
7.7 

1.1º ~ 
6.5ºC 

Bacillariophyceae 
(58.70%) 

46 (Llames & 
Vinocur, 
2007) 

www.intechopen.com



 
Genetic Diversity in Microorganisms 

 

136 

Site Area Environmental 
properties 

pH Temp. Dominant 
microbes 

Species 
richnessa 

Reference 

South 
Shetland 
Islands 

phosphorus (69.2 
g L-1) but high 
total phosphorus 
(418 g L-1), low 
dissolved 
inorganic 
nitrogen (20 μg L-

1) and total 
nitrogen (75 μg L-

1) 

Norris 
Geyser Basin,  
Yellowstone 
National Park 

USA Geothermal, high 
concentrations of 
sulfuric acid, 
metals, and 
silicates 

~1 ~35ºC Mycobacterium spp. 
(37%) and 
Cyanidium spp. 
(26%) 

~40 (Walker et 
al., 2005) 

Seafloor of 
Sagami Bay, 
Hatsushima 
Island 

Japan Cold-seep 
sediments in the 
deep sea (1168 
~1174 m in 
depth); 
hypersaline 

- - Calyptogena spp. 
(64%) 

>24 (Fang et 
al., 2006) 

Niunai Lake, 
Datun 
Volcanoes 

Taiwan Sulfide-rich 
(20%–40% 
sulfide) 

~6.5 38º ~ 
40ºC 

Thiomonas sp. 
(91.85%) 

13 (26.5) This study 

Saline mud 
volcano at 
San Biagio-
Belpasso, Mt. 
Etna 

Italy High salinity 
brines (up to 100 
g/L) with high 
concentrations of 
Na+ and Cl- ions 
(93–95%); CO2-
rich gases (85–
87% of total gas 
composition); 
lower amounts of 
methane (7 ~ 
10%), nitrogen 
(1.8 ~ 2.3%), and 
oxygen (0.3 ~ 
0.5%) 

6.58 15.8ºC Marinobacter sp. 
(20%), 
Propionibacterium 
acnes (18.57%), and 
Methylomicrobium 
alcaliphilum (15%) 

19 (Yakimov 
et al., 2002) 

Norris Basin,  
Yellowstone 
National Park 

USA Arsenite-
oxidizing acidic 
thermal spring 
with arsenic 
concentration ~33 
μM 

3.1 58º ~ 
62ºC 

Hydrogenobacter 
acidophilus (79% 
~84%) 

>8 (Jackson et 
al., 2001) 

a Numbers in parentheses are the expected species richness estimated by the Chao1 (Chao, 1984) equation. 

Table 4. Comparisons of the dominant species and species richness of the Niunai Lake 
microbial community with other environments. This table is ordered by the species richness. 
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while 19.5 or 26.5 species were calculated to be expected. We compared the environmental 

properties and microbial species richness between the Niunai Lake and other locations 

(Table 4). In contrast to the highly complex microbial communities in nutrient-rich bodies of 

water (e.g., the Soap Lake in eastern Washington State (Dirnitriu et al., 2008), Charca Verde 

pond in the University of Orsay campus in France (Briée et al., 2007), and the mangrove 

ecosystem of the Danshui River estuary in northern Taiwan (Liao et al., 2007)), most of the 

harsh environments have a lower species richness. When compared to the microbial 

communities in these volcanic or geothermal environments (e.g., the saline mud volcano at 

Mt. Etna in Italy (Yakimov et al., 2002) and the acidic thermal spring in Yellowstone 

National Park (Jackson et al., 2001)), the small species richness of Niunai Lake is not 

surprising. In addition, the dominant microbes metabolically correspond to the chemical 

properties of the environment. The simple microbial communities could be a consequence of 

long-term environmental selection and these dominant microbial species could be bio-

indicators of the strict environments. 

In the 16S rRNA gene library from Niunai Lake, 169 of 184 sequences (91.85%) were 

contributed to the genus Thiomonas, each as a different genotype. A similar dominance by a 

single microbial taxon in a strict environment has been reported. For example, 79–84% of the 

identified strains from the acidic thermal spring in the Norris Basin in Yellowstone National 

Park were Hydrogenobacter acidophilus (Jackson et al., 2001) and 64% of the strains from the 

deep-sea cold-seep sediments in the seafloor of Sagami Bay in Japan were Calyptogena spp. 

(Fang et al., 2006). However, the abundance of Thiomonas sp. (91.85%) is higher than these 

cases. This suggests that a series of periodic selection events purged the diversity of the 

microbial community (Cohan, 2006) or just the conditions that favor Thiomonas sp. from the 

onset, and the remnant Thiomonas sp. may play an important ecofunctional role in Niunai 

Lake. The slightly diversified ecotypes could be the descendants of the surviving variant of 

the last selection event (Cohan, 2006). The existence of multiple ecotypes, or forms, is a 

general phenomenon in the microbial world for adaptation and survival in a broad range of 

extreme environments (Moore et al., 1998). For example, in a study by Walker et al. (Walker 

et al., 2005) that examined the composition of the microbial endolithic community in a 

geothermal environment (~35°C, pH 1) in Yellowstone National Park, the abundant and 

diversified microbes (37% Mycobacterium spp. and 26% Cyanidium spp. in abundance), and 

most of other microbes, were those that could adapt to the acidic and thermal environment. 

Although the geologic condition of YMSNP is not as well defined as that of Yellowstone 

National Park, the microbial communities in Niunai Lake may still be a representative of 

those dwelling in a volcanic environment similar to YMSNP. The most abundant microbes 

in Niunai Lake, Thiomonas sp., occur widely with the presence of thiosulfate, tetrathionate, 

H2S, and elemental sulfur. This genus also contains facultative chemolithoautotrophs 

(Moreira & Amils, 1997). The genus Thiomonas was discovered and classified by Moreira and 

Amils in 1997 (Moreira & Amils, 1997) and was split from Thiobacillus because of 

characteristics identified in the phylogenetic analysis. However, Thiomonas also share some 

physiological features with Thiobacillus, such as the capability of oxidizing sulfides to 

sulfuric acid as metabolic products (Temple & Colmer, 1951). The detailed metabolic 

properties of Thiomonas spp. were described by Kelly et al. (2007). Niunai Lake is a sulfate 

pond in a stratum of volcano. Due to the high sulfate level in the substrate, the dissolved 

sulfate or sulfide in Niunai Lake results in a special and extreme environment that would 
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select for the microbes that have the ability to gain energy from the oxidation of a reduced 

sulfur compound. Another taxon present in Niunai Lake is Acidiphilium sp. (or related 

taxon), which plays an important role in sulfur-oxidization similar to Thiobacillus and 

Thiomonas. Escherichia is another genus found in Niunai Lake. While we cannot exclude the 

probability of contamination, the existence of Escherichia may also be due to the activities of 

wildlife around the Niunai Lake.  

3.3.2 Climatic change, volcanism, and demographic history of Thiomonas sp.  

In this part of the study, the evolutionary history of Thiomonas sp. was explored instead of 
the short-term population dynamics. The short-term population dynamics of microbial 
organisms, which are influenced by nutrients, toxins, temperature, and other biotic and 
abiotic factors, are commonly described through empirical studies (Tang et al., 1997; Lee et 
al., 2007; Lee et al., 2008; Ying et al., 2008). However, the long-term population 
demographies of bacteria and viruses are relatively few and most are relative to the 
evolutionary history of the host (Pavesi, 2003, 2004, 2005; Kitchen et al., 2008). However, 
some studies of molecular dating on microorganisms have been reported (Franzmann, 1996; 
Sheridan et al., 2003; Battistuzzi et al., 2004; Acquisti et al., 2007) and these studies provide 
excellent details on the molecular clock of microbial organisms. 

Three independent analyses all indicate a population-growth event of Thiomonas sp. in 
Niunai Lake. The significant negatives of both Tajima’s D and Fu’s Fs indices, especially the 
high sensitivity in population expansion of negative Fu’s Fs (Fu, 1997), suggest an increase 
in the population size. In addition, the mismatch distribution also demonstrates a left-
skewed curve with a higher difference of frequency than expected, which is commonly 
explained by a population growth after a bottleneck event (Hwang et al., 2003; Cheng et al., 
2005; Johnson et al., 2007). However, the number of differences is lower in the observed than 
the expected. This indicates that the event of population growth occurred in the recent past 
but not very recently. This speculation was supported by the Bayesian calculation according 
to the coalescent theory. The BSP analysis illustrates a similar demographic history of a 
bottleneck event by mismatch distribution resulting in a slight population decline 
(bottleneck effect) approximately 0.35 Ma to 0.18 Ma BP that was followed by a rapid 
expansion of population size until 60 millennia BP. From this point, the growth rate of the 
population decreased. 

Similar to other studies of demographic histories (Flagstad & Roed, 2003; Carnaval & Bates, 
2007; Lin et al., 2008), when compared with the paleoclimatic change, we noticed that the 
timing of the population decline seems to match the Mindel glacial epoch in the middle 
Pleistocene and the population expansion started at the beginning of Riss glacial epoch. 
Moreover, the timing of the gradual decrease in the population growth rate started at the 
beginning of the Würm glacial epoch. Therefore, the demographic history of Thiomonas sp. in 
Niunai Lake seems to perfectly match the glacial cycles. However, the effect of climatic 
changes on the demographic history of bacteria is full of paradoxes. First, it is difficult to 
explain the relationship between population growth and the Riss glacial period. Logically, the 
postglacial population expansion was reasonable, like other studies (Mikheyev et al., 2008), 
instead of expansion during the cold glacials. Second, the lowlands of SE Asia did not ice 
during the glacial periods, but became drier and colder. There is no evidence of the ice-
covering of Niunai Lake, which is located at a low altitude (~700 m above sea level) in 
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northern Taiwan, during the glacials. Thus the influence of the glacial cycles on the 
demographies of microorganisms was less clear. The optimal temperature for the growth of 
Thiomonas spp. ranges from 20°C to 53ºC (estimated from six Thiomonas species) but they can 
adapt to a wide range of temperatures (some strains can slowly grow at less than 4ºC and up 
to 65ºC) (Kelly et al., 2007). Although the temperature records of Mt. Datun during the glacials 
are not available, the temperature during the last glacial maximum was estimated to be 
approximately 8ºC on average (-4.1±0.68ºC in January and 20.3±0.31ºC in July) at Jih-Yueh Tan 
(approximate 750 m in altitude, 23º52’N lat., 120º55’E long., in central Taiwan) (Tsukada, 1966). 
Therefore, even in the relatively cold temperatures during the glacial maximum, Thiomonas 
spp. still have the ability to survive. For this reason, we do not think that the population size of 
Thiomonas sp. would be greatly influenced by climatic change. Despite some studies 
suggesting that the demographic histories of other microbes are consistent with climatic 
changes, they are host-dependent and influenced by the demographies of the hosts, which 
were affected by climatic changes (e.g. Mikheyev et al., 2008). 

Alternatively, the activity of the Datun Volcanoes could have influenced the demographic 

history of Thiomonas sp. in Niunai Lake. According to the geological history, the Datun 

Volcanoes began to erupt approximately 2.8–2.5 Ma ago in a compressional tectonic 

environment (Song et al., 2000). These volcanic events are thought to have ceased during the 

late Pliocene and early Pleistocene and were followed by a second major eruption 

approximately 0.8–0.2 Ma BP. The Datun Volcanoes developed gradually during the episodic 

volcanic events that occurred between 2.8 and 0.2 Ma ago (Kim et al., 2005). While the 

volcanoes are believed to be currently inactive (Song et al., 2000), a recent study has suggested 

that these volcanoes may still be active because of continuing hydrothermal activities and gas 

fumaroles (Kim et al., 2005). The last eruption (approximately 0.8 Ma–0.2 Ma BP) formed large 

volcanoes in this area (Kim et al., 2005). The rapid expansion of the Thiomonas sp. population 

occurred approximately 0.18 Ma BP, just after the last eruption of the Datun Volcanoes. The 

geological events of the Datun Volcanoes match the demographic history of Thiomonas sp. 

Therefore, a more likely explanation for the rapid increase in the population size of Thiomonas 

sp. is that the volcanism created a sulfide-rich environment around Mt. Datun. Although the 

demographic changes affected by the earlier eruption events were difficult to examined 

because most ancestral variations were eliminated during the catastrophes, the population size 

change after the last eruptions was recorded in the genetic variations. The sulfide-rich lake 

water would have provided a hotbed for the growth of thiobacteria, like Thiomonas spp., which 

have ability to catabolize sulfur-containing compounds. 

Of these two potential explanations for the demographic history of Thiomonas sp. (i.e., long-

term climatic changes and volcanism), we prefer the model of volcanism affecting the 

bacterial evolution. This is because substrates in Niunai Lake could be directly used as 

materials for the catabolism of thiobacteria and the chemical properties of the environment 

are directly decide the microbial composition (Munster et al., 1998; Mills et al., 2003). The 

sulfide-rich environment of the Datun Volcanoes has been maintained for very long time 

since the last volcanic eruption. This extremely harsh substrate could be a stress for other 

microbes but could be relatively suitable for the growth of thiobacteria (e.g., Thiomonas, 

Thiobacillus, and Acidiphilium). Although many cases of eukaryotic demographic histories 

have been reported to be influenced by glacial periods, especially studies detailing 

postglacial expansion (Bartish et al., 2006; Aoki et al., 2008; Lin et al., 2008), and although the 
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short-term population dynamics of microbes are easily influenced by temperature (Grisi et 

al., 1998; Skirnisdottir et al., 2000), the climatic change model seems inappropriate for 

explaining the long-term demographic history of Thiomonas sp. in this case. 

In summary, based on a survey of the 16S rRNA gene, a very simple microbial composition 
was detected in the sulfide-rich Niunai Lake in a volcanic mountain of the northern Taiwan. 
Only 13 microbial taxa were detected and these were predominantly Thiomonas species (over 
90%) with a small amount of Thiobacillus, Escherichia, and Acidiphilium species and 
approximately 4% unknown proteobacteria. While the expected microbial species richness 
was greater than what was observed (19.5 or 26.5 taxa), the species richness was still less 
than other bodies of water and revealed a simple microbial community structure. The 
dominant bacteria (belonging to genera Thiomonas, Thiobacillus, and Acidiphilium) function as 
sulfur oxidizers and may contribute to some of the lake’s physical and chemical properties. 
In addition, we used population genetic approaches to explore the long-term demographic 
changes of the dominant species, Thiomonas sp. The observed significant negatives of both 
Tajima’s D index and Fu’s Fs index suggest a rapid population expansion. This suggestion 
was further supported by the left-skewed curve of the differences in allelic frequency 
between the observed and expected values in pairwise comparisons of sequences (mismatch 
distribution). The result of the mismatch distribution indicates a past event of rapid 
population growth. The Baysian skyline plot that was analyzed according to the coalescent 
theory also suggests a bottleneck event followed a rapid increase of population size of 
Thiomonas sp. in Niunai Lake. The time of population expansion was estimated to be 
approximately 0.18 Ma BP until 60 millennia BP and this timing approximately matches the 
end of the last eruption of the Datun Volcanoes (~ 0.2 Ma BP), where Niunai Lake is located. 
We eliminated the hypothesis of glacial cycles influencing the bacterial demography and 
prefer volcanism as the underlying mechanism for the observed bacterial demography. 
While the sulfide-rich substrates created by the volcanism could directly accelerate the 
growth of thiobacteria, the climate change model could not account for the population 
growth during the cold Riss glacial epoch. In conclusion, the periodic selection by the 
sulfide-rich environment simplified the microbial community and resulted in the 
dominance of Thiomonas sp. Additionally, the geological history corresponds to the 
demographic history of Thiomonas sp. in Niunai Lake. 

4. Conclusion 

In conclusion, there is a correlation between microbial composition and environmental 

change (Aravalli et al., 1998). Thus, the environmental properties can directly affect the 

microbial composition (Ptacnik et al., 2008) and even shape their genetic composition 

(Foerstner et al., 2005; Rudi, 2009). A harsh environment simplifies the composition of the 

microbial communities by strong selection forces (i.e., ecotypes of microbes are recurrently 

purged of their diversity by periodic selection for a long time) (Cohan, 2006). This kind of 

periodic selection under thermal, acidic, and sulfide-rich conditions causes a high 

abundance of Thiomonas sp. with greater than 99% genetic identity that limits the microbial 

species richness and simplifies the microbial community in Niunai Lake. The long-term 

periodic selection of the microbes could last as long as 0.18 Ma. Since the end of the last 

volcanic eruption of the Datun Volcanoes (0.2 Ma BP), the level of the sulfide-rich substrates 

steadied and were a hotbed for the growth of thiobacteria. The periodic selection since 0.2 
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Ma BP resulted in the current microbial communities of the Datun Volcanoes. This study 

represents the tight connection between environmental-microbial demographic history and 

the in situ geologic characteristic and geohistory. In this case study, the 16S rRNA gene was 

used as the genetic marker for tracing the demographic history of microorganisms. Recently, 

the rapid development of the genomic technologies and theories and models for eliminating 

the effects of recombination or horizontal gene transfer helps for decreasing the variance of 

coalescence estimation. The use of multilocus (or genomic) makers for exploring the 

microevolution of microorganisms is expectedly going to be a future issue soon. 
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